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Abstract

In 1998, Impagliazzo and Wigderson [IW98] proved a hardness vs. randomness tradeoff for BPP
in the uniform setting which was subsequently extended to give optimal tradeoffs for the full range of
possible hardness assumptions (in slightly weaker settings). In 2003, Gutfreund, Shaltiel and Ta-Shma
[GSTSO03] proved a uniform hardness vs. randomness tradeoff for AM, but that result only worked on
the “high-end” of possible hardness assumptions.

In this work, we give uniform hardness vs. randomness tradeoffs for AM that are near-optimal for the
full range of possible hardness assumptions. Following [GSTSO03], we do this by constructing a hitting-
set-generator (HSG) for AM with “resilient reconstruction.” Our construction is a recursive variant
of the Miltersen-Vinodchandran HSG [MVO05], the only known HSG construction with this required
property. The main new idea is to have the reconstruction procedure operate implicitly and locally on
superpolynomially large objects, using tools from PCPs (low-degree testing, self-correction) together
with a novel use of extractors that are built from Reed-Muller codes for a sort of locally-computable
error-reduction.

As a consequence we obtain gap theorems for AM (andAdbAM) that state, roughly, that either
AM (or AM N coAM) protocols running in timeé(n) can simulate all of EXP (“Arthur-Merlin games
are powerful”), or else all of AM (or AMN coAM) can be simulated in nondeterministic tiraé:)
(“Arthur-Merlin games can be derandomized”), for a near-optimal relationship bett¢egands(n).

As in [GSTS03], the case of Aih coAM yields a particularly clean theorem that is of special interest
due to the wide array of cryptographic and other problems that lie in this class.

1 Introduction

A fundamental question of complexity theory concerns the power of randomized algorithms: Is it true that
every randomized algorithm can be simulated deterministically with small (say, subexponential) slowdown?
Ideally, is a polynomial slowdown possible — i.e., is BEPP? The analogous question regarding the
power of randomness in Arthur-Merlin protocols is: Is it true that every Arthur-Merlin protocol can be
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simulated by a nondeterministic machine with small slowdown? Is a polynomial slowdown possible —i.e.,
does AM = NP? We refer to efforts to answer the first set of questions positively as “derandomizing
BPP” and efforts to answer the second set of questions positively as “derandomizing AM”. Recent work
[IKWO02, KI04] has shown that derandomizing BPP or AM entails proving certain circuit lower bounds that
currently seem well beyond our reach.

1.1 The hardness versus randomness paradigm

An influential line of research initiated by [BM84, Ya082, NW94] tries to achieve derandomizataer the
assumptiorthat certain hard functions exist, thus circumventing the need for proving circuit lower bounds.
More precisely, we will work with hardness assumptions concerning the circuit complexity of functions
computable in exponential tifhe Derandomizing BPP can be done with lower bounds againsts¢ize
deterministic circuits while derandomizing AM typically requires lower bounds against@y@ondeter-

ministic circuits, where’ is the input length of the hard function. Naturally, stronger assumptions — higher
values ofs(¢) — give stronger conclusions, i.e., more efficient derandomization. There are two extremes of
this range of tradeoffs: In the “high end” of hardness assumptions one assumes hardness against circuits of
very large sizes(¢) = 2°4%) and can obtain “full derandomization,” i.e., BPP P [IW97] or AM = NP

[MVO5]. While in the “low-end” one assumes hardness against smaller circuits ok@&ize= poly(¢)

and can conclude “weak derandomization,” i.e., simulations of BPP (resp. AM) that run in subexponential
deterministic (resp. nondeterministic subexponential) time [BFNW93, SU05b]. Today, after a long line of
research [NW94, BFNW93, Imp95, IW97, AK01, KvM02, MV05, ISW06, SUO5b, Uma03, SU05a, Uma05]
we have optimal hardness versus randomness tradeoffs for both BPP and AM that achieve “optimal param-
eters” in thenon-uniformsetting (see the discussion of non-uniform vs. uniform below).

1.2 Pseudorandom generators and hitting set generators

The known hardness versus randomness tradeoffs are all achieved by constrpstogl@random gener-

ator (PRG). This is a deterministic functiadd which on inputm, produces a small set @f m-bit strings

in time poly(T"), with the property that a randomly chosen string from this set cannot be efficiently distin-
guished from a uniformly chosem-bit string?. In this paper we are interested in a weaker variant of a
pseudorandom generator calletliiing set generatofHSG). A functionG is a HSG against a family of
circuits onm variables, if any circuit in the family which accepts at leg&t of its inputs also accepts one of
them-bit output strings of> (when run with inputn). It is standard that given a HSG against deterministic
(resp. co-nondeterministic) circuits of size pply) one can derandomize RP (resp. AM) in time galy

by simulating the algorithm (resp. protocol) on all strings output by the HSG, and accepting if at least one
of the runs accepts. It is also known that HSGs against deterministic circuits suffice to derandomize two
sided error (BPP) [ACR96, ACRT99].

The proofs of the aforementioned hardness versus randomness tradeoffs are all composed of two parts:
first, they give an efficient way to generate a set of strings (the output of the PRG or HSG) when given access
to some functionf. Second, they give seductionshowing that if the intended derandomization using this
set of strings fails, then the functighcan be computed by a small circuit, which then contradicts the initial

This type of assumption was introduced by [NW94] whereas the initial papers [BM84, Yao82] relied on cryptographic as-
sumptions. In this paper we are interested in derandomizing AM which cannot be achieved by the “cryptographic” line of hardness
versus randomness tradeoffs.

2An alternative formulation is to think aff as a function that takesta= log T bit “seed” as input and outputs the element in
T indexed by the seed.



hardness assumption when takifitp be the characteristic function of an EXP complete problem. We now
focus on the reduction part. An easy first step is that an imiftat the randomized algorithm or AM protocol)

on which the intended derandomization fails gives rise to a small cifeyithat “catches” the generator,

i.e., D, accepts at least 1/3 of its inputs, but none of the strings in the generator output. (The obtained circuit
D, is a deterministic circuit when attempting to derandomize BPP and a co-nondeterministic circuit when
attempting to derandomize AM). The main part of all the proofs is to then give a reduction that transforms
this circuit D, into a small circuit”' that computeg.

1.3 Uniform hardness versus randomness tradeoffs

All the aforementioned hardness versus randomness tradeofi®@auaiform tradeoffbecause the reduc-
tion in the proof is nonuniform: give®, it only shows the existence of a small circditthat computes
f, but doesn't give an efficient uniform procedure to produce it. (In other words, the reduction relies on
nonuniform advice when transformirg, into C'). We remark that all the aforementioned results are “fully
black-box” (meaning that they do not use any properties of the hard fungtmrcircuit D,) and it was
shown in [TV02] that any hardness versus randomness tradeoff that is “fully black box” cannot have a
uniform reduction.

A non-black boxuniform reduction for derandomizing BPP in the low-end was given in [IW98]. This
reduction gives ainiformrandomized poly-time algorithm (sometimes callege@onstruction algorithm
for transforming a circuitD,, that catches the generator into a ciratiithat computes the functiofi. It
follows that if the intended derandomization fails, and if furthermore ondeasibly generatan inputx
on which it fails (by a uniform computation), then one can use the uniform reduction to construct the circuit
C in probabilistic polynomial time, which in turn implies thgtis computable in BPP. (This should be
compared to the non-uniform setting in which one would get that in P/poly). An attractive feature
of this result is that it can be interpreted as a (low-egal) theorenfor BPP that asserts the following:
Either randomized algorithms are somewhat weak (in the sense that they can be simulated deterministically
in subexponential time on feasibly generated inputs) or else they are very strong (in the sense that they can
compute any function in EXP).Obtaining a high-end version of this result is still open. In [TV02] it was
shown how to get a high-end tradeoff in the slightly weaker setting where the hard fufiéi@omputable
in polynomial space rather than exponential time.

1.4 Uniform hardness versus randomness tradeoffs for AM

A non-black-box uniform reduction for derandomizing AM in the high-end was given in [GSTS03]. It
yields gap theorems for both AM and ANicoAM. The gap theorem for AM is analogous to that of [IW98]
(except that it concerns the high-end and not the low end); it asserts: Either Arthur-Merlin protocols are very
weak (in the sense that they can be simulated non-deterministically in polynomial time on feasibly generated
inputs) or else they are somewhat strong (in the sense that they can simua@TBEVE (209) in time
20() ), The gap theorem for AMY cOAM gives the same result with “AM” replaced by “AM coAM.”
The statement is in fact cleaner for AMcoAM because it does not mention feasibly generated inputs, and
instead applies tall inputs

The result of [GSTSO03] relies on identifying a certain “resiliency property” of an HSG construction of
[MVO05] (constructed for the nonuniform setting) and on “instance checking” [BK95], which was previously
used in this context by [BFL91, BFNW93, TV02]. While it gives a high-end result it does not generalize to

3To state this result formally one needs a precise definition of “feasibly generated inputs”. The actual result also involves
“infinitely often” quantifiers which we will ignore in this informal introduction.
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the low-end because the HSG construction of [MV05] works only in the high end. We remark that there is
an alternative construction (in the nonuniform setting) of [SUO5b] that does work in the low-end but does
not have the crucial resiliency property.

1.5 Our result: low-end uniform hardness versus randomness tradeoffs for AM

In this paper we obtain a resilient HSG (with a uniform reduction proving its correctness) that works over

a larger domain of parameters and covers a wide range of hardness assumptions (coming very close to the
absolute low-end). Using our result we extend the gap theorems of [GSTSO03] as follows (for a formal
statement of the two Theorems below see Theorems 2.4 and 2.5 in Section 2):

Theorem (informal) 1.1. Either E = DTIME(2°) is computable by Arthur-Merlin protocols with time
s(¢) or for any AM languagd. there is a nondeterministic machirdd that runs in time exponential if

and solved. correctly onfeasibly generated inputs lengthn = s(¢)©(1/(og¢-loglog s(6)%),

The second Theorem below achieves a clean statement that works for all inputs (rather than feasibly
generated inputs). However, this is only achieved for AMdoAM.

Theorem (informal) 1.2. Either E = DTIME(2°) is computable by Arthur-Merlin protocols with time
s(¢) or for any AMN coAM languagel. there is a nondeterministic (and co-nondeterministic) machihe

that runs in time exponential ihand solved. correctly onall inputs of lengthy = s(¢)©(1/(log (~loglog s(€)*)

Note that in the two theorems above we use a nonstandard way of measuring the running time of the ma-
chineM. This is because it is not possible to express the running timé ag a function of its input length
in a closed form that covers all the possible choices(éf. It may be helpful to view the consequences
for some particular choices 6f¢) and then express the running time of the nondeterministic machine as a
function of the length oits input.

e Fors({) = 222(9) (the high-end) the nondeterministic machine runs in polynomial time in the length of
its input. This is exactly the same behavior as in [GSTSO03]. Thus, our results truly extend [GSTSO03].

We comment that the techniques of [GSTS03] don’t work wheh < Ve,

e Fors(f) = 2¢ and constant > 0, the nondeterministic machine runs in timep((logn)°(1/9) on
inputs of lengtm.

e Fors(¢) = 200°e"Y) and constant > 3, the nondeterministic machine runs in time subexponential in
the length of its input. The > 3 requirement is suboptimal as we can hope to get the same behavior
even wheru > 1 (which is the absolute low-end).

A discussion regarding the best possible parameters that can be expected in hardness versus randomness
tradeoffs appears in [ISW06]. Our results are suboptimal in the sense that one could hope=tosgér*(")
whereas we only get = s(¢)2(1/(eg¢-loglog s(£)*) - Note that this is indeed optimal in the high-end, where
s(0) = 229, However, it becomes suboptimal whet) is smaller. Another effect of this problem is that
while we can hope for hardness versus randomness tradeoffs that start working as s@pr-ag~(°2¢)
(the “absolute low-end”), our results only start working whéf) > 2(ls 0%,



1.6 Our techniques

The source of our improvement over [GSTS03] is that we replace the hitting set generator of [MV05] (that
only works in the high-end) with a new construction of a generator. The new generator and its proof of
correctness build on the previous construction of [MV05] while introducing several new ideas. We give a
detailed informal overview of the ingredients and ideas that come up in our construction in Section 5.1.

On a very high level we can identify three new ideas in our construction. First, we use techniques from
PCPs (low-degree testing and self-correction) to speed up certain steps in the reduction establishing the
correctness of [MV05], so that they run in sublinear time in the size of their input. Although it has long been
observed that there is some similarity between aspects of PCP constructions and aspects of PRG and HSG
constructions, this seems to be the first time primitives like low-degree testing have proven useful in such
constructions. Second, we run both the [MV05] construction and the associated reduction recursively, in a
manner reminiscent of [ISW06, Uma05] (although the low level details are different). Finally, we introduce
a new primitive calledocal extractors for Reed-Muller codewhich are extractors that are computable in
sublinear time when run on inputs that are guaranteed to be Reed-Muller codewords. A construction of such
an object can be deduced from [SUO5b]. They play a crucial role in the improved constructions, and may be
of interest in their own right. In Section 5.1 we give a detailed informal account of our construction and the
way the new ideas fit into the proof.

1.7 Motivation

Uniform hardness vs. randomness tradeoffs represent some of the most involved proofs of non-trivial rela-
tionships amongst complexity classes, using “current technology.” Pushing them to their limits gives new
results, but also may expose useful new techniques, as we believe this work does. Moreover, the complexity
classes we study, AM and ANcoAM, contain a rich array of important problems, from hard problems upon
which cryptographic primitives are built, to group-theoretic problems, to graph isomorphism, and indeed all
of the class SZK (Statistical Zero Knowledge).

A second motivation is the quest fonconditionalderandomization results. In [GSTS03] it was shown
that if one can prove a low-end gap theorem for AM that works for all inputs rather than just feasibly
generated inputs, then it follows that AM can be derandomized (in a weak semsa)ditionally(the
precise details appear in [GSTSO03]). In this paper we come closer to achieving this goal by achieving a
low-end version of [GSTS03].

1.8 Organization of the paper

In Section 2 we restate our main theorems formally using precise notation. In Section 3 we describe some
ingredients that we use as well as the new “local extractors.” In Section 4 we define some some new variants
of AM protocols that we will use as sub-protocols in the final result. In Section 5 we give the new recursive
HSG and an important ingredient that will be used in the proof. In Section 6 we state and prove the main
technical theorem. In Section 7 we derive our main results from the main technical theorem.

2 Formal statement of results

In this section we formally state Theorems 1.1 and 1.2. In order to do so we need to precisely define the
notion of “derandomization on feasibly generated inputs”.



2.1 Feasibly generated inputs

Following [GSTS03] we will use the notions defined in [Kab01]. Loosely speaking, we say that two lan-
guagesl, M areindistinguishabldf it is hard to feasibly generate inputs on which they disagree. For this
paper it makes sense to allow the procedure trying to come up with such inputs (which is cafige@n

the terminology of [Kab01]) to use nondeterminism. We first need the following definition.

Definition 2.1. Let L;, Ly be two languages and letbe a string. We say thdt; and L, disagree one if
T € (L1 \ LQ) U (L2 \ Ll).

We now define the notion of a refuter, which is a machine attempting to distinguish between two languages.

Definition 2.2 (distinguishability of languages).We say that a nondeterministic machiRgthe refuter)
distinguishedbetween two languages;, Lo C {0,1}* on input lengthn if on every one of its accepting
computation path$2(1™) outputs some of lengthn on whichZ; and L, disagree.

With this notation we can formally capture the informal statements in the introduction. More specifically,
when given a language € AM, a nondeterministic maching/ running in timet(n) < 2" succeeds on
feasibly generated inputs if for any refutRrunning in timet(n), R does not distinguisti from L(M).4

2.2 Formal restatements of Theorems 1.1 and 1.2

We now restate our main theorems formally. We first require that the funetior{which measures hard-
ness) is a “nice” function in the standard way:

Definition 2.3 (time-constructible function). A functions(¢) is time-constructibléf:
e 5(/) <s(f+1),and
e s(¢) is computable frond in time O(s(¢)).

The following Theorem is the formal restatement of Theorem 1.1. Note that we state the theorem
for both classes E= DTIME(20)) and EXP= DTIME(2¢°") (the parameter choices for EXP are
slightly different and appear in parenthesis). The statements below also use the notion of complete languages
for E and EXP. Here we follow the standard convention and completeness for E is with respect to linear
time reductions, whereas completeness for EXP is with respect to polynomial time reductions.

Theorem 2.4. There exists a languagé complete for E (resp. EXP) such that for every time-constructible
function? < s(¢) < 2¢, either:

e A has an Arthur-Merlin protocol running in timeg(¢), or

e for any languagel. € AM there is a nondeterministic machidé that runs in time2°®) (resp.
2ty on inputs of length = s(¢)©(1/(est=loglogs())*) (ragp 1 = 5(£)2((1/1060%)) such that for
any refuterR running in times(¢) when producing strings of lengththere are infinitely many input
lengthsn on whichR does not distinguisth from L(A1).

“The statement in [GSTSO03] uses a formal notation borrowed from [Kab01] that in the situation above reads AM
[pseuddNTIME (¢(n)))]-NTIME(t(n)) where the first occurrence of NTIMEn)) stands for the class of the refuter and the
second one for the class of the machine We choose not to use this notation as it complicates the statements of our results
and makes them less clear. However we stress that our results use exactly the same meaning of feasibly generated inputs as in
[GSTS03, Kab01]. As in [GSTS03], this meaning of “feasibly generated” is incomparable with the one used in [IW98].



We remark that the hidden constants in the statement above depend on the lahgiiagegollowing
Theorem is the formal restatement of Theorem 1.2.

Theorem 2.5. There exists a languagé complete for E (resp. EXP) such that for every time-constructible
function? < s(f) < 2, either:

e A has an Arthur-Merlin protocol running in time(¢), or

o for any languagel. € AM N coAM there is a nondeterministic machiné that runs in time2©(®)
2
(resp. 2¢°Vy on inputs of length = s(¢)©(1/(est-loglogs(0)*) (regp. 5 = 5(¢)°((1/1060%)) such
there are infinitely many input lengthson whichZ and L(M ) are equal.

Following [GSTS03] we can also reverse the order of “infinitely often” in Theorem 2.5 and achieve:

Theorem 2.6. There exists a languagé complete for E (resp. EXP) such that for every time-constructible
function? < s(f) < 2, either:

e A has an Arthur-Merlin protocol running in time(¢) which agrees withl on infinitely many inputs.
(On other inputs the Arthur-Merlin protocol does not necessarily have a non-negligible gap between
completeness and soundness), or

o for any languagel. € AM N coAM there is a nondeterministic machiné that runs in time29(®)
2
(resp. 2°°”’) on inputs of lengthy = s(¢)©(1/(eat-leglozs(0)*) (regp 1y = 5(¢)©((1/10e0)?)) gych
that L = L(M).

3 Preliminaries

We assume that the reader is familiar with the definition of AM and other standard complexity definitions
(see, e.g., [Gol98]). We remark that by [GS86, BM88, FG3@] we can assume that AM is defined by an
Arthur-Merlin protocol with public coins, two rounds and perfect completeness. In this paper we also refer
to protocols “that run in time(¢) on inputs of lengt” by which we mean that the total length of messages
sent during the protocol and the time of Arthur’s final computation is bounded®y

3.1 Nondeterministic and co-nondeterministic circuits

We will be working with nondeterministic and co-nondeterministic circuitsiofdeterministic circuits an
ordinary Boolean circui€ with two sets of inputsy andy. We say thaC' acceptsnputx if 3y C(z,y) =1
and thatC' rejectsinput = otherwise. We refer to a stringon whichC(x,y) = 1 asa witnessshowing
thatC' acceptse. A co-nondeterministic circuibhas the opposite acceptance criterioradteptsnput z if
Yy C(z,y) = 1 andrejectsinput z otherwise. We refer to a stringon whichC'(z, y) = 0 as awitnessthat
C rejectsz.

3.2 Low degree testing and self correctors

The key to our results is that in many places we winplicitly with functions that are supposed to be
low-degree polynomials — of course this is the central concept in PCPs as well. Just as with PCPs, we need
the ability to locally test whether an implicitly supplied function is of the “correct” form: namely, we need

to check whether it is (close to) a low-degree polynomial. As is standard, once we have determined that an
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implicitly supplied function is close to a low-degree one, we can “access” the nearby low-degree function
locally using a self-corrector.

Low-degree testerand self-correctorsare standard primitives in the PCP literature. In fact for our
intended use of these primitives, we do not need delicate control of the parameters; we only need to be
able to operate od-variate functions over a fieldd in time poly(|F|,d) (hence making at most that many
gueries), while handling constant relative distance, and with constant soundness error for both primitives.
The formal definitions, and the known results that we will make use of follow:

Definition 3.1 (low-degree tester).A low-degree testewith parametersh, d, € is a probabilistic oracle
machineM that has oracle access to a functign F¢ — F, and for which

e if deg(f) < hthenM/ accepts with probability 1, and

o if every polynomial with deg(g) < h satisfiesPr,[f(z) # g(z)] > ¢, thenM/ rejects with proba-
bility at least?.

Lemma 3.2 ([FS95]). There exists a (non-adaptive) low-degree tester with paramatérs = 24, running
in poly(|F|, d) time, providedF| > ch, 6 < dy, for universal constantsand .

Definition 3.3 (self-corrector). A self-correctomwith parametersh, 4, € is a probabilistic oracle machine
M that has oracle access to a functign F¢ — T, and for which

o if there exists a polynomigl of total degree, for whichPr,[g(z) # f(x)] < ¢, then for allz

Pr[M7(z) = g(x)] > 1 — 6.

Lemma 3.4 ([BF90, Lip90]). There exists a (non-adaptive) self-corrector with parameieis= O(1/(¢|F|)), €,
running in poly|F|, d) time, provided: < 1(1 — h/|F|).

We remark that for both low-degree testers and self-correctors, it is possible to decrease the soundness
error from a constant t2—* by repeating the protoc@(t) times.

3.3 Local extractors for subsets

Another object we will use to perform local computations on an implicitly supplied function is what we call a
“local extractor for subsets”. The notion of “locally computable extractors” was introduced in [Lu04, Vad04]

in the context of encryption in the bounded-storage model. Loosely speaking, it requires that the extractor is
computable in time sublinear in the length of its first input. In our construction we require such extractors for
very low “entropy thresholds”. However, Vadhan [Vad04] proved that it is impossible to have such extractors
unless the entropy threshold is very high. For this purpose we introduce a new variant of local extractors
in which the first input comes from some prescribed subset (rather than tfg $¢t) and exploit the fact

that we intend to run the extractor on inputs that are codewords in an error-correcting code. It turns out
that the construction of [SUO5b] can be computed in time polynomial in the output when applied on the
Reed-Muller code, even when shooting for low entropy thresholds. The formal details follow:

Definition 3.5 (local extractor for subsets).A (k, ¢) local C-extractor is an oracle functiof : {0,1}! —
{0, 1}™ for which the following holds:



e for every random variableX distributed onC' with minentropy at leastk, EX(U;) is e-close to
uniform, and

e Erunsin polym,t) time.

Definition 3.6 (Reed-Muller code). Given parameters, h and a prime power we define RM;, , to be
the set of polynomialg : F" — [ over the field withy elementsF, having degree at most

The construction of [SU05b] gives the following local extractor for the Reed-Muller code (we have made
no attempt to optimize the constants):

Lemma 3.7 (implicit in [SUO5b]). Fix parameters: < h, and letC = RM, 3, , be a Reed-Muller code. Set
k = h®. There is an explicitk, 1/k) local C-extractor E with seed length = O(r log ¢) and output length
m=h=k/>

The following proposition follows from the definition.

Proposition 3.8. LetE : {0,1}' — {0,1}"™ be a(k, ¢) local C-extractor, and letD be a subset of0, 1}"™.
Then at mose* elements: € C satisfy: Pr,[E*(y) € D] > '2%' +e.

We will use local extractors in the following way. We will be interested in the set

{m Pr[E*(y) € D) = 1},

and we would like to be able to check whether saime C'is in this set by performing a local computation
onx. This is not possible in general but a relaxation of this goal is. If we perform the probabilistic test of
checking whetheF”* (y) € D for a randomy, then we will accept alk in the set, and not accept too many
otherz, because by the above proposition, the set ef C' on which this test accepts with high probability

is “small” — it has size at mo€*. This relaxation will turn out to be sufficient for our intended application.

4 The GST framework

In this section we describe the approach of [GSTS03] for obtaining uniform hardness vs. randomness
tradeoffs for AM, and formalize two key ingredientgmmit-and-evaluate protoco{e/hich we define for
the first time in this paper) andstance checkergvhich have been defined in previous works).

As described in the introduction, our goal is to produce, from a hard fung¢tiatSG against nondeter-
ministic circuits (and thus suitable for derandomizing AM) for which the associated reduction (showing how
to computef efficiently if the HSG fails) possesses an additioresiliencyproperty. Here theesiliency
property means that the reduction can be cast as two phases of interaction between Arthur and Merlin: in the
first phase, Merlin commits (with high probability) to a functignand in the second phase, Merlin reveals
evaluations ofy upon Arthur’s request.

We formalize this two-phase protocol as@nmit-and-evaluatgrotocol in the next subsection; the key
properties it should posses are the aforementioasitiency meaning that Merlin is indeed committed to
answering all future evaluation queries according to some fungtadter the commit phase, acdnformity
with f, which means that the honest Merlin can commit to the “true” hard funcfiodn Section 4.2,

>The minentropy of a random variahké is mingesuppx) — log(Pr[X = x]).



we defineinstance checkerghich will be used to convert a commit-and-evaluate protocol that conforms
resiliently with f into a true Arthur-Merlin protocol foyf, assumingf is an E- or EXP-complete function.

Overall, we end up with a framework for obtaining uniform hardness vs. randomness tradeoffs for AM;
the missing ingredient is a HSG whose associated reduction has the required resiliency property (i.e., can be
formulated as a commit-and-evaluate protocol). This we construct in Section 5.

4.1 Commit-and-evaluate protocols

Let us start with some notation. Arround AM protocol is a protocol in which Arthur and Merlin receive
a common inputz and at each round Arthur sends public random coins and Merlin replies. At the end of
the protocol Arthur outputs a value (not necessarily Boolean), denoted by, dditx), that is a random
variable defined relative to strategyM for Merlin; i.e., M is a function that describes Merlin's response
given a history of the interaction so far. The value(aut\/, z) is a random variable because Arthur flips
coins during the protocol. The running time of the protocol is the running time of Arthur. A protocol
may take an auxiliary common inpyt which we will variously think of as a “commitment” or an “advice
string”. In this case we denote the output by(autV/, z, ). The outputl (which is intended to be output
by Arthur when he detects a dishonest Merlin) is a distinguished symbol disjoint from the set of intended
output values.

With this notation we can define the notion of AM protocols that output values:

Definition 4.1 (AM protocols that output values). Given an AM protocofr and an input domaird, we
say thatr with auxiliary inputy:

e is PSV(partially single valued) ovef with soundness erros if there exists a functiop defined over
I, such that for alle € I, and all Merlin strategies\/*

Prjout(m, M*,z,y) € {g(x), L}] > 1 —s.

e conformswith a functionf defined over with completenessif for all « € I, there exists a Merlin
strategyM for which
Prlout(r, M, z,y) = f(x)] > c.

e computesa functionf over domain/ with soundness erros and completenessif = with auxiliary
inputy is PSV over with soundness and conforms witty’ with completeness

We may sometimes omitand ¢ in which case they are fixed to their default values 1/3 andc = 2/3.
We also omitf when it is clear from the context.

Note that a polynomial time AM protocol of the above type computes the characteristic function of some
languagel if and only if L € AM N coAM. We will be interested in protocols that are composed of two
phases, and operate over the domaia {0,1}". The first phase is called thmmit phase This is an
AM protocol whose input id™, and whose auxiliary input is an advice stringhat depends only on.

The role of this phase is to generate an auxiliary input to the second phase. The second phase is called the
evaluation phaseThis is an AM protocol whose input is € I, and whose auxiliary input is the output

of the commit phase protocol. The reason we distinguish between two different phases is that we make the
additional requirement that there is a function computed by the combined protocol and that this function is
completely determined at the end of the commit phase (tHzfisreMerlin knows the input:). The exact

details appear below.
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Definition 4.2 (commit-and-evaluate protocols).A commit-and-evaluate protoci a pair of AM proto-
colsm = (mcommis Teval). Givens and an input domaid = {0, 1}", we say thatr with advicea:

e conformswith a functionf defined over if there exists a Merlin strateg¥/commi:for which

Pr[mevar With auxiliary input outmcommis Mcommis 1", @) conforms withf] = 1.

o isy-resilientover if for all Merlin strategiesM ¢, mmis

Pr[meval With auxiliary input outmcommit Meommis 17> &) 1S PSY > .

e runs in timet(n) for some function if both mcommita&nd meya run in time bounded b¥(n).
We may sometimes omitin which case it is fixed to its default valge= 2/3.

We argue that completeness, soundness and resiliency of a commit-and-evaluate protocol can be ampli-
fied from their default values by parallel repetitin.

Proposition 4.3 (amplification of commit-and-evaluate protocols)Letm = (mcommit Teval) b€ @ cOmmit-
and-evaluate protocol that is resilient and conforms wfittwith completenesk resiliency2/3 and sound-

nessl /3. Furthermore, assume thatommitis a two round protocol. Them can be transformed (by parallel
repetition) into a commit-and-evaluate protoedl = (7.,mmis Teva) that is resilient and conforms witf,

with completeness, resiliencyl — 2~ and soundnes—t. The transformation multiplies the running time

and the output length of the commit protocol ®y¢), and the running time of the evaluation protocol by
O(t?). The transformation preserves the number of rounds for both the commit protocol and the evaluation
protocol.

Proof. The new commitment protocaf.,,,;; SImply runs the old commitment protocadommitt’ = ©(t)
times in parallel, producing the commitmerits , uo, . .., uy). Note that the Merlin strategy// ., that
executes the honesftl;ommi Strategy for each repetition resultsemeryu,; being a commitment for which
Teval With auxiliary inputu; conforms withf with completenes$. The new evaluation protocaﬁz\,al runs,
for eachi, the old evaluation protocales t' = O(t) times in parallel withu; as auxiliary input. If for all
commitmentsu; all the repetitions ofreval With adviceu; output the same valuethenn, ,, outputsv and
otherwise it outputd..

Note that by the perfect completenessmgfy if Merlin executes the “honeste 4 Strategy on each
of the repetitions using adviae the resulting strategy causes Arthur to outpt) with probability one.
Thus, 7’ conforms withf.

For resiliency note that as.ommitis a two round protocol then with probability at le@gB over Arthur’s
choice of coins, every possible reply of Merlin results in a “good” commitmagine., one for whichreyy iS
PSV). It follows that when making invocations ofrcommit With probability at least — 2~ there exists an
1* on which Arthur sends coin tosses for which every possible reply of Merlin leads to a “good” commitment
u;=. We claim that whenever this event happens the protegg|is PSV when using advice,, . .., uy,
which establishes the claimed resiliency.

8In the next proposition we only claim amplification for protocols where the commit protocol has two rounds and the evaluation
protocol has perfect completeness. We make these relaxations because all protocols constructed in this paper have these properties.
However, a more careful argument can get the same conclusion without these two assumptions. This follows along the same lines
that parallel repetition of multi-round AM protocols amplifies soundness (see for example [Gol98, p.145-148]).
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We have that fou;~ there exists a functiop such that for any Merlin strategV/eyal,
Pr[out(ﬂ_evab ]\4—e\/a|7 xZ, ui*) S {g(x), J_}] Z 2/3

It is folklore (see e.g. [Gol98, p.145-148]) that parallel repetition of (multi-round) AM protocols reduces
the soundness error exponentially. Thereforergg runsmeva t’ times with the commitment;- it follows

that any strategy of Merlin im/, , has probability at most—* to output a value that is not ify(z), L} in

all ¢’ repetitions ofreva With commitmentu;-. In particular, no Merlin strategy fary, , can make Arthur
output a value different thag(z) with probability larger tha—¢, which is the claimed soundness errok.]

4.1.1 Usefulness of commit and evaluate protocols

Note that after running the commitment proto@@bmmit it is possible to run the evaluation protoceda

(with the auxiliary input that is output by.ommi) many times on many different inputs in We will typi-

cally perform these invocations ey, in parallel, and after suitably amplifying soundness (via Proposition
4.3), we can be sure that all evaluations agree with the committed-to function (with high probability). Note
also that ay-resilient commit-and-evaluate protocol that conforms wfithoes not necessarily “compute”

f in any meaningful way. This is because in the commit phase, Merlin may not cooperate, causing the
evaluation phase to receive an auxiliary input leading it to compute a function differentffrétowever,

Merlin cannot choose this function in a way that depends on the input to the evaluation protocol.

On a more technical level, commit-and-evaluate protocol are useful because the commit phase can be
executedeforethe inputz is revealed, and following the commit phase it is guaranteed that Merlin is com-
mitted tosomefunction f. This allows Arthur to make “local tests” on the functign For concreteness let
us demonstrate this approach on low-degree testing (that is, testing wfiéshetose to a low degree poly-
nomial). Consider the following protocol: Arthur and Merlin play the commit phase of the protocol (which
determines a functiorf). Then Arthur sends randomness for a low-degree test which in turn determines
queriesry, ..., x,, to f. On each one of the queries, Arthur and Merlin play the evaluation protocol (in
parallel) and in the end Arthur checks that the low-degree test passes with the obtained evaluations. Note
that no matter how Merlin plays he cannot make Arthur accept a fungtidmat is far from a low degree
polynomial. If Merlin was not required to commit to a functignin advance, he could answer queries arbi-
trarily, passing the low-degree test and then answering other queries (for example) in a manner inconsistent
with any low-degree function.

4.2 Instance checkers

Following [GSTS03], it is possible to transform an AM protocol tbanforms resilientlyvith an E-complete
or EXP-complete function into one thedmputeshe function. This is done by evaluating the function via an
instance checkedefined below) following the commit phase. Thus to construct a (standard) AM protocol
for languages in E or EXP it is sufficient to construct commit-and-evaluate protocols that conform resiliently
with a complete problem.

Instance checkers were introduced in [BK95]. These are probabilistic oracle machines that are able to
“check” that the oracle is some prescribed function in the sense that when given an “incorrect” oracle the
machine will either fail or compute the prescribed function.

Definition 4.4 (instance checker).Let f : {0,1}* — {0, 1} be a function. An instance checkit' for f
with soundness errar is a probabilistic oracle machine for which:

e foreveryx € {0,1}*, Pr[IC/(z) = f(x)] = 1, and
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o for every functiory # f and everyr € {0,1}*, Pr[ICY9(z) € {f(z), L} > 1 —6.

We say that an instance checklr' makes queries of length(¢) on inputs of lengttf if for every input
x € {0,1}* and for every oraclg all the queries made b¥C to its oracle are for strings of length(¢).

Note that by repeating the executiéxit) times the soundness error of instance checkers can be reduced
from a constant t@ . In this paper we use the fact that languages complete for EXP and E have instance
checkers. This was achieved by a sequence of works [LFKN92, Sha92, BFL91, BFLS91]. The reader is
referred to [TV02] for further details.

Theorem 4.5 (c.f. [TV02] Theorems 5.4 and 5.8)The following hold:

1. Thereis alanguage in EXP that is complete for EXP under polynomial time reductions and its charac-
teristic functionf has a polynomial-time instance checker that makes queries of lefgth- (©(1),
where/ is the input length.

2. There is a language in E that is complete for E under linear time reductions and its characteristic
function f has a polynomial-time instance checker that makes queries of le(@th= O(¢), where/
is the input length.

5 Arecursive HSG construction

In this section we present a recursive version of the Miltersen-Vinodchandran (MV) generator [MVO05], that
receives a polynomial (which should be thought of as the encoding of a hard funcfipand outputs a
multiset ofm-bit strings.

5.1 Overview of the construction and proof

We start by describing the original MV generator using some of our language, and highlighting the parts
that we modify to obtain improvements. The reader may skip to the formal, self-contained presentation of
the new construction in Section 5.2 if they wish. Throughout this sediigmthe field withg elements.

5.1.1 The original MV generator

Given a polynomiap : F¢ — T of degreéh the original MV generator choosesindm to be slightly larger
thanh and (the standard choice is, say,= ¢ = 2h). For every axis-parallel liné& in F?, it outputs the
vectorzy, = (pr(t)):er — the restriction op to the lineL.

Given a co-nondeterministic circul? such thatD rejects every output of the generator we would like
to show that there is a commit-and-evaluate protocdhat receivesD as advice and conforms with
resiliently. We need to make the additional assumptionthegjects very few — saym5 — strings of length
m overall. In the context of AM derandomization this can be achieved by amplifying the AM protocol
we are attempting to derandomize using dispersers. We stress, as this will be important later on, that this
amplification can only achieve a constant § < 1 efficiently.

We now describe the commit-and-evaluate protocol for evaluatimg the commit phase Arthur sends
a uniformly chosen sef C T of sizev ~ h% and Merlin replies with a list of values for every pointst,
that are supposed to be the “correct” set of values — the restrictipnas?. In the evaluation phase the
two parties are given a point € F? and Arthur wants to evaluajgz). Arthur and Merlin first compute a
“path” to z: a sequence of axis-parallel lines starting with lines passing thr8tgimd proceeding through
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d — 1 sets of lines, each intersecting the previous set, until the final line which intesselitss path has at
mostv? lines, and for each line in the path, Merlin sends Arthur a univariate polyngmialF — F (that
is supposed to be the polynomjalestricted tol) by sending itsh + 1 coefficients. Arthur performs the
following tests:

Small-set test Arthur asks Merlin to supply witnesses showing thatejectsg;, for all lines L in the path.
(Note that Merlin can do this a8 is a co-nondeterministic circuit).

Consistency testArthur performs a “consistency test” using the polynomigissent by Merlin. This
consists of checking that for every pair of lines and L, that intersect at a point, the valuesf,
andgr, agree at that point.

If both the tests pass then Arthur selects the singlellirethe path that intersects and decides that(x)
equals the value qf;, at that intersection, outputting that value.

We describe why this protocol conforms resiliently with An honest Merlin can indeed conform to
p by following the protocol. A cheating Merlin has the freedom to choose values for the poifitstirat
are incorrect and in this case the evaluation protocol does not necessarily conform wtwever the
evaluation protocol is (with high probability over the choiceS)fPSV by a key property of the consistency
test: it is shown in [MVO05] that that there is at most one collection of functions from the small set
{z : D rejectsz} that passes the consistency test. This means that once Merlin commits to values for the
points inS? he cannot make Arthur output two different values on a given input

We stress that this key argument in [MV05] uses the structure of polynomials in a very weak way. The
argument only uses that eagh sent by Merlin is a set ofn > h evaluations of a degrefe univariate
polynomial and so it is a codeword of a Reed-Solomon code. In our construction we will use a relaxed
notion of “lines” for whichp restricted to such a “line” is still a codeword of an error-correcting code, which
suffices for this argument. The precise definition of this relaxed “line” is in Definition 5.1.

We now turn our attention to the running time of the protocol. There are rougHiges on the “path”
to z and for eacly;, Merlin needs to send + 1 coefficients to defing;. Thus, overall the time is about
hv®. For the key property of the consistency test to hold, we need to setn’ ~ h° (this comes from
the bound we have on the sgt which in turn comes from the initial amplification of the AM protocol we
are derandomizing). Overall the running time is abift Specifying the polynomiah explicitly requires
roughly h? coefficients and thus the protocol achieves something non-trivial since it runs in time that is only
some constant root ai’.

5.1.2 Goal: achieve the low end

The parameters achieved by the construction outlined above correspond to the “high-end” of hardness as-
sumptions. When using this construction in the [GSTS03] framework, we will be given an E-complete
language and set: {0,1}* — {0, 1} be the characteristic function of this language (restricted to inputs of
length¢). When given such a Boolean functignover ¢ bits we encode it as & = O(1) variate polyno-
mial p (the low-degree-extension ¢ with h, m ~ 2¢/¢. We get that if we obtain a co-nondeterministic
circuit D that rejects all outputs of the generator, thefand thereforef and the complete language) have
commit-and-evaluate protocols that conforms resiliently withnd as described in Section 4, these can be
transformed into AM protocols that compyte

The overall protocol then gives us exactly the kind of parameters one wants; i.e., it runs in time polyno-
mial in the output lengthy, of the generator. However, this relationship is only achieved at the “high end”,
that is whenn = 222 and in fact the construction fails completely wherbecomes significantly smaller.
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Our goal is to achieve the “low-end” so we must modify the construction of the generator so that we get a
running time of polym) for anym, ideally all the way down ten = poly(?).

5.1.3 Reducing the degreé and distinguishing betweenr, d

A very natural idea (that has been useful in previous works in this area, e.g., [STV01, SUO05b]) is to encode
the functionf using a polynomiap with more than a constant number of variables. This will enable the
encoding to use smaller degree. Note however that because the number of variables increases when the
degree decreases, the running time of the protocol we just described does not benefit from reducing the
degreeh, as the gain over the trivial protocol depends onlysomhich cannot be smaller than a constant.
Thus, at this point it is not clear what we can gain from reducing the degree.

We will attempt to circumvent this problem by achieving the “best of both worlds”: having a small
degree while keeping the number of variables a constant. To achieve a behavior with that flavor we distin-
guish between two parameteréthe number of variables) ant{the number of “grouped variables”). More
precisely, we now encode the functigras a polynomiap : F* — T for super-constant (at the absolute
low-end we will user as large a€/ log ¢ which allows the degree to go down to= poly(¢)). While
doing so we keeg as a constant and identify’ with B¢, whereB = F"/<. This grouping, and the precise
meaning of “line” in this generalized setting is stated in Definition 5.1.

We can now run the original MV generator just as before by thinking a$ a functiorp : B¢ — F.

This follows from our observation that we only need the restrictiop tf the axis-parallel lines to form

an error-correcting code, and here for every axis-parallelfine B¢, the restriction ofp to L (which is

a function fromF"/< to ) is a Reed-Muller codeword. In the commit-and-evaluate protocqgb that we

already discussed, we only need to alter one thing to accommodate the grouped variables: when sending
the functionsg;, Merlin will need to supply coefficients fay restricted toL which is now a degreé
polynomial inr/d variables and has abohit/¢ coefficients (as compared tocoefficients previously).

At first glance it may seem that we have made progress and can hamdiesh smaller than the original
MV construction required, but this is not the case. For the restrictiopdmfhe axis-parallel lines iB? to
form a code (which is needed for the key property of the consistency test), the HSG mustoutphf/<
evaluations, and thus overall we do not gain (we were hoping tostakaly slightly larger tham, not
r'/4). However, we did make some progress as various quantities in the protocol (such as the number of
evaluations Merlin must supply in the commitment phase, and the length of the “path” computed for each
evaluation) depend ath(which is constant) rather than en

5.1.4 Reducingn by using local extractors for Reed-Muller codes

We will reducem by modifying the generator construction further. For each axis-parallelZiive B¢,
instead of outputting enough evaluationgatstricted tal to induce an error-correcting code, we will use
an extractor. More precisely, we takketo be an extractor with output length ~ h, and we output the
stringsE(pr, y) for all possible seedg, andp;, ranging over all restrictions gf to axis-parallel lined. in
B,

Then, in the commit-and-evaluate protocol, we can replace the small-set testpaatbadoilistic small-
set test: given the polynomial, sent by Merlin (which is supposed to pbeaestricted taL) we check that
D rejectsE(gr,y), for a randomy. All of the polynomialsg;, that formerly passed the small-set test will
still do so, since by assumption all of the outputs of the generator (and thus all of the outputsimbn
restrictions ofp to axis-parallel lines irB3%) are rejected byD. At the same time, by the extractor property,

15



there can be only a small number (savf) of strings that pass the new probabilistic test with reasonable
probability. This will be sufficient to maintain the resiliency of the protocol.

However, our goal was to reduce and have the protocol run in time p@iy). But even invoking the
extractor once for the probabilistic small-set test takes time linear in its input I@figthwhich is much
larger thanm.

The crucial realization at this point is that we are only ever interested in running the extractor on input
strings that are evaluations of low-degree polynomials! We can thus refladth a local extractor for the
Reed-Muller code, and consequently reduce the running time of the extractor texporen given oracle
access to its input.

So, we can perform the small-set test in time oly, given oracle access to the variogs sent by
Merlin. For our choice of parameters, the consistency test will also run in timépolgiven oracle access
to thegr. However one hurdle remains: the step in which Merlin sends the coefficients of the polynomials
gy, still requiresh™/? >> m time to send thé"/< coefficients ofy;,, while we are shooting for polyn) time.

5.1.5 Sending the polynomialg;, implicitly

Let us assume at this point that for some reason we already knew that for every axis-parallhliBé,
the polynomialp restricted tol. has a commit-and-evaluate protocol that conforms with it resiliently and
that this protocol runs in time poly:). Then instead of having Merlin send the polynomjgl(which is
supposed to be restricted toL) explicitly, Arthur and Merlin could play the commitment phase of the
protocol forg;,, after which Merlin will be able to assist Arthur in evaluatipg on any input that Arthur
wishes.

However, we have now exposed the protocol to the possibility that Merlin may cheat by committing to
a function that is not a low-degree polynomial, and then (at least) two things break: the local extractor for
Reed-Muller codes may be run with access to an oracle that is not a Reed-Muller codeword, destroying the
extractor property needed for the integrity of the small-set test; and, the key property of the consistency test
may fail, as it relies on all of the received functions being codewords.

The solution is to run a low-degree test on each function Merlin commits to, verifying that it is indeed
a low-degree polynomial. This test can be done locally, with oracle access to the function, and the fact that
Merlin is committedto a function (and cannot alter the requested evaluations upon seeing the randomness
of the test) ensures the validity of the test.

Let us summarize our current positidhwe knew that for every axis-parallel lingin B¢ the polyno-
mial p restricted toL had a polym) time commit-and-evaluate protocol that conformed with it resiliently,
then we would be able to produce a commit-and-evaluate protocol that conformsreditiently, and more
importantly, runs in time polyn) (which is our goal).

5.1.6 Using recursion to obtain commit-and-evaluate protocols for the polynomialg;,

It is important to note that when trying to construct a protocol for a polynopweth » variables, we need
to assume the existence of a protocol for polynomjalsvith a smaller number;/d, of variables. This will
allow us to use recursion. The base case will be the original MV generator, whetk For the base case
we already showed how to construct a commit-and-evaluate protocol that runs in tinfe: poly
To give us the commit-and-evaluate protocol on the restrictiopsméxis-parallel lines. in B¢, needed
in the recursive step, we modify the construction of the original HSG, finally arriving at the construction
in Figure 1. In this construction, in addition to the original output of our modified MV generator run on
p, we also output all the outputs of our modified MV generator run on the polynomraistricted to each
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axis-parallel linel in B¢, and continue with this recursively. The inputs to the recursive calls are sufficiently
smaller than the original input so that we do not increase the set of outputs of the generator by more than
a polynomial factor. Now, a circuiD that rejects all the outputs of our generator can be used as advice to
play the protocol on all the polynomiadg, that we will ever be interested in at any level of the recursion.
Whenever the final commit-and-evaluate protocol needs to access some restrigtitmafine L, it
will invoke the protocol now available for that restriction, continuing this recursively down to the base case.
We stress that the resiliency property of the commit-and-evaluate protocols plays a crucial role inside
the recursion (in addition to its role as described in Section 4). Specifically, the resiliency property of the
protocol forg;, says that following the commitment phase, Merlin is committed to some function, and this
is what prevents Merlin from cheating when doing the local tests (such as the low degree test). If it wasn'’t
for resiliency then Merlin would be able to choose outputssfoafter seeing the queries of the low degree
test which would make the test useless.

5.1.7 Losses suffered in the recursion

While we can reducen using the ideas outlined above, there are also some costs to using this recursive
argument. First, each recursive step in the protocol picks up two additional rounds and thus we end up with
a protocol with2 log,;  rounds. Such protocols can be transformed into two round protocols but the running
time suffers a blowup which is slightly super-polynomial. The running time also suffers as each recursive
step multiples the running time of the protocol by peh). When taking these two factors into consideration

and transforming to a two round AM protocol we get that this protocol has runningzﬂﬁf@gft ") rather
thanm ). This accounts for the slight non-optimality of our main gap theorems.

5.2 The construction

We now give the full recursive HSG construction, which uses the following definition. Recall ikahe
field with ¢ elements.

Definition 5.1 (grouping variables and MV lines). Given a functiorp : F” — F and a parametet that
dividesr we defineB = F"/¢ and identifyp with a function fromB< to IF.

Given a pointz € B? andi € [d] we define thdine passing through in directioni to be the function
L: B — Bgiven byL(z) = (z1,...,2i_1,2,Tit1,...,2q). Thisis an axis-parallel, combinatorial line,
which we call anMV line for short.

Given a functiorp : F” — F and an MV lineL we define a functiop;, : B — F bypr(z) = p(L(z)).

Note that ifp : F” — F is a polynomial them;, : F'/¢ — F is also a polynomial with degree bounded
by that ofp. We present our construction in Figure 1.

Lemma 5.2. The construction RMY;(p) runs in timeg®(") and outputs at mosi®(") strings.

Proof. Letr = d'. We show by induction onthat the running time and number of output strings is bounded
by ¢¢" for some universal constant

For the base case, when= d', the number of MV lines is at most, and the number of output strings
produced from each line is at mogt’/¢ for some universal constant. We are using the fact that the
specified localC-extractor has at most paly /%) seeds, wherg"/¢ is the blocklength of cod€'. In total
the running time and the number of strings is at mst’”/¢ < ¢°".

In general, whenr = d¢, the number of MV lines is at mogt and for each line, we produeg’”/?
strings. By induction the recursive call generated for each line has running time and number of strings
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Input A multivariate polynomiap : F;, — [, of degreeh.
Output A multiset ofm bit strings.

Parameters and requirements We require that is a power ofd and thath is a prime power. We set
g = h'% andm = p1/100,

Ingredients The (k, 1/k) local C-extractorE' from Lemma 3.7 for Reed Muller cod€ = RM,. /4, 4
Note thatk = h°, the extractor uses seed lengi(r/d) - log ¢) and (by using only a prefix of th
output) it outputsn bits.

4]

Operation of RMV, 4(p) :

e SetB = ]Fg/d. For everyz € B? andi < [d], letL : B — B? be the MV-line passing
throughz in directioni. Note thatp;, is an element of the Reed-Muller code RM, ,.
ComputeEP= (y) for all seedsy. Let H,, denote the set of these bit strings, asl ranges
over all MV lines.

e If r = d then outputH,,.

e If r > d then for each MV linel. make a recursive call to RMV;(pr.). Note that while the
dimension ofp wasr, the dimension o, is r/d. Each one of these recursive calls retufns
a multiset ofm bit strings that we will calli;,. Output the union off, andHy, asL ranges
over all MV lines.

Figure 1: Recursive MV generator RMVi(p)

bounded above by“/%. So we have an overall bound gft<"/¢ 4 g +¢r/d which is less thag®" for a
suitably chosen universal constant O

5.3 Miltersen-Vinodchandran consistency test

We abstract a certain part of the original Miltersen-Vinodchandran proof [MV05], and prove conformity and
resiliency for it. This primitive, together with the three primitives in Sections 3.2 and 3.3 will be the main
ingredients in the reduction proving correctness of the new generator. The main point of the abstraction is
that the consistency test makes sense when the “lines” of the original MV construction are replaced by what
we are calling “MV lines,” which are more general. We need one definition first:

Definition 5.3 (MV paths and S-boxes). Givenz € B¢ and a setS C B we define a sequence @fets
T1,...,Ty called theMV path toz usingS. Each of these sets contains MV lines as folloliscontains
all MV lines through pointg (x1, . .., zi, Sit1,- .-, Sd) : Si+1,---, 84 € S} indirectioni. We say that a line
L appears in the MV path if, € U,;T;. Given a sefS C B, an S-boxis a functiona : S¢ — .

Note that in the above definition, fog| > 1, there are?_|S|i~1 < |S|¢ MV lines appearing in the
MV path.

Figure 2 describes a test that we call the "MV consistency test”. The usefulness of this procedure is
captured in the following lemmas:
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Input A pointz € B? a subsefS C B, and anS-boxa : S — F. Also, the following collection of
functions: for every lind. appearing in the MV path to usingS, a functiong;, : B — F.

Operation LetTh, ..., Ty be the MV path tac usingS. The MV consistency test passes if the two tests
below pass:

e (agreement with the&S-box) For every lineL in 77 andz € S, we check thay(z) =
a(L(2)).

e (agreement at intersection points) Forda# 2,3, ..., d, for every pair of lined.; € T;_;
andLs € T;: if Li(z1) = La(z2) for somezy, z2, we check thayr, (z1) = gr,(22).

Figure 2: MV consistency test

Lemma 5.4 (conformity of MV consistency test).Fix a functionp : B¢ — F, anz € B¢, and a subset
S C B. The MV consistency test passes when given as inpfit the S-boxa : S* — F defined by
a(sy,...,sq) = p(s1,-..,84), and the collection of functions;, ranging over all MV linesL in the MV

path. Furthermore, if_ is the single line ifly, thenpy (z4) = p(x).

Proof. Since all of the functiong;, and theS-box a agree with a single, underlying functignit is clear
that these inputs pass the MV consistency test. The second item follows from the definifjpn of [

Lemma 5.5 (resilience of MV consistency test)Let Z be a set of at mosk” functions where each one is
a function fromB to F and assume that for any two functiops g € Z, with g1 # go,

}21];[91(2) = g2(2)] < B.

Then with probability at least over the choice of a random subsetC B with

S| = (2log K +1log(1/(1 —7)))/log(1/5)

the following event holds: for eveil§-boxa : S¢ — F and for everyz, there is at most one collection of
functions fromZ that passes the MV consistency test.

Proof. Let us call a subsef C B of the specified size “good” if it separates the functigrs Z; i.e., for all
g1 # go, there is some € S for which g1 (s) # ga(s). Itis a standard calculation to see that the probability
a randomly chosel of the specified size is not “good” is at mas€ 515!, which is at mosti — ~ by our
choice of|S|.

Now fix an S-box a and somer. Let Ty, Ts, ..., Ty be the MV path tar using.S. By the definition of
“good,” for each MV lineL € Ti, there is at most one functign, € Z satisfyinggr(s) = a(L(s)) for all
s€S.

The crucial observation is that for each MV liig € T5, the union of the intersections éf, with the
MV lines in Ty is exactlyLo(.S). Therefore (again using the definition of “good”) for eath € T», there
is at most one functiopr, € Z for which gz, (s) agrees with the functions associated with linegirat all
s € S (since we already argued that these functions are unique if they exist at all).
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In general, each MV lind,; € T; intersects the union of the MV lines ii_; at exactlyL;(S). So by
the same argument, for eaéh € T;, there is at most one functigny,, € Z for which gz, (s) agrees with
the functions associated with linesih_; atalls € S.

We conclude that ifS' is “good,” then there is at most one collection of functions that passes the MV
consistency test, as required. O

6 The reduction

Recall that the proof that a construction is indeed a HSG takes the form of a protocol for computing the
hard function if the HSG fails. We will specify a commit-and-evaluate protacet (mcommit, Teval) that

takes advicex = D (whereD is a co-nondeterministic circuit) and attempts to compute the polynomial
p. We will prove that wheneveb catches the generator RV (p) then the protocofr conforms withp
resiliently. (Note that this does not mean thatompute. However, in our application we will be able

to user to construct a protocol thaloes computg). Our main theorem is stated below. In fact, following
[GSTSO03], we prove a slightly stronger statement in which the resiliency of the protocol follows regardless
of whetherD catches RMY, 4(p) as long asD rejects few inputs. This will be useful later on.

Theorem 6.1. Letd, h,r,m,q be as in Figure 1. Lep : F;, — F, be a polynomial of degree at most
h. Then there is a commit-and-evaluate protogot= (mcommis Teval) With advicea = D, whereD is a
co-nondeterministic circuit of size pdhy), that satisfies:

Conformity If D rejects every element of RMY(p) thent conforms wittp.
Resiliency If D rejects at most a /3-fraction of its inputs them is resilient.
Efficiency « runs in timeh©(@1°ga") and haslog, r rounds.
Moreover,meva has completeness 1, afighmmitiS a two round protocol.
The rest of Section 6 is devoted to the proof of Theorem 6.1. Our main results (Theorems 2.4 and 2.5)
then follow from Theorem 6.1 largely using machinery already worked out in [GSTSO03].
6.1 The recursive commit-and-evaluate protocol

In Figure 3 we formally present the protoeolsed to prove Theorem 6.1, incorporating the ideas discussed
in Section 5.1. Our main lemma regarding this protocol is:

Lemma 6.2 (correctness ob). Letd, h,r,m,q be as in Figure 1. Lep : F" — T be a polynomial of
degree at mosk. Let D be a co-nondeterministic circuit of size poly). Let7 = (7commis Teva) b€ @
commit-and-evaluate protocol such that for every MV liner with advice(D, L) conforms resiliently to
pr, (with completeness, soundnes& 19" and resiliencyl — 2-19*"). Furthermore assume thagommitis

a two round protocol. Then the following hold:

Conformity If D rejects every element &f, theno with adviceD conforms withp with completenesk.

Resiliency If D rejects at most /3 of its inputs therr with adviceD is 9/10-resilient, with the soundness
error set to 1/10.

Efficiency If 7 runs in timet and has2i rounds thenos runs in timeth?@ and has2(i 4+ 1) rounds.
Furthermore ocommitiS @ two round protocol.
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Our protocol is paired with the construction in Figure 1 and uses the parameters of that construction.

Ingredients The protocol relies on commit-and-evaluate protagauch that for every MV lind.,  with advice
(D, L) conforms resiliently with the functiopy,. In the final proof, this protocol will exist by recursion.

Operation of the commit phaseoommit
e The inputisi'°¢!Fal and the auxiliary input is the co-nondeterministic circhit
e Arthur sends a random sgtC B of sizev = k2.

Merlin replies with anS-boxa : S¢ — .

Arthur outputs(S, a, D).

Operation of the evaluation phasereyg

e Theinputisr € B(= IF;), and the auxiliary input is the output of the commit phase.

e Arthur and Merlin computd’, ..., T, the MV path tox usingS. For each MV lineL on the MV
path (note that the number of such lines is bounded Qywe perform the following actions (in
parallel for all linesL):

Inner commitment Arthur and Merlin play the commit protocelommit with advice(D, L) which
outputs a commitment,.
At this point Arthur and Merlin hold the auxiliary input, required to play the evaluation pro
tocol Tgyg for the MV line L on any inputz € B. To simplify the notation we use, below
as if it were a function, with the understanding that any “function evaluatiop(z) actually
invokes the evaluation protocal, on inputz € B, with commitment;, as its auxiliary input.
Note that if the commit-and-evaluate protoeois resilient, then with high probability over the
randomness of the commit phasg,s is indeed a fixed function when given the commitment

Low-degree test Let M| pt be the machine associated with the low degree test of Lemma 3.2 with
e = 1/10 ands = 2719 (which can be achieved by amplification as explained in Section
3.2). Arthur chooses randomness i pt, and then Arthur and Merlin run/|"§ with that
randomness. If the low degree test fails then Arthur stops and outputs
If we get to this point in the protocol, we are ensured (with high probability) that close to
a low-degree polynomial. We would like to access that nearby low-degree polynomial for the
remainder of the protocol, and we will use self-correction for that purpose. Mgt be the
machine associated with the self-corrector of Lemma 3.4 usiad /5 andd = g-10v* (again
this can be achieved by amplification).

Small-set test Arthur chooses at random seegds. . . , y;09,« fOr the localC-extractorE, and then

Arthur and Merlin computev, ; = EMS%Z(yj). Finally Merlin supplies witnesses showing that
for all j, D rejectswy, ;.

e MV consistency test: Arthur and Merlin perform the evaluations (using the self-corregtiag) of
the variousry, required for the MV consistency test (see Figure 2), with inguf, the S-box a. (By
that we mean that/Z¢ plays the role of the functiog;, needed for performing the test.)

e Arthur stops and outputd if any of the tests fail. Otherwise, Arthur and Merlin compute=
Mgg(wq) wherel is the single MV line inT;, and Arthur outputso.

Figure 3: Commit-and-evaluate protoeoWith adviceD, for use with recursive MV generator RMV(p)
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Proof. (Conformity) In the commit phaseommit Arthur sends a se¥ C B of sizev and Merlin replies

with an S-box a. We need to show that for every choice of $etC B of sizewv there exists arb-box a

and a Merlin strategy/ for oeyq such that olveya, M, z, (S, a, D)) = p(z). Fix some subsef of sizev.

Define anS-boxa by a(sy, ..., sq) = p(s1, ..., sq). Merlin will senda in ocommit- We define a collection of
polynomialsg;, = pr, one for each lind. in the MV path toz usingS. By Lemma 5.4 the MV consistency

test passes with these choices. We now define a Merlin strategy fpas follows: in the inner commitment
step, Merlin will “play honestly” and use the strategy that guarantees thatgthatonforms withp;, given

the commitment;, generated in the commit phase. (Note that Merlin has such a strategy which succeeds
with probability one by the conformity af). Merlin can now pass the low degree test by simply following
the protocol (ap, is indeed a low degree polynomial). For the small-set test, we notice that by assumption
D rejects all elements off,, and soD rejectsEP~ (y) for every MV line L and every seeg. Thus, Merlin

can pass the small-set test. Finally we observe using Lemma 5.4 that thewutpen Merlin follows this
strategy is indeeg(z) as required. Note that the strategy we described succeeds with compldteness

(Resiliency) We need to show that for a uniformly chosen SeC B of sizew, with high probability,
for every S-box a the protocoloeys is PSV when played with auxiliary inputS, a, D). The protocol
oeval INVOkes the commitment protocetommit once for every MV line on the MV path and there are at
mostv? such MV lines. We now argue that by our requirement on the resilieneyveé have that with
probability greater thaf9,/100 over the coin tosses of Arthur in the invocationsgfnmi, all commitments
¢y, obtained in the inner commitment step have the propertythatwith auxiliary inputcy, is PSV. To see
that we note thatcommit is a two round protocol and therefore with probability- 2-10v" gyver Arthur's
choice of coins, every reply of Merlin results in a commitment string on whighis PSV. It follows by a
union bound that with probability at lea&/100 all coin tosses of Arthur in the invocations @fmmit have
the aforementioned propertyFrom now on we assume that this event happens and this allows us to think
of 7, (the invocation ofreyq With auxiliary inputcey,) as functions. Note that Merlin still has the liberty to
play any strategy that he wants in the commitment phaseanid thus has many different choices for what
partial function to commit to. We will show that there is at most one choice that passes all tests.

We claim that if Arthur does not halt during the low-degree test step then with probability larger than
99/100 (over Arthur’s random choices for the low-degree test), every liren the MV path is close to a
polynomialg;, of degree at most, and the self-correctal/sc accesses thig;,. The follows from a union
bound and the fact that the error for the low-degree test is at Mo8t”.

We now define the séf to be all polynomialg : F*/¢ — F such thaPr, [D rejectsE9(y)] > 1/2. We
use Proposition 3.8 to argue that < 2¢ = 2. This follows by having the séb of Proposition 3.8 be the
set of inputs on which co-nondeterministic circlitrejects, and by noticing thab|/2™ + ¢ < 1/2 (where
heree = 1/k < 1/10 is the error of the extractdr).

We claim that if Arthur does not halt during the small-set test then with probability large®thano,
for every L on the MV path,g;, € Z. This is because i§;, ¢ Z then the probability (over the choice of
seeds for the extractor and randomness for the self corrector) that the small set test pdsiseatonost
25 and by a union bound over all MV lines in the MV path we have that the probability that this event
occurs for any. on the MV path< 1,/100.

Finally, we claim that if Arthur does not halt during the MV consistency test then by Lemma 5.5 there
is at most one choice for a collection of functions fréfthat pass the MV consistency test. To use the
Lemma we must check that= |S| is large enough compared 6 = 2* which is the bound we have on

"We remark that although the argument above uses the factgh@knit is a two round protocol, the proof also goes through
without this assumption.
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the size ofZ. Indeed, takingy = 99/100 and3 = 1/10 we have that

S| = v = (2log K +log(1/(1 —7)))/log(1/5)

as required. We conclude that any Merlin strategy on which Arthur does not halt and autwiith prob-
ability at leastd/10 must end up defining this unique collection of functigns In particular, there is at
most one choice for the functiagy, for the single MV lineL € Ty, and as this function defines the out-
put uniquely, there is at most one possible value that Arthur can output and the protocol is resilient with
probability 9/10 and soundne$g10.
(Efficiency) We go over the steps one by one. The MV path contains at nfostV lines. For each
such MV line Arthur and Merlin perform computations that take time pgly, m, v?) < K94 when given
oracle access tg,. Thus, overall the running time ofis bounded byv?h9(@ = thRO(d) We now turn our
attention to the number of rounds. The number of rounds of protegglis precisely the number of rounds
of 7. This is because to actually execuig,, Arthur picks all the randomness for the various low-degree
tests, and the randomness to run the self-corrector on the evaluations required for all the other tests. Then
Arthur and Merlin play all the requested invocationsrgf z) for the various lined, and evaluation points
z, in parallel. Merlin includes witnesses for the various small-set tests in his final message to Arthur.
Finally, we note thatrcommit has two rounds and therefore the total number of roundsithe number
of rounds ofr plus two as required. O

6.2 Proof of the main technical theorem

We now show that Theorem 6.1 follows from Lemma 6.2.

Proof. (of Theorem 6.1) LetD be a co-nondeterministic circuit. Recall that we only allow polynomials
p: F" — F with » = d/ wherej > 1 is an integer. We prove the Theorem by inductionjon

(Base caspWe start with the base cage= 1. In this case the output of RM\V;(p) is simply H,,. For
the base case to follow from Lemma 6.2 we only need to supply a commit-and-evaluate pratossting
the requirements in Figure 3. We use the trivial protocol in which Merlin sends to Arthur a polynomial (by
specifying all coefficients) that is supposed tophe More formally, in the commit protocal.ommit Arthur
sends nothing and Merlin replies with a strimghat encodes a polynomig}, : F — F (the honest Merlin
will sendp;). In the evaluation protocat,, Arthur can evaluate;, on an input by himself without the help
of Merlin. It is immediate that this protocat,, meets the requirements of Figure 3 and the assumptions
of Lemma 6.2, and therefore the base case follows. Noterthata two round protocol (actually it is
a nondeterministic protocol rather than an AM protocol as Arthur does not send any random messages).
Furthermore, note thatruns in time polyh).

(Induction step) Let 5 > 1. We assume by induction that we already have a commit-and-evaluate
protocolr = (Tcommit Teval) that meets the requirements of Theorem 6.1 for epyayerr = ¢/~ variables.
Furthermore, we assume by induction thatas completenesisand thatrcommit is @ two round protocol.

We observe that such a protocol meets the requirements of Figure 3 as well as the requirements of Lemma
6.2. This follows because we can amplify soundness and resiliency errors to the level required in Lemma
6.2 with slowdownv®@ = RO Furthermore, for the conformity part we observe that sibceejects

every element of RMY 4(p) it in particular rejects every element fifi,. Thus, the induction step follows

from Lemma 6.2. Any recursive level multiplies the running time by a factdf) and adds two rounds.

There ardog, r such recursion levels and the Theorem follows. O
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7 Obtaining our main results

In this section we show how our main results (Theorems 2.4, 2.5, and 2.6) follow from Theorem 6.1. The
argument for this part is essentially the argument in [GSTS03] except that now we use the new generator
RMV (Figure 1) rather than the generator of [MV05]. We give a high level overview of the argument in the
next subsection. For completeness we also provide a full formal proof that appears in the remainder of this
section.

7.1 High level overview of the argument

In this subsection we give a high level overview of how to obtain our main theorems. We start with Theo-
rem 2.4. Letf be the characteristic function of a language completetfdhat is instance-checkable (via
Theorem 4.5). We are given a functien= s(¢). Fix ¢ and setn = s(¢)©(1/(est-loglogs(0)*) " Consider

a languagel. in AM and leto be a (standard, two round) AM protocol férwith perfect completeness
(without loss of generality [FGM89]). We will design a nondeterministic machidé running in time
exponential in¢ and show that if for each, M does not agree witlh, on anm-bit string « produced by

a uniform nondeterministic procedufe(“the derandomization fails on feasibly generated inputs”), then

can becomputedy an AM protocol running in time(¢). We start by defining the machine’, which uses

the generator RMV from Figure 1:

7.1.1 The generator and the derandomization

Seth = m!'%, ¢ = R'%, and set to be a large constant amd= O(¢/log k). It is standard that there is a
polynomialp : F* — F (thelow degree extensiofiBF90]) of total degree at most overr = O(¢/logh)
variables such that for every € {0,1}, p(y) equalsf(y). Furthermore, the coefficients pfcan be
computed in time°®),

Given the polynomiap we run RMV, 4(p) in time ¢°(") = 2009 to generate a self of at most
¢©(" = 200 strings of lengthn. The nondeterministic machin¥ is defined as follows: for every string
z € H we simulate the protocel on x with = used as Arthur’'s randomness and guess an answer for Merlin.
We accept if all of the simulated runs of the protocol accept. NoteMas indeed a nondeterministic
machine that runs in time exponentialdn

7.1.2 The reduction

Assume thatV/ disagrees withl, on x. Becauser has perfect completeness this can only happen when
x ¢ L and yetM acceptse. Define the co-nondeterministic circuit, (y) that rejects if on inpug, Merlin
has areply to Arthur's messag€in the AM protocolo for L) that causes Arthur to accept. By the efficiency
of protocolo, D, has size polym), and by the soundness of protoeglwe have thaD, rejects at most a
third of its inputs. Finally sincé/ accepted:, D, must reject every € H.

Note that we can now use the protoeot= (7commit, Teval) Of Theorem 6.1 with advic®, and we get
that = conforms withp resiliently and runs in timen®(@°ga7) . However, the protocok only conforms
resiliently withp and does not necessardgmputef, as discussed at the end of Section 4.1.

7.1.3 Using instance checkers

To solve this problem we will use instance checkers (in the same way they are used in [BFNW93, TV02,
GSTSO03]). Recall that we chose a functifrihat has an instance checker. For an instance-checkable
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a “commit and evaluate” protocol that conforms resiliently witltan be converted into a standard AM
protocol for f:8

Theorem (informal) 7.1. Let f be a function that is instance checkable. ket= (mcommis Teval) b @
commit-and-evaluate protocol that conforms wjthesiliently. Then there is an AM protocel that com-
putesf and runs in time comparable to that of,4 using two additional rounds.

Proof. (sketch) We describe the AM protocel. Given inputz, Arthur and Merlin execute the commitment
protocolmeommit BY the resiliency ofr following this phase with high probability Merlin is committed to
some (partial) functiory (which may be different frony). Arthur chooses randomness for the instance
checker and sends it to Merlin. The two parties then simulate the instance checker anwiere oracle
calls are simulated by playing the evaluation protoegk,. Arthur outputs the recommendation of the
instance checker regarding the valuef@f:). The theorem follows immediately from the properties of
instance checkers. O

We conclude thaf has an AM protocol that computes it in time®(°s") that usesD(log r) rounds
(recall thatd is a constant). This protocol can be transformed into a two round protocol running in time
mOUog®r) and the parameters are set so that the time is at siéstis required. Thus, we obtain a two
round AM protocol that computes an E-complete problem in tide.

7.1.4 The case of AMN coOAM

We now explain the idea for Theorem 2.5. A natural idea to remove the restriction to feasibly generated in-
puts is to have Merlin supply the input(rather than having it supplied by some external uniform procedure
R). The only part of the above argument that might fail is that we can no longer be sur® thiafects
at most1/3 of its inputs, and then the resiliency of the protogols not guaranteed. However, if Arthur
can verify thatr ¢ L, then the corresponding circui?,, must reject at most a third of its inputs, and the
resiliency ofr follows. In general, Arthur has no way to check thatz L, but whenZ € AM N coAM
Merlin can convince Arthur that ¢ L.

In the next three subsection we give the precise details for the argument outlined in Section 7.1.

7.2 Nondeterministic simulation of AM protocols

We start with describing how to use a hitting-set generator against co-nondeterministic circuits to perform
nondeterministic simulation of AM protocols. This is standard, but we go through it in order to set parame-
ters for the next part. The first observation is that given an AM languiagied an inputz, the behavior of

the AM protocol onz can be captured by a co-nondeterministic cirdujtwhich receives the random coin
tosses of Arthur as input.

Lemma 7.2. For any language. € AM there is a constant > 0 such that for any input € {0, 1}" there
is a co-nondeterministic circuib,, of sizem = n° such that:

e If x € LthenD, rejects all inputs.

e If z ¢ L thenD, rejects at most a /3-fraction of its inputs.

8A technicality is that instance checkers may query inputs that are longer than their input. As a result some care is needed when
stating the next theorem formally. The precise details appear in the formal proof.
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e Circuit D, can be produced in polynomial time fram

Proof. By [FGM*89] we can assume that the AM protocol fbrhas perfect completeness. Consider
the following deterministic circuiD,(y, a): simulate Arthur’s computation with coin togsand Merlin’'s
response: and flip the final answer. This deterministic circuit can be interpreted as a co-nondeterministic
circuit D, (y) that fulfils all the requirements above. O

When given a hard problem we use the low-degree extension [BF90] to transform it into a low degree
polynomial as follows:

Lemma 7.3 (low degree extension)Let f : {0,1}* — {0,1} be a function/ be an integerh < (°()) be
a prime power, ang = h°(!). There is a polynomigh : F* — F of total degree: over a fieldF of sizeq
withr = O(¢/ log h) variables such that:

e There is an injective mappinfy: {0, 1}* — F that is computable in polynomial time.

o Foreveryy € {0,1}, f(y) = p(I(y))-
e pcan be computed in tin&’(©) when given oracle access fo
The polynomiap is called thelow-degree extension gf at length? with degreeh.

The proof of Lemma 7.3 is standard (see e.g., [Uma03]).

To prove Theorems 2.4, 2.5, and 2.6 we need to construct a nondeterministic machine that attempts
to simulate a given AM languagk. Figure 4 describes how to use the generator RMV from Figure 1 to
construct such a nondeterministic machivig. We observe the following properties of the machiig.

Lemma 7.4. Let L be a language in AM, and lét/;, f, ¢, andv(¢) be as specified in Figure 4.

e If fis computable in tima?“" andw(¢) = ¢°0) then the machin@/;, runs in nondeterministic time
2¢°Y on inputs of lengthm.

e If fis computable in tim&®®) andv(¢) = O(¢) then the machin@/;, runs in nondeterministic time
209 on inputs of lengthn.

e If 2 is an input on which.(M},) and L disagree, then: ¢ L.

Proof. We have thain < s(¢) < 2¢. Therefore we can neglect operations that take time polynomial.in
The machinel/;, needs to compute the low degree extensgiai f. By Lemma 7.3 this takes timz”(®)
when given oracle access fo The other main factor in the running time is computing RMV. By Lemma
5.2 this takes timg®(") = 20(v(9) givenp. The first two items of the lemma follow. The third item follows
from Lemma 7.2 as for every € L we have thaD, rejects all inputs and in particular rejects all outputs
of RMV. O

To finish up the argument and prove our main theorems we show that given arciopuwvhich M7,
fails to simulateL correctly we can give an AM protocol for the supposedly hard funcfioihis is done
in the next subsection.

®It is indeed more natural to think d,, as a nondeterministic circuit (without flipping the answer). The reason we speak about
co-nondeterministic circuit is that the definition of hitting set generators is not symmetric in zeroes and ones and in order to meet
this definition we need to flip the output. In this choice we follow [MV05, GSTS03].
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Our procedure uses the construction and parameters of Figure 1.

Ingredients

e An AM languageL. This is the language to be derandomized.

e Afunctionf : {0,1}* — {0, 1}. Thisis the “hard function” supplied to the derandomizat
procedure.

e An time constructible integer functioh< s(¢) < 2¢ (see definition 2.3). This is a functio
which measures how hard is the functifn

e An integer functionv(¢) > ¢. The functionv(¢) determines the length of queries made
an instance checker fgton inputs of lengti!. By Theorem 4.5 we have thaf¢) = (01
when f is computable in EXP and(¢) = O(¢) when f is computable in E.

Parameter: A constant’.
Input: A string x of lengthn.
Operation of M, on input x

e Letc be the constant guaranteed by Lemma 7.2fand setn = n°.

o Compute the smallest integéisuch thats(¢)<'/(legv()—loglogs(£)* > 1, - Sinces is time-
constructible, this can be found efficiently by binary search. Note that this is exact

assume without loss of generality that® > v(¢). OtherwiseM, can just decidd. by
brute-force simulation in timg@ (") = 200m) which is at mos2®®) if m190 < (¢).

extension off at lengthv(¢) over the field withg elements. We have that: F” — Fis a
polynomial withr = O(v(¢)/log h) variables over a field of sizg

e Setd = 2 and computdd = RMV,, 4(p), which is a multi-set ofr. bit strings.

e For every stringz € H guess a witness showing th&X,(z) rejects. Recall thaD,, is a
co-nondeterministic circuit, so it has short withesses for rejection.

e Finally, acceptr if and only if for everyz € H the guessed witness proves that( ) rejects.

Figure 4: The nondeterministic machiné; () which attempts to decide the AM languafe

7.3 Establishing the correctness of the nondeterministic simulation

e Seth to be the smallest prime power larger that’® andg = h'%°. Letp be the low degree

on

by

y the

relationship between, ¢ andm andn that we need to fulfill in our main theorems. We can

We now suppose that the maching, disagrees with the AM languageon some input: and show how

the protocolr from Theorem 6.1 yields an AM protocol that computes the funcfiamm all inputs of

a

particular length that is a function of the lengthaof We will use the fact that problems complete for E or
EXP have instance checkers. In Figure 5 we present the AM protdoolcomputing the functiorf in the

event that\/, fails to decideL.

Our main theorem of this subsection asserts that protosaleed computeg on all inputs of a partic-
ular length when supplied with an advice stringn which M, disagrees with the languade In fact, we
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Our protocol refers to the parameters and ingredients of the procedure in Figure 4.

Ingredients

¢ Aninstance checkefC for f that makes queries of lengtii/) on inputs of lengtHt.

e The commit and evaluate protocol = (7commit Teval) that is guaranteed in Theorem 6.1
when using the polynomial as defined in the construction of the machilg using the
parameterd, h, r, m, g defined there. Recall thatis the low degree extension ¢fat length
v(¢) and that protocok expects as advice a co-nondeterministic circuit of size (po)y

Input: A string y of length¢. The protocol is trying to computg(y).
Auxiliary input: A string z of lengthn.
Operation

e Arthur computes the circuiD, defined in Lemma 7.2.

e Arthur and Merlin play the commit phasg.mmit Using advice strind),. and they obtain as
output a commitmentom.

At this point Arthur and Merlin hold the auxiliary inpubm required to play the evaluation
protocolmeyg ON any input tgp. Note that ap is the low-degree extension gt lengthv ()
We can Usereyq to evaluatef at any input of lengthy(¢) by using the mapping from Lemmal
7.3. Furthermore, we will show that protocolconforms resiliently withy and therefore the
reader can imagine thate,q is a fixed function when used with the auxiliary inpoitn.

e Arthur chooses random coin tosses for the instance chdekexhen run on inputy and
sends them to Merlin.

e Merlin simulates the run of C' on y using oraclef. Merlin sends the transcript of th
simulation to Arthur and for all querigg of lengthv(¢) made tof, Arthur and Merlin play
the protocolmeya 0N the inputy’ (in parallel). Arthur verifies that the output he obtaing
consistent with the answer to the query provided by Merlin/an the transcript that Merlin
sent. Arthur also verifies that the transcript is indeed valid when using the supplied pracle
gueries and answers. Arthur outputsand halts if he detects any inconsistency.

n

S

e Arthur outputs the output ofC(y) that appears in the transcript.

Figure 5: The protocot(y) which attempts to computg(y)

will prove a stronger statement in which the soundness leblds under the weaker condition thatz L.
(This is indeed a weaker condition by Lemma 7.4). This stronger statement will be helpful later on when
proving Theorem 2.5 and 2.6.

Theorem 7.5. Protocolr in Figure 5 satisfies:

completenesslf the machinel/;, does not agree witlh on inputz thenr with auxiliary inputz conforms
with f on inputs of lengtid with completenesk.

soundnesslf 2 ¢ L thenr with auxiliary inputz is PSV on inputs of length
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efficiency Protocolr runs in timem@(egv(O)~loglogm) and hasO(log v(¢) — loglogm) rounds.

Proof. The three items follow directly from Theorem 6.1; the details appear below:

(Completeness) We have thaf. andL(M} ) disagree on:.. By Lemma 7.4 it follows that: ¢ L. We con-
clude that)/;, did acceptr and in particular we have th#t, rejects all the elementsin H = RMV, 4(p).

By Theorem 6.1 we have that the protoeolith advice D, conforms withp, with completeness 1. There-
fore, Merlin has a strategy forc.ommit SO that the commitment stringgm obtained by Arthur is such that
Teval With auxiliary inputcom conforms withp with completeness. Thus, by simulating the instance
checkerl C correctly, Merlin can lead Arthur to outpyfy) as he can convince Arthur that the transcript of
the instance checker is correct.

(Soundness) By Lemma 7.2 ifx ¢ L thenD, rejects at most a/3-fraction of its inputs. By Theorem
6.1 we have that in this caseis resilient. It follows that no matter how Merlin plays in the commit
phasercommit the outpuicom is such thatre,q With auxiliary inputcom is PSV. It follows that there exists a
functiong : {0, 1}*®) — {0, 1} such such that for any inpyt to meya N0 Matter how Merlin plays he cannot
lead Arthur to accept a value different thafy’) with noticeable probability. In such a case (assuming
sufficiently amplified using Proposition 4.3) we have that no instantiatior\@fin the protocol- answers
incorrectly. By the properties of instance checkers we have that iién) is run with oracle access to
g then with high probability (over the randomness for IC supplied by Arthur) the output is ditperor
L. It follows that if Merlin is able to complete the executionothen with high probability Arthur outputs
f(y). Thus, the probability that Merlin can make Arthur output a value different fian is smaller than
the default soundness error bf3.

(Efficiency) ComputingD, can be done in time poly) = mP®) by Lemma 7.2. By Theorem 6.1 the
protocolr runs in timeh®(@°ga7) | Recall thaid = O(1), h = m®® andr = O(v(£)/logh). It follows
that the running time is bounded by©(logv(¥)—loglogm) The instance checker runs in tirfd) < mO®)
and therefore the number of queries (which controls the number of invocatiangqgfi: is bounded by
mPW), Overall, the running time of is indeedn@(cg v(O)~loglogm) a5 required. All the invocations @fya)
are done in parallel and therefordnas only two additional rounds ovegy, and the total number of rounds
is O(logyr) = O(logv(¢) — loglogm). O

7.4 Putting everything together

We are finally ready to prove Theorems 2.4, 2.5, and 2.6. The setup and parameter choice for the three
theorems is very similar so we will start by describing the common part of the three proofs.

The setup and parameters: Let s(¢) be an integer function satisfying the requirements of Theorems 2.4,
2.5, and 2.6. LeL be a language in AM. Lef be a characteristic function of a problem in E (resp. EXP)
that has an instance checkier' that makes queries of lengtti?) = O(¢) (resp.v(¢) = ¢°(1)). Note that
the existence of such a functighis guaranteed by Theorem 4.5. Lt; be the nondeterministic machine
defined in Figure 4. We first verify that the relationship between the parametéeands(¢) are exactly as
specified in the theorems.

Recall thatM, receives inputs of length and the description a¥/;, fixes the parameter. = n° (where
¢ is a constant that depends only on the AM languayeAlso recall that)\/;, choosed as a function of
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m. More precisely, we chooséto be the smallest integer sugty)’/(legv()—loglogs(£)* > 1y where the
constant’ > 0 is a parameter. Thus, we have that s(¢)©(1/(logv(t)~loglogs(£)?) a5 required (where the
constants hidden inside tikedepend only on the constants’). Note that by Lemma 7.4 the machiné,
runs in nondeterministic timz”(®) (resp.2go(”) on inputs of lengtm. Thus, our choice of parameters is as
promised in Theorems 2.4, 2.5, and 2.6.

In the proofs of the three Theorems we need to show thaf;jffails to decideL (where the meaning
of this statement differs in the different theorems) then there is an AM protocol that confpanéesruns in
time s(¢). Let T be the Arthur-Merlin protocol defined in Figure 5. The high level idea is that by Theorem
7.5 we are guaranteed thaindeed computeg when it is given an auxiliary input on whichL and L (M)
disagree. The difference between the three proofs is in how this stisigbtained. Before going into this
issue let us first observe that the running time @ indeed smaller thas(¢) for our choice of parameters.

By Theorem 7.5 protocat runs in timem@(logv(@)—loglogm) and hag)(log v(¢) — loglog m) rounds.
Given an Arthur-Merlin protocol that runs in timi€ and hasR rounds it is possible to collapse it into a
two round protocol that runs in timg&°(%) [BM88]. Thus we can get a two round protocol with running
time tom©logv()—loglogm)* 'Recall that in the definition af/;, we chosé to be the smallest integer such
s(¢)¢'/(ogv(t)—loglogs(£)* > 1y Therefore we have:

o O(log v(£)—log log m)?
) < 5(001) ()

mO(IOgU(é)_IOgIOgm)Q S (s(f) (log v(£)—log log s(£))2

where we are using the fact th@bg v(¢) — loglogm) = O(log v(¢) — log log s(¢)) which follows because
by the definition ofmn:

(logv(f) —loglogm) = (logwv(¢)—loglogs(¢)) + 2log (logv(¢) —loglog s(¢)) + O(1)
< (1+40(1))(logv(f) —loglog s(£)) + O(1).

We observe that thé(1) in the exponent o(¢) in Equation 1 (which depends at ¢ and the hidden
constants in Lemma 7.3 and Theorem 4.5) can be made to be any positive constant by cidodieca
sufficiently small constant.

We now split the proof into the cases of the three different theorems. We begin with the proof of Theorem
2.4. In this case there is an external machihg@he refuter) that supplies the auxiliary input

Proof. (of Theorem 2.4) Assume thaf;, fails on feasibly generated inputs, andfzbe a nondeterministic
machine as in Definition 2.2. We are guaranteed that for all but finitely many input lemgiid for every
accepting computation patR(1™) outputs a string: of lengthn such that. andL(M} ) disagree on:. We
will show that f has a two round Arthur-Merlin protocol running in til€’) that computeg on inputs of
length/. This will prove Theorem 2.4.

Consider the following Arthur-Merlin protocol: When given inputc {0, 1}, Arthur and Merlin
compute an integet so that/ is the integer chosen by the nondeterministic machifiewhen given inputs
x of lengthn. Merlin then sends a string of lengthn with an accepting computation path B{1") that
outputsz. The two parties then run the protoeobn inputy and auxiliary inputz.

By the properties of the refutd? we have thatl, and (M) disagree onc. By Lemma 7.4 we have
thatx ¢ L. By Theorem 7.5 this gives us the completeness and soundness properties of pratibol
auxiliary inputz. We conclude that the protocol above compuytes all but finitely many input lengthé

The running time of the Arthur-Merlin protocol above is dominated by the running timevdiich is
bounded bys(¢)!/19, Thus, the entire protocol runs in time smaller théf) as required. O
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In the case of Theorems 2.4 and 2.5 we have additionallyZthiatin coAM. When giveny € {0,1}*
we will now rely entirely on Merlin to send a stringof lengthn that will be used as auxiliary input for the
protocolr. Unlike the case of Theorem 2.4, we do not have the refuter to ensure that Merlin indeed sends
anx ¢ L. We will therefore ask Merlin to also prove to Arthur thatZz L — which Merlin can do in this
case becausk is in coAM.

Proof. (of Theorem 2.5) We assume thatis also incoAM. We will show that if L and L(M1) disagree
for all but finitely many input lengtha then f has a two round Arthur-Merlin protocol running in tire€’)
that computeg’. This will prove Theorem 2.5.

Consider the following Arthur Merlin protocol: When given inpute {0,1}¢, Arthur and Merlin
compute an integet so that/ is the integer chosen by the nondeterministic machiheshen given inputs
x of lengthn. Merlin sends a string of lengthn (that is supposed to be a string on whictand L(M7,)
disagree). Arthur and Merlin then play the AM protocol for the complemetdt oh the inputz (note that
such a protocol exists as we are assuming thatcoAM and we can assume without loss of generality that
it has perfect completeness). By the completeness and soundness of this protocol at the end of this protocol
Arthur is convinced with high probability that ¢ L. At this point Arthur and Merlin play protocat on
inputy using auxiliary input.

An honest Merlin can indeed follow the protocol described above and using Theorem 7.5 it follows that
Arthur will output f(y) with probability one in this case. Furthermore, no matter how Merlin plays, Arthur
will reject (with high probability) unless Merlin sends¢ L, in which case the soundness of the protocol
follows by Theorem 7.5.

The running time of this protocol is dominated by the running time-.ofThus, the protocol can be
collapsed into a two round protocol that runs in tis{é) as required. O

For Theorem 2.6 we are interested in the case Miaonly fails on infinitely many input lengths. In
this case we would like the protocol fgrto succeed on infinitely many input lengthsHowever, there is
a subtle point here. In both protocols above we instructed Arthur and Merlin to commage function
of . Note however, that there are many lengthehich satisfy the relationshipr‘is an integer so that
¢ is the integer chosen by the nondeterministic machiffgewhen given inputse of lengthn”. We were
not concerned with this previously because all lengthgere good for our purposes. However, now only
infinitely many lengths: are good. For this approach to work we need that for any lefigtith that there
is a good lengtin that satisfies the relation above, we can actually come up with such a length

We do not know how to do this in the setup of Theorem 2.4 (i.e., when the refuter only succeeds on
infinitely many input lengths). However, we can do it in the setup of Theorem 2.5. We will now rely on
Merlin to send such a length. The soundness of the protocol férstill follows using Theorem 7.5 as
Merlin still has to send an that is not inL. However, the completeness is no longer guaranteed on all
lengths? as it is not necessarily the case that Merlin can come up withard anz such thatl, and L(M7,)
disagree orx. The formal proof appears below:

Proof. (of Theorem 2.6) We assume thiatis also incoAM. We will show that if L and (M) disagree

on infinitely many input lengtha then f has a two round Arthur-Merlin protocol running in timé’) such

that on infinitely many input lengths the protocol compufedhis will prove Theorem 2.5. Note that there

is no guarantee that there is a gap between completeness and soundness on “incorrect’. lengths
Consider the following Arthur Merlin protocol: When given input {0, 1}¢, Merlin sends an integer

n and Arthur checks thatis the integer chosen by the nondeterministic machifhewhen given inputs:

of lengthn. Merlin then sends a string of lengthn (that is supposed to be a string on whicland L (M7,)
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disagree). From here on the proof is similar to that of Theorem 2.5; namely: Arthur and Merlin play the AM
protocol for the complement di on the inputz. By the completeness and soundness of this protocol at the
end of the protocol Arthur is convinced with high probability thag L. At this point Arthur and Merlin
play protocol on inputy using advicer.
An honest Merlin can indeed follow the protocol described above (on infinitely many input lef)gths
and using Theorem 7.5 it follows that Arthur will outpfity) with probability one in this case. Furthermore,
no matter how Merlin plays Arthur will reject (with high probability) unless Merlin seadg L and the
soundness of the protocol follows by Theorem 7.5. In fact, soundness is guaranteed on allllengths
Again, the running time of this protocol is dominated by the running time. ofhus, the protocol can
be collapsed into a two round protocol that runs in tis@ as required. O

8 Conclusions and open problems

In this paper we give improved uniform hardness versus randomness tradeoffs for Arthur-Merlin games that
come very close to the “absolute low-end”. A very natural open problem is to give a tradeoff that achieves
the absolute low-end, namely, one that achieves s(¢)2(1) in Theorems 2.4, 2.5, and 2.6 rather than the
current bound which gives = s(¢)©(1/(est-loglogs(0)°) for £ andn = s(¢)°((/1089%) for EXP. Our

current results are suboptimal because of the following losses accumulated in the recursion:

¢ In the recursive AM protocol that is constructed in the proof of Theorem 6.1 every instantiation of the
protocol at one level triggers pdly:) instantiations at the next level. As there @rélog ¢ — loglog s(¥))
levels we get that the running time of the protocati§(log ¢-loglog s(5)) rather than polgm).

e Each recursive call also adds an additional round to the Arthur-Merlin protocol. At the end we also
need to pay a penalty in the running time when collapsing the rounds to give a standard two round
Arthur-Merlin protocol.

Another important open problem is to improve Theorem 2.4 so that the result holds for all inputs, rather
than only inputs that are feasibly generated. Following [GSTS03] we already achieve such a clean statement
for AM N coAM. We remark that this can also be done for MA. As explained in [GSTSO03], achieving this
goal for AM, for the absolute low-end, will give an unconditional (although weak) derandomization of AM,
placing it in a subexponential version ﬁﬁ.
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