
Lower bounds on the query complexity of non-uniform and
adaptive reductions showing hardness amplification∗

Sergei Artemenko
University of Haifa

Ronen Shaltiel†

University of Haifa

February 28, 2012

Abstract

Hardness amplification results show that for every Boolean function f there exists a Boolean function
Amp(f) such that the following holds: if every circuit of size s computes f correctly on at most a 1− δ
fraction of inputs, then every circuit of size s′ computes Amp(f) correctly on at most a 1/2+ϵ fraction of
inputs. All hardness amplification results in the literature suffer from “size loss” meaning that s′ ≤ ϵ · s.
In this paper we show that proofs using “non-uniform reductions” must suffer from such size loss. To
the best of our knowledge, all proofs in the literature are by non-uniform reductions. Our result is the
first lower bound that applies to non-uniform reductions that are adaptive.

A reduction is an oracle circuit R(·) such that when given oracle access to any function D that
computes Amp(f) correctly on a 1/2 + ϵ fraction of inputs, RD computes f correctly on a 1 − δ
fraction of inputs. A non-uniform reduction is allowed to also receive a short advice string that may
depend on both f and D in an arbitrary way. The well known connection between hardness amplifi-
cation and list-decodable error-correcting codes implies that reductions showing hardness amplification
cannot be uniform for δ, ϵ < 1/4. A reduction is non-adaptive if it makes non-adaptive queries to its
oracle. Shaltiel and Viola (SICOMP 2010) showed lower bounds on the number of queries made by non-
uniform reductions that are non-adaptive. We show that every non-uniform reduction must make at least
Ω(1/ϵ) queries to its oracle (even if the reduction is adaptive). This implies that proofs by non-uniform
reductions must suffer from size loss.

We also consider the case where the amplified function Amp(f) is not Boolean. In this setting, the
desired conclusion of hardness amplification is that every circuit of size s′ computes Amp(f) correctly
on at most an ϵ fraction of inputs. Our results also apply in this setting, showing that size loss of s′ ≤ ϵ ·s
is necessary for non-uniform reductions. This is in contrast to the results of Shaltiel and Viola which do
not hold in this setting.

We also consider a setting where the hardness amplification result is not required to work for every
function f . Instead, it is only required that Amp(f) is hard for functions f in some class (e.g., functions
in NP, functions with certain properties, or at the extreme, a fixed specific function). This allows the proof
of correctness of the reduction R to exploit specific properties of the function f , and was used to provide
hardness amplification results beating the coding theoretic lower bounds in some respects. Nevertheless,
we show that even in this case, size loss of s′ ≤ ϵ · s is necessary for non-uniform reductions.

∗A preliminary version of this paper appeared in RANDOM 2011.
†This research was supported by BSF grants 2004329 and 2010120, ISF grants 686/07 and 864/11, and ERC starting grant

279559.

1

1 Introduction

1.1 Background on hardness amplification

Hardness amplification results transform functions that are hard on the worst case (or sometimes mildly
hard on average) into functions that are very hard on average. These results play an important role in
computational complexity and cryptography. There are many results of this kind in the literature depending
on the precise interpretation of “hard”. In this paper we focus on hardness against Boolean circuits and use
the following notation.

Definition 1.1. Let g : {0, 1}n → {0, 1}ℓ.

• Let C : {0, 1}n → {0, 1}ℓ. We say that C has agreement p with g if
PrX←Un [C(X) = g(X)] ≥ p.

• Let C : {0, 1}n → {0, 1}ℓ ∪{⊥}. We say that C has errorless agreement p with g if C has agreement
p with g, and for every x ∈ {0, 1}n, if C(x) ̸= ⊥ then C(x) = g(x).

• We say that g is p-hard for size s if no circuit C of size s has agreement p with g. We say that g is
p-hard for errorless size s if no circuit C of size s has errorless agreement p with g.

Typical hardness amplification results start from a function f : {0, 1}k → {0, 1} that is assumed to be
p-hard for size s and show that some related function g : {0, 1}n → {0, 1}ℓ is p′-hard for size s′. (The
reader should think of k, n, p, p′, s, s′ and ℓ as parameters.) These results “amplify hardness” in the sense
that p′ is typically much smaller than p (meaning that g is harder on average than f).

Distinction between function-generic and function-specific amplification. Most of the hardness am-
plification results in the literature are function-generic, meaning that they provide a map Amp mapping
functions f : {0, 1}k → {0, 1} into functions g = Amp(f) where g : {0, 1}n → {0, 1}ℓ, and show that for
every f : {0, 1}k → {0, 1} that is p-hard for size s, the function g = Amp(f) is p′-hard for size s′.

In contrast, a function-specific hardness amplification result may be stated for specific functions f, g.
This means that the proof of the hardness amplification result is allowed to use specific properties of these
functions.

There is also a range “in between”, where the hardness amplification result provides a map Amp (as
in function-generic amplification) but the hardness amplification result does not apply to every function
f : {0, 1}k → {0, 1}. Instead, it holds only for functions f from some specific family of functions [Lip91,
IW01, TV07, Tre03, Tre05]. Such families may be complexity classes like NP,PSPACE or families capturing
a certain property of functions like “random self reducibility”.

1.2 A brief survey of typical settings of hardness amplification

We now briefly survey typical choices of parameters in hardness amplification results.

Worst-case to average-case. Here p = 1 (meaning that f is hard on the worst case for circuits of size
s), ℓ = 1 (meaning that g is Boolean), and p′ = 1/2 + ϵ for a small parameter ϵ (meaning that
circuits of size s′ have advantage at most ϵ over random guessing when attempting to compute g on a
random input). Many such results are known [Lip91, BFNW93, IW97, IW01, STV01, TV07, Tre04,
GGH+07].

1

Mildly-average-case to average case. This setup is similar to the one above except that p = 1−δ for some
small parameter δ (meaning that f is mildly average-case hard for circuits of size s). In particular,
the setup of worst-case to average-case above can be seen as a special case of this setup in which
δ < 1/2k. An extensively studied special case is Yao’s XOR-Lemma in which g(x1, . . . , xt) =
f(x1) ⊕ . . . ⊕ f(xt) [Lev87, Imp95, GNW11, IW97, KS03, Tre03]. Other examples are [O’D04,
HVV06, Tre05, GK08].

Non-Boolean target function. The two setups mentioned above can also be considered when the target
function g : {0, 1}n → {0, 1}ℓ is not Boolean. In the Boolean case we set p′ = 1/2 + ϵ as it is trivial
to have agreement of 1/2. For general ℓ, it is natural to set p′ = 1/2ℓ+ϵ. In the literature, one typically
considers ℓ ≫ log(1/ϵ) for which 1/2ℓ + ϵ ≈ ϵ and it is therefore typical to set p′ = ϵ. Namely,
it is required that no circuit of size s′ has agreement ϵ with g. An extensively studied special case
is direct-product theorems in which g(x1, . . . , xt) = (f(x1), . . . , f(xt)) [Imp95, IW97, GNW11,
GG11, IJK09a, IJK09b, IJKW10].

Errorless amplification. The three notions above are also studied when the circuits attempting to compute
f and g are errorless [BS07, Wat11].

Size loss in hardness amplification. A common disadvantage of all hardness amplification results sur-
veyed above is that when starting from a function that is hard for circuits of size s, one obtains a function
that is hard for circuits of smaller size s′ ≤ ϵ · s. (In fact, for Boolean target function all known results have
s′ ≤ ϵ2 · s.)

This loss is a major disadvantage as it means that if one starts from a function that is hard for size s,
existing results cannot achieve ϵ < 1/s. It is natural to ask whether such a loss is necessary. In this paper
we give a positive answer showing that a size loss of s′ ≤ O(ϵ · s) is unavoidable for a large family of proof
techniques.

1.3 Basic hardness amplification - a unified framework

We are interested in proving limitations on hardness amplification results. We want our limitations to hold
for all the settings mentioned above. For this purpose we will focus on a specific setting (which we refer to
as “basic hardness amplification”). We define the notion of basic hardness amplification so that it is implied
by all the settings mentioned above. This means that limitations on basic hardness amplification translate
into limitations on all the settings above.

Basic hardness amplification. Let f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1}ℓ be functions. Let
ϵ, δ > 0 be parameters. The basic hardness amplification task is to show that if f is (1 − δ)-hard
for size s then g is ϵ-hard for errorless size s′. Stated in the contra-positive, the basic hardness
amplification task is to show that if there exists a circuit D of size s′ that has errorless agreement
p′ = ϵ with g, then there exists a circuit C of size s that has agreement p = 1− δ with f .

We now explain why basic hardness amplification is implied by the settings above. We start by compar-
ing basic hardness amplification to mildly-average-case to average-case hardness amplification. Recall that
the definition of the latter notion uses a different threshold p′ depending on whether or not g is Boolean. If g
is non-Boolean then p′ = ϵ (as in basic hardness amplification) and so basic hardness amplification trivially
follows from mildly-average-case to average-case amplification. If g is Boolean then p′ = 1/2 + ϵ (which
is different than basic hardness amplification in which p′ = ϵ). However, in basic hardness amplification we

2

consider errorless agreement, and it is easy to show that if there exists a circuit that has errorless agreement
ϵ with g, then there exists a circuit (of essentially the same size) that has agreement 1/2 + ϵ/2 with g. This
argument (that is explained in Section 1.4) shows that basic hardness amplification also follows in this case.

We now compare basic hardness amplification to errorless amplification. For this purpose we consider
the contra-positive statements. The basic hardness amplification task is to show that if there exists a circuit
D that has errorless agreement p′ = ϵ with g, then there exists a circuit C that has agreement p = 1 − δ
with f . However, in contrast to errorless amplification, it is not required that the agreement of C is errorless.
Therefore, basic hardness amplification is implied by (and in fact weaker than) errorless amplification.

1.4 Non-uniform reductions for hardness amplification

Our goal is to show that certain proof techniques showing hardness amplification cannot avoid size loss (and
can only give s′ ≤ ϵ · s). We will focus on the setting of basic hardness amplification (and will later argue
that this implies that size loss cannot be avoided in other settings as well).

The proof techniques that we study are “non-uniform reductions”. As we explain later in Section 1.5,
this notion captures the proofs of almost all hardness amplification results in the literature. We start with a
precise definition of non-uniform reductions.

Definition 1.2 (non-uniform reduction). Let f : {0, 1}k → {0, 1}, g : {0, 1}n → {0, 1}ℓ be functions. Let
ϵ, δ and be parameters.

• A semi-uniform reduction showing basic hardness amplification (for f, g, ϵ, δ) is an oracle circuit R(·)

that receives an input x ∈ {0, 1}k. It is required that for every function D : {0, 1}n → {0, 1}ℓ ∪ {⊥}
that has errorless agreement ϵ with g, the function C(x) = RD(x) has agreement 1− δ with f .

• Let a be an integer. A non-uniform reduction showing basic hardness amplification (for f, g, ϵ, δ and
a) is an oracle circuit R(·) which takes two inputs: x ∈ {0, 1}k and α ∈ {0, 1}a. It is required that
for every function D : {0, 1}n → {0, 1}ℓ ∪ {⊥} that has errorless agreement ϵ with g, there exists a
string α ∈ {0, 1}a (which we call an “advice string”) such that the function C(x) = RD(x, α) has
agreement 1− δ with f .

In particular, a semi-uniform reduction is a special case of non-uniform reductions in which the “advice
length” a is zero. The size of the reduction is the size of the oracle circuit R(·). We say that R makes at most
q queries if for every choice of oracle D and inputs x ∈ {0, 1}k and α ∈ {0, 1}a, the reduction RD(x, α)
makes at most q queries to its oracle. We say that R is non-adaptive if for every choice of oracle and inputs,
R makes non-adaptive queries to its oracle.

In the discussion below we explain the choices made in Definition 1.2.

Non-uniform reductions give hardness amplification. We first note that a non-uniform reduction indeed
implies a basic hardness amplification result in the following sense: If there exists a circuit D of size s′ that
has errorless agreement ϵ with g then there exists α ∈ {0, 1}a such that the function C(x) = RD(x, α) has
agreement 1 − δ with f . Furthermore, C can be implemented by a circuit of size s = r + a + q · s′ where
r is the size of R and q is the number of queries made by R. Summing up, we indeed get a basic hardness
amplification result for f, g, ϵ, δ.

3

The number of queries governs the size loss. By the discussion above, the number of queries q made
by the reduction is the dominant factor in the ratio between s and s′. More precisely, if we show that every
reduction R must use at least q = Ω(1/ϵ) queries, then we get that s = Ω(s′/ϵ) which yields that the size
loss is s′ = O(s · ϵ).

What is non-uniform in this reduction? Let us first consider semi-uniform reductions. Such a reduction
R is an oracle circuit, and is allowed to be hardwired with non-uniform advice that may depend on the
choice of f, g. A semi-uniform reduction is “black-box” in the sense that it receives black-box access to its
oracle.

Our main focus in this paper is on general non-uniform reductions. A general non-uniform reduction
also receives a second input α ∈ {0, 1}a. The order of quantifiers in Definition 1.2 allows α to depend
on the function D supplied to R as an oracle. There is no requirement that α can be efficiently computed
using black-box access to D (and this is why we refrain from using the term “black-box” when considering
non-uniform reductions).

Extending the notion of non-uniform reductions to other settings of hardness amplification. Defini-
tion 1.2 is tailored for basic hardness amplification. However, the same reasoning can be used to define
all the hardness amplification settings surveyed in Section 1.2. We will show that non-uniform reductions
showing basic hardness amplification must suffer from size loss of s′ = O(ϵ · s), and as we now explain,
this implies that non-uniform reductions for other settings also suffer from the same size loss.

More precisely, we define the notion of “non-uniform reduction showing mildly-average-case to average-
case hardness amplification” by replacing the requirement that “D has errorless agreement ϵ with g” in Def-
inition 1.2 with the requirement that “D has agreement p with g” where p = 1/2+ ϵ in case ℓ = 1 and p = ϵ
in case ℓ > 1. It is easy to observe that such reductions can indeed be used to produce mildly-average-case
to average-case hardness amplification results (by the same logic used for basic hardness amplification).
Moreover, as in the case of basic hardness amplification, a non-uniform reduction showing mildly-average-
case to average-case hardness amplification that makes q = Ω(1/ϵ) queries gives a mildly-average-case to
average-case hardness amplification result in which s′ = O(ϵ · s).

We also observe that a non-uniform reduction showing mildly-average-case to average-case hardness
amplification can be easily transformed into a non-uniform reduction showing basic hardness amplification
with essentially the same parameters.1 Consequently, proving a lower bound of q = Ω(1/ϵ) on the number
of queries used by reductions showing basic hardness amplification entails the same lower bound in all

1For completeness, we now present this simple argument. Let f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1}ℓ be some
functions and let R(·) be a reduction showing mildly-average-case to average-case hardness amplification for f, g and some param-
eters ϵ, δ and a using q queries. We will construct a non-uniform reduction R′ showing basic hardness amplification with related
parameters. Recall that the threshold p′ used in the definition of mildly-average-case to average-case hardness amplification is set
differently depending on whether or not g is Boolean. If ℓ > 1 (meaning that g is non-Boolean) then p′ = ϵ in both settings and
we can simply use R as R′. If ℓ = 1 (meaning that g is Boolean) we will construct a non-uniform reduction R′ showing basic
hardness amplification for the related parameters 2ϵ, δ, a + 1, and using the same number of queries as R. The issue that we need
to address is that the reduction R′ expects to receive oracle access to a function D′ that has errorless agreement 2ϵ with g, while
we are given a reduction R that expects to receive oracle access to a function D that has agreement 1/2 + ϵ with g. We construct
R′ as follows: We interpret an advice string α′ ∈ {0, 1}a+1 for R′ as a pair (α, b) where α ∈ {0, 1}a and b ∈ {0, 1}. Let
D′ : {0, 1}n → {0, 1}ℓ∪{⊥} be some function that has errorless agreement 2ϵ with g. Upon receiving inputs x, α′ and oracle ac-
cess to D′, the reduction R′ uses oracle access to D′ in order to emulate oracle access to a function D : {0, 1}n → {0, 1}ℓ defined
as follows: D(y) is set to D′(y) if D′(y) ̸= ⊥, and to b otherwise. Note that for every function D′ that has errorless agreement
2ϵ with g, there exists a b ∈ {0, 1} for which D has agreement 1/2 + ϵ with g. On oracle D′, and inputs x, (α, b), R′ simulates
RD(x, α) (and note that each query to D can be simulated by one query to D′). It is guaranteed that there exists an α ∈ {0, 1}a
for which h(x) = RD(x, α) has agreement 1− δ with f , and therefore, there exists an advice string (α, b) ∈ {0, 1}a+1 on which

4

the settings described in Section 1.2, and shows that hardness amplification results (in any setting) that
are proven by non-uniform reductions must have s′ = O(ϵ · s). This allows us to focus on non-uniform
reductions for basic hardness amplification in the remainder of the paper.

Reductions showing function-generic hardness amplification. Definition 1.2 considers specific func-
tions f, g. Most of the hardness amplification results in the literature are function-generic in the sense
explained in Section 1.1. In the definition below we extend the notion of non-uniform reduction to the
function-generic case.

Definition 1.3 (Reductions showing function-generic hardness amplification). Let ϵ, δ, a and ℓ be parame-
ters. A function-generic reduction showing basic hardness amplification (for parameters ϵ, δ, a and ℓ) is a
pair (Amp,R) where Amp is a map from functions f : {0, 1}k → {0, 1} to functions Amp(f) : {0, 1}n →
{0, 1}ℓ, and for every function f : {0, 1}k → {0, 1}, R(·) is a non-uniform reduction showing basic hard-
ness amplification for f, g = Amp(f), ϵ, δ and a.

In Definition 1.3 we require that there exists a single non-uniform reduction R that is good for every
function f . Note however, that by the definition, when applied for a function f and an oracle D, the non-
uniform reduction R receives an advice string α that may depend on both f and D.2

We can use Definition 1.3 to also define the analogous function-generic notion for mildly-average-case
to average-case hardness amplification. We remark that for the special case of Boolean mildly-average-case
to average-case hardness amplification, Definition 1.3 is equivalent to the notion of “black-box hardness
amplification” defined in [SV10].

It is known (see e.g., [STV01]) that function-generic hardness amplification is equivalent to certain
variants of list-decodable error-correcting codes. Loosely speaking, the map Amp can be seen as “encoding”
the (truth table of) f into the (truth table of) Amp(f), and the non-uniform reduction R can be seen as a
“list-decoding” procedure in the following sense: Given a (truth table) D that has sufficiently high agreement
with Amp(f), R produces a list of 2a candidates where one of them has agreement 1 − δ with f (where
the candidates are RD(·, α) for α ∈ {0, 1}a). In particular, semi-uniform reductions (in which a = 0)
correspond to the special case of “unique-decoding”. We elaborate on this connection in Section 3.

Why should we consider general non-uniform reductions? It is not hard to show that semi-uniform
reductions have to use q = Ω(1/ϵ) queries. This follows by a folklore argument (attributed to Steven
Rudich in [GNW11]) that we explain later on. This argument, however, does not apply to general non-
uniform reductions. The main contribution of this paper is extending Rudich’s argument so that it applies to
non-uniform reductions even if they are allowed to be adaptive.

We stress that semi-uniform reductions are rare exceptions in the literature on hardness amplification. In
fact, most of the reductions given in the literature are non-uniform and quite a few of them use “large values”
of non-uniformity a. Consequently, if we want to show limitations of “existing proof techniques” we need
to allow reductions to be non-uniform. Moreover, as mentioned above, reductions showing function-generic
hardness amplification are equivalent to certain list-decodable error-correcting codes. This connection rules

(R′)D
′
(x, (α, b)) has agreement 1− δ with f .

2To emphasize this point we remark that an alternative approach to define a function-generic reduction is to allow a different
reduction Rf for every function f . This seemingly stronger notion of a reduction is captured by Definition 1.3 in the following
sense: If we slightly increase the “advice length” a, we can capture the seemingly stronger notion by Definition 1.3. This is because
when applied for a function f and an oracle D, the non-uniform reduction R can also expect to receive the specific circuit Rf as
an additional advice.

5

out the existence of semi-uniform reductions in many hardness amplification settings. Consequently, the use
of non-uniform reductions rather than semi-uniform reductions (or in coding terminology, of “list-decoding”
rather than “unique decoding”) is inevitable in many settings (see e.g., [TV07] and the discussion in Sec-
tion 3).

1.5 Our results

Function-generic hardness amplification. The vast majority of hardness amplification in the literature
are function-generic reductions showing worst-case to average-case hardness amplification (or mildly-average-
case to average-case hardness amplification). To the best of our knowledge, all the proofs in the literature
are captured by Definition 1.3. Moreover, by the aforementioned connection to error-correcting codes, the
reductions in these settings cannot be semi-uniform in the “list-decoding regime” (that is for δ, ϵ < 1/4).
Theorem 1.4 below asserts lower bounds on the number of queries made by function-generic reductions
showing basic hardness amplification.

Theorem 1.4 (main theorem for function-generic reductions). There exists a constant c > 1 such that the
following holds. Let k, n, ℓ, ϵ, δ, r and a be parameters such that a, 1ϵ , n, r ≤ 2k/c and δ ≤ 1/3. Let
(Amp,R) be a function-generic reduction showing basic hardness amplification (for ϵ, δ, ℓ and a) and
assume that R is of size r. Then, R makes at least 1

100ϵ queries.

We have stated Theorem 1.4 in a general form with many parameters. In typical hardness amplification
results the parameter setting is n = poly(k), ϵ = 1/kb for some constant b (or sometimes slightly super
constant b), δ ≤ 1/3, and r, a = poly(k). Note that Theorem 1.4 holds for these choices. (In fact, the
theorem holds even when poly(k) is replaced by 2k/c for some universal constant c > 1). We remark that
the constant 1/3 in Theorem 1.4 can be replaced by any constant smaller than 1/2.

The requirements that a, n, r ≤ 2k/c are natural in the sense that reductions in which one of these
parameters is larger than 2k are not useful to prove hardness amplification results. This is because that such
reductions produce circuits of size larger than 2k for the source function f (and such circuits exist trivially
without needing to rely on the reduction). Nevertheless, we mention that the requirement that r ≤ 2k/c in
Theorem 1.4 is unnecessary and the theorem can be proven without it. In the formal section, we prove the
theorem with the requirement, and later sketch the modifications needed in order to remove it.

Tightness of Theorem 1.4. The bound in Theorem 1.4 is tight in the sense that there are function-generic
reductions showing basic hardness amplification which for δ = Ω(1) make O(1/ϵ) queries [GNW11,
IJKW10, Wat11]. (In fact, some of these reductions are in a stronger setting, showing non-Boolean mildly-
average-case to average-case hardness amplification.) For general δ, these reductions make O(log(1/δ)ϵ)
queries. We believe that this is the right bound, but are unable to match it. We remark that it is possible
to improve the bound in Theorem 1.4 to the “right bound” of Ω(log(1/δ)ϵ) (which is tight for every δ) in the
special case where the reduction is non-adaptive.

Comparison of Theorem 1.4 to [SV10]. Theorem 1.4 is stated for basic hardness amplification. Never-
theless, by the previous discussion on the relationship between reductions showing various notions of hard-
ness amplification, it follows that Theorem 1.4 applies also for Boolean mildly-average-case to average-case
amplification and gives the same lower bound of Ω(1/ϵ) on the number of queries.

In this setup the best known upper bounds [Imp95, KS03] make a larger number of O(log(1/δ)
ϵ2

) queries.
The problem of giving a matching lower bound was considered in [SV10] and a matching lower bound is

6

shown for the special case of non-adaptive reductions. Using our terminology, the result of [SV10] is a
bound of Ω(log(1/δ)

ϵ2
) on the number of queries of non-adaptive, non-uniform, function-generic reductions

showing Boolean mildly-average-case to average-case amplification. This result is incomparable to Theorem
1.4. On the one hand it gives a stronger quantitative bound on the number of queries. On the other, it
only handles non-adaptive reductions, and it only applies in the setting of Boolean mildly-average-case to
average-case amplification. We stress once again that in the setting of non-Boolean mildly-average-case to
average-case amplification, there exist non-uniform and non-adaptive reductions making only O(log(1/δ)ϵ)
queries [Imp95, KS03].

The argument in [SV10] heavily relies on the non-adaptivity of the reduction. The main contribution
of this paper is developing techniques to handle reductions that are both non-uniform and adaptive, and
Theorem 1.4 is the first bound on such general reductions (of any kind). Most reductions in the literature
are non-adaptive, however there are some examples in the literature of adaptive reductions for hardness
amplification and related tasks [SU05, GGH+07].

Finally, we remark that the technique of [SV10] (which is different than the one used in this paper) can be
adapted to the setting of basic hardness amplification (as observed in [Wat11]) showing our aforementioned
lower bounds for the special case where the reduction is non-adaptive.

Function-specific hardness amplification. Function-generic non-uniform reductions (as in Definition
1.3) need to handle every possible function f : {0, 1}k → {0, 1}. In contrast, non-uniform reductions
for specific functions f, g (as defined in Definition 1.2) are only required to work for that specific pair f, g.
It is therefore harder to show lower bounds against such reductions.

Moreover, as we now explain, we cannot expect to prove that for every function f, g, every non-uniform
reduction R showing basic hardness amplification must use Ω(1/ϵ) queries. This is because if f is a function
such that there exists a small circuit C that has agreement 1 − δ with f , then there exists a trivial non-
uniform reduction R that makes no queries as the reduction R can ignore its oracle and set R(·)(x) = C(x).
Consequently, the best result that we can hope for in this setting is of the form: for every functions f, g, and
every non-uniform reduction R(·) for f, g, if R makes o(1/ϵ) queries then there exists a circuit C (with no
oracle) of size comparable to that of R that has agreement almost 1 − δ with f . Theorem 1.5 stated below
is of this form.

Theorem 1.5 (main theorem for function-specific reductions). Let ϵ, δ and a be parameters. Let f :
{0, 1}k → {0, 1} and g : {0, 1}n → {0, 1}ℓ be functions. Let R(·) be a non-uniform reduction show-
ing basic hardness amplification for f, g, ϵ, δ and a. If R is of size r and makes q queries then for every
ρ ≥ 10ϵq there exists a circuit C of size r + poly(a, q, n, 1/ρ) that has agreement 1− δ − ρ with f .

Theorem 1.5 implies that if q = o(1/ϵ) (and setting ρ = o(1)) then the mere existence of the reduction
R implies the existence of a small circuit C that has agreement 1− δ− o(1) with f . This can be interpreted
as a lower bound on the number of queries in the following sense: Reductions making o(1/ϵ) queries are
not useful as their existence implies that the hardness assumption does not hold.

Note that Theorem 1.5 is only interesting when q ≤ 1/10ϵ as otherwise the requirement that ρ ≥ 10ϵq
implies that ρ ≥ 1 and the conclusion of the theorem is meaningless.

We will later prove that Theorem 1.4 follows from Theorem 1.5. This will be done by applying Theorem
1.5 on a random function f . Loosely speaking, a random function is unlikely to have a small circuit that
agrees with it on significantly more than half the inputs, and therefore, the existence of a function-generic
reduction making q = o(1/ϵ) queries gives a contradiction, as by Theorem 1.5 it implies a small circuit that
has high agreement with f . The precise details appear in Section 2.

7

Function-specific hardness amplification in the literature. Function-specific hardness amplification
results are less common than function-generic results. One motivation for studying such results is that
function-specific reductions can bypass the coding theoretic objection and be semi-uniform (or even com-
pletely uniform). Examples are the reductions in [IW01, TV07, Tre03, Tre05] in which the reduction and the
proof of its correctness relies on the fact that f has certain properties. Another example is in Cryptography
where protocols are often constructed assuming the hardness of some specific function (e.g., factoring or
discrete log) and properties of this function are used to improve either security or efficiency. Theorem 1.5
shows that in these settings, non-uniform reductions must make Ω(1/ϵ) queries.

Reductions that are not captured by Definition 1.2. In the function-specific setting there are few exam-
ples in the literature of reductions for tasks related to hardness amplification that have proofs not captured
by Definition 1.2. It was pointed out in [GTS07] that the techniques of [GSTS07, Ats06] (that show some
worst-case to average-case reduction for NP) are not black-box in a sense that we now explain. Semi-uniform
reductions are black-box in the sense that R has only black-box access to D. Non-uniform reductions allow
R to also get some short advice string α about D. Recall that there is no requirement that α is generated
using black-box access to D. However, even non-uniform reductions make no assumption about the oracle
D and are required to perform for every function D (even if D is not computable by a small circuit). The
reductions used in [GSTS07, Ats06] are only guaranteed to perform in case D is efficient, and are therefore
not captured by Definition 1.2. The reader is referred to [GTS07, GV08] for a discussion on such reductions.

1.6 Related work

We have already surveyed many results on hardness amplification. We now survey some relevant previous
work regarding limitations on proof techniques for hardness amplification. We focus on such previous work
that is relevant to this paper and the reader is referred to [SV10] for a more comprehensive survey.

The complexity of reductions showing hardness amplification was studied in [SV10, GR08]. Both pa-
pers show that function-generic reductions for Boolean mildly-average-case to average-case hardness ampli-
fication cannot be computed by small constant depth circuits if ϵ is small. Both results fail to rule out general
reductions. The result of [GR08] rules out adaptive reductions, but only if they use very low non-uniformity
(meaning that a = O(log(1/ϵ)) which is much smaller than k in typical settings). The result of [SV10]
rules out non-uniform reductions with large non-uniformity (allowing a = 2Ω(k)) but only if they are non-
adaptive. As mentioned earlier, our results extend previous lower bounds on the number of queries that were
proven in [SV10] for non-adaptive reductions. This suggests that our techniques may be useful in extending
the result of [SV10] regarding constant depth circuits to adaptive reductions. We stress, however, that we
are studying reductions showing basic hardness amplification and there are such reductions in the literature
that can be computed by small constant depth circuits [IJKW10]. Therefore, to attack the problem above we
need techniques that distinguish between basic hardness amplification and Boolean mildly-average-case to
average-case amplification.

In this paper we are interested in the complexity of function-generic reductions showing hardness ampli-
fication. There is an orthogonal line of work [Vio05a, LTW08] that aims to show limitations on “fully-black-
box constructions” of hardness amplifications. In our terminology, these are function-generic non-uniform
reductions (Amp,R) with the restriction that there exists an oracle machine M (·) called construction such
that for every function f , Amp(f) is implemented by Mf . The goal in this direction is to prove lower
bounds on the complexity of M (which corresponds to encoding), whereas we focus on the complexity of
R (which corresponds to decoding).

8

There are many other results showing limitations on reductions for hardness amplification and related
tasks in various settings. A partial list includes [FF93, TV07, BT06, RTV04, Vio05b, AGGM06, LTW11].

1.7 Organization of this paper

In Section 2 we prove Theorems 1.4 and 1.5. In Section 3 we elaborate on the relationship between hardness
amplification and error correcting codes and point out that our results translate into lower bounds on the
query complexity of local decoders for list-decodable codes.

2 Proof of main theorems

In this section we prove Theorem 1.4 and Theorem 1.5. We start by proving Theorem 1.5 (and later show
that Theorem 1.4 follows from Theorem 1.5). Let us start by recalling the setup of Theorem 1.5.

The setup of Theorem 1.5. We are given functions f : {0, 1}k → {0, 1}, g : {0, 1}n → {0, 1}ℓ and
parameters ϵ, δ and a. We consider a non-uniform reduction R(·) for f, g, ϵ, δ and a, and let r be the size
of R and q be the number of queries. Let ρ ≥ 10ϵq be the parameter from the theorem statement. We can
assume without loss of generality that ρ ≤ 1 and therefore that q ≤ 1/10ϵ. We will use these choices in the
remainder of Section 2. Our goal is to show that there exists a circuit C of size r + poly(a, q, n, 1/ρ) that
has agreement 1− δ − ρ with f .

The difference of our overall approach from that of [SV10]. We stress that while our technique below
relies on some of the ideas developed in [SV10], our overall approach is very different. The approach of
[SV10] (which consider non-adaptive function-generic reductions showing mildly-average-case to average-
case amplification) is to show that the existence of a “too good” function-generic reduction implies a “too
good” statistical test that can distinguish between q independent fair coins and q independent biased coins.
In contrast, our approach is to show that the existence of a “too good” function-specific reduction yields
small circuits for the function f . We do not attempt to mimic the approach of [SV10], as it seems difficult
to extend it to adaptive reductions.

A probability distribution over oracles. Let v : {0, 1}n → {0, 1} be a function. We use v to define a
function D(v) where D(v) : {0, 1}n → {0, 1}ℓ ∪ {⊥} is defined as follows.

D(v)(y) =

{
⊥ v(y) = 0
g(y) v(y) = 1

Throughout the proof we use the following probability space: The probability space consists of independent
identically distributed random variables V = (V (y))y∈{0,1}n where for each y ∈ {0, 1}n, V (y) = 1
with probability 2ϵ and V (y) = 0 with probability 1 − 2ϵ. We view random variable V as a function
V : {0, 1}n → {0, 1} and define the random variable D = D(V). We will use this probability space
throughout this section and all expressions involving probability or expectation refer to this space.

Rudich’s argument and the case of semi-uniform reductions. We now point out that it is easy to prove
Theorem 1.5 in case the reduction R is semi-uniform. The argument below is a folklore argument attributed
to Steven Rudich in [GNW11]. Recall that R makes q ≤ 1/10ϵ queries. It follows that on every input

9

x ∈ {0, 1}k, the reduction R is unlikely to receive an answer that is different from ‘⊥’ from the oracle
D = D(V). It follows that the expected number of inputs x on which R gets an answer different from ‘⊥’
from D is small. By the probabilistic method, there exists a fixed function v : {0, 1}n → {0, 1} such that
for almost all inputs x ∈ {0, 1}k, RD(v)(x) sees only ‘⊥’ when querying the oracle. On every such input,
the oracle is not helpful and so it is easy to simulate RD(v)(x) by a small circuit C(x) (with no oracle)
on all such inputs. We obtained a circuit C(x) that has high agreement with RD(v)(x), and therefore high
agreement with f . This yields the theorem.

However, we want to consider reductions that are not necessarily semi-uniform and such reductions are
given an advice string α. This advice string may depend on the oracle D and it can allow R to ask queries
that are answered by a value different from ‘⊥’. For example, the advice string may include a y ∈ {0, 1}n
on which D(y) ̸= ⊥. While this does not seem to help R in getting large agreement with f , the argument
of Rudich no longer applies. Our high level approach is to try and extend Rudich’s argument so that we can
handle general non-uniform and adaptive reductions.

Existence of a good advice string. Our first step is to try and in some sense “fix” the advice string of the
reduction so that it “becomes semi-uniform”.

Let α be a map that for every function D that has ϵ errorless agreement with g, assigns an advice string
α(D) ∈ {0, 1}a such that RD(x, α(D)) has agreement 1 − δ with f . Such a map exists by Definition 1.2.
By a Chernoff bound we have that

Pr[D has errorless agreement ϵ with g] ≥ 1− 2−Ω(2k).

By averaging, there exists a string α′ ∈ {0, 1}a such that Pr[α(D) = α′] ≥ 2−a. We define

E =
{
α(D) = α′

}
∩ {D has errorless agreement ϵ with g} .

Note that Pr[E] ≥ 2−a−2−Ω(2k) ≥ 2−(a+1). We view the event E as a subset of all functions v : {0, 1}n →
{0, 1} and note that we have that for every v ∈ E, the function h(x) = RD(v)(x, α′) has agreement 1 − δ
with f . Loosely speaking, we have that conditioned on the event {V ∈ E}, R is essentially semi-uniform
(in the sense that the advice string α′ does not depend on D).

An information theoretic lemma. Following the previous discussion, we want to understand how are the
random variables (V (y))y∈{0,1}n distributed when conditioned on the event {V ∈ E}. For this purpose we
will use the following lemma by [Raz98].

Lemma 2.1. [Raz98] Let Z = (Z1, . . . , ZN) be independent random variables over some finite set S.
Let a and η be parameters and let E ⊆ SN be a set such that Pr[Z ∈ E] ≥ 2−a. There exists a set
B ⊆ {1, . . . , N} of size O(a/η2) such that for every y ∈ {1, . . . , N} \ B, the two distributions Zy and
(Zy|Z ∈ E) are η-close.3

In our setup, the lemma says that if we pick η = ϵ and apply the lemma on the random variables
(V (y))y∈{0,1}n , then there exists a small set B ⊆ {0, 1}n of “bad queries” such that for every y ̸∈ B,
Pr[V (y) = 1|V ∈ E] ≤ Pr[V (y) = 1] + η ≤ 3ϵ. This means that even conditioned on the event {V ∈ E},
except for few bad queries y ∈ B, the oracle D is likely to answer a good query y ̸∈ B by ‘⊥’. Loosely
speaking, we can now hope to bound the “amount of information” that R gets from its oracle D by arguing
that on “good queries”, R is not likely to get meaningful information, and there are only few bad queries.

3Two distributions P,Q over the same domain are ϵ-close if for every event A, |PrP [A]− PrQ[A]| ≤ ϵ.

10

Remark 2.2 (Difficulty of handling adaptive reductions). This rationale is indeed suitable for lower bounds
on non-adaptive reductions. In such reductions, every input x ∈ {0, 1}k, defines queries yx1 , . . . , y

x
q ∈

{0, 1}n that are asked by the reduction RD(x, α′) (and these queries are constants that do not depend on
D). Therefore, we can indeed use the lemma and a union bound to show that for every x ∈ {0, 1}k,

Pr[∃i : yxi ̸∈ B and V (yxi) = 1|V ∈ E] ≤
∑

1≤i≤q
Pr[yxi ̸∈ B and V (yxi) = 1|V ∈ E] ≤ q · 3ϵ ≤ ρ.

This turns out to be sufficient to handle non-adaptive reductions. Loosely speaking, this is because condi-
tioned on {V ∈ E}, we expect that on a 1−ρ fraction of inputs x ∈ {0, 1}k, all queries y ̸∈ B are answered
by ‘⊥’. Note that on any such input x we can simulate RD(x, α′) by a small circuit C(x) (with no oracle)
if we hardwire C with α′, (D(y))y∈B and B. We explain this argument more precisely in Section 2.4.

Jumping ahead we mention that this rationale is problematic in case the reduction R is adaptive. This
is because an adaptive reduction may first query the oracle D on bad queries y ∈ B and use the answers
on bad queries (and in particular whether or not bad queries answer by ‘⊥’) to gain additional information
on the random variable (V |V ∈ E). This additional information may allow the adaptive reduction R to ask
queries y ̸∈ B on which the probability that V (y) = 1 (and therefore D(y) ̸= ⊥) is large. This means that
we can’t hope to claim that the reduction R does not gain information from asking queries that are not in
B. We give an example of such a reduction in Section 2.4.

2.1 A canonical execution of reductions

We now proceed with the proof. Let us start with some notation. Let v : {0, 1}n → {0, 1} be some function.
For every x ∈ {0, 1}k and 1 ≤ i ≤ q we define Qx

i (v) ∈ {0, 1}n to be the i’th query asked by RD(v)(x, α′).
Note that as R is allowed to be adaptive, these queries may depend on D(v) and therefore on v. This means
that in our probability space, Qx

1(V), . . . , Qx
q (V) are random variables that may depend on V .

We consider a mental experiment which we call “the canonical execution” of RD(v)(x, α′). Loosely
speaking, in the mental experiment we simulate the “real execution” RD(v)(x, α′) while sometimes replac-
ing the answers of the oracle D(v) by ‘⊥’. Analyzing the mental experiment will be helpful in understanding
the real execution. We now give the precise definition.

Definition of the canonical execution. Let v : {0, 1}n → {0, 1} be some function. Let B1, . . . , Bq be
subsets of {0, 1}n that we determine later. (We think of Bi as a set of “bad queries at stage i”.) For every
1 ≤ i ≤ q we define B̄i =

∪
1≤j≤iBj to be the set of all queries marked as “bad” at stage ≤ i.

In the canonical execution, when R asks the i’th query to its oracle, we answer it according to the
following canonical rule: If the query is in B̄i then we answer it the same way D(v) answers it. However,
if the query is not in B̄i we answer it by ‘⊥’ regardless of the answer of D(v).

More precisely, given sets B1, . . . , Bq and for every x ∈ {0, 1}k, we define a sequence of queries
W x

1 (v), . . . ,W
x
q (v) ∈ {0, 1}n as follows: We simulate RD(v)(x, α′) until it asks its first query Qx

1(v) and
set W x

1 (v) = Qx
1(v). We answer this query by the canonical rule above and give the answer back to R.

Having received the answer, R computes its next query which we denote by W x
2 (v). (Note that W x

2 (v) may
be different than Qx

2(v) in case R is adaptive). We answer this question by the canonical rule above, and
continue this process to define W x

1 (v), . . . ,W
x
q (v) as well as the final output of the reduction R at the end

of the execution (which we denote by R
D(v)
c (x, α′)).

11

Loosely speaking, the canonical execution describes an idealized situation in which queries that are
considered good, are answered by ‘⊥’. Our proof will try to relate the real execution and the canonical
execution. We first make a few observations:

• As we already pointed out, if R is adaptive, the canonical queries may be different than the real
queries.

• In the canonical execution the same query y ∈ {0, 1}n may be answered differently at different steps.
For example if y ̸∈ B̄i and y ∈ Bi+1 then the query y is answered by ‘⊥’ at step i, and by D(v)(y)
(which can be different from ‘⊥’) at step i+ 1.

• The definition of W x
i+1(v) depends only on the sets B1, . . . , Bi (and does not depend on the choice of

sets Bi+1, . . . , Bq). This allows us to use W x
1 (v), . . . ,W

x
i+1(v) when defining the set Bi+1.

2.2 Roadmap of the proof

Recall that our goal is to show that there exists a small circuit C(x) that has agreement 1 − δ − ρ with f .
We have that for every v ∈ E, the “real execution” h(x) = RD(v)(x, α′) has agreement 1− δ with f . Thus,
to complete the proof, it is sufficient to show that there exists v ∈ E for which there exists a small circuit
C(x) (that may depend on v and α′) such that for (1 − ρ) · 2k inputs x ∈ {0, 1}k, C(x) = RD(v)(x, α′).
Summing up, we want a construct a small circuit that simulates the real execution on almost all inputs.

We first observe that it is easy to simulate the canonical execution by a circuit C(x) that is small in case
the sets B1, . . . , Bq are small. Loosely speaking, this is because to simulate the canonical execution we do
not need to know the answers to queries that are good. The precise statement appears in the next lemma.

Lemma 2.3. Let v : {0, 1}n → {0, 1} be some function such that v ∈ E and let B1, . . . , Bq be sets of size
at most b that are used to define the canonical execution. There exists a circuit C(x) such that for every
x ∈ {0, 1}k, C(x) = R

D(v)
c (x, α′) and furthermore the size of C is at most r + a+ poly(n, q, b).

Proof. The circuit C that we construct will use the circuit R (which is of size r) and will be hardwired with:

• The string α′ (which is of length a).

• The sets B1, . . . , Bq (which can be encoded using qnb bits).

• The values (D(v)(y))y∈B̄q
(which can be encoded using O(qb) bits).

On input x, the circuit C will simulate the canonical execution of RD(v)
c (x, α′). Note that to answer the

i’th query W x
i (v) of the canonical execution it is sufficient to know whether W x

i (v) ∈ B̄i, and the value of
D(v) on B̄i. Thus, there exists a circuit of size r + poly(n, q, b) which performs this simulation.

Recall however, that our goal is to simulate the real execution and not the canonical execution. For this
purpose we want to relate the two executions and make the following definition. Let v : {0, 1}n → {0, 1}
be some function. For x ∈ {0, 1}k and 1 ≤ i ≤ q we define:

Ax
i (v) =

{
1 v(W x

i (v)) = 1 and W x
i (v) ̸∈ B̄i

0 otherwise.

In words, Ax
i (v) is one iff the i’th query asked in the canonical execution is good, and yet D(v) does

not answer it by ‘⊥’. The reason we are interested in this notion is the following observation. Note that if
Ax

1(v) = 0, then the answer given by the canonical rule on the first query coincides with the real answer and
in particular W x

2 (v) = Qx
2(v). This motivates the following definition.

12

Definition of canonically silent inputs. Let v : {0, 1}n → {0, 1}. We say that x ∈ {0, 1}k is canonically
silent for v if ∑

1≤i≤q
Ax

i (v) = 0

We now observe that on a canonically silent input, the real execution coincides with the canonical
execution.

Lemma 2.4. Let v : {0, 1}n → {0, 1} be some function such that v ∈ E and let B1, . . . , Bq be sets that are
used to define the canonical execution. If x is canonically silent for v then

R
D(v)
c (x, α′) = RD(v)(x, α′).

Proof. Let x ∈ {0, 1}k be canonically silent for v. We will show that for every 1 ≤ i ≤ q, Qx
i (v) = W x

i (v)
and that each such query is answered by the same answer in the two executions. We will prove this by
induction on i. The base case is i = 1 and we have that Qx

1(v) = W x
1 (v) by definition. We know that

Ax
1(v) = 0 and we now observe that this implies that the first query Qx

1(v) is answered in the same way
in both the canonical execution and the real execution. This follows by the following case analysis: If
W x

1 (v) ∈ B̄1 then the canonical execution answers in the same way as the real execution by definition. If
W x

1 (v) ̸∈ B̄1 then by definition, the canonical execution answers it by ‘⊥’. However, as Ax
1(v) = 0 we

have that v(W x
1 (v)) = 0 which means that D(v)(W x

1 (v)) = ⊥. It follows that in both cases the answers
coincide.4 Therefore, the next query is the same in both executions and we have that Qx

2(v) = W x
2 (v).

The same reasoning can be used to show that if the two executions coincide in the first i steps, then the
fact that Ax

i+1(v) = 0 implies that they continue to coincide in step i+1. This means that the two executions
coincide until the end and in particular that the output of R is identical in the two executions.

By the previous discussion, Theorem 1.5 will follow if we can find a function v ∈ E and small sets
B1, . . . , Bq on which the number of canonically silent inputs is at least (1 − ρ) · 2k. This is the main
technical part of the proof and is summarized in the next lemma.

Lemma 2.5. There exists v : {0, 1}n → {0, 1} such that v ∈ E and there exist sets B1, . . . , Bq ⊆ {0, 1}n
such that

• For every 1 ≤ i ≤ q, |Bi| = O(aq
3

ρ2
) = poly(a, q, 1/ρ).

• The number of inputs x ∈ {0, 1}k that are canonically silent for v is at least (1− ρ) · 2k.

In Section 2.3 we formally verify that Theorems 1.4 and 1.5 follow from Lemma 2.5. The remainder of
this section is devoted to proving Lemma 2.5. The proof is by the probabilistic method. We will show that
with positive probability over choosing V , we obtain a function with the required properties. It is instructive
to first consider the easier special case in which R is non-adaptive. We give this argument in Section 2.4.
The reader may also skip directly to the proof of the general case given in Section 2.5.

4A subtle point is that it may be the case that W x
1 (v) is not in B̄1 but is in B2. This happens if this query is considered good at

step 1 and bad at step 2. Nevertheless, the fact that Ax
1(v) = 0 implies that on this query D(v) answers ‘⊥’ regardless of whether

it becomes bad later on.

13

2.3 Proof that Theorems 1.4 and 1.5 follow from Lemma 2.5

Proof of Theorem 1.5. By Lemma 2.5 there exist v ∈ E and sets B1, . . . , Bq such that for every 1 ≤
i ≤ q, |Bi| ≤ b for b = O(aq

3

ρ2
) = poly(a, q, 1/ρ). As v ∈ E, we have that h(x) = RD(v)(x, α′) has

agreement 1 − δ with f . By Lemma 2.5 the number of inputs x ∈ {0, 1}k that are canonically silent
for v is at least (1 − ρ) · 2k. Therefore, by Lemma 2.4 the canonical execution hc(x) = R

D(v)
c (x, α′)

has agreement 1 − ρ with the real execution h(x). By Lemma 2.3 there exists a circuit C(x) of size
r + a+ poly(n, b, q) = r + poly(a, n, q, 1/ρ) that simulates the canonical execution hc(x). It follows that
C has agreement 1 − ρ with the real execution h(x) and therefore C has agreement 1 − δ − ρ with f as
required.

Proof of Theorem 1.4. Theorem 1.4 easily follows from Theorem 1.5. Let k, n, ℓ, ϵ, δ, r and a be param-
eters such that a, 1ϵ , n, r ≤ 2k/c for a constant c > 1 that we determine later and let δ ≤ 1/3. Let (Amp,R)
be a function-generic reduction showing basic hardness amplification (for ϵ, δ, ℓ and a) and assume that R
is of size r. Then, by Theorem 1.5, if R makes q ≤ 1

100ϵ queries, we can set ρ = 10ϵq ≤ 1/10 and have
that for every function f , there exists a circuit C of size r+ poly(a, q, 1/ρ, n) = 2O(k/c) that has agreement
1 − δ − ρ ≥ 1 − 1/3 − 1/10 with f (and note that the agreement is a constant that is strictly larger than
1/2). This is a contradiction for a sufficiently large constant c > 1, as a standard calculation shows that a
random function is likely to not have such agreement with circuits of size 2o(k).

We remark that any function f that cannot be approximated by circuits of size 2o(k) can be used to show
the failure of the function-generic reduction. In particular, the “counterexample function” f need not depend
on the choice of Amp or R although the statement of Theorem 1.4 allows it to.

We also remark that we can use a more careful argument to get a contradiction without requiring that
r ≤ 2k/c. This is because a random function f is not likely to have a string of length 2o(k) that describes a
function C that has agreement significantly larger than 1/2 with f . Note that if it exists, a reduction R can be
used to describe any function by a string of length poly(a, q, 1/ρ, n) and we obtain the same contradiction.

2.4 Proof of Lemma 2.5 in the special case that R is non-adaptive

Consider the case that R is non-adaptive. This means that the queries asked on an input x and advice string
α′ do not depend on the oracle. More formally, for every function v : {0, 1}n → {0, 1} such that v ∈ E,
every x ∈ {0, 1}k and every 1 ≤ i ≤ q, there exists yxi ∈ {0, 1}n (that does not depend on v) such that
Qx

i (v) = W x
i (v) = yxi . We apply Lemma 2.1 on the independent random variables (V (y))y∈{0,1}n , the

event E, and setting η = ρ/10q ≥ ϵ. We indeed have that Pr[V ∈ E] ≥ 2−(a+1) and therefore by the
lemma there exists a set B ⊆ {0, 1}n of size at most O(a/η2) = poly(a, q, 1/ρ) such that for y ̸∈ B,
(V (y)|V ∈ E) is η-close to V (y). In particular, for y ̸∈ B,

Pr[V (y) = 1|V ∈ E] ≤ Pr[V (y) = 1] + η ≤ 2ϵ+ η ≤ 3η ≤ ρ/q.

We set B1 = B2 = . . . = Bq = B. (This means that in case R is non-adaptive we can simplify the
definition of the canonical execution and do not need to distinguish between bad queries at different steps.)
Having defined the sets B1, . . . , Bq the canonical execution is now completely defined.

For every x ∈ {0, 1}k, we define Sx(v) as follows:

Sx(v) =

{
1 x is canonically silent for v
0 otherwise.

14

We also define S(v) =
∑

x∈{0,1}k S
x(v) to be the number of inputs that are canonically silent at v. We want

to estimate E[S(V)|V ∈ E]. For this purpose we consider some 1 ≤ i ≤ q and note that:

Pr[Ax
i (V) = 1|V ∈ E] = Pr[V (W x

i (V)) = 1 and W x
i (V) ̸∈ B̄i|V ∈ E]

= Pr[V (yxi) = 1 and yxi ̸∈ B|V ∈ E] ≤ ρ/q.

Therefore, by a union bound we have that:

Pr[Sx(V) = 0|V ∈ E] = Pr[
∑

1≤i≤q
Ax

i (V) ̸= 0|V ∈ E] ≤
∑

1≤i≤q
Pr[Ax

i (V) = 1|V ∈ E] ≤ q · (ρ/q) = ρ.

Therefore, by linearity of expectation:

E[S(V)|V ∈ E] =
∑

x∈{0,1}k
E[Sx(V)|V ∈ E] =

∑
x∈{0,1}k

Pr[Sx(V) = 1|V ∈ E] ≥ 2k · (1− ρ).

By the probabilistic method we can conclude that there exists v ∈ E such that S(v) ≥ 2k · (1 − ρ), which
means that the number of canonically silent inputs for v is as required.

Why this approach does not directly extend to the adaptive case. Let us first quickly summarize the
approach above. In the case that R is non-adaptive we used Lemma 2.1 on event E to obtain a small set
B of bad queries. We set B1 = B2 = . . . = Bq = B to be the set of bad queries. We were then able to
argue that for every input x, conditioned on the event {V ∈ E} it is unlikely that RD(x, α′) asks a query
Qx

i (V) ̸∈ B such that V (Qx
i (V)) = 1.

We now observe that this is not necessarily true in case that R is adaptive. More precisely, we observe
that there exists an oracle procedure R that makes n queries, and an event E such that Pr[V ∈ E] ≥
2−Ω(n log(1/ϵ)) such that for every set B ⊆ {0, 1}n of size o(2n) (and in particular to the set chosen by
Lemma 2.1 which is much smaller), for every input x, with high probability conditioned on {V ∈ E}, R
asks a query Qx

i (V) ̸∈ B such that V (Qx
i (V)) = 1. In particular, we cannot hope that the canonical

execution and the real execution coincide on many inputs.
We now sketch this example. Fix some distinct y1, . . . , yn−1, z1, . . . , zn−1 ∈ {0, 1}n and assume that

n is large enough so that all these strings start with zero. We define event A = {∀i : V (yi) ̸= V (zi)}.
We interpret the sequence P = (V (y1), . . . , V (yn−1)) as an n − 1 bit string. Note that (P |V ∈ A)
is uniformly distributed over {0, 1}n−1. This is because before conditioning, for every i the two events
{V (yi) = 0, V (zi) = 1} and {V (yi) = 1, V (zi) = 0} are equally likely. (This is the same observation that
is made in the analysis of the so called “von-Neumann extractor”.) We now consider the event E = A ∩
{V (1 ◦ P) = 1} (where 1 ◦ P refers to the n bit string that is the concatenation of ‘1’ and P). Note that
conditioned on E, P is uniformly distributed over {0, 1}n−1 and with probability one, V (1 ◦ P) = 1. The
adaptive procedure R described next makes n queries. On every input x, the procedure R first queries oracle
D at y1, . . . , yn−1 and computes P . It then queries D at 1 ◦ P and note that Pr[V (1 ◦ P) = 1|V ∈ E] = 1.
Yet, for every set B, Pr[1 ◦ P ∈ B|V ∈ E] ≤ |B|/2n−1. This indeed means that for any small set B,
conditioned on {V ∈ E}, R is very likely to ask a query that is not in B, and yet D does not answer ‘⊥’ on
this query.

15

Modifications needed for the adaptive case. The main technical contribution of this paper is developing
an approach to handle adaptive reductions. An inspection of the example above suggests how to extend the
proof technique to adaptive reductions. When we apply Lemma 2.1 on the event E above we obtain the
set B1 = {y1, . . . , yn−1, z1, . . . , zn−1}. This gives hope as the lemma “correctly identifies” that this set of
queries is special. Consider the most likely outcome z of the random variable V (B1) = (V (y))y∈B1 and let
E1 = E ∩ {V (B1) = z}.

Recall that we are planning to use the probabilistic method to show the existence of a function v ∈
E with some nice properties. Since E1 ⊆ E, we may as well perform the probabilistic analysis in the
probability space (V |V ∈ E1) rather than (V |V ∈ E). The advantage is that conditioned on E1, P is fixed
to some constant value p. Furthermore, if we apply Lemma 2.1 with event E1 we obtain a set B2 ⊆ {0, 1}n
that contains 1 ◦ p. At this point we can decide that the set of bad queries is B = B1 ∪ B2, and note that
conditioned on E1, the reduction R is “handled correctly” in the sense that it does not ask a good query y
on which V answers one.

Summing up, we were able to perform the analysis conditioned on some event E1 ⊆ E. We note that in
the example above the reduction R uses two “levels of adaptivity”. In case R makes q levels of adaptivity,
we will need to make q iterations of the process above. In each iteration we will use Lemma 2.1 to identify
a new set of bad queries Bi and will “further condition” the probability space to some event Ei ⊆ Ei−1 by
fixing the bad queries.

The actual proof given in the next section applies this high level idea. A difficulty that arises is that in
the end, we want to perform the analysis conditioned on event Eq (which is the final event in the “iterative
further conditioning process”). However, the guarantees that we get from Lemma 2.1 on intermediate Ei’s
are not necessarily maintained in Eq.

2.5 Proof of Lemma 2.5

Let us start with some notation. For a function v : {0, 1}n → {0, 1} and a set B ⊆ {0, 1}n we define
v(B) = (v(y))y∈B . We sometimes view v(B) as an element in {0, 1}B , namely a string of length |B| that
is defined by picking some order on the set B.

The first step towards proving Lemma 2.5 is to define sets B1, . . . , Bq. We will do this by an iterative
process which “further conditions” the probability space to smaller events.

Iterative further conditioning. We now describe an iterative process that defines a sequence of events
E0, . . . , Eq and sets B0, . . . , Bq ⊆ {0, 1}n. Let E0 = E and B0 = ∅. Let i ≥ 0 and assume that we already
defined Ei, Bi (note that this holds for i = 0). Recall that B̄i =

∪
1≤j≤iBj is the union of the sets we

defined so far, and note that B̄0 = ∅.
We have already defined sets B1, . . . , Bi and therefore the functions W x

1 (v), . . . ,W
x
i+1(v) and Ax

1(v), . . . , A
x
i (v)

are already well defined (even though we did not yet define sets Bi+1, . . . , Bq). We can use these functions
to define random variables W x

1 , . . . ,W
x
i+1 by W x

j = W x
j (V) as well as Ax

1 , . . . , A
x
i by Ax

j = Ax
j (V).

We assume that the following invariant holds at step i:

• |Bi| = O(aq
3

ρ2
) where the hidden constant does not depend on i. (Note that this holds for i = 0.)

• There exists a fixed bi ∈ {0, 1}B̄i such that Ei ⊆
{
V (B̄i) = bi

}
. (Note that this vacuously holds for

i = 0 as B̄0 = ∅ and therefore the event
{
V (B̄0) = b0

}
is the entire probability space.)

• Pr[Ei|V (B̄i) = bi] ≥ 2−(a+1+i). (Note that this holds for i = 0 as Pr[E0] ≥ 2−(a+1)).

16

• For every 1 ≤ j ≤ i, Pr[
∑

x∈{0,1}k A
x
j ≤ ρ·2k

q |V ∈ Ei] = 1. (Note that this holds vacuously for
i = 0.)

We next show that for every i ≥ 0 we can define an event Ei+1 ⊆ Ei and a set Bi+1 ⊆ {0, 1}n that
maintain the invariant for i + 1. By iteratively repeating this process we define events E0, . . . , Eq and sets
B0, . . . , Bq that maintain the invariant for i = q and these will be used to prove Lemma 2.5.

Obtaining the set Bi+1 and event Ei+1 that meet the invariant. We are planning to apply Lemma 2.1
to obtain the set Bi+1. We now state the choices with which we will apply the Lemma. Let L = {0, 1}n \B̄i

be the set of queries that we did not yet mark as “bad”. Let Z = V (L) and N = |L|. We view Z as a
sequence of N random variables defined by (V (y))y∈L and note that these N variables are independent as
required by Lemma 2.1. We are planning to use Ei to play the role of E from the lemma. Note that Ei is
an event in our probability space, meaning that it is some subset of functions v : {0, 1}n → {0, 1}. For the
lemma, we need to view Ei as a subset Êi of {0, 1}N . For this purpose we define Êi = {v(L) : v ∈ Ei}.
To apply the lemma on Z with event Êi we need to check that Pr[Z ∈ Êi] is large. Towards this goal, we
first note that:

Pr[V ∈ Ei|V (B̄i) = bi] =
Pr[V ∈ Ei ∩ V (B̄i) = bi]

Pr[V (B̄i) = bi]
=

Pr[V (L) ∈ Êi ∩ V (B̄i) = bi]

Pr[V (B̄i) = bi]

=
Pr[V (L) ∈ Êi] · Pr[V (B̄i) = bi]

Pr[V (B̄i) = bi]
= Pr[V (L) ∈ Êi].

We now use the computation above to verify that Pr[Z ∈ Êi] is large:

Pr[Z ∈ Êi] = Pr[V (L) ∈ Êi] = Pr[V ∈ Ei|V (B̄i) = bi] = Pr[Ei|V (B̄i) = bi] ≥ 2−(a+1+i) ≥ 2−(a+1+q).

We can now apply Lemma 2.1 setting η = ρ/10q and note that η ≥ ϵ by the requirement on ρ in
Theorem 1.5. Let Bi+1 ⊆ L ⊆ {0, 1}n be the set obtained from Lemma 2.1. We have that

|Bi+1| = O((a+ 1 + q)/η2) = O(aq3/ρ2).

Thus, Bi+1 indeed meets the size requirement of the invariant. By the lemma, for every y ∈ L \ Bi+1 we
have that (Z(y)|Z ∈ Êi) is η-close to Z(y). Note that y ∈ L \ Bi+1 iff y ∈ {0, 1}n \ B̄i+1. We use this to
conclude that for every y ̸∈ B̄i+1,

Pr[V (y) = 1|V ∈ Ei] = Pr[Z(y) = 1|Z ∈ Êi] ≤ Pr[Z(y) = 1] + η ≤ 2ϵ+ η ≤ 3η

where the first equality follows because for y ̸∈ B̄i+1, (V (y)|V ∈ Ei) is distributed like (Z(y)|Z ∈ Êi),
and the second inequality follows by the consequence of Lemma 2.1.

We now observe that conditioned on the event Ei, for every x ∈ {0, 1}k, the random variable W x
i+1 is

fixed to some constant yx ∈ {0, 1}n. (Or more formally, for every x ∈ {0, 1}k there exists yx ∈ {0, 1}n
such that Pr[W x

i+1 = yx|Ei] = 1.) This is because Ei ⊆
{
V (B̄i) = bi

}
which means that all answers

of D to queries in B̄i are fixed, and recall that the queries W x
1 , . . . ,W

x
i+1 of the canonical execution are

completely determined by x, B̄i and D(B̄i).
We observe that having defined Bi+1, the random variable Ax

i+1 = Ax
i+1(V) is now defined for every

x ∈ {0, 1}k. This is because the function Ax
i+1(v) is defined in terms of W x

i+1(v) (which is already defined)
and B̄i+1. By the consequences of our application of Lemma 2.1 we have that for every x ∈ {0, 1}k:

E[Ax
i+1|V ∈ Ei] = Pr[Ax

i+1 = 1|V ∈ Ei] = Pr[V (W x
i+1) = 1 ∧W x

i+1 ̸∈ B̄i+1|V ∈ Ei]

17

= Pr[V (yx) = 1 ∧ yx ̸∈ B̄i+1|V ∈ Ei] ≤ 3η.

Thus, by linearity of expectation we have that:

E[
∑

x∈{0,1}k
Ax

i+1|V ∈ Ei] ≤ 3η · 2k,

and by Markov’s inequality:

Pr[
∑

x∈{0,1}k
Ax

i+1 > 6η · 2k|V ∈ Ei] < 1/2.

We now define event E′i as follows:

E′i = Ei ∩

 ∑
x∈{0,1}k

Ax
i+1 ≤ 6η · 2k

 .

As η = ρ/10q we have that 6η ≤ ρ/q. By the definition of E′i we have obtained that

Pr[
∑

x∈{0,1}k
Ax

i+1 ≤
ρ · 2k

q
|V ∈ E′i] = 1.

The event Ei+1 (that we need to define) will be a subset of E′i and therefore the event above will hold with
probability one conditioned on Ei+1 as well. This means that we indeed maintain the requirement on the
sum of Ax

i+1 in the invariant. We have seen that Pr[E′i|Ei] ≥ 1/2 and therefore

Pr[E′i|V (B̄i) = bi] ≥ Pr[Ei|V (B̄i) = bi] ·
1

2
≥ 2−(a+1+i+1) = 2−(a+1+(i+1)).

By an averaging argument there exists z ∈ {0, 1}Bi+1 for which

Pr[E′i|V (B̄i) = bi ∧ V (Bi+1) = z] ≥ Pr[E′i|V (B̄i) = bi] ≥ 2−(a+1+(i+1)).

Let bi+1 denote the pair (bi, z), so that event
{
V (B̄i) = bi ∧ V (Bi+1) = z

}
is the event

{
V (B̄i+1) = bi+1

}
.

We define Ei+1 = E′i ∩ {V (Bi+1) = z} so that Ei+1 ⊆
{
V (B̄i+1) = bi+1

}
maintains the invariant. We

also verify that
Pr[Ei+1|V (B̄i+1) = bi+1] = Pr[E′i|V (B̄i+1) = bi+1]

= Pr[E′i|V (B̄i) = bi ∧ V (Bi+1) = z] ≥ 2−(a+1+(i+1)).

At this point we have defined event Ei+1 and set Bi+1 and we already showed that they maintain the
invariant. This completes the description of the iterative process.

Finishing up. We are now ready to prove Lemma 2.5. Applying the iterative process above yields sets
B1, . . . , Bq and an event Eq ⊆ E with positive probability for which the invariant above holds. We have
that for every 1 ≤ i ≤ q, |Bi| = O(aq3/ρ2) as required in Lemma 2.5. Let v : {0, 1}n → {0, 1} be some
function such that v ∈ Eq ⊆ E. We have that for every 1 ≤ j ≤ q,∑

x∈{0,1}k
Ax

j (v) ≤
ρ · 2k

q
.

18

It follows that: ∑
1≤j≤q

∑
x∈{0,1}k

Ax
j (v) ≤ ρ · 2k.

Therefore, there are at most ρ · 2k inputs x ∈ {0, 1}k for which
∑

1≤j≤q A
x
j (v) ̸= 0. We conclude that there

are at least (1 − ρ) · 2k inputs x ∈ {0, 1}k for which
∑

1≤j≤q A
x
j (v) = 0 meaning that these inputs are

canonically silent for v. This concludes the proof of the lemma.

3 Hardness amplification and error-correcting codes

It was pointed out in [STV01] that hardness amplification is closely related to error-correcting codes. We
now explain this relationship using our terminology. For this purpose, we identify a function f : {0, 1}k →
{0, 1} with its truth table which is a string f ∈ {0, 1}K for K = 2k.

Definition 3.1 (List-decodable codes). A map Enc : {0, 1}K → {0, 1}N is (ϵ, A)-list-decodable if for
every D ∈ {0, 1}N , the list of all strings f ∈ {0, 1}K such that D has agreement 1/2+ ϵ with Enc(f), has
size at most A. Enc is uniquely-decodable if A = 1.

It is well known that a map cannot be uniquely decodable for ϵ < 1/4 unless K is tiny. Let K = 2k

and let δ be a parameter. Local decoders (for uniquely-decodable codes) are randomized oracle procedures
Dec(·) which when given oracle access to D and input x ∈ {0, 1}k, returns f(x) with probability 1− δ. In
the case of list-decodable codes, the local decoder Dec also receives a second input α which is the index in
the list. This leads to the following definition.

Definition 3.2 (Local list-decoder). Let Enc : {0, 1}K → {0, 1}N be (ϵ, A)-list-decodable. A local list-
decoder with list-size A′ and error δ for Enc is a randomized oracle procedure Dec(·) such that for every
D ∈ {0, 1}N , and every f in the list of D, there exists an 1 ≤ α ≤ A′ such that for every x ∈ {0, 1}k,
Pr[DecD(x, α) = f(x)] ≥ 1− δ where the probability is over the internal coin tosses of Dec.

The following lemma shows that local list-decoding implies function generic hardness amplification. It
follows that our lower bounds on function-generic hardness amplification also apply (with the same param-
eters) for local list-decoders (even if they make adaptive queries).

Lemma 3.3 (Local list-decoders imply function-generic hardness amplification). Let Enc : {0, 1}2k →
{0, 1}2n be (ϵ, 2a

′
)-list-decodable and let Dec be a local list-decoder for Enc with list size 2a

′
and error

δ, and assume that Dec makes at most q queries and tosses at most t coins. Then, there is a function-
generic reduction showing mildly-average-case to average-case amplification for k, n, ϵ, δ with ℓ = 1 and
a = a′ + t, and furthermore the reduction makes q queries.

Proof. Let Enc be (ϵ, 2a
′
)-list-decodable and let Dec be a local list-decoder for Enc with list size 2a

′
and

error δ. Let D ∈ {0, 1}2n . By an averaging argument, for every f in the list of D, there exists a fixing
β ∈ {0, 1}t for the coin tosses of Dec and 1 ≤ α ≤ 2a

′
such that DecD(·, α) has agreement 1 − δ with

f when its coins are fixed to β. We define Amp = Enc and R(·)(x; (α, β)) = Dec(·)(x, α) using β as
coins.5

5Note that the argument above applies even if we use a less restrictive notion of local list-decoders in which the requirement
made in Definition 3.2 that “for every x ∈ {0, 1}k...” is replaced by “for a (1−δ)-fraction of x ∈ {0, 1}k...” and then the reduction
is for δ′ = 2δ. Thus, our lower bounds apply even in this more general setting.

19

It is interesting to note that even in the special case of unique decoding, Lemma 3.3 gives a function-
generic reduction that is non-uniform. The following corollary is obtained by applying Theorem 1.4.

Corollary 3.4 (Lower bounds on number of queries of local list-decoders). There exists a constant c > 1
such that the following holds. Let Enc : {0, 1}2k → {0, 1}2n be (ϵ, 2a

′
)-list-decodable and let Dec be a

local list-decoder for Enc with list size 2a
′

and error δ, and assume that Dec tosses at most t coins. If
a′, 1ϵ , n, t ≤ 2k/c then Dec makes at least 1/100ϵ queries.

We remark that the main question in locally-decodable codes is how many queries are needed for
uniquely-decodable codes with constant rate. In our terminology, this corresponds to constant ϵ and δ
and our results are interesting for a different regime of parameters.

Decoding from erasures. The lower bound of Theorem 1.4 holds even for basic hardness amplification.
The corresponding coding-theoretic setting is that of list-decoding from erasures. More precisely, in Defi-
nition 3.1 we can allow D to have errorless agreement ϵ with Enc(f) (rather than agreement 1/2 + ϵ with
Enc(f)). In coding theoretic terminology this corresponds to a noisy channel that corrupts Enc(f) by
erasing a 1 − ϵ fraction of the symbols (by replacing them with the special symbol ‘⊥’) and keeping the
remaining symbols unchanged. Corollary 3.4 applies in this setting even when allowing list-decoding.

4 Conclusion and open problems

Our results rule out certain proof techniques for showing hardness amplification results with small “size
loss”. As we explain in Section 1.5, the framework of reductions that we study captures essentially all
hardness amplification results in the literature. Nevertheless, it may be possible to bypass these limitations
by developing alternative proof techniques. We remark that the techniques of [GSTS07, Ats06] are not
captured in our framework (as explained in Section 1.5).

We now mention a few open problems (continuing the discussion of Section 1.6).

• Extend the results of [SV10, GR08] regarding “necessity of majority” to adaptive non-uniform re-
ductions. More specifically, show that non-uniform and adaptive function-generic reductions for
mildly-average-case to average-case hardness amplification cannot be computed by small constant
depth circuits if ϵ is small.

• Extend the results of [SV10] regarding “number of queries” to adaptive reductions. More specifically,
show that non-uniform and adaptive function-generic reductions for mildly-average-case to average-
case hardness amplification must use q = Ω(log(1/δ)

ϵ2
) queries. (Note that a lower bound of q = Ω(1/ϵ)

follows from our results on basic hardness amplification.)

• Our results on basic hardness amplification give a lower bound of q = Ω(1/ϵ) for δ ≤ 1/3. This
meets the known upper bounds for constant δ. However, it seems that the right lower bound should
be q = Ω(log(1/δ)ϵ) and match the known upper bounds of [KS03]. We do not know how to show such
a bound for non-uniform and adaptive reductions. We mention that the approach presented in this
paper can be used to show such a lower bound for function-generic reductions that are non-adaptive.
We also mention that such a lower bound also follows from the approach of [SV10] as observed in
[Wat11].

20

Finally, the framework of function-specific reductions suggested in this paper captures more proof tech-
niques than those captured in earlier work. It is natural to study the questions above (as well as related
questions in the area) using this more general framework.

Acknowledgements

The second author is grateful to Oded Goldreich, Avi Wigderson and Emanuele Viola for many interesting
discussions on hardness amplification. We also thank Oded Goldreich, Danny Gutfreund, Iftach Haitner and
anonymous referees for helpful comments and suggestions.

References

[AGGM06] A. Akavia, O. Goldreich, S. Goldwasser, and D. Moshkovitz. On basing one-way functions on
NP-hardness. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pages 701–710, 2006.

[Ats06] A. Atserias. Distinguishing sat from polynomial-size circuits, through black-box queries. In
IEEE Conference on Computational Complexity, pages 88–95, 2006.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations
unless exptime has publishable proofs. Computational Complexity, 3:307–318, 1993.

[BS07] A. Bogdanov and M. Safra. Hardness amplification for errorless heuristics. In Proceedings of
the 48th Annual IEEE Symposium on Foundations of Computer Science, pages 418–426, 2007.

[BT06] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for np problems. SIAM
J. Comput., 36(4):1119–1159, 2006.

[FF93] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM J. Comput.,
22(5):994–1005, 1993.

[GG11] P. Gopalan and V. Guruswami. Hardness amplification within NP against deterministic algo-
rithms. J. Comput. Syst. Sci., 77(1):107–121, 2011.

[GGH+07] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N. Rothblum. Verifying and
decoding in constant depth. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing, pages 440–449, 2007.

[GIL+90] O. Goldreich, R. Impagliazzo, L. A. Levin, R. Venkatesan, and D. Zuckerman. Security pre-
serving amplification of hardness. In Proceedings of the 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 318–326, 1990.

[GK08] V. Guruswami and V. Kabanets. Hardness amplification via space-efficient direct products.
Computational Complexity, 17(4):475–500, 2008.

[GNW11] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-lemma. In Oded Goldreich, editor,
Studies in Complexity and Cryptography, volume 6650 of Lecture Notes in Computer Science,
pages 273–301. Springer, 2011.

21

[GR08] D. Gutfreund and G. Rothblum. The complexity of local list decoding. In Proceedings of the
12th Intl. Workshop on Randomization and Computation, 2008.

[GSTS07] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. If NP languages are hard on the worst-case, then it
is easy to find their hard instances. Computational Complexity, 16(4):412–441, 2007.

[GTS07] D. Gutfreund and A. Ta-Shma. Worst-case to average-case reductions revisited. In Proceedings
of the 11th Intl. Workshop on Randomization and Computation, pages 569–583, 2007.

[GV08] D. Gutfreund and S. P. Vadhan. Limitations of hardness vs. randomness under uniform reduc-
tions. In Proceedings of the 12th Intl. Workshop on Randomization and Computation, pages
469–482, 2008.

[HVV06] A. Healy, S. P. Vadhan, and E. Viola. Using nondeterminism to amplify hardness. SIAM J.
Comput., 35(4):903–931, 2006.

[IJK09a] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Approximate list-decoding of direct product
codes and uniform hardness amplification. SIAM J. Comput., 39(2):564–605, 2009.

[IJK09b] R. Impagliazzo, R. Jaiswal, and V. Kabanets. Chernoff-type direct product theorems. J. Cryp-
tology, 22(1):75–92, 2009.

[IJKW10] R. Impagliazzo, R. Jaiswal, V. Kabanets, and A. Wigderson. Uniform direct product theorems:
Simplified, optimized, and derandomized. SIAM J. Comput., 39(4):1637–1665, 2010.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of the
36th Annual IEEE Symposium on Foundations of Computer Science, pages 538–545, 1995.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 220–229, 1997.

[IW01] R. Impagliazzo and A. Wigderson. Randomness vs time: Derandomization under a uniform
assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[KS03] A. Klivans and R. A. Servedio. Boosting and hard-core sets. Machine Learning, 53(3):217–
238, 2003.

[Lev87] L. A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987.

[Lip91] R. Lipton. New directions in testing. In Proceedings of DIMACS Workshop on Distributed
Computing and Cryptography, volume 2, pages 191–202. ACM/AMS, 1991.

[LTW08] C.-J. Lu, S.-C. Tsai, and H.-L. Wu. On the complexity of hardness amplification. IEEE Trans-
actions on Information Theory, 54(10):4575–4586, 2008.

[LTW11] C.-J. Lu, S.-C. Tsai, and H.-L. Wu. Complexity of hard-core set proofs. Computational Com-
plexity, 20(1):145–171, 2011.

[O’D04] R. O’Donnell. Hardness amplification within NP. J. Comput. Syst. Sci., 69(1):68–94, 2004.

22

[Raz98] R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998.

[RTV04] O. Reingold, L. Trevisan, and S. P. Vadhan. Notions of reducibility between cryptographic
primitives. In Proceedings of the 1st Theory of Cryptography Conference, pages 1–20, 2004.

[STV01] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. Syst. Sci., 62(2):236–266, 2001.

[SU05] R. Shaltiel and C. Umans. Simple extractors for all min-entropies and a new pseudorandom
generator. J. ACM, 52(2):172–216, 2005.

[SV10] R. Shaltiel and E. Viola. Hardness amplification proofs require majority. SIAM J. Comput.,
39(7):3122–3154, 2010.

[Tre03] L. Trevisan. List-decoding using the XOR lemma. In Proceedings of the 44th Symposium on
Foundations of Computer Science, pages 126–135, 2003.

[Tre04] L. Trevisan. Some applications of coding theory in computational complexity. In Complexity
of computations and proofs, volume 13 of Quad. Mat., pages 347–424. Dept. Math., Seconda
Univ. Napoli, Caserta, 2004.

[Tre05] L. Trevisan. On uniform amplification of hardness in np. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, pages 31–38, 2005.

[TV07] L. Trevisan and S. Vadhan. Pseudorandomness and average-case complexity via uniform re-
ductions. Computational Complexity, 16(4):331–364, 2007.

[Vio05a] E. Viola. The complexity of constructing pseudorandom generators from hard functions. Com-
putational Complexity, 13(3-4):147–188, 2005.

[Vio05b] E. Viola. On constructing parallel pseudorandom generators from one-way functions. In IEEE
Conference on Computational Complexity, pages 183–197, 2005.

[Wat11] T. Watson. Query complexity in errorless hardness amplification. In Proceedings of the 15th
Intl. Workshop on Randomization and Computation, pages 688–699, 2011.

23

