
ECDSA Key Extraction from Mobile Devices

via Nonintrusive Physical Side Channels ∗

Daniel Genkin

Technion and Tel Aviv University

danielg3@cs.technion.ac.il

Lev Pachmanov

Tel Aviv University

levp@tau.ac.il

Itamar Pipman

Tel Aviv University

itamarpi@tau.ac.il

Eran Tromer

Tel Aviv University

tromer@tau.ac.il

Yuval Yarom

The University of Adelaide and Data61, CSIRO

yval@cs.adelaide.edu.au

August 18, 2016
(Initial public disclosure: March 1, 2016)

Abstract

We show that elliptic-curve cryptography implementations on mobile devices are vulnerable
to electromagnetic and power side-channel attacks. We demonstrate full extraction of ECDSA
secret signing keys from OpenSSL and CoreBitcoin running on iOS devices, and partial key
leakage from OpenSSL running on Android and from iOS’s CommonCrypto. These non-intrusive
attacks use a simple magnetic probe placed in proximity to the device, or a power probe on the
phone’s USB cable. They use a bandwidth of merely a few hundred kHz, and can be performed
cheaply using an audio card and an improvised magnetic probe.

1 Introduction

1.1 Overview

Side channel analysis, exploiting unintentional and abstraction-defying information leakage from
physical computation devices, has been used to break numerous cryptographic implementations
(see [MOP07, And08, KJJR11] and the references therein). While traditional side channel research
has mainly focused on small embedded devices such as smartcards, RFID tags, FPGAs and mi-
crocontrollers, recent works also study the vulnerability of complex PC-class computers (laptop,
desktop and server) to physical key-extraction attacks [ZP14, GST14, GPT14, GPPT15, GPPT16].

In this paper we study vulnerability to side-channel key extraction in another class of complex
devices: mobile devices (smartphones and tablet computers). This prospect is already supported by
some recent results. Using invasive access to the device, it is possible to acquire electromagnetic and
power measurements with very high fidelity in terms of bandwidth, noise and spatial locality. Such
invasive access has been used for key extraction attacks on intentionally-naive RSA implementa-
tions [NSN+14, GS15]. A non-invasive attack was shown by Kenworthy and Rohatgi [KR12, CRI12]
on BouncyCastle’s RSA implementation running on a smartphone. All of these attacks used ex-
pensive lab-grade equipment, such as oscilloscopes, for their measurements.

∗The authors thank Noam Nissan for programming and lab support during the course of this research.

1

mailto:danielg3@cs.technion.ac.il
mailto:levp@tau.ac.il
mailto:itamarpi@tau.ac.il
mailto:tromer@tau.ac.il
mailto:yval@cs.adelaide.edu.au


This paper focuses, instead, on the Elliptic Curve Digital Signature Algorithm (ECDSA) [NIS13],
a very popular signature scheme that is especially pertinent and critical in mobile devices due to
its use in mobile payment apps such as Bitcoin wallets and Apple Pay. Attacking ECDSA raises
new challenges:

• ECDSA signatures are computed faster than RSA, and thus the attacker gets less physical in-
formation at a given sampling rate. Increasing the sampling rate increases costs and runs into
frequency-limited physical effects.

• More fundamentally, ECDSA signatures are randomized. When attacking deterministic opera-
tions, such as RSA decryption, attackers can rely on triggering numerous identical decryptions
and then aggregating their recorded traces in order to improve signal-to-noise ratio and cope
with transient events such as interrupts. But with ECDSA, one has to make deductions from
individual traces that are noisy and frequently interrupted.

We raise the following questions:

1. How vulnerable are implementations of ECDSA, running on mobile phones, to physical side
channel attacks?

2. Are these vulnerabilities common across different implementations and across different phone
models?

3. What physical channels can be used for the attacks?

4. How expensive are such attacks, both in terms of complexity and in terms of financial outlay?
Can they be conducted with concealed, portable equipment? Do they require high-grade lab
equipment or can they be implemented using cheap, over-the-shelf equipment?

A concurrent and independent work of Belgarric et al. [BFMRT16a] provides a valuable insight
on some of these questions, demonstrating full key extraction from BouncyCastle’s ECDSA im-
plementation on a phone. That attack used an electromagnetic probe placed invasively inside the
open case of a phone. It relied on triggering measurement via the USB interface, and (even though
essentially relying on low-frequency signals) used an expensive oscilloscope. This leaves unexplored
much of the space posed by the aforementioned questions.

1.2 Our Results

In this paper we demonstrate the first side channel attack on Elliptic Curve Cryptography (ECC)
running on a smartphone which simultaneously achieves the following properties:

1. Real-World Implementations. We attacked the ECDSA implementation of OpenSSL run-
ning on iOS devices (iPhone and iPad) as well as Android devices. In particular, we attacked
the CoreBitcoin library, based on OpenSSL, which is used by popular Bitcoin wallets on iOS
devices. We also attacked the built-in ECDSA implementation of iOS’s CommonCrypto library.

2. Non-Invasive. The demonstrated attacks are non invasive and can be conducted by merely
placing a magnetic probe in the proximity of the device, or using a power tap on its USB charging
cable. The attack does not require opening the device’s case and does not utilize any software
or hardware in order to trigger the measuring equipment. See Figures 1 and 9.1

3. Cheap EM and Power Analysis. Our attack utilizes physical emanations (electromagnetic
or power) at frequencies below 200 kHz, which is well below the GHz-scale processor clock speed.
Consequentially, our attack can acquire secret-key information using cheap, compact and readily
available equipment, such as sound cards and improvised probes.

1While we do not require any specific triggering software, the attack does require the target to repeatedly perform
ECDSA signing operations. Several such scenarios exist, see Section 1.3.

2



(a) Top view. The target (top right) is measured by the impro-
vised probe (taped to the underside of a glass table). The signal
is captured by a Tracker Pre sound card connected to a laptop
(under the table).

(b) Improvised probe (view from under the
glass table).

Figure 1: Mounting a cheap EM attack on an iPhone 4 using an improvised EM probe.

Library Version Platform Result

OpenSSL 1.0.x Android Scalar dependent
1.1.x leakage (Section 3.3).

OpenSSL 1.0.x iOS Key extraction
1.1.x (Section 3.2).

Common- 7.1.2–8.3 iOS Scalar dependent
Crypto leakage (Section 3.3).

CoreBitcoin Commit iOS Key extraction
81762ae3 (Section 3.3).

Table 1: Summary of our attack results.

In some cases (e.g., CoreBitcoin on iPhone devices), we demonstrated full key extraction. It
was impractical to do so for all combinations of target software, target hardware and acquisition
hardware, but for numerous such combinations we found clear leakage of key material suggesting
feasibility of full key extraction, as discussed in Sections 3 and 4. See Table 1 for a summary of
our results.

We achieve the above using new techniques for enhancing the measured side-channel signal
in the presence of noise generated by the device’s internal components. While typical techniques
for overcoming measurement noise involve averaging the signal obtained from several secret-key
operations, this is not applicable to ECDSA since the nonce is generated afresh for every signature.
Instead, we present techniques which are capable of enhancing the signal present in a single trace,
without relying on additional information from other traces.

3



1.3 Targeted Software and Hardware

Hardware. We target mobile devices such as tablets and phones. We have measured numerous
devices of various models and manufactures. Many devices exhibit key-dependent leakage (see
Figure 3). All the devices were in their default configuration and we did not disable any background
services and notifications. WiFi was on and connected and bluetooth was off. All phones were
without a simcard installed.2 In the sequel, unless stated otherwise, the experiments were performed
on Apple iPhone 3GS which exhibited a particularly clear signal.

Software. In this work, we target popular ECDSA implementations running on various mobile
devices. More specifically, we target the following implementations:

1. The ECDSA implementation of OpenSSL (version 1.0.1m), a ubiquitous cryptographic library,
running on iOS and Android devices.3 The underlying Elliptic Curve (EC) scalar multiplication
algorithm is wNAF with w = 3.

2. The built-in ECDSA implementation of Apple’s CommonCrypto library, which is a part of
iOS. We targeted iOS versions 7.1.2 through 8.3, whose underlying EC multiplication algorithm
is wNAF with w = 1.

3. CoreBitcoin [Cor], a popular cryptographic library for iOS used by many Bitcoin clients
(including ArcBit [Arc], BitStore [Bitb], BitWallet [Bitc], Mycelium [Myc] and Yellet [Yel]).
CoreBitcoin implements deterministic ECDSA(following RFC6979 [Por13]), using OpenSSL for
the underlying EC multiplication.

Attack Scenario. Our attacks require side-channel measurements while the victim performs
multiple ECDSA signing operations. Signing multiple messages under the same key is common
when the key is fixed by a public key infrastructure or a PGP “web of trust”. It is also necessary
for Bitcoin micropayment channels [Mic, Smi15], which allow making lightweight out-of-blockchain
automated payments for an ongoing service. Since each such micropayment requires an ECDSA
signature this will cause frequent and automated signatures under the same key.

Disclosure and Status. Practicing responsible disclosure, we have worked with the vendors of
all targeted software to convey our findings and coordinate response, prior to public disclosure. See
Appendix A for the current status of targeted software, including newer versions.

1.4 Related Work

Physical Attacks on ECC on Small Devices. For small devices (smartcards, RFID tags, FP-
GAs and microcontrollers), side-channel attacks have been extensively demonstrated on numerous
cryptographic implementations, using various channels, and in particular electromagnetic emana-
tions starting with [AARR02, GMO01, QS01]. See [And08, KJJR11, MOP07] and the references
therein. In particular, physical key-extraction attacks were shown on many ECC implementations
on small devices, starting with Coron [Cor99]; see the surveys [FGM+10, FV12] and the refer-
ences therein. However these techniques either utilize subtle physical effects which are only visible
at bandwidths comparable to the device’s clock rate, attack naive implementations (such as the
double-and-sometimes-add algorithm), or utilize a chosen ciphertext in order to deduce additional
information about the algorithm’s secret internal state.

2The phones are SIM-locked to a foreign carrier and we do not have the appropriate sim cards.
3We used OpenSSL compiled with its default options. In particular, the “enable-ec nistp 64 gcc 128” option,

which enables a constant-time implementation for some curves [Käs12], is disabled by default and works only on
64-bit x86 (32-bit processors are unsupported, and the built-in tests fail on 64-bit ARM).

4



Unfortunately, all of the above approaches have significant drawbacks in the case of a non-
naive implementation of ECDSA running on a high-speed smartphone. Non-invasively recording
clock-rate signals from a smartphone running a multi GHz-scale CPU is difficult, often requiring
expensive, cumbersome, and delicate lab equipment. Chosen-input attacks are usually inapplicable
to signature schemes, since the inputs are processed through a cryptographic hash function.

Key-Extraction Side-Channel Attacks on Phones. High bandwidth electromagnetic at-
tacks (sampling at clock-rate speeds) on symmetric ciphers were demonstrated by Aboulkassimi
et al. [AAF+11] on Java-based feature-phones. Attacks at clock-rate frequencies on public key
cryptography were also recently demonstrated by Goller and Sigl [GS15] on Android smartphones
running a naive square-and-sometimes-multiply RSA, with the phone’s shielding plate often re-
moved. Lower-frequency attacks on smartphones executing naive implementations of square-
and-sometimes-multiply RSA as well as double-and-sometimes-add ECC were also demonstrated
by [NSN+14] with the phone battery cover opened, battery removed and the probe positioned
directly over the leaky component. A non-invasive low-frequency attack was demonstrated by Ken-
worthy and Rohatgi [KR12] against naive square-and-sometimes-multiply RSA. These attacks were
also later extended to RSA windowed exponentiation as used in BouncyCastle [CRI12]. Finally,
measuring at clock-rate frequencies, the work of Kenworthy and Rohatgi [KR12] also presented
an attack on a naive and self-written double-and-sometimes-add ECC, which is known to have
side-channel weakness.

In a concurrent and independent work, Belgarric et al. [BFMRT16a] presented an invasive low-
frequency attack on the ECDSA implementation of Android’s BouncyCastle library, running on
a smartphone, using a magnetic probe placed inside the (opened) phone. It used a bandwidth of
50 kHz, measured by an oscilloscope. The oscilloscope was triggered, via a self-written triggering
software installed on the phone. The software sends a trigger signal via phone’s USB port (connected
to oscilloscope’s triggering port) and then immediately invokes the BouncyCastle signing function.
The acquisition and analysis of the signal were done by manual observation of the double and
add operations in the (hundreds of) traces.

Software side-channel attacks, utilizing cache contentions, were demonstrated on ARM devices,
showing partial extraction of an AES key [LGSM15]. These require attacker’s code to run on the
device.

Physical Key Extraction Attacks on ARM Development Boards. In recent works, DPA-
style attacks were demonstrated on ARM-type devices. Balasch et al. [BGRV15] demonstrated a
clock-rate attack on AES running on a BeagleBone Black ARM development board. A similar
attack on the same device at much lower frequencies was demonstrated by Galea et al. [GMPT15].
However, while these results demonstrate the possibility of attacking symmetric key encryption
running on complex devices, both attacks were highly invasive with the probe physically glued to
the leaky component. The task of demonstrating a non-invasive attack on symmetric key encryption
running on a real smartphone remains open.

Key-Extraction Side-Channel Attacks on PCs. Physical key-extraction side-channels were
exploited for extracting keys from RSA, ElGamal and ECDH implementations, using the acoustic,
chassis-potential and electromagnetic channels [GST14, GPT14, GPPT15, GPPT16]. Software key
extraction attacks were demonstrated using timing differences [BB05, BT11], and cache contention
[Ber05, Per05, OST06] and applied to ECDSA [BH09, BvdPSY14, Van de PolSY15, ABF+15].

5



2 Cryptanalysis

2.1 Preliminaries

ECDSA. We start by describing the Elliptic-Curve Digital Signature Algorithm scheme (ECDSA).
Given a generator G of an elliptic curve group of order n, key generation consists of selecting a
random integer 1 ≤ d ≤ n− 1 and computing Q = [d]G. (Here and onward, we use additive group
notation, and [d]G denotes scalar-by-point multiplication.) The (secret) signing key is d and the
(public) verification key is Q.

Signing of a message m is done as follows: hash m under a designated hash function and convert
the first dlog2 ne bits of the digest into an integer z; generate a random nonce 1 ≤ k ≤ n−1; compute
the curve point (x, y) = [k]G using a scalar-by-point multiplication; compute r = x mod n and
s = k−1(z + r · d) mod n; output the signature (r, s). (In case r = 0 or s = 0, repeat the signature
operation using a fresh random k.) Verifying a signature (r, s) on m is done by computing z as
above, computing w = s−1 mod n, u1 = zw mod n, u2 = rw mod n, (x, y) = [u1]G + [u2]Q and
then checking that x ≡ r (mod n).

Low s-value ECDSA. ECDSA signatures are malleable in the sense that given a message m and
a signature pair (r, s), it is possible to generate an additional valid signature for m (r′, s′) 6= (r, s)
by setting r′ = r and s′ = −s mod n. This property is problematic for Bitcoin clients which use the
hashing of (r, s) in order to identify matching signatures [Wui14, ADMM15]. A common solution
to the above problem used by many Bitcoin clients is to require that s ≤ n/2. That is, in the case
that the signing process (described above) generates a pair (r, s) where s > n/2 for some message
m, the signature routine outputs (r,−s mod n) as the signature of m [Wui14].

Attack Overview. Our attack deduces partial information about the nonce k used during the
scalar-by-point multiplication [k]G in the signing operation. The signing key d is recovered by
combining the information obtained during multiple signature operations.

Notation. In the sequel, for an integer a, we denote by |a| is absolute value, by bacn the result
of reducing a modulo n into the range [0, · · · , n− 1] and by |a|n the result of reducing a modulo n
into the range [−n/2, · · · , n/2).

2.2 Scalar-by-Point Multiplication

The main operation performed during a ECDSA signing is the elliptic curve scalar-by-point mul-
tiplication. The w-ary non-adjacent form (wNAF) method (Algorithm 1) is one of the commonly-
used algorithms for implementing scalar-by-point multiplication. wNAF is used for multiplica-
tion in curves over prime size fields, including many of the NIST P-curves and the Bitcoin curve
secp256k1, in several cryptographic libraries, such as OpenSSL, CoreBitcoin, Apple’s Common-
Crypto and BouncyCastle. The algorithm is so named for representing the scalar k using the
wNAF representation which we now discuss.

The non adjacent form [Rei60] is a generalization of the binary representation of integers, allow-
ing for three possible digits, -1, 0, and 1, referred to as NAF digits, and requiring that every pair of
non-zero digits is separated by at least one zero digit. For example, the 4-digit NAF representation
of 7 is (1,0,0,−1) compared to its binary representation (0,1,1,1). The main advantage of using a
NAF representation is that it reduces the expected number of non-zero digits from about 1/2 for
the binary representation to about 1/3. Since every non zero digit in the representation of k leads
to a point addition operation, representing k in NAF form reduces the number of point addition op-
erations performed during the scalar-by-point multiplication operation. The wNAF representation
generalizes this by allowing odd digits from {−2w + 1, · · · ,2w − 1} as well as zero digits.

6



Algorithm 1 wNAF scalar-by-point multiplication operation (simplified).

Input: A positive scalar k and an elliptic-curve point P, where kg−1 · · · k0 is the wNAF repre-

sentation of k, that is k =
∑g−1

i=0 2i · ki, ki ∈ {−2w + 1, · · · ,2w − 1}, ki is odd or zero, and
kg−1 6= 0.

Output: [k]P.
1: procedure point mul(k,P)
2: Q1 ← P
3: Q−1 ← [−1]P
4: for i← 1 to 2w−1 − 1 do
5: Q2i+1 ← Q2i−1 + [2]P
6: Q−2i−1 ← [−1]Q2i+1

7: A← Qkh−1

8: for i← g − 2 to 0 do
9: A← [2]A

10: if ki 6= 0 then
11: A← A + Qki

12: return A
13: end procedure

2.3 Attack Algorithm

Let DA-sequence denote the sequence of double and add operations performed in lines 9 and 11
of Algorithm 1. Notice that by observing the DA-sequence performed by Algorithm 1 it is possible
to deduce all the locations of the non-zero valued wNAF digits of the nonce k. However, since the
DA-sequence only discloses the positions of the non-zero digits but not their values, recovering the
DA-sequence alone is not enough for achieving key extraction.

Cryptanalytic Approach. Nguyen and Shparlinski [NS03] describe a theoretical attack for
combining partial information on the bits of multiple nonces in order to recover the secret key d.
Benger et al. [BvdPSY14] later apply the attack to the DA-sequences of OpenSSL’s implementation
of ECDSA, as leaked through a cache channel on a PC. In this section we extend these techniques
for handling low s-value ECDSA commonly used by Bitcoin clients.

In our approach, following [BV96, NS03, BvdPSY14, Van de PolSY15], the partial information
collected from each (suitable) signing operation is summarized in a matrix. The secret value is
then extracted by solving the Closest Vector Problem (CVP) on the corresponding lattice, i.e., by
finding an integer linear combination of the matrix rows that is close a to a target vector. Details
follow.

Closest Vector Problem. An input of a CVP consists of a matrix (lattice basis) B and a target
vector u. The output is an integer vector x such that the `2-norm of the vector xB−u is minimal,
i.e., the lattice vector xB is the closest to u. While the CVP problem is believed hard in general and
the best algorithms are exponential in the dimension of B (in the worst case), many heuristic CVP
solvers exists [Ngu11]. In this work, we utilize the fplll solver [ABC+] running on a PC (3.4 GHz,
6 cores, 64 GB of RAM).

Attacking Low s-value ECDSA. Let d be an ECDSA signing key and G be a generator of
an elliptic curve of order n. Assume we have a dataset of m ECDSA signatures where for each
signature i we are given the hashed message zi and the signature (ri, si), where si is the low s-value,

7



i.e. s ≤ n/2. First, we notice that for all i it holds that

zi + d · ri ≡ siki (mod n) or zi + d · ri ≡ −siki (mod n). (1)

Notice that, without knowing ki, we do not know which of the above cases holds. (This depends
on whether k−1(z + r · d) mod n is larger than n/2 or not.)

Assume that, for each signature i in this dataset, we have learned (through side-channel leakage)
that the li least significant wNAF digits of ki are zero. We first note that this also implies that
the li least significant bits of ki are zeros or, equivalently, that ki = 2li · bi for some bi ≤ n/2li .
Expanding and rearranging Equation 1 we obtain that for all i it holds that

zi · s−1i · 2−li + d · ri · s−1i · 2−li ≡ bi (mod n) or zi · s−1i · 2−li + d · ri · s−1i · 2−li ≡ −bi (mod n).
(2)

Next, define ti = bri · s−1i · 2−licn, ui = bzi · s−1i · 2−licn and νi = |dti − ui|n. From Equation 2 we
have that either νi ≡ bi (mod n) or that νi ≡ −bi (mod n). Finally, since bi ≤ n/2li ≤ n/2 and
|νi| ≤ n/2, we obtain:

|νi| = bi ≤ n/2li . (3)

Notice that |νi| is smaller by a factor of 2li−1 than a random element in Zn. Utilizing this fact,
following the approach of [NS03, BvdPSY14], we now convert our dataset into a closest vector
lattice problem.

CVP Attack. Consider the lattice L(B) over Rm+1 generated by the rows of the following matrix:

B =


2l1 · n

. . .

2lm · n
2l1 · t1 · · · 2l1 · tm 1

 .

Define the vector u = (2l1 · u1, · · · , 2lm · um,0). Notice that both the matrix B and the vector u
can be computed from the public information zi, si and the leakage li for 1 ≤ i ≤ m. We now claim
that the solution to the closest vector problem defined by L(B) and u reveals the secret key d.

Indeed, Equation 3 implies the existence of integers (λ1, · · · , λm) such that for the vectors
x = (λ1, · · · , λm, d) and y = (2l1 · ν1, · · · ,2lm · νm, d) we have xB − u = y. Next, notice that the
`2-norm of y is about n ·

√
d+ 1 whereas the determinant of L(B) is 2m+

∑
li ·nm. Thus, we obtain

that the lattice vector xB is heuristically closest to the vector u. Therefore, by solving the CVP
problem on inputs (B,u) we obtain the vector x the last entry of which reveals the secret key d.

3 Signal Analysis

3.1 Experimental Setup

To measure the EM leakage from the smartphone, we used a Langer LF-R 400 near field probe
(a 25mm loop probe, 100 kHz–50 MHz). We amplified the signal measured by the probe using
a (customized) Mini-Circuits ZPUL-30P amplifier, providing 40 dB of gain. The output of the
amplifier was then low-pass filtered at 5 MHz.

For digitizing the analog signal, we used one of two instruments. For the best robustness during
initial characterization, as described below in this subsection, we used a National Instruments PCI-
6115 data acquisition device, sampling at 10 Msample/sec with 12 bits of ADC resolution. For key

8



Figure 2: EM measurement (0.5 sec, 0–225 kHz) of four scalar-by-point multiplication operations
using the NIST P-521 curve executed on an iPhone 3GS smartphone. The scalar was set to be either
a random 521-digit number or the 521-digit number obtained by repeating the pattern written to
the right. In all cases, the same curve point was used to perform the multiplication.

extraction, described in Section 3.2, we used an Ettus N200 software defined radio device, with its
LFRX daughterboard, sampling at 1 Msample/sec.

Note that in terms of bandwidth, the above is an overkill for our attacks, which exploit signals
up to 200 kHz. Thus, similarly to [GPPT15], we can replace the probe and data acquisition device
with much cheaper equipment, such as a sound card; this is discussed in Section 4.

Scalar-Dependent Leakage. Confirming the existence of scalar-dependent leakage from
OpenSSL’s scalar-by-point multiplication function, Figure 2 shows a spectrogram of the EM leakage
obtained during four distinct signature operations, using the same point P and four different values
of the scalar k. Notice that all of the four scalars can be easily distinguished by changes in vertical
line pattern in their spectral signature. Such nonce-dependent leakage was observed on many target
phones, of various models and manufactures (see Figure 3). This hints at the relationship between
the time behavior of the observed leakage signal and the secret bits of the scalar k.

Triggering. In all the key-extraction attacks presented below, we simulated a completely passive
attacker which does not interact with the target device. In particular (as mentioned in Section 1.2)
we did not use any software-based or hardware-based triggering of the measurement setup (un-
like [BFMRT16b]). Instead, we sampled continuously and relied on our signal processing to locate
the leakage from the signing operation within the measurement trace (see details below). In order
to conveniently attack multiple cryptographic libraries (with different API interfaces and running
on different mobile operating systems), for each attacked library we wrote a small program that
calls the ECDSA operation, and invoked it over the network.

3.2 Attacking OpenSSL ECDSA

Signal Acquisition. We recorded the leakage of 5000 OpenSSL ECDSA signatures executed on
an iPhone 3GS. For all of the recorded signatures, we used the secp256k1 curve with the same
randomly-generated secret key. We measured the iPhone’s electromagnetic emanations during the
signing operations using the setup described in Section 3.1 (with the Ettus N200 sampling at
1 Msample/sec). We then stored the recorded traces, as well as the signed message produced by
the ECDSA signing, for offline signal processing and cryptanalysis.

Examining Raw Traces. After digitizing, we applied a Finite Impulse Response (FIR) low-
pass filter to suppress noise outside the 0–125 kHz band. The resulting signal can be seen in
Figure 5 (top). Evidently, even after suppressing high frequency noise, one still cannot easily
determine the locations of point addition and point doubling operations. In addition, the signal
is periodically corrupted by strong disturbances caused by the operating system timer interrupts.

9



(a) Apple iPad Mini 2
(0 − 400 kHz, 0.2 msec).

(b) Apple iPad 3rd Generation
(0 − 200 kHz, 0.3 msec).

(c) Apple iPhone 4s
(0 − 175 kHz, 0.3 msec).

(d) Apple iPhone 5s
(0 − 200 kHz, 0.2 msec).

(e) Apple iPod Touch 4th Genera-
tion
(0 − 200 kHz, 0.2 msec).

(f) Sony Ericsson Xperia X10
(250 − 500 kHz, 0.8 msec).

Figure 3: EM measurement of four scalar-by-point multiplication operations using the NIST P-
521 curve executed on various mobile devices. In each subfigure, the first multiplication used a
random 521-digit scalar while the remaining three used the same repetitive 521-digit numbers used
in Figure 2 (in the same order). Similarly to Figure 2, the same curve point was used to perform
the multiplication.

Previous works ([GPT14, GPPT15, GPPT16]) have mitigated the problem of low SNR and signal
distortion by repeating each measurement several times and combining the results into a single clear
aggregate trace. However, this is inapplicable to ECDSA: each signing operation uses a different
nonce k, so the corresponding scalar-by-point multiplications [k]G results in different DA-sequences
that cannot be directly combined.

Locating Signing Operations. In order to successfully execute our attack, we need to find the
exact points in time where each signing operation ends. Unlike the concurrent work of [BFMRT16a]
which assumes that these exact time points are leaked via the USB port, we assume the attacker has
no leakage of such information and tackle the problem during our signal processing steps. For this
purpose we utilize a distinct trace pattern occurring at the very end of each signing. This pattern
is a natural product of the executed code (it is not an artificial trigger), but is very similar across
different signing operations, for given software and hardware. After performing signal denoising
(described next) we apply correlation-based detection to identify all instances where this distinct
pattern occurs. We thus obtain the end points for most signing operations. We ignored some traces
that ended in distorted patterns that did not correlate well.

Denoising Signal Traces. As mentioned above, an average-based denoising approach is not
applicable to ECDSA since each signing operation uses a different nonce k. Instead, to increase the
SNR of our traces, we add a preprocessing step (following the FIR filter) that performs Singular
Spectrum Analysis (SSA). SSA can be used for blind source separation and denoising of single

10



Figure 4: Our lab-grade setup for capturing EM emanations attacking a Sony-Ericsson Xperia x10
phone. Left to right: analysis laptop, power supply, ZPUL 30P amplifier (gray box), Ettus N200
(white box), and phone being attacked using the Langer LF-R 400 probe (blue).

traces [GZ13]. In the context of side channels, SSA was used in [PS15] to increase the success
probability of various DPA-style attacks targeting embedded devices. The aim of the SSA procedure

is to decompose a given time series
{
ai
}N
i=1

into several distinct components, each with its own
physical properties. The algorithm consists of three stages (see [GZ13] for further details).

Step 1: Embedding. First, a window length 2 < L < N/2 is chosen and used to construct a trajectory

matrix of the input time series
{
ai
}N
i=1

. The trajectory matrix is comprised of K “lagged” copies
of the series and is defined as follows (where Ai are column vectors and K

.
= N − L+ 1):

A =
(
A1 A2 . . . AK

)
=


a1 a2 . . . aK
a2 a3 . . . aK+1
...

...
. . .

...
aL aL+1 . . . aN

 .

Notice A is also a Hankle matrix since all entries on its anti-diagonal are identical, i.e. for all
2 6 i+ j 6 N + 1 and 1 6 n 6 N we get Aij = an if i+ j = n+ 1.

Step 2: Singular Value Decomposition. After obtaining the trajectory matrix, it is decomposed
using a Singular Value Decomposition (SVD). An SVD of a matrix A is a well known decomposition
and is defined by (for an L by K matrix with L < K):

A =USVT =
(
U1 U2 . . . UL

)
√
λ1 0 0 · · · 0
...

. . . 0 · · · 0
0 0

√
λL · · · 0




V T
1

V T
2
...
V T
K

 ,

where λi are the eigenvalues of AAT in descending order and Ui are their corresponding eigenvec-
tors. The vectors Vi are the eigenvectors of ATA. For 1 6 i 6 d, the vectors Vi can be given by

Vi = ATUi√
λi

, where d is the lowest eigenvalue such that λd > 0. The SVD of a matrix thus allows us

11



Figure 5: A recorded trace after filtering out high frequency noise (top), and the same trace after
additionally applying SSA (bottom). Note the timer interrupt disturbing the measurement signal.

to represent it as a sum of matrices:

A = USVT =
d∑
i=1

√
λiUiVi

T =
d∑
i=1

√
λiXi.

The matrices Xi are called projection matrices, and their contributions to the original matrix A
are proportional to

√
λi (which are also called the singular values of A).

Step 3: Reconstruction. Each matrix Xi can now be transformed back into a length N time series{
xin
}N
n=1

by averaging over the entries in its anti-diagonal. This process is also called diagonal
averaging or Hankelazation [Has07]. Overall we obtain a decomposition of the original time series{
an
}N
n=1

into a sum of d series: {
an
}N
n=1

=

d∑
i=1

{
xin
}N
n=1

.

A denoised time series can now be reconstructed by choosing a suitable subset of m ≤ d series from

within the set
{
xin
}d
i=1

.

SSA Parameter Choice. The quality of the decomposition and denoising is highly dependent
on the window size L and the choice of subset m. Empirically, we have found that good results
are obtained when L is chosen to be shorter than both the double and the add operations. At a
sampling rate of 1M samples per second, the length of double and add operations was 50 and 250
samples, respectively. We thus chose L to be 10 samples long. The reconstruction subset m was
also chosen empirically. We found that a good result is achieved when one uses the components
corresponding to the third, fourth and fifth highest singular values for reconstruction (regarding
the rest of the components as noise). It is worth noting that SSA is often used in the literature to
expose hidden periodic trends in noisy signals. In these cases it is recommended [KP11, GZ13] to

12



choose L to be relatively large (larger than the longest suspected hidden period). However, in our
case the DA sequence has no intrinsic periodicity, and larger L values seemed to be less suited for
denoising.

Figure 5 depicts a signal trace after undergoing the SSA procedure. The double and add
sequence can now be clearly seen. Note that the SSA procedure did not get rid of the interrupt
induced disturbances, but since we only require a small number of double operations taken from
the end of the trace, this is usually not an issue. On the rare occasions where an interrupt was
detected at the very end of the trace, the corresponding recording was simply discarded.

Locating Addition Operations In Time. Examining the denoised trace, we can now attempt
to extract the DA-sequence. For this purpose we turn to the time-frequency domain. The middle
of Figure 6 depicts the spectrogram of a denoised trace, where the frequency band containing most
of the energy of addition operations becomes especially clear (see Figure 6 (middle)). Summing
over the spectrogram’s energy we receive a trace marking the locations of addition operations in
time . In order to increase the detection accuracy, we enhance this trace by multiplying it with its
own derivative with respect to time. This way we are able to enhance high amplitude peaks that
also rise sharply, and attenuate other peaks. Further smoothing produces the signal depicted in
Figure 6 (bottom), where the peaks marking the locations of add operations can be detected with
high fidelity.

Extracting the Partial DA-Sequence. Having found a way to detect addition operations with
sufficient fidelity, we can now attempt to locate the position of the very last addition operation in
the signal. We do so by first finding the point in each trace where the signing operation ends. This
point can be reliably found in many traces since the signal pattern that immediately follows the
signing operation is consistently similar across many traces. We can use this pattern as a template
to reliably locate it in other traces using correlation, discarding traces that do not correlate well
with the chosen template. By measuring the distance between the estimated template location in
each trace and the very last addition operation detected in the signature (found using the methods
described in the previous subsection), we can determine the number of double operations that
occurred at the very end of each signing operation, thus acquiring the DA information necessary
for key extraction.

Signal Analysis Performance. Applying our attack to a randomly-generated ECDSA secp256k1
OpenSSL key, we measured the EM emanations during 5000 signatures on an Apple iPhone 3GS
smartphone, each signature lasting 0.1 sec. Applying our signal processing to the 5000 traces we
collected, we were able to detect the end time of the signing operation in 1278 traces. Out of these,
114 traces were identified as having their DA-sequence terminate with at least three elliptic curve
double operations; 3 of these were false positives (as discovered in retrospect; the attack code did
not use this information).

Lattice Reduction and Key Extraction. Using the above 114 traces, we randomly selected
85 traces (this number was set empirically, to obtain high success probability in the next step)
and applied the lattice attack of [BvdPSY14] using the fplll [ABC+] implementation of the BKZ
algorithm with block size β = 30. Unfortunately, whenever the selected traces happen to include
some of 3 erroneous ones, the BKZ algorithm fails to recover the signing key, causing the key-
extraction attempt to fail. Therefore, we repeated the procedure of randomly selecting 85 traces
and applying the lattice attack 30 times. Since each lattice reduction attempt does not depend
on others, we performed these repetitions in a parallel manner on separate cores. Across the 30
parallel attempts, the secret key was successfully recovered in 2. The signal processing and lattice
reductions took two hours on a desktop PC (3.4 GHz, 6 cores, 64 GB RAM), leading to complete
extraction of the ECDSA signing key. Notice that all the 30 repetitions of the lattice reduction

13



Figure 6: (top) A denoised trace with add operations marked. (middle) Zoomed-in view of the
spectrogram of the trace. The energy of add operations is clearly visible. (bottom) Energy as a
function of time of the visible part of the spectrogram (after enhancement and smoothing). Peaks
approximate the location of add operations.

step were done offline on the same data base of analog traces. Thus, even a single successful lattice
reduction leads to a successful key-recovery attack.

3.3 Attacking Other ECSDA Implementations

Attacking OpenSSL on Android Devices. Key-dependent leakage, similar to Figure 2, was
also observed on various Android phones. See Figure 3. We thus conjecture that similar attacks can
be mounted on these devices as well. Demonstrating the feasibility of such a result on an Android
device, Figure 7 shows the extraction of a sequence of elliptic curve double and add operations
from a Sony-Ericsson Xperia X10 smartphone. The signal in the figure is the result of digital FM
demodulation and filtering.

Attacking CoreBitcoin. Demonstrating the possibility of Bitcoin theft via side-channel from iOS
devices, we have mounted a successful key extraction attack on CoreBitcoin’s low s-value ECDSA
implementation running on iOS. We recorded the leakage of 5000 ECDSA secp256k1 signatures
executed on an Apple iPhone 3GS smartphone. Out of these 5000 traces, 1940 were discarded due
to measurement noise. Out of the remaining 3060 traces, 110 were identified as having their DA
sequence terminate in at least four elliptic curve double operations with one of these being a false
positive (again, discovered in retrospect). Next, we randomly chose 85 out of the 110 available
traces and applied the lattice attack described in Section 2.3. Repeating the attack 20 times (each
time choosing a random subset containing 85 traces) resulted in a successful key extraction in 4 out
of the 20 attempts. Similar to Section 3.2, all the 20 repetitions of the lattice reduction step were

14



Figure 7: Sequence of double and add operations extracted during a secp256k1 scalar by point
multiplication operation executed on an Sony-Ericsson Xperia X10 smartphone. In this experiment
we replaced the wNAF representation of k with the 256-digit string obtained by repeating the
pattern 10100.

Figure 8: EM measurement (0.2 sec, 0–250 kHz) of four scalar-by-point multiplication operations
using the NIST P-521 curve executed on an iPhone 3GS smartphone running Apple’s Common-
Crypto library. As in Figure 2, the scalar was set to be either a random 521-digit number or a the
521-digit number obtained by repeating the pattern written to the right. In all cases, the same
curve point was used to perform the multiplication.

done offline on the same data base of analog traces. Thus, even a single successful lattice reduction
leads to a successful key-recovery attack.

Attacking Apple’s CommonCrypto ECDSA Implementation. The ECDSA implementa-
tion of Apple’s CommonCrypto library performs the elliptic curve scalar-by-point multiplication
operation using Algorithm 1 with w = 1. Figure 8 shows scalar-dependent leakage, similar to
Figure 2, obtained by measuring an iPhone 3GS when invoking the elliptic curve multiplication
operation as implemented in Apple’s CommonCrypto library.

4 Cheap Attacks

While the results of Section 3 clearly demonstrate the possibility of key extraction via the electro-
magnetic channel using expensive lab equipment, the low bandwidth nature of our attacks allows
for key extraction using a much cheaper experimental setup via both the electromagnetic channel

15



Figure 9: Mounting a cheap power analysis attack on an iPhone 4 through its charging port. This
setup includes a portable battery (bottom, left), a power monitoring probe (bottom, middle) and
an iPhone 4 (bottom, right). The power probe is then connected to the Tracker Pre sound card
(top, middle) and the attacker’s laptop (top, left).

and the power channel.

EM Probe. For the electromagnetic channel we improvised a probe by scavenging a coil from a
Qi wireless charging receiver module ($2 on eBay). See Figure 1.

Power Probe. To monitor the phone’s current draw, we built a simple USB pass-through adapter,
with a 0.33Ω resistance in series with the ground line. We then connected the phone to a portable
USB battery pack through the pass-through adapter, and measured the voltage over the resistor;
see Figure 9.

Digitizer. We connected the improvised EM and power probes into the microphone input of a
Creative Tracker Pre sound card ($50, eBay). This card acts both as an amplifier (60dB gain) and
as a digitizer (192 Ksample/sec).4

Attack Scenario. Small loops of wire acting as EM probes can be easily concealed inside various
objects (such as tabletops, phone cases (especially those containing an extra battery), or even food
items [GPPT15]). See Figure 1. Monitoring the phone’s power consumption can be easily done by
augmenting an aftermarket charger, external battery or battery case with the requisite equipment.
In this context, phone cases which contain an additional battery (and therefore are connected to
the phone’s charging port) are especially dangerous since these can be augmented to monitor both
channels simultaneously, thus obtaining a potentially cleaner signal. We leave this for future work.

Scalar-Dependent Leakage. We measured the EM leakage of an iPhone 4 using our improvised
EM probe connected to the Tracker Pre sound card and concealed beneath a glass tabletop (see
Figure 10). Similarly to Figure 3, Figure 10 (right) presents a spectrogram of five distinct signature
operations, using the same point P and five different values of the scalar k. Notice that even
though the equipment used to generate Figure 10 is much simpler (and cheaper) than the lab-grade
equipment used in Figure 3, the five different scalars can be easily distinguished from their spectral
signature. Similar results were obtained using the power probe as well (see Figure 10 (left)).

Extracting the DA-Sequence. After observing the scalar dependent leakage using our impro-
vised probes and the Tracker Pre sound card, we proceeded to extract the DA-sequence which

4 Alternatively, one could use an inexpensive USB oscilloscope. However, these are optimized for bandwidth (at
the expense of SNR), and would require an additional amplifier. Sound cards typically offer higher SNR and a built-in
amplifier, and while their bandwidth is much lower, it suffices for our attacks.

16



Figure 10: Power (left) and EM (right) measurement (0.2 sec, 0–96 kHz) of five scalar-by-point
multiplication operations using the NIST P-521 curve executed on an iPhone 4 smartphone running
OpenSSL. As in Figure 2, the scalar was set to be either a random 521-digit number or a the 521-
digit number obtained by repeating the pattern written to the right. In all cases, the same curve
point was used to perform the multiplication.

Figure 11: Extracted DA-sequence obtained from iPhone 3GS during an OpenSSL secp256k1 sig-
nature operation. The leakage was measured using the Tracker Pre sound card and the improvised
EM probe. The double and add operations can clearly be seen.

is required for our attack. Applying our signal processing techniques on an iPhone 3GS run-
ning OpenSSL secp256k1 signature operations, Figure 11 depicts the results of extracting the DA-
sequence using EM leakage from a single signature. Notice that the individual double and add
operations can clearly be seen. Repeating this process for about 5000 signatures should result in a
complete key recovery.

5 Conclusions

In this paper we have demonstrated that despite its speed and randomization, ECDSA signatures
on mobile devices are vulnerable to physical key extraction attacks. Moreover, the attacks can be
mounted cheaply and non-intrusively. Our attack exploits the differences between point addition
and point doubling to recover the DA-sequence. Two approaches can be used to protect an imple-
mentation from side-channels. The value of the nonce can be decoupled from the DA-sequence using
blinding. Alternatively, the implementation can be modified to always use the same DA-sequence,
irrespective of the value of the nonce.

17



Nonce Splitting. Clavier and Joye [CJ01] suggest expressing the nonce k as k = k1 + k2, where
k1 is random and then compute [k1]G + [k2]G using a multi-exponentiation algorithm [Möl01a].
However, this approach leaks the least significant bits of k1 and k2, as well as long, overlapping
sequences of repeating bits in k1 and k2. Splitting the nonce more, i.e., expressing k = k1+k2+k3+
· · · , such that all the terms but one are chosen at random, can reduce the probability of overlaps.
However, this approach still leaks the least significant bit of k and as [AFG+14] show, leaks of one
bit can be exploitable.

Nonce Blinding. Coron [Cor99] suggests blinding the nonce by choosing a random c and calcu-
lating [k]G + [cn]G where n is the group order. Ciet and Joye [CJ03] note that for groups of order
close to a power of two, this method still leaks information about the high order bits of k, and Van
de Pol et al. [Van de PolSY15] show how to exploit such leaks. Combining the two approaches,
i.e., calculating

∑
[ki]G for random ki’s and c such that

∑
ki = k + cn, protects from both types

of leaks.

Constant-time Implementations. Constant-time implementations mitigate many side-channel
leaks by ensuring a fixed execution path that does not depend on secret data, to prevent timing
attacks [BB05]. Additionally, a constant memory access pattern is desired to avoid cache-based
attacks [Ber05, Per05, OST06], as well as cache-induced differences in timing and electromagnetic
behavior. For, EC scalar-by-point multiplication, the scalar can be represented in a regular way
such that the DA-sequence does not depend on the nonce [JT09, Möl01b]; Moller [Möl01b] notes
that these encodings may leak information when a point is added to itself, yet with a random scalar,
as is the case in ECDSA, the probability of this leak is negligible. A constant-time implementation
for some elliptic curves, on some 64-bit platforms, is included in OpenSSL [Käs12]. For Bitcoin’s
secp256k1 curve, the libsecp256k1 [Wui] implementation offers a constant-time, constant-memory-
access implementation of ECDSA signing.

Future Work. While this work clearly demonstrates the vulnerability of multiple implementations
of ECDSA signatures running on mobile devices to cheap low-bandwidth key extraction attacks,
much works remains to be done. The vulnerability of other ECDSA implementations, as well
as general cryptographic code running on mobile devices has received much research attention.
Improving the signal quality, thereby increasing the attack range and reducing the number of
required signatures is an intriguing open problem. To that end, we note that the more advanced
lattice techniques of [Van de PolSY15, ABF+15] are of potential use in order to reduce the number
of signatures. However, our signal is too corrupted (due to interrupts) making these techniques
inapplicable without significant improvements in signal processing techniques.

Acknowledgments

Daniel Genkin, Lev Pachmanov, Itamar Pipman and Eran Tromer are members of the Check Point
Institute for Information Security. This work was done in part while Eran Tromer was visiting the
Simons Institute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467.

This work was supported by the Blavatnik Interdisciplinary Cyber Research Center; by a Google
Faculty Research Award; by the Israeli Centers of Research Excellence I-CORE program (center
4/11); by the Leona M. & Harry B. Helmsley Charitable Trust; and by NATO’s Public Diplomacy
Division in the Framework of ”Science for Peace”.

18



A Current Status of Targeted Software

This appendix reviews the vulnerability status of the targeted software, at the time of writing. See
also Table 1.

OpenSSL 1.0.x branch. We have conducted most of our experiments on OpenSSL version
1.0.1m which was the latest version at the time of conducting this research. For ARM processors,
all curves over prime fields in the current versions of OpenSSL (1.0.1r and 1.0.2f) use the same
underlying elliptic curve implementation and thus appear vulnerable to attacks; while we did not
attempt key extraction, scalar-dependent leakage (similar to Figure 2) was empirically observed
from these OpenSSL versions as well. Upon contacting OpenSSL we were notified that “hardware
side-channel attacks are not in OpenSSL’s threat model”, so no updates are planned to OpenSSL
1.0.x to mitigate our attacks. Note that OpenSSL 1.0.2 will be supported until the year 2020,

OpenSSL 1.1.x branch. OpenSSL 1.1.0 pre-release 3 includes an ARM-specific constant-time
implementations of the NIST P-256 curve, which is unlikely to be vulnerable to similar attacks.
All other curves over prime fields, including the secp256k1 curve, still use the vulnerable wNAF
implementation.

iOS 7.1.2–8.3 CommonCrypto. The ECDSA implementation in the CommonCrypto frame-
work of iOS 7.1.2 appears vulnerable, since it exhibits scalar-dependent leakage (see Section 3.3).
Reverse-engineering the code in iOS 8.3 reveals that it uses the same vulnerable implementation
(wNAF with w = 1).

iOS 9.x CommonCrypto. Starting with iOS 9, CommonCrypto uses a new EC implementa-
tion, including side-channel mitigation techniques such as operand-independent control flow and
Montgomery-ladder multiplication.5 Our current attacks are not applicable to this new EC imple-
mentation, and we have no evidence that it is vulnerable.

CoreBitcoin. CoreBitcoin [Cor] (not to be confused with Bitcoin core, below) is currently vul-
nerable, as discussed in Section 3.3. In response. the CoreBitcoin developers expressed their
intention to switch to the libsecp256k1 library [Wui] in the future. This library offers a constant-
time, constant-memory-access implementation of ECDSA signing, and we have no evidence that it
is vulnerable.

Bitcoin Core. The Bitcoin core code [Bita] (not to be confused with the CoreBitcoin, above)
has already transitioned to the libsecp256k1 library [Wui] for ECDSA signing, starting from version
v0.10.0 (released in February 2015).6 This library offers a constant-time, constant-memory-access
implementation of ECDSA signing, and we have no evidence that it is vulnerable.

References

[AAF+11] D. Aboulkassimi, M. Agoyan, L. Freund, J. Fournier, B. Robisson, and A. Tria.
Electromagnetic analysis (EMA) of software AES on Java mobile phones. In
Workshop on Information Forensics and Security (WIFS) 2011, pages 1–6. IEEE
Computer Society, 2011.

5The relevant code is in the corecrypto library version 337 [App]. The Apple Product Security confirmed that this
is, essentially, the implementation in all iOS 9.x versions, as well as OS X 10.11, and that 77% of the iOS installations
are iOS 9.x, as of February 2016.

6 Bitcoin Git commit fda3fed18a added support for libsecp256k1 ECDSA signing, and commit dffb8f81b8 re-
moved support for OpenSSL ECDSA signing.

19

https://github.com/bitcoin/bitcoin/commit/fda3fed18aedc4bfc8ccffe89d8d2cabb12677ab
https://github.com/bitcoin/bitcoin/commit/dffb8f81b83e1a10100365c696d6a04fc6344728


[AARR02] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The
EM side-channel(s). In Workshop on Cryptographic Hardware and Embedded
Systems (CHES) 2002, pages 29–45. Springer, 2002.

[ABC+] M. Albrecht, S. Bai, D. Cadé, X. Pujol, and D. Stehlé. fplll-4.0, a floating-point
LLL implementation. URL: http://perso.ens-lyon.fr/damien.stehle.

[ABF+15] Thomas Allan, Billy Bob Brumley, Katrina E. Falkner, Joop van de Pol, and
Yuval Yarom. Amplifying side channels through performance degradation. Cryp-
tology ePrint Archive, Report 2015/1141, 2015. http://ia.cr/2015/1141.

[ADMM15] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. On the malleability of Bitcoin transactions. In Financial Cryptog-
raphy and Data Security - FC 2015, pages 1–18, 2015.

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benôıt Gérard, Jean-Gabriel Kammerer,
Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decomposition,
power analysis, and attacks on ECDSA signatures with single-bit nonce bias. In
ASIACRYPT 2014, Part I, pages 262–281. Springer, 2014.

[And08] Ross J. Anderson. Security Engineering — A Guide to Building Dependable
Distributed Systems (2nd ed.). Wiley, 2008.

[App] Apple Inc. Cryptographic libraries. URL: https://developer.apple.com/

cryptography/.

[Arc] Arcbit. URL: http://arcbit.io/.

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/papers.
html#cachetiming, 2005.

[BFMRT16a] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Tibouchi.
Side-channel analysis of Weierstrass and Koblitz curve ECDSA on Android
smartphones. In RSA Conference Cryptographers’ Track (CT-RSA) 2016.
Springer, 2016. To Appear.

[BFMRT16b] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Tibouchi.
Side-channel analysis of Weierstrass and Koblitz curve ECDSA on Android
smartphones. Cryptology ePrint Archive, Report 2016/231, 2016. http:

//ia.cr/2016/231.

[BGRV15] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede.
DPA, bitslicing and masking at 1 GHz. In Cryptographic Hardware and Em-
bedded Systems (CHES) 2015, pages 599–619. Springer, 2015.

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages
667–684. Springer, 2009.

[Bita] Bitcoin Core. URL: https://bitcoin.org/en/bitcoin-core/.

[Bitb] BitStore. URL: http://bitstoreapp.com/.

[Bitc] BitWallet. URL: https://bitwallet.cc/.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical.
In ESORICS 2011, pages 355–371. Springer, 2011.

20

http://perso.ens-lyon.fr/damien.stehle
http://ia.cr/2015/1141
https://developer.apple.com/cryptography/
https://developer.apple.com/cryptography/
http://arcbit.io/
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://ia.cr/2016/231
http://ia.cr/2016/231
https://bitcoin.org/en/bitcoin-core/
http://bitstoreapp.com/
https://bitwallet.cc/


[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes. In CRYPTO
1996, pages 129–142, Santa Barbara, CA, US, August 1996.

[BvdPSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. ”Ooh aah...
just a little bit” : A small amount of side channel can go a long way. In Crypto-
graphic Hardware and Embedded Systems (CHES) 2014, pages 75–92, 2014.

[CJ01] Christophe Clavier and Marc Joye. Universal exponentiation algorithm. In Work-
shop on Cryptographic Hardware and Embedded Systems (CHES) 2001, pages
300–308. Springer, 2001.

[CJ03] Mathieu Ciet and Marc Joye. (virtually) free randomization techniques for elliptic
curve cryptography. In International Conference Information and Communica-
tions Security (ICICS) 2003, pages 348–359. Springer, 2003.

[Cor] CoreBitcoin Library. URL: https://github.com/oleganza/CoreBitcoin.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Cryptographic Hardware and Embedded Systems (CHES)
2002, pages 292–302, 1999.

[CRI12] SPA/SEMA vulnerabilities of popular RSA-CRT sliding window implementa-
tions, 2012. presented at Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES) 2012 rump session. URL: https://www.cosic.esat.

kuleuven.be/ches2012/ches_rump/rs5.pdf.

[FGM+10] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and
Ingrid Verbauwhede. State-of-the-art of secure ECC implementations: A survey
on known side-channel attacks and countermeasures. In Proceedings of the
2010 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST) 2010, pages 76–87, 2010.

[FV12] Junfeng Fan and Ingrid Verbauwhede. An updated survey on secure ECC imple-
mentations: Attacks, countermeasures and cost. In Cryptography and Security:
From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater on
the Occasion of His 65th Birthday, pages 265–282, 2012.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic anal-
ysis: concrete results. In Workshop on Cryptographic Hardware and Embedded
Systems (CHES) 2001, pages 251–261. Springer, 2001.

[GMPT15] Jake Longo Galea, Elke De Mulder, Dan Page, and Michael Tunstall. Soc it
to EM: electromagnetic side-channel attacks on a complex system-on-chip. In
Cryptographic Hardware and Embedded Systems (CHES) 2015, pages 620–640.
Springer, 2015.

[GPPT15] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Stealing keys
from PCs using a radio: Cheap electromagnetic attacks on windowed exponenti-
ation. In Workshop on Cryptographic Hardware and Embedded Systems (CHES)
2015, pages 207–228, 2015. Extended version: Cryptology ePrint Archive, Report
2015/170.

[GPPT16] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. ECDH
key-extraction via low-bandwidth electromagnetic attacks on PCs. In RSA Con-
ference Cryptographers’ Track (CT-RSA) 2016, pages 219–235, 2016.

21

https://github.com/oleganza/CoreBitcoin
https://www.cosic.esat.kuleuven.be/ches2012/ches_rump/rs5.pdf
https://www.cosic.esat.kuleuven.be/ches2012/ches_rump/rs5.pdf


[GPT14] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my laptop:
Physical side-channel key-extraction attacks on PCs. In Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES) 2014, pages 242–260. Springer,
2014. Extended version: Cryptology ePrint Archive, Report 2014/626.

[GS15] Gabriel Goller and Georg Sigl. Side channel attacks on smartphones and em-
bedded devices using standard radio equipment. In International Workshop on
Constructive Side-Channel Analysis and Secure Design (COSADE) 2015, pages
255–270. Springer, 2015.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In CRYPTO 2014, pages 444–461 (vol. 1).
Springer, 2014. Extended version: Cryptology ePrint Archive, Report 2013/857.

[GZ13] Nina Golyandina and Anatoly Zhigljavsky. Singular Spectrum Analysis for Time
Series. Springer, 2013.

[Has07] Hossein Hassani. Singular spectrum analysis: Methodology and comparison. J.
of Data Science, (5):239–257, 2007.

[JT09] Marc Joye and Michael Tunstall. Exponent recoding and regular exponentiation
algorithms. In AFRICACRYPT 2009, pages 334–349. Springer, 2009.

[Käs12] Emilia Käsper. Fast elliptic curve cryptography in OpenSSL. In Financial Cryp-
tography and Data Security (FC) 2011, pages 27–39. Springer, 2012.

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction
to differential power analysis. Journal of Cryptographic Engineering, 1(1):5–27,
2011.

[KP11] Md Atikur Rahman Khan and D.S. Poskitt. Window Length Selection and
Signal-Noise Separation and Reconstruction in Singular Spectrum Analysis.
Monash Econometrics and Business Statistics Working Papers 23/11, Monash
University, Department of Econometrics and Business Statistics, 2011. URL:
https://ideas.repec.org/p/msh/ebswps/2011-23.html.

[KR12] Gary Kenworthy and Pankaj Rohatgi. Mobile device security: The case for side
channel resistance. In Mobile Security Technologies (MoST) 2012, 2012.

[LGSM15] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. ARMaged-
don: Last-level cache attacks on mobile devices. CoRR, abs/1511.04897, 2015.
http://arxiv.org/abs/1511.04897.

[Mic] Working with micropayment channels. URL: https://bitcoinj.github.io/
working-with-micropayments.

[Möl01a] Bodo Möller. Algorithms for multi-exponentiation. In Selected Areas in Cryp-
tography (SAC) 2001, pages 165–180. Springer, 2001.

[Möl01b] Bodo Möller. Securing elliptic curve point multiplication against side-channel at-
tacks. In Information Security Conference (ISC) 2001, pages 324–334. Springer,
2001.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks
— Revealing the Secrets of Smart Cards. Springer, 2007.

[Myc] Mycelium wallet. URL: https://mycelium.com/mycelium-wallet.html.

22

https://ideas.repec.org/p/msh/ebswps/2011-23.html
https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
https://mycelium.com/mycelium-wallet.html


[Ngu11] Phong Q. Nguyen. Lattice reduction algorithms: Theory and practice. In Euro-
crypt 2011, pages 2–6, Tallinn, Estonia, May 2011.

[NIS13] National Institute of Standards and Technology. Digital Signature Standard
(DSS), 2013.

[NS03] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the elliptic curve digi-
tal signature algorithm with partially known nonces. Des. Codes Cryptography,
30(2):201–217, 2003.

[NSN+14] Yuto Nakano, Youssef Souissi, Robert Nguyen, Laurent Sauvage, Jean-Luc Dan-
ger, Sylvain Guilley, Shinsaku Kiyomoto, and Yutaka Miyake. A pre-processing
composition for secret key recovery on Android smartphone. In Information
Security Theory and Practice (WISTP) 2014, pages 76–91. Springer, 2014.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermea-
sures: The case of AES. In RSA Conference Cryptographers’ Track (CT-RSA)
2006, pages 1–20. Springer, 2006.

[Per05] Colin Percival. Cache missing for fun and profit. Presented at BSDCan. http:
//www.daemonology.net/hyperthreading-considered-harmful, 2005.

[van de PolSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more. In
RSA Conference Cryptographers’ Track (CT-RSA) 2015, pages 3–21, 2015.

[Por13] T. Pornin. Deterministic usage of the digital signature algorithm (DSA) and
elliptic curve digital signature algorithm (ECDSA). RFC 6979, 2013.

[PS15] Santos Merino Del Pozo and François-Xavier Standaert. Blind source separation
from single measurements using singular spectrum analysis. In Cryptographic
Hardware and Embedded Systems (CHES) 2015, pages 42–59. Springer, 2015.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards. In E-smart 2001, pages 200–210,
2001.

[Rei60] George W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308,
1960.

[Smi15] Chris Smith. What are micropayments and how does Bitcoin
enable them?, 2015. URL: https://coincenter.org/2015/06/

what-are-micropayments-and-how-does-bitcoin-enable-them/.

[Wui] Pieter Wuille. libsecp256k1. URL: https://github.com/bitcoin/secp256k1.

[Wui14] Pieter Wuille. Dealing with malleability, 2014. URL: https://github.com/

bitcoin/bips/blob/master/bip-0062.mediawiki.

[Yel] Yellet. URL: https://www.yallet.com/.

[ZP14] A. Zajic and M. Prvulovic. Experimental demonstration of electromagnetic in-
formation leakage from modern processor-memory systems. IEEE Transactions
on Electromagnetic Compatibility (EMC) 2014, 56(4):885–893, 2014.

23

http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful
https://coincenter.org/2015/06/what-are-micropayments-and-how-does-bitcoin-enable-them/
https://coincenter.org/2015/06/what-are-micropayments-and-how-does-bitcoin-enable-them/
https://github.com/bitcoin/secp256k1
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://www.yallet.com/

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Our Results
	1.3 Targeted Software and Hardware
	1.4 Related Work

	2 Cryptanalysis
	2.1 Preliminaries
	2.2 Scalar-by-Point Multiplication
	2.3 Attack Algorithm

	3 Signal Analysis
	3.1 Experimental Setup
	3.2 Attacking OpenSSL ECDSA
	3.3 Attacking Other ECSDA Implementations

	4 Cheap Attacks
	5 Conclusions
	Acknowledgments
	A Current Status of Targeted Software
	References

