
2-Source Dispersers for Sub-Polynomial Entropy and
Ramsey Graphs Beating the Frankl-Wilson Construction

Boaz Barak∗ Anup Rao † Ronen Shaltiel‡ Avi Wigderson§

ABSTRACT
The main result of this paper is an explicit disperser for two
independent sources on n bits, each of entropy k = no(1).
Put differently, setting N = 2n and K = 2k, we construct
explicit N × N Boolean matrices for which no K × K sub-
matrix is monochromatic. Viewed as adjacency matrices of
bipartite graphs, this gives an explicit construction of K-
Ramsey bipartite graphs of size N .

This greatly improves the previous bound of k = o(n) of
Barak, Kindler, Shaltiel, Sudakov and Wigderson [4]. It also

significantly improves the 25-year record of k = Õ(
√

n) on
the special case of Ramsey graphs, due to Frankl and Wilson
[9].

The construction uses (besides ”classical” extractor ideas)
almost all of the machinery developed in the last couple of
years for extraction from independent sources, including:

• Bourgain’s extractor for 2 independent sources of some
entropy rate < 1/2 [5]

• Raz’s extractor for 2 independent sources, one of which
has any entropy rate > 1/2 [18]

• Rao’s extractor for 2 independent block-sources of en-
tropy nΩ(1) [17]

∗Department of Computer Science, Princeton University.
boaz@cs.princeton.edu. Supported by a Princeton Uni-
versity startup grant.
†Department of Computer Science, University of Texas at
Austin. arao@cs.utexas.edu. Most of this work was done
while the author was visiting Princeton University and the
Institute for Advanced Study. Supported in part by an MCD
fellowship from UT Austin and NSF Grant CCR-0310960.
‡Ronen Shaltiel, University of Haifa, Mount Carmel, Haifa,
Israel. ronen@cs.haifa.ac.il. This research was sup-
ported by the United States-Israel Binational Science Foun-
dation (BSF) grant 2004329.
§Institute for Advanced Study, Princeton, New Jersey.
avi@math.ias.edu. This research was supported by NSF
Grant CCR-0324906

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06, May21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

• The “Challenge-Response” mechanism for detecting
“entropy concentration” of [4].

The main novelty comes in a bootstrap procedure which
allows the Challenge-Response mechanism of [4] to be used
with sources of less and less entropy, using recursive calls
to itself. Subtleties arise since the success of this mecha-
nism depends on restricting the given sources, and so re-
cursion constantly changes the original sources. These are
resolved via a new construct, in between a disperser and
an extractor, which behaves like an extractor on sufficiently
large subsources of the given ones.

The full version of this paper is very long. In this pro-
ceedings version we try to give the clearest (if somewhat
oversimplified) description of the main ideas, constructions
and proofs that go into this work. The full version is avail-
able on the authors’ home pages.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph algorithms

General Terms
Theory, Algorithms

Keywords
Dispersers, Ramsey Graphs, Independent Sources, Extrac-
tors

1. INTRODUCTION
This paper deals with randomness extraction from weak

random sources. Here a weak random source is a distribu-
tion which contains some entropy. The extraction task is to
design efficient algorithms (called extractors) to convert this
entropy into useful form, namely a sequence of independent
unbiased bits. Beyond the obvious motivations (potential
use of physical sources in pseudorandom generators and in
derandomization), extractors have found applications in a
variety of areas in theoretical computer science where ran-
domness does not seem an issue, such as in efficient con-
structions of communication networks [24, 7], error correct-
ing codes [22, 12], data structures [14] and more.

Most work in this subject over the last 20 years has fo-
cused on what is now called seeded extraction, in which the
extractor is given as input not only the (sample from the)
defective random source, but also a few truly random bits

(called the seed). A comprehensive survey of much of this
body of work is [21].

Another direction, which has been mostly dormant till
about two years ago, is (seedless, deterministic) extraction
from a few independent weak sources. This kind of extrac-
tion is important in several applications where it is unrealis-
tic to have a short random seed or deterministically enumer-
ate over its possible values. However, it is easily shown to be
impossible when only one weak source is available. When at
least 2 independent sources are available extraction becomes
possible in principle. The 2-source case is the one we will
focus on in this work.

The rest of the introduction is structured as follows. We’ll
start by describing our main result in the context of Ramsey
graphs. We then move to the context of extractors and dis-
perser, describing the relevant background and stating our
result in this language. Then we give an overview of the
construction of our dispersers, describing the main building
blocks we construct along the way. As the construction is
quite complex and its analysis quite subtle, in this proceed-
ings version we try to abstract away many of the technical
difficulties so that the main ideas, structure and tools used
are highlighted. For that reason we also often state defini-
tions and theorems somewhat informally.

1.1 Ramsey Graphs

Definition 1.1. A graph on N vertices is called a K-
Ramsey Graph if it contains no clique or independent set of
size K.

In 1947 Erdős published his paper inaugurating the Prob-
abilistic Method with a few examples, including a proof that
most graphs on N = 2n vertices are 2n-Ramsey. The quest
for constructing such graphs explicitly has existed ever since
and lead to some beautiful mathematics.

The best record to date was obtained in 1981 by Frankl
and Wilson [9], who used intersection theorems for set sys-

tems to construct N-vertex graphs which are 2
√

n log n-Ramsey.
This bound was matched by Alon [1] using the Polynomial
Method, by Grolmusz [11] using low rank matrices over rings,
and also by Barak [2] boosting Abbot’s method with almost
k-wise independent random variables (a construction that
was independently discovered by others as well). Remark-
ably all of these different approaches got stuck at essentially
the same bound. In recent work, Gopalan [10] showed that
other than the last construction, all of these can be viewed
as coming from low-degree symmetric representations of the
OR function. He also shows that any such symmetric rep-
resentation cannot be used to give a better Ramsey graph,
which gives a good indication of why these constructions
had similar performance. Indeed, as we will discuss in a
later section, the

√
n entropy bound initially looked like a

natural obstacle even for our techniques, though eventually
we were able to surpass it.

The analogous question for bipartite graphs seemed much
harder.

Definition 1.2. A bipartite graph on two sets of N ver-
tices is a K-Ramsey Bipartite Graph if it has no K × K
complete or empty bipartite subgraph.

While Erdős’ result on the abundance of 2n-Ramsey graphs
holds as is for bipartite graphs, until recently the best ex-

plicit construction of bipartite Ramsey graphs was 2n/2-
Ramsey, using the Hadamard matrix. This was improved
last year, first to o(2n/2) by Pudlak and Rődl [16] and then

to 2o(n) by Barak, Kindler, Shaltiel, Sudakov and Wigderson
[4].

It is convenient to view such graphs as functions f :
({0, 1}n)2 → {0, 1}. This then gives exactly the definition
of a disperser.

Definition 1.3. A function f : ({0, 1}n)2 → {0, 1} is
called a 2-source disperser for entropy k if for any two sets
X, Y ⊂ {0, 1}n with |X| = |Y | = 2k, we have that the image
f(X, Y) is {0, 1}.

This allows for a more formal definition of explicitness: we
simply demand that the function f is computable in polyno-
mial time. Most of the constructions mentioned above are
explicit in this sense.1

Our main result (stated informally) significantly improves
the bounds in both the bipartite and non-bipartite settings:

Theorem 1.4. For every N we construct polynomial time

computable bipartite graphs which are 2no(1)

-Ramsey. A stan-
dard transformation of these graphs also yields polynomial
time computable ordinary Ramsey Graphs with the same pa-
rameters.

1.2 Extractors and Dispersers from indepen-
dent sources

Now we give a brief review of past relevant work (with the
goal of putting this paper in proper context) and describe
some of the tools from these past works that we will use.
We start with the basic definitions of k-sources by Nisan
and Zuckerman [15] and of extractors and dispersers for in-
dependent sources by Santha and Vazirani [20].

Definition 1.5 ([15]). The min-entropy of a distribu-
tion X is the maximum k such that for every point x in its
support, Pr[X = x] ≤ 2−k. If X is a distribution on strings
with min-entropy at least k, we will call X a k-source 2.

To simplify the presentation, in this version of the paper
we will assume that we are working with entropy as opposed
to min-entropy.

Definition 1.6 ([20]). A function f : ({0, 1}n)c →
{0, 1}m is a c-source (k, ǫ) extractor if for every family of c
independent k-sources X1, · · · , Xc, the output f(X1, · · · , Xc)
is a ǫ-close 3 to uniformly distributed on m bits. f is a dis-
perser for the same parameters if the output is simply re-
quired to have a support of relative size (1 − ǫ).

To simplify the presentation, in this version of the paper,
we will assume that ǫ = 0 for all of our constructions.

In this language, Erdős’ theorem says that most functions
f : ({0, 1}n)2 → {0, 1} are dispersers for entropy 1 + log n
(treating f as the characteristic function for the set of edges

1The Abbot’s product based Ramsey-graph construction of
[3] and the bipartite Ramsey construction of [16] only satisfy
a weaker notion of explicitness.
2It is no loss of generality to imagine that X is uniformly
distributed over some (unknown) set of size 2k.
3The error is usually measured in terms of ℓ1 distance or
variation distance.

of the graph). The proof easily extends to show that indeed
most such functions are in fact extractors. This naturally
challenges us to find explicit functions f that are 2-source
extractors.

Until one year ago, essentially the only known explicit
construction was the Hadamard extractor Had defined by
Had(x, y) = 〈x, y〉(mod 2). It is an extractor for entropy
k > n/2 as observed by Chor and Goldreich [8] and can
be extended to give m = Ω(n) output bits as observed by
Vazirani [23]. Over 20 years later, a recent breakthrough
of Bourgain [5] broke this “1/2 barrier” and can handle 2
sources of entropy .4999n, again with linear output length
m = Ω(n). This seemingly minor improvement will be cru-
cial for our work!

Theorem 1.7 ([5]). There is a polynomial time com-
putable 2-source extractor f : ({0, 1}n)2 → {0, 1}m for en-
tropy .4999n and m = Ω(n).

No better bounds are known for 2-source extractors. Now
we turn our attention to 2-source dispersers. It turned out
that progress for building good 2-source dispersers came via
progress on extractors for more than 2 sources, all happening
in fast pace in the last 2 years. The seminal paper of Bour-
gain, Katz and Tao [6] proved the so-called ”sum-product
theorem” in prime fields, a result in arithmetic combina-
torics. This result has already found applications in diverse
areas of mathematics, including analysis, number theory,
group theory and ... extractor theory. Their work implic-
itly contained dispersers for c = O(log(n/k)) independent
sources of entropy k (with output m = Ω(k)). The use of
the ”sum-product” theorem was then extended by Barak et
al. [3] to give extractors with similar parameters. Note that
for linear entropy k = Ω(n), the number of sources needed
for extraction c is a constant!

Relaxing the independence assumptions via the idea of
repeated condensing, allowed the reduction of the number
of independent sources to c = 3, for extraction from sources
of any linear entropy k = Ω(n), by Barak et al. [4] and
independently by Raz [18].

For 2 sources Barak et al. [4] were able to construct dis-
persers for sources of entropy o(n). To do this, they first
showed that if the sources have extra structure (block-source
structure, defined below), even extraction is possible from 2
sources. The notion of block-sources, capturing ”semi inde-
pendence” of parts of the source, was introduced by Chor
and Goldreich [8]. It has been fundamental in the develop-
ment of seeded extractors and as we shall see, is essential
for us as well.

Definition 1.8 ([8]). A distribution X = X1, . . . , Xc

is a c-block-source of (block) entropy k if every block Xi

has entropy k even conditioned on fixing the previous blocks
X1, · · · , Xi−1 to arbitrary constants.

This definition allowed Barak et al. [4] to show that their
extractor for 4 independent sources, actually performs as
well with only 2 independent sources, as long as both are
2-block-sources.

Theorem 1.9 ([4]). There exists a polynomial time com-
putable extractor f : ({0, 1}n)2 → {0, 1} for 2 independent
2-block-sources with entropy o(n).

There is no reason to assume that the given sources are
block-sources, but it is natural to try and reduce to this
case. This approach has been one of the most successful in
the extractor literature. Namely try to partition a source
X into two blocks X = X1, X2 such that X1, X2 form a
2-block-source. Barak et al. introduced a new technique to
do this reduction called the Challenge-Response mechanism,
which is crucial for this paper. This method gives a way to
“find” how entropy is distributed in a source X, guiding the
choice of such a partition. This method succeeds only with
small probability, dashing the hope for an extractor, but still
yielding a disperser.

Theorem 1.10 ([4]). There exists a polynomial time
computable 2-source disperser f : ({0, 1}n)2 → {0, 1} for
entropy o(n).

Reducing the entropy requirement of the above 2-source
disperser, which is what we achieve in this paper, again
needed progress on achieving a similar reduction for extrac-
tors with more independent sources. A few months ago Rao
[17] was able to significantly improve all the above results
for c ≥ 3 sources. Interestingly, his techniques do not use
arithmetic combinatorics, which seemed essential to all the
papers above. He improves the results of Barak et al. [3] to
give c = O((log n)/(log k))-source extractors for entropy k.
Note that now the number c of sources needed for extraction
is constant, even when the entropy is as low as nδ for any
constant δ!

Again, when the input sources are block-sources with suf-
ficiently many blocks, Rao proves that 2 independent sources
suffice (though this result does rely on arithmetic combina-
torics, in particular, on Bourgain’s extractor).

Theorem 1.11 ([17]). There is a polynomial time com-
putable extractor f : ({0, 1}n)2 → {0, 1}m for 2 independent
c-block-sources with block entropy k and m = Ω(k), as long
as c = O((log n)/(log k)).

In this paper (see Theorem 2.7 below) we improve this
result to hold even when only one of the 2 sources is a c-
block-source. The other source can be an arbitrary source
with sufficient entropy. This is a central building block in
our construction. This extractor, like Rao’s above, critically
uses Bourgain’s extractor mentioned above. In addition it
uses a theorem of Raz [18] allowing seeded extractors to have
”weak” seeds, namely instead of being completely random
they work as long as the seed has entropy rate > 1/2.

2. MAIN NOTIONS AND NEW RESULTS
The main result of this paper is a polynomial time com-

putable disperser for 2 sources of entropy no(1), significantly
improving both the results of Barak et al. [4] (o(n) entropy).
It also improves on Frankl and Wilson [9], who only built

Ramsey Graphs for entropy Õ(
√

n).

Theorem 2.1 (Main theorem, restated). There ex-
ists a polynomial time computable 2-source disperser D :
({0, 1}n)2 → {0, 1} for entropy no(1).

The construction of this disperser will involve the con-
struction of an object which in some sense is stronger and
in another weaker than a disperser: a subsource somewhere

extractor. We first define a related object: a somewhere ex-
tractor, which is a function producing several outputs, one of
which must be uniform. Again we will ignore many technical
issues such as error, min-entropy vs. entropy and more, in
definitions and results, which are deferred to the full version
of this paper.

Definition 2.2. A function f : ({0, 1}n)2 → ({0, 1}m)ℓ

is a 2-source somewhere extractor with ℓ outputs, for entropy
k, if for every 2 independent k-sources X, Y there exists an
i ∈ [ℓ] such the ith output f(X, Y)i is a uniformly distributed
string of m bits.

Here is a simple construction of such a somewhere extrac-
tor with ℓ as large as poly(n) (and the p in its name will
stress the fact that indeed the number of outputs is that
large). It will nevertheless be useful to us (though its de-
scription in the next sentence may be safely skipped). Define
pSE(x, y)i = V(E(x, i), E(y, i)) where E is a ”strong” loga-
rithmic seed extractor, and V is the Hadamard/Vazirani 2-
source extractor. Using this construction, it is easy to see
that:

Proposition 2.3. For every n, k there is a polynomial
time computable somewhere extractor pSE : ({0, 1}n)2 →
({0, 1}m)ℓ with ℓ = poly(n) outputs, for entropy k, and m =
Ω(k).

Before we define subsource somewhere extractor, we must
first define a subsource.

Definition 2.4 (Subsources). Given random variables

Z and Ẑ on {0, 1}n we say that Ẑ is a deficiency d subsource

of Z and write Ẑ ⊆ Z if there exists a set A ⊆ {0, 1}n such

that (Z|A) = Ẑ and Pr[Z ∈ A] ≥ 2−d.

A subsource somewhere extractor guarantees the ”some-
where extractor” property only on subsources X ′, Y ′ of the
original input distributions X, Y (respectively). It will be
extremely important for us to make these subsources as large
as possible (i.e. we have to lose as little entropy as possible).
Controlling these entropy deficiencies is a major technical
complication we have to deal with. However we will be in-
formal with it here, mentioning it only qualitatively when
needed. We discuss this issue a little more in Section 6.

Definition 2.5. A function f : ({0, 1}n)2 → ({0, 1}m)ℓ

is a 2-source subsource somewhere extractor with ℓ outputs
for entropy k, if for every 2 independent k-sources X, Y there
exists a subsource X̂ of X, a subsource Ŷ of Y and an i ∈ [ℓ]

such the ith output f(X̂, Ŷ)i is a uniformly distributed string
of m bits.

A central technical result for us is that with this ”sub-
source” relaxation, we can have much fewer outputs – in-
deed we’ll replace poly(n) outputs in our first construction

above with no(1) outputs.

Theorem 2.6 (Subsource somewhere extractor).
For every δ > 0 there is a polynomial time computable sub-
source somewhere extractor SSE : ({0, 1}n)2 → ({0, 1}m)ℓ

with ℓ = no(1) outputs, for entropy k = nδ, with output
m =

√
k.

We will describe the ideas used for constructing this im-
portant object and analyzing it in the next section, where
we will also indicate how it is used in the construction of
the final disperser. Here we state a central building block,
mentioned in the previous section (as an improvement of the
work of Rao [17]). We construct an extractor for 2 indepen-
dent sources one of which is a block-sources with sufficient
number of blocks.

Theorem 2.7 (Block Source Extractor). There is
a polynomial time computable extractor B : ({0, 1}n)2 →
{0, 1}m for 2 independent sources, one of which is a c-block-
sources with block entropy k and the other a source of en-
tropy k, with m = Ω(k), and c = O((log n)/(log k)).

A simple corollary of this block-source extractor B, is the
following weaker (though useful) somewhere block-source
extractor SB. A source Z = Z1, Z2, · · · , Zt is a somewhere
c-block-source of block entropy k if for some c indices i1 <
i2 < · · · < ic the source Zi1 , Zi2 , · · · , Zic

is a c-block-source.
Collecting the outputs of B on every c-subset of blocks re-
sults in that somewhere extractor.

Corollary 2.8. There is a polynomial time computable
somewhere extractor SB : ({0, 1}n)2 → ({0, 1}m)ℓ for 2 inde-
pendent sources, one of which is a somewhere c-block-sources
with block entropy k and t blocks total and the other a source
of entropy k, with m = Ω(k), c = O((log n)/(log k)), and
ℓ ≤ tc.

In both the theorem and corollary above, the values of
entropy k we will be interested in are k = nΩ(1). It follows
that a block-source with a constant c = O(1) suffices.

3. THE CHALLENGE-RESPONSE MECH-
ANISM

We now describe abstractly a mechanism which will be
used in the construction of the disperser as well as the sub-
source somewhere extractor. Intuitively, this mechanism al-
lows us to identify parts of a source which contain large
amounts of entropy. One can hope that using such a mech-
anism one can partition a given source into blocks in a way
which make it a block-source, or alternatively focus on a part
of the source which is unusually condensed with entropy -
two cases which may simplify the extraction problem.

The reader may decide, now or in the middle of this
section, to skip ahead to the next section which describes
the construction of the subsource somewhere extractor SSE,
which extensively uses this mechanism. Then this section
may seem less abstract, as it will be clearer where this mech-
anism is used.

This mechanism was introduced by Barak et al. [4], and
was essential in their 2-source disperser. Its use in this paper
is far more involved (in particular it calls itself recursively,
a fact which creates many subtleties). However, at a high
level, the basic idea behind the mechanism is the same:

Let Z be a source and Z′ a part of Z (Z projected on a
subset of the coordinates). We know that Z has entropy k,
and want to distinguish two possibilities: Z′ has no entropy
(it is fixed) or it has at least k′ entropy. Z′ will get a pass

or fail grade, hopefully corresponding to the cases of high or
no entropy in Z′.

Anticipating the use of this mechanism, it is a good idea
to think of Z as a ”parent” of Z′, which wants to check if

this ”child” has sufficient entropy. Moreover, in the context
of the initial 2 sources X, Y we will operate on, think of Z
as a part of X, and thus that Y is independent of Z and Z′.

To execute this ”test” we will compute two sets of strings
(all of length m, say): the Challenge C = C(Z′, Y) and
the Response R = R(Z, Y). Z′ fails if C ⊆ R and passes
otherwise.

The key to the usefulness of this mechanism is the follow-
ing lemma, which states that what ”should” happen, indeed
happens after some restriction of the 2 sources Z and Y .
We state it and then explain how the functions C and R are
defined to accommodate its proof.

Lemma 3.1. Assume Z, Y are sources of entropy k.

1. If Z′ has entropy k′ +O(m), then there are subsources

Ẑ of Z and Ŷ of Y , such that

Pr[Ẑ′ passes] = Pr[C(Ẑ′, Ŷ) ⊆ R(Z, Y)] ≥ 1−nO(1)2−m

2. If Z′ is fixed (namely, has zero entropy), then for some

subsources Ẑ of Z and Ŷ of Y , we have

Pr[Z′ fails] = Pr[C(Ẑ′, Ŷ) ⊆ R(Ẑ, Ŷ)] = 1

Once we have such a mechanism, we will design our dis-
perser algorithm assuming that the challenge response mech-
anism correctly identifies parts of the source with high or
low levels of entropy. Then in the analysis, we will ensure
that our algorithm succeeds in making the right decisions,
at least on subsources of the original input sources.

Now let us explain how to compute the sets C and R. We
will use some of the constructs above with parameters which
don’t quite fit.

The response set R(Z, Y) = pSE(Z, Y) is chosen to be the
output of the somewhere extractor of Proposition 2.3. The
challenge set C(Z′, Y) = SSE(Z′, Y) is chosen to be the out-
put of the subsource somewhere extractor of Theorem 2.6.

Why does it work? We explain each of the two claims
in the lemma in turn (and after each comment on the im-
portant parameters and how they differ from Barak et al.
[4]).

1. Z′ has entropy. We need to show that Z′ passes the
test with high probability. We will point to the out-
put string in C(Ẑ′, Ŷ ′) which avoids R(Ẑ, Ŷ) with high
probability as follows. In the analysis we will use the
union bound on several events, one associated with
each (poly(n) many) string in pSE(Ẑ, Ŷ). We note
that by the definition of the response function, if we
want to fix a particular element in the response set to
a particular value, we can do this by fixing E(Z, i) and
E(Y, i). This fixing keeps the restricted sources inde-
pendent and loses only O(m) entropy. In the subsource
of Z′ guaranteed to exist by Theorem 2.6 we can afford
to lose this entropy in Z′. Thus we conclude that one
of its outputs is uniform. The probability that this
output will equal any fixed value is thus 2−m, com-
pleting the argument. We note that we can handle
the polynomial output size of pSE, since the uniform
string has length m = nΩ(1) (something which could
not be done with the technology available to Barak et
al. [4]).

2. Z′ has no entropy. We now need to guarantee that
in the chosen subsources (which we choose) Ẑ, Ŷ , all

strings in C = C(Ẑ′, Ŷ) are in R(Ẑ, Ŷ). First notice
that as Z′ is fixed, C is only a function of Y . We
set Ỹ to be the subsource of Y that fixes all strings
in C = C(Y) to their most popular values (losing
only ℓm entropy from Y). We take care of includ-

ing these fixed strings in R(Z, Ỹ) one at a time, by
restricting to subsources assuring that. Let σ be any
m-bit string we want to appear in R(Z, Ỹ). Recall that
R(z, y) = V(E(z, i), E(y, i)). We pick a ”good” seed i,

and restrict Z, Ỹ to subsources with only O(m) less

entropy by fixing E(Z, i) = a and E(Ỹ , i) = b to values
(a, b) for which V(a, b) = σ. This is repeated suc-
cessively ℓ times, and results in the final subsources
Ẑ, Ŷ on which Ẑ′ fails with probability 1. Note that
we keep reducing the entropy of our sources ℓ times,
which necessitates that this ℓ be tiny (here we could

not tolerate poly(n), and indeed can guarantee no(1),
at least on a subsource – this is one aspect of how cru-
cial the subsource somewhere extractor SSE is to the
construction.

We note that initially it seemed like the Challenge-Response
mechanism as used in [4] could not be used to handle en-
tropy that is significantly less than

√
n (which is approxi-

mately the bound that many of the previous constructions
got stuck at). The techniques of [4] involved partitioning
the sources into t pieces of length n/t each, with the hope
that one of those parts would have a significant amount of
entropy, yet there’d be enough entropy left over in the rest
of the source (so that the source can be partitioned into a
block source).

However it is not clear how to do this when the total
entropy is less than

√
n. On the one hand we will have

to partition our sources into blocks of length significantly
more than

√
n (or the adversary could distribute a negligible

fraction of entropy in all blocks). On the other hand, if
our blocks are so large, a single block could contain all the
entropy. Thus it was not clear how to use the challenge
response mechanism to find a block source.

4. THE SUBSOURCE SOMEWHERE
EXTRACTOR SSE

We now explain some of the ideas behind the construction
of the subsource somewhere extractor SSE of Theorem 2.6.
Consider the source X. We are seeking to find in it a some-
where c-block-source, so that we can use it (together with Y)
in the block-source extractor of Theorem 2.8. Like in previ-
ous works in the extractor literature (e.g. [19, 13]) we use a
”win-win” analysis which shows that either X is already a
somewhere c-block-source, or it has a condensed part which
contains a lot of the entropy of the source. In this case we
proceed recursively on that part. Continuing this way we
eventually reach a source so condensed that it must be a
somewhere block source. Note that in [4], the challenge re-
sponse mechanism was used to find a block source also, but
there the entropy was so high that they could afford to use
a tree of depth 1. They did not need to recurse or condense
the sources.

Consider the tree of parts of the source X evolved by
such recursion. Each node in the tree corresponds to some
interval of bit locations of the source, with the root node
corresponding to the entire source. A node is a child of an-
other if its interval is a subinterval of the parent. It can be

t blocks

low highmed

n bits total

t blocks

med med low high

responded
Challenge Challenge

responded

Challenge Unresponded

med med

n/t bits total

SB

SB

Outputs

Somewhere Block Source!

Not Somewhere block source

X

Random Row

< k’

0< low < k’/t

k’/c < high < k’

k’/t < med < k’/c

Figure 1: Analysis of the subsource somewhere extractor.

shown that some node in the tree is ”good”; it corresponds
to a somewhere c-source, but we don’t know which node is
good. Since we only want a somewhere extractor, we can
apply to each node the somewhere block-source extractor of
Corollary 2.8 – this will give us a random output in every
”good” node of the tree. The usual idea is output all these
values (and in seeded extractors, merge them using the ex-
ternally given random seed). However, we cannot afford to
do that here as there is no external seed and the number of
these outputs (the size of the tree) is far too large.

Our aim then will be to significantly prune this number
of candidates and in fact output only the candidates on one
path to a canonical ”good” node. First we will give a very in-
formal description of how to do this (Figure 1). Before call-
ing SSE recursively on a subpart of a current part of X, we’ll
use the ”Challenge-Response” mechanism described above
to check if ”it has entropy”.4 We will recurse only with the
first (in left-to-right order) part which passes the ”entropy
test”. Thus note that we will follow a single path on this
tree. The algorithm SSE will output only the sets of strings
produced by applying the somewhere c-block-extractor SB

on the parts visited along this path.
Now let us describe the algorithm for SSE. SSE will be

initially invoked as SSE(x, y), but will recursively call itself
with different inputs z which will always be substrings of x.

Algorithm: SSE(z, y)
Let pSE(., .) be the somewhere extractor with a polyno-

mial number of outputs of Proposition 2.3.
Let SB be the somewhere block source extractor of Corol-

lary 2.8.
Global Parameters: t, the branching factor of the tree. k

4We note that we ignore the additional complication that
SSE will actually use recursion also to compute the challenge
in the challenge-response mechanism.

the original entropy of the sources.
Output will be a set of strings.

1. If z is shorter than
√

k, return the empty set, else
continue.

2. Partition z into t equal parts z = z1, z2, . . . , zt.

3. Compute the response set R(z, y) which is the set of
strings output by pSE(z, y).

4. For i ∈ [t], compute the challenge set C(zi, y), which
is the set of outputs of SSE(zi, y).

5. Let h be the smallest index for which the challenge set
C(zh, y) is not contained in the response set (set h = t
if no such index exists).

6. Output SB(z, y) concatenated with SSE(zh, y).

Proving that indeed there are subsources on which SSE

will follow a path to a ”good” (for these subsources) node,
is the heart of the analysis. It is especially complex due
to the fact that the recursive call to SSE on subparts of
the current part is used to generate the Challenges for the
Challenge-Response mechanism. Since SSE works only on
a subsources we have to guarantee that restriction to these
does not hamper the behavior of SSE in past and future calls
to it.

Let us turn to the highlights of the analysis, for the proof
of Theorem 2.6. Let k′ be the entropy of the source Z at
some place in this recursion. Either one of its blocks Zi has
entropy k′/c, in which case it is very condensed, since its
size is n/t for t ≫ c), or it must be that c of its blocks form
a c-block source with block entropy k′/t (which is sufficient
for the extractor B used by SB). In the 2nd case the fact
that SB(z, y) is part of the output of of our SSE guarantees
that we are somewhere random. If the 2nd case doesn’t hold,

let Zi be the leftmost condensed block. We want to ensure
that (on appropriate subsources) SSE calls itself on that ith
subpart. To do so, we fix all Zj for j < i to constants zj . We
are now in the position described in the Challenge-Response
mechanism section, that (in each of the first i parts) there
is either no entropy or lots of entropy. We further restrict
to subsources as explained there which make all first i − 1
blocks fail the ”entropy test”, and the fact that Zi still has
lots of entropy after these restrictions (which we need to
prove) ensures that indeed SSE will be recursively applied
to it.

We note that while the procedure SSE can be described re-
cursively, the formal analysis of fixing subsources is actually
done globally, to ensure that indeed all entropy requirements
are met along the various recursive calls.

Let us remark on the choice of the branching parameter t.
On the one hand, we’d like to keep it small, as it dominates
the number of outputs tc of SB, and thus the total number of
outputs (which is tc logt n). For this purpose, any t = no(1)

will do. On the other hand, t should be large enough so that
condensing is faster than losing entropy. Here note that if
Z is of length n, its child has length n/t, while the entropy
shrinks only from k′ to k′/c. A simple calculation shows that

if k(log t)/ log c) > n2 then a c block-source must exist along
such a path before the length shrinks to

√
k. Note that for

k = nΩ(1) a (large enough) constant t suffices (resulting in
only logarithmic number of outputs of SSE). This analysis
is depicted pictorially in Figure 1.

5. THE FINAL DISPERSER D

Following is a rough description of our disperser D proving
Theorem 2.1. The high level structure of D will resemble the
structure of SSE - we will recursively split the source X and
look for entropy in the parts. However now we must output
a single value (rather than a set) which can take both values
0 and 1. This was problematic in SSE, even knowing where
the ”good” part (containing a c-block-source) was! How can
we do so now?

We now have at our disposal a much more powerful tool
for generating challenges (and thus detecting entropy), namely
the subsource somewhere disperser SSE. Note that in con-
structing SSE we only had essentially the somewhere c-block-
source extractor SB to (recursively) generate the challenges,
but it depended on a structural property of the block it was
applied on. Now SSE does not assume any structure on its
input sources except sufficient entropy 5.

Let us now give a high level description of the disperser
D. It too will be a recursive procedure. If when processing
some part Z of X it ”realizes” that a subpart Zi of Z has
entropy, but not all the entropy of Z (namely Zi, Z is a
2-block-source) then we will halt and produce the output
of D. Intuitively, thinking about the Challenge-Response
mechanism described above, the analysis implies that we
can either pass or fail Zi (on appropriate subsources). But
this means that the outcome of this ”entropy test” is a 1-bit
disperser!

To capitalize on this idea, we want to use SSE to identify
such a block-source in the recursion tree. As before, we scan
the blocks from left to right, and want to distinguish three

5There is a catch – it only works on subsources of them!
This will cause us a lot of head ache; we will elaborate on it
later.

possibilities.

low Zi has low entropy. In this case we proceed to i + 1.

medium Zi has ”medium” entropy (Zi, Z is a block-source).
In which case we halt and produce an output (zero or
one).

high Zi has essentially all entropy of Z. In this case we
recurse on the condensed block Zi.

As before, we use the Challenge-Response mechanism (with
a twist). We will compute challenges C(Zi, Y) and responses
R(Z, Y), all strings of length m. The responses are computed
exactly as before, using the somewhere extractor pSE. The
Challenges are computed using our subsource somewhere
extractor SSE.

We really have 4 possibilities to distinguish, since when we
halt we also need to decide which output bit we give. We will
do so by deriving three tests from the above challenges and
responses: (CH , RH), (CM , RM), (CL, RL) for high, medium
and low respectively, as follows. Let m ≥ mH >> mM >>
mL be appropriate integers: then in each of the tests above
we restrict ourselves to prefixes of all strings of the appro-
priate lengths only. So every string in CM will be a prefix
of length mM of some string in CH . Similarly, every string
in RL is the length mL prefix of some string in RH . Now
it is immediately clear that if CM is contained in RM , then
CL is contained in RL. Thus these tests are monotone, if
our sample fails the high test, it will definitely fail all tests.

Algorithm: D(z, y)
Let pSE(., .) be the somewhere extractor with a polyno-

mial number of outputs of Proposition 2.3.
Let SSE(., .) be the subsource somewhere extractor of The-

orem 2.6.
Global Parameters: t, the branching factor. k the original

entropy of the sources.
Local Parameters for recursive level: mL ≪ mM ≪ mH .
Output will be an element of {0, 1}.

1. If z is shorter than
√

k, return the empty set, else
continue.

2. Partition z into t equal parts z = z1, z2, . . . , zt.

3. Compute three response sets RL, RM , RH using pSE(z, y).
Rj will be the prefixes of length mj of the strings in
pSE(z, y).

4. For each i ∈ [t], compute three challenge sets Ci
L, Ci

M , Ci
H

using SSE(zi, y). Ci
j will be the prefixes of length mj

of the strings in SSE(zi, y).

5. Let h be the smallest index for which the challenge set
CL is not contained in the response set RL, if there is
no such index, output 0 and halt.

6. If Ch
H is contained in RH and Ch

H is contained in RM ,
output 0 and halt. If Ch

H is contained in RH but Ch
H

is not contained in RM , output 1 and halt.

7. Output D(zh, y),

First note the obvious monotonicity of the tests. If Zi fails
one of the tests it will certainly fail for shorter strings. Thus
there are only four outcomes to the three tests (written in

t blocks

t blocks

t blocks

fail
fail
fail pass

pass
pass

fail
fail
fail

fail
fail
fail

fail
fail
fail

fail
fail
fail

pass
pass
fail

pass
fail
fail

low low high

low low low high

low med

n bits total

n/t bits total

X

low low

 Output 0 Output 1

n/t^2 bits total

X_3

(X_3)_4

Figure 2: Analysis of the disperser.

the order (low, medium, high)): (pass, pass, pass), (pass, pass, fail),
(pass, fail, fail) and (fail, fail, fail). Conceptually, the algo-
rithm is making the following decisions using the four tests:

1. (fail, fail, fail): Assume Zi has low entropy and proceed
to block i + 1.

2. (pass, fail, fail): Assume Zi is medium, halt and output
0.

3. (pass, pass, fail): Assume Zi is medium, halt and out-
put 1.

4. (pass, pass, pass): Assume Zi is high and recurse on Zi.

The analysis of this idea turns out to be more complex
than it seems. There are two reasons for that. Now we
briefly explain them and the way to overcome them in the
construction and analysis.

The first reason is the fact mentioned above, that SSE

which generates the challenges, works only on a subsources
of the original sources. Restricting to these subsources at
some level of the recursion (as required by the analysis of of
the test) causes entropy loss which affects both definitions
(such as these entropy thresholds for decisions) and correct-
ness of SSE in higher levels of recursion. Controlling this en-
tropy loss is achieved by calling SSE recursively with smaller
and smaller entropy requirements, which in turn limits the
entropy which will be lost by these restrictions. In order not
to lose all the entropy for this reason alone, we must work
with special parameters of SSE, essentially requiring that at
termination it has almost all the entropy it started with.

The second reason is the analysis of the test when we are
in a medium block. In contrast with the above situation, we
cannot consider the value of Zi fixed when we need it to fail
on the Medium and Low tests. We need to show that for
these two tests (given a pass for High), they come up both
(pass, fail) and (fail, fail) each with positive probability.

Since the length of Medium challenges and responses is
mM , the probability of failure is at least exp(−Ω(mM)) (this
follows relatively easily from the fact that the responses are
somewhere random). If the Medium test fails so does the
Low test, and thus (fail, fail) has a positive probability and
our disperser D outputs 0 with positive probability.

To bound (pass, fail) we first observe (with a similar
reasoning) that the low test fails with probability at least
exp(−Ω(mL)). But we want the medium test to pass at the
same time. This probability is at least the probability that
low fails minus the probability that medium fails. We already
have a bound on the latter: it is at most poly(n)exp(−ℓmM).
Here comes our control of the different length into play - we
can make the mL sufficiently smaller than mM to yield this
difference positive. We conclude that our disperser D out-
puts 1 with positive probability as well.

We need only take care finally of termination, namely that
the recurrence always arrives at a medium subpart, but it is
easy to chose entropy thresholds for low, medium and high

to ensure that this happens. Pictorially, this analysis is de-
picted in Figure 2.

6. RESILIENCY AND DEFICIENCY
In this section we will breifly discuss an issue which arises

in our construction that we glossed over in the previous sec-
tions. Recall our definition of subsources:

Definition 6.1 (Subsources). Given random variables

Z and Ẑ on {0, 1}n we say that Ẑ is a deficiency d subsource

of Z and write Ẑ ⊆ Z if there exists a set A ⊆ {0, 1}n such

that (Z|A) = Ẑ and Pr[Z ∈ A] ≥ 2−d.

Recall that we were able to guarantee that our algorithms
made the right decisions only on subsources of the original
source. For example, in the construction of our final dis-
perser, to ensure that our algorithms correctly identify the
right high block to recurse on, we were only able to guar-
antee that there are subsources of the original sources in
which our algorithm makes the correct decision with high
probability. Then, later in the analysis we had to further
restrict the source to even smaller subsources. This leads to
complications, since the original event of picking the correct
high block, which occurred with high probability, may be-
come an event which does not occur with high probability
in the current subsource. To handle these kinds of issues,
we will need to be very careful in measuring how small our
subsources are.

In the formal analysis we introduce the concept of re-
siliency to deal with this. To give an idea of how this works,
here is the actual definition of somewhere subsource extrac-
tor that we use in the formal analysis.

Definition 6.2 (subsource somewhere extractor).
A function SSE : {0, 1}n × {0, 1}n → ({0, 1}m)ℓ is a sub-
source somewhere extractor with nrows output rows, entropy
threshold k, deficiency def, resiliency res and error ǫ if for
every (n, k)-sources X, Y there exist a deficiency def sub-
source Xgood of X and a deficiency def subsource Y good of
Y such that for every deficiency res subsource X ′ of Xgood

and deficiency res subsource Y ′ of Y good, the random vari-
able SSE(X ′, Y ′) is ǫ-close to a ℓ × m somewhere random
distribution.

It turns out that our subsource somewhere extractor does
satisfy this stronger definition. The advantage of this defi-
nition is that it says that once we restrict our attention to
the good subsources Xgood, Y good, we have the freedom to fur-
ther restrict these subsources to smaller subsources, as long
as our final subsources do not lose more entropy than the
resiliency permits.

This issue of managing the resiliency for the various ob-
jects that we construct is one of the major technical chal-
lenges that we had to overcome in our construction.

7. OPEN PROBLEMS

Better Independent Source Extractors A bottleneck to
improving our disperser is the block versus general
source extractor of Theorem 2.7. A good next step
would be to try to build an extractor for one block
source (with only a constant number of blocks) and
one other independent source which works for polylog-
arithmic entropy, or even an extractor for a constant
number of sources that works for sub-polynomial en-
tropy.

Simple Dispersers While our disperser is polynomial time
computable, it is not as explicit as one might have

hoped. For instance the Ramsey Graph construction
of Frankl-Wilson is extremely simple: For a prime p,
let the vertices of the graph be all subsets of [p3] of
size p2 − 1. Two vertices S, T are adjacent if and only
if |S ∩T | ≡ −1 mod p. It would be nice to find a good
disperser that beats the Frankl-Wilson construction,
yet is comparable in simplicity.

8. REFERENCES
[1] N. Alon. The shannon capacity of a union.

Combinatorica, 18, 1998.

[2] B. Barak. A simple explicit construction of an

nõ(log n)-ramsey graph. Technical report, Arxiv, 2006.
http://arxiv.org/abs/math.CO/0601651.

[3] B. Barak, R. Impagliazzo, and A. Wigderson.
Extracting randomness using few independent sources.
In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, pages 384–393,
2004.

[4] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and
A. Wigderson. Simulating independence: New
constructions of condensers, Ramsey graphs,
dispersers, and extractors. In Proceedings of the 37th
Annual ACM Symposium on Theory of Computing,
pages 1–10, 2005.

[5] J. Bourgain. More on the sum-product phenomenon in
prime fields and its applications. International Journal
of Number Theory, 1:1–32, 2005.

[6] J. Bourgain, N. Katz, and T. Tao. A sum-product
estimate in finite fields, and applications. Geometric
and Functional Analysis, 14:27–57, 2004.

[7] M. Capalbo, O. Reingold, S. Vadhan, and
A. Wigderson. Randomness conductors and
constant-degree lossless expanders. In Proceedings of
the 34th Annual ACM Symposium on Theory of
Computing, pages 659–668, 2002.

[8] B. Chor and O. Goldreich. Unbiased bits from sources
of weak randomness and probabilistic communication
complexity. SIAM Journal on Computing,
17(2):230–261, 1988.

[9] P. Frankl and R. M. Wilson. Intersection theorems
with geometric consequences. Combinatorica,
1(4):357–368, 1981.

[10] P. Gopalan. Constructing ramsey graphs from boolean
function representations. In Proceedings of the 21th
Annual IEEE Conference on Computational
Complexity, 2006.

[11] V. Grolmusz. Low rank co-diagonal matrices and
ramsey graphs. Electr. J. Comb, 7, 2000.

[12] V. Guruswami. Better extractors for better codes?
Electronic Colloquium on Computational Complexity
(ECCC), (080), 2003.

[13] C. J. Lu, O. Reingold, S. Vadhan, and A. Wigderson.
Extractors: Optimal up to constant factors. In
Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, pages 602–611, 2003.

[14] P. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. Journal of Computer and System
Sciences, 57:37–49, 1 1998.

[15] N. Nisan and D. Zuckerman. More deterministic
simulation in logspace. In Proceedings of the 25th

Annual ACM Symposium on Theory of Computing,
pages 235–244, 1993.

[16] P. Pudlak and V. Rodl. Pseudorandom sets and
explicit constructions of ramsey graphs. Submitted for
publication, 2004.

[17] A. Rao. Extractors for a constant number of
polynomially small min-entropy independent sources.
In Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, 2006.

[18] R. Raz. Extractors with weak random seeds. In
Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, pages 11–20, 2005.

[19] O. Reingold, R. Shaltiel, and A. Wigderson.
Extracting randomness via repeated condensing. In
Proceedings of the 41st Annual IEEE Symposium on
Foundations of Computer Science, pages 22–31, 2000.

[20] M. Santha and U. V. Vazirani. Generating
quasi-random sequences from semi-random sources.
Journal of Computer and System Sciences, 33:75–87,
1986.

[21] R. Shaltiel. Recent developments in explicit
constructions of extractors. Bulletin of the European
Association for Theoretical Computer Science,
77:67–95, 2002.

[22] A. Ta-Shma and D. Zuckerman. Extractor codes.
IEEE Transactions on Information Theory, 50, 2004.

[23] U. Vazirani. Towards a strong communication
complexity theory or generating quasi-random
sequences from two communicating slightly-random
sources (extended abstract). In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing,
pages 366–378, 1985.

[24] A. Wigderson and D. Zuckerman. Expanders that
beat the eigenvalue bound: Explicit construction and
applications. Combinatorica, 19(1):125–138, 1999.

