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Abstract. Motivated by the goal of factoring large integers using the Number Field Sieve,
several special-purpose hardware designs have been recently proposed for solving large sparse
systems of linear equations over finite fields using Wiedemann’s algorithm. However, in the
context of factoring large (1024-bit) integers, these proposals were marginally practical due
to the complexity of a wafer-scale design, or alternatively the difficulty of connecting smaller
chips by a huge number of extremely fast interconnects.

In this paper we suggest a new special-purpose hardware device for the (block) Wiedemann al-
gorithm, based on a pipelined systolic architecture reminiscent of the TWIRL device. The new
architecture offers simpler chip layout and interconnections, improved efficiency, reduced cost,
easy testability and greater flexibility in using the same hardware to solve sparse problems of
widely varying sizes and densities. Our analysis indicates that standard fab technologies can
be used in practice to carry out the linear algebra step of factoring 1024-bit RSA keys.

As part of our design but also of independent interest, we describe a new error-detection
scheme adaptable to any implementation of Wiedemann’s algorithm. The new scheme can be
used to detect computational errors with probability arbitrarily close to 1 and at negligible
cost.
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1 Introduction

In recent years, various special-purpose hardware implementations of the Number Field
Sieve (NFS) algorithm have been proposed for factoring large (e.g., 1024-bit) integers.
These devices address two critical steps of the NFS: the sieving step [1,2,3,4,5,6,7] and the
linear algebra step [8,9,10,11].

This work focuses on the linear-algebra step of the NF'S. While the cost of this step
seems to have been reduced to below that of the sieving step (for 1024-bit composites)
by the most recent proposals [10,11], practically these designs are not fully satisfactory:
they require (various combinations of) extremely large chips, non-local wiring and high-
bandwidth chip interconnects, and thus pose significant technological hurdles.



Below we describe a new systolic design for the NFS linear algebra step, and specifi-
cally for the matrix-by-vector multiplications which dominate the cost of the Wiedemann
algorithm. This design is both more efficient and more realistic than previous ones. In
its simplest form, it consists of a one dimensional chain of identical chips with purely
local interconnects, which from a practical standpoint makes it an attractive alternative
to previous wafer-scale mesh proposals. For higher efficiency it can be generalized to a
two-dimensional array of chips, but unlike previous proposals, this device has standard
chip sizes, purely local interconnects, and can use standard DRAM chips for some of its
components. In addition, the new design is highly scalable: there is no need to commit
to particular problem sizes and densities during the chip design phase, and there is no
need to limit the problem size to what can be handled by a single wafer. Since a single
chip design of small fixed size can handle a wide range of sparse matrix problems (some of
which may be related to partial differential equations rather than cryptography), the new
architecture can have additional applications, greatly reduced technological uncertainties,
and lower initial NRE cost.

Unlike previous routing based proposals, whose complex data flows required simulation
of the whole device and were not provably correct, the present device has a simple and
deterministic data flow, so that each unit can be simulated independently. This facilitates
the simulation and actual construction of meaningful proof-of-concept sub-devices.

We have evaluated the cost of this device for a specific choice of matrix parameters,
which is considered a conservative estimate for the matrix size in factoring 1024-bit integers
using NFS. The estimated areaxtime cost is 6.5 lower than the best previous proposal; the
concrete cost estimate is 0.4M US$xyear (i.e., excluding non-recurring R&D costs, US$
0.4M buys enough hardware to obtain a throughput of one solved linear algebra instance
per year).

The present design adapts efficiently and naturally to operations over any finite field
GF(q), since it does not depend on the in-transit pairwise cancellation of values in GF(2).
In particular, it can support the new algorithm of Frey [12,13]. In fact, it can be used with
minor modifications over any ground field, such as the rationals or complex numbers.

Section 2 recalls basic facts about Wiedemann’s algorithm and its context in the NFS.
Section 3 describes the new hardware architecture. In any large-scale computation the han-
dling of faults is crucial; Section 4 presents a particularly efficient error detection scheme,
which can also be adapted to other implementations of block Wiedemann. Section 5 gives
a preliminary cost analysis for parameters currently considered as plausible for 1024-bit
numbers, and compares it to previous proposals.

2 Preliminaries

For an introduction to the NFS algorithm we refer to [14], and for a detailed account to [15].
Here it is sufficient to keep in mind that the overall running time of the NFS algorithm
is dominated by the sieving step and the linear algebra step. In this paper we exclusively



consider the linear algebra step, defined as follows. We are given a D x D matrix A over
GF(2), whose columns correspond to relations found in the preceding sieving step (after
some pre-processing). Our goal is to find a few vectors in the kernel of A, i.e., several sets
of relations that sum to the zero vector. This matrix is large but sparse, with a highly
non-uniform distribution of row densities. As in previously proposed devices [8,9,10,11],
we employ the block Wiedemann algorithm [16,17] for solving sparse systems of linear
equations. Basically, the block Wiedemann algorithm reduces the above to the problem of
computing sequences of the form

Av, A%, ..., At (1)

for some v € GF(2)”. Such a sequence can be computed by means of ¢ matrix-by-vector
multiplications, where the matrix A remains fixed and the vector varies. Overall, roughly
2D such multiplications are needed, divided into 2K chains, where K > 32 is the blocking
factor. The resulting products are not explicitly output after each multiplication; depending
on the phase of Wiedemann’s algorithm, only their inner product with some fixed vectors
or their (partial) sums are needed.

Parameters for 1024-bit composites. At present there is considerable uncertainty
about the size and density of the matrix one would encounter in the factorization of a 1024-
bit composite, for several reasons: freedom in the choice of the NFS parameters, freedom
in the application of pre-processing to the matrix (e.g., to cancel out “large primes”), and
lack of complete analysis of this aspect of the NFS algorithm. For concreteness and ease
of comparison, in the following we shall assume the “large matrix” parameters from [9],
namely a size of D x D for D ~ 10'° and density of 100 entries per column. This leaves a,
generous conservative margin compared to the smaller matrix expected to be produced by
TWIRL [4].

For the sake of concreteness, we propose a concrete instance of our architecture where
various design parameters are chosen suitable for the above NFS parameters. In the fol-
lowing, these concrete parameters are designated by angular brackets (e.g., D (= 10'%)).
Section 5 provides additional details and discusses the cost of the device for these param-
eters.

3 The New Architecture

We shall unravel the architecture in several stages, where each stage generalizes the former
and (when appropriately parameterized) improves its efficiency.

3.1 Basic Scheme

The proposed hardware device is preloaded with a compressed representation of the sparse
matrix A € GF(2)P*P | as will be detailed below. For each multiplication chain, we load the



input vector v and iteratively operate the device to compute the vectors Av, A%v, ..., Alv
and output the appropriate sums or inner products.

We begin by describing an inefficient and highly simplified version of the device, to
illustrate its high-level data flow.* This simplified device consists of D (= 10'°) stations
connected in a pipeline. The i-th station is in charge of the i-th matrix row, and contains a
compressed representation of the (& 100) non-zero entries in that row. It is also in charge
of the i-th entry of the output vector, and contains a corresponding accumulator W'[4].

In each multiplication, the input vector v € GF(2) is fed into the top of the pipeline,
and moves down as in a shift register. As the entries of v pass by, the i-th station looks at
all vector entries v; passing through it, identifies the ones corresponding to the non-zero
matrix entries A;; in row ¢, and for those entries adds A;; - v; to its accumulator W’[i].
Once the input vector has passed all stations in the pipeline, the accumulators W'[-] contain
the entries of the product vector Av. These can now be off-loaded and fed back to the top
of the pipeline in order to compute the next multiplication.

The one-dimensional chain of stations can be split across several chips: each chip con-
tains one or more complete stations, and the connections between stations may span chip
boundary. Note that since communication is unidirectional, inter-chip I1/O latency is not
a concern (though we do need sufficient bandwidth; the amount of bandwidth needed will
increase in the variants given below, and is taken into account in the cost analysis of
Section 5).

3.2 Compressed Row Handling

Since the matrix A is extremely sparse, it is wasteful to dedicate a complete station for han-
dling each row of A, as it will be idle most of the time. Thus, we partition A into u {= 9600)
horizontal stripes and assign each such stripe to a single station (see Figure 1). The number
of rows per station is p ~ D/u (= 2%°), and each station contains y accumulators W'[i]
with ¢ ranging over the set of row indices handled by the station.

Each station stores all the non-zero matrix entries in its stripe, and contains an accu-
mulator for each row in the stripe. As before, the input vector v passes through all stations,
but now there are just u of these (rather than D). Since the entries of v arrive one by one,
each station implicitly handles a p x D submatrix of A at each clock cycle.

3.3 Compressed Vector Transmission

For additional efficiency, we add parallelism to the vector transmission. Instead of each
station processing a single entry of v in each clock-cycle, we process v in chunks of
k (= 32) consecutive entries.” The inter-station pipeline is thickened by a factor of k.
The vector v now passes in chunks of k entries over an inter-station pipeline (in Figure 2

4 This basic version is analogous to the electronic pipeline-of-adders version of TWINKLE [2], and many of
the improvements described in the following have corresponding analogues in the TWIRL architecture [4].
® The choice of k depends mainly on the number of available I/O pins for inter-chip communication.
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from right to left); in each clock cycle, each station obtains such a chunk from the previous
station (to its right), processes it and passes it to the next station (to its left). The first
(rightmost) station gets a new part of the vector received from the outside. At each clock
cycle, each station now implicitly handles a 4 x k submatrix of A.

Each station is comprised of k processors, each connected to a separate pipeline line (see
Figure 2), and these k processors inside each station are connected via y (= 2) intra-station
channels, which are circular shift registers spanning the station. The p accumulators W[i]
contained in this station are partitioned equally between the k processors.

For processing a k-element chunk of the vector, each of the k processors has to decide
whether the vector element v; it currently holds is relevant for the station it belongs to,
i.e., whether any of the  matrix rows handled by this station contains a non-zero entry in
column i. If so, then v; should be communicated to the processor handling the corresponding
accumulator(s) and handled there. This is discussed in the following subsection.

3.4 Processing Vector Elements

Fetching vector elements. The relevance of a vector entry v; to a given station depends
only on ¢, which is uniquely determined by the clock cycle and the processor (out of the k)
it reached. Consequently, each processor needs to read the content of one pipeline line (to
which it is attached) at a predetermined set of clock cycles, specific to that processor, which
is constant across multiplications and easily precomputed. This set of cycles is encoded in
the processor as follows.

Each processor contains a fetches table which instructs it when to read the next vector
element from the pipeline. It contains fetch events, represented as triplets (7, f,¢) where
7 is an §, (= 7)-bit integer, f is a one-bit flag and ¢ is a [logy(7)]-bit integer. Such a
triplet means: “ignore the incoming vector entries for 7 clock cycles; then, if f = 1, read the



input vector element and transmit it on the /-th intra-station channel”.® The table is read
sequentially, and is stored in compact DRAM-type memory.

Updating the accumulators. Once a relevant vector element v; has been fetched by
some processor and copied to an intra-station channel, we still need to handle it by adding
Aj;-v; to the accumulator W'[j], for every row j handled by this station for which A;; # 0.
These accumulators (usually just one) may reside in any processor in this station. Thus,
each processor also needs to occasionally fetch values from the intra-station channels and
process it. Similarly to above, the timing of this operation is predetermined, identical across
multiplications and easily precomputed.

To this end, each processor also holds an updates table containing update events rep-
resented as a 5-tuple (7, f, ¢, 7', z) where T is an & (= 7)-bit integer, f is a one-bit flag, ¢
is a [logy(i)]-bit integer, j’ is a [logy(u/k)]-bit integer and z is a field element.” Such a
5-tuple means: “ignore the intra-station channels for 7 clock cycles; then, if f = 1, read
the element y € GF(q) currently on channel ¢, multiply it by x, and add the product to
the 7’-th accumulator in this processor.” This table is also read sequentially and stored in
compact DRAM-type memory.

During a multiplication, each processor essentially just keeps pointers into those two
tables (which can actually be interleaved in a single DRAM bank), and sequentially executes
the events described therein.

An update operation requires a multiplication over GF(¢) and addition of the product
to an accumulator stored in DRAM (which is very compact but has high latency). These
operations occur at non-regular intervals, as prescribed by the updates table; the processors
use small queues to handle congestion, where a processor gets several update events within
a short interval. Crucially, the load on these queues is known in advance as a side effect of
computing the tables. If some processor is over-utilized or under-utilized, we can change
the assignments of rows to stations, or permute the matrix columns, to even the load.

Handling dense rows. All the entries arriving from the intra-station channels while
the updated vector is stored into the DRAM have to be held in the processor’s queues. As
the random-access latency of DRAM is quite large (= 70ns), the entries must not arrive
too fast. Some of the rows of A are too dense, and could cause congestions of the queues
and intra-station channels. To overcome this problem we split such dense rows into several
sparser rows, whose sum equals the original. In this way we also ensure that all stations
have a similar load and handle the same number of rows. This increases the matrix size
by an insignificant amount ({=~ 10%) additional rows®), and the post-processing required
to re-combine the split rows is trivial.

Precomputation and simulation. The content of the two tables used by each processor
fully encodes the matrix entries. These tables are precomputed once for each matrix A, e.g.,
using ordinary PCs. Once computed, they allow us to easily simulate the operation of any

6 The flag f is used to handle the cases where the interval between subsequent fetches is more than 2%+ —1.
" Over GF(2), # = 1 always and can thus be omitted.
8 Extrapolated from a pre-processed RSA-155 NFS matrix from [18], provided to us by Herman te Riele.



Fig. 3. Arranging the stations into a circle

processor at any clock cycle, as it is completely independent of the rest of the device and
of the values of the input vectors. We can also accurately (though inefficiently) simulate
the whole device. Unlike the mesh-based approaches in [9,10,11], we do not have to rely
on heuristic run time assumptions for the time needed to complete a single matrix-vector
multiplication.

3.5 Skewed Assignment for Iterated Multiplication

In the above scheme, once we have started feeding the initial vector v into the pipeline,
after (D/k) + u clock cycles” the vector v has passed through the complete pipeline and
the vector A - v is stored in the stations. More precisely, each of the u stations contains
w1 = D/u consecutive components of v, and we next want to compute the matrix-by-vector
product A - Av. Thus, we need to somehow feed the computed result Av back into the
inter-station pipeline.

To feed the vector Av back into the inter-station pipeline, first we physically close the
station interconnects into a circle as depicted in Figure 3; this can be done by appropriate
wiring of the chips on the PCB. We also place a memory bank of D/u GF(q) elements at
each of the u stations. Collectively, denote these banks by W. At the beginning of each
multiplication chain, the initial vector v is loaded into W sequentially, station by station.

During a multiplication, the content of W is rotated, by having each station treat its
portion of W as a FIFO of k-tuples: in each clock cycle it sends the last k-tuple of its
portion of W to the next station, and accepts a new k-tuple from the previous station.
Meanwhile, the processors inside each station function exactly as before, by tapping the
flow of k-tuples of vector elements in W at some fixed point (e.g., the head of the FIFO
in that station). Thus, after D/k clock cycles, we have completed a full rotation of the
content of W and the multiplication result is ready in the accumulators W. A key point
here is that each station sees the contents of W in cyclic order starting at a different offset,
but owing to the commutativity of addition in GF(q) this does not affect the final result.

9 Actually slightly more, due to the need to empty the station channels and processor queues.



Having obtained the matrix-by-vector, we can now continue to the next multiplication
simply by switching the roles (or equivalently, the contents) of the memory banks W and
accumulators W': this amounts to a simple local operation in each processor (note that size
and distribution among processors of the cells W{:| and the cells W'[-] is indeed identical).
Thus, the matrix-by-vector multiplications can be completed at a rate of one per D/k
cycles.

3.6 Amortizing Matrix Storage Cost

Recall that in the block Wiedemann algorithm, we actually execute 2K multiplication
chains with different initial vectors but identical matrix A. These are separated into two
phases, and in each phase we can handle these K chains in parallel. An important ob-
servation is that we can handle these K chains using a single copy of the matrix (whose
representation, in the form of the two event tables, has so far dominated the cost). This
greatly reduces the amortized circuit cost per multiplication chain, and thus the overall
cost per unit of throughput.

The above is achieved simply by replacing every field element in W and W' by a K-tuple
of field elements, and replacing all field additions and multiplications with element-wise
operations on the corresponding K-tuples. The event tables and the logic remain the same.
Note that the input and output of each station (i.e., the pipeline width) is now & - K field
elements.

3.7 Two-Dimensional Chip Array

As described above, each of the processors inside the station incorporates two types of
memory storage: a fixed storage for the representation of the matrix elements (i.e., the event
tables), and vector-specific storage (W and W') which increases with the parallelization
factor K. Ideally, we would like to use a large K in order to reduce the amortized cost of
matrix storage. However, this is constrained by the chip area available for W and W'.

To obtain further parallelization without increasing the chip sizes, we could simply run
several copies of the device in parallel. By itself, this does not improve the cost per unit of
throughput. But now all of these devices use identical storage for the matrix representation,
and access it sequentially at the same rate, so in fact we can “feed” all of them from a single
matrix representation. In this variant, the event tables are stored in an external DRAM
bank, and are connected to the chips hosting the processors and chain-specific storage
through a unidirectional pipeline, as illustrated in Figure 4. Note that communication
remains purely local—there are no long broadcast wires.

This variant splits each of the monolithic chips used by the previous variants into a
standard DRAM memory chip for matrix storage, plus a chain of small ASIC chips for the
processors and the storage of the vectors. By connecting b {= 90) such ASIC chips to each
DRAM chip, we can increase the blocking factor K by a factor of b without incurring the
cost of duplicate matrix storage.
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Fig. 4. Using external memory to store the matrix A and b parallel devices, each hosting
a circle of stations

4 Fault Detection and Correction

4.1 A Generic Scheme

To successfully complete the Wiedemann algorithm, the device must compute all the
matrix-by-vector multiplications without a single error.!’ For the problem parameters of
interest the multiplications will be realized by tens of thousands of chips operating over sev-
eral months, and it would be unrealistic to hope (or alternatively, expensive to ensure) that
all the computations will be faultless. The same concern arises for other special-purpose
hardware designs, and also for software implementations on commodity hardware. It is
thus crucial to devise algorithmic means for detecting and correcting faults.

A simple real time error-detection scheme would be to apply a linear test: during a
preprocessing stage, choose a random d x D matrix B for an appropriate d, precompute
on a reliable host computer and store in the hardware the d x D matrix C' = BA, and
verify that Bw’ = Cw whenever the hardware computes a new product w’ = Aw. Over
GF(q) each row of the matrix B reduces the probability of an undetected error by a factor
of ¢, and thus for ¢ = 2 we need at least a hundred rows in B to make this probability
negligible. Since each one of the dense 100 x D matrices B and C' contains about the same
number of 1’s as the sparse D x D matrix A (with one hundred 1’s per row), this linear
test can triple the storage and processing requirements of the hardware, and meshes poorly
with the overall design whose efficiency relies heavily on the sparseness of the matrix rows.
Note that we cannot solve this problem by making the 100 x D matrix B sparse, since this
would greatly reduce the probability of detecting single bit errors.

In the following we describe an alternative error-detection scheme, which provides (ef-
fectively) an arbitrarily small error probability at a negligible cost, under reasonable as-
sumptions. It inspects only the computed (possibly erroneous) matrix-by-vector products,
and can thus be applied to any implementation of Wiedemann’s algorithm. We will con-
sider its operation over any finite field GF(q), though for integer factoring via NFS only
q = 2 is of interest.

10 Note the contrast with the NFS sieving step, which can tolerate both false positive and false negative
errors in its smoothness tests.



Detection. Let wg,wi,wo,... € GF(q)D denote the sequence of vectors computed by the
device, where wg = v. To verify that indeed w; = A% for all i > 0, we employ the following
randomized linear test. For a small integer d (= 200), choose a single vector b € GF(q)”
uniformly at random, and precompute on a reliable computer the single vector ¢' = b" A%
(here " denotes transpose). After each w; is computed, compute also the inner products
b'w; and ¢'w; (which are just field elements). Save the last d results of the latter in a small
shift register, and after each multiplication test the following condition:

bw; =cwi_gq . (2)

If equality does not hold, declare that at least one of the last d multiplications was faulty.

Correctness. If no faults have occurred then (2) holds since both sides equal b"Av.
Conversely, we will argue that the first faulty multiplication w; # Aw;_1 will be detected
within d steps with overwhelming probability, under reasonable assumptions.

Let us first demonstrate this claim in the simplest case of some transient error € which
occurs in step 7. This changes the correct vector A7v into the incorrect vector wj = Aly+e.
All the previous w; for ¢ < j are assumed to be correct, and all the later w; for ¢ > j are
assumed to be computed correctly, but starting with the incorrect w; in step j. It is easy
to verify that the difference between the correct and incorrect values of the computed
vectors w; for i > j evolves as A Je, and due to the randomness of the matrix A generated
by the sieving step these error vectors are likely to point in random directions in the D-
dimensional space GF(q)P. The device has d chances to catch the error by considering
pairs of computed vectors which are d apart, with the first vector being correct and the
second vector being incorrect. The probability that all these d random error vectors will
be orthogonal to the single random test vector b is expected to be about ¢~%, which is
negligible; the computational cost was just two vector inner products per matrix-by-vector
multiplication.

The analysis becomes a bit more involved when we assume that the hardware starts to
malfunction at step j, and adds (related or independent) fault patterns to the computed
result after the computation of each matrix-vector product from step j onwards. Let the
result of the i-th multiplication be w; = Aw;_1 + €;, where the vector ¢; is the error in the
output of this multiplication. We consider the first fault, so ¢; = 0 for all i < j. Assume
that j > d (j < d will be addressed below). By the linearity of the multiplication and the
minimality of j, we can expand the above recurrence to obtain w; = A%v + ZZ/:j (A=)
(i > j). Plugging this into (2) and canceling out the common term b" A%v, we get that for
Jj<i<j+d, (2)is equivalent to:

T % s sl
br;=0 where ri = Zi’:j(AZ Yei) . (3)
We assume that each error ¢; is one of at most (¢D)® possibilities for some o < D/d

(e.g., {a = 10%)), regardless of A and b. This suffices to enumerate all reasonably likely
combinations of local faults (corrupted matrix entries, faulty pipeline connections, errors

10



in GF(q) multipliers, memory bit flips, etc.). We also make the simplifying (though not
formally correct) assumption that A, ..., A1 are random matrices drawn uniformly and

independently.!! Then for any fixed values of &;, the vectors in the set R = {rl}zif;fo

are drawn uniformly and independently from GF(q)P (recall that e; # 0), and thus the
probability that the span of R has dimension less than |R| = d—10 is smaller than dg= (P~
(which is a trivial upper bound on the probability that one of the d— 10 vectors falls into the
span of the others). By assumption, there are at most (¢D)*¢ possible choices of (ai)gi;-lH.
Hence, by the union bound, the probability that the span of R has dimension less than
d — 10 is at most (¢D)*? - dg=P=d) = g . g@dlogg D+d=D " which is negligible. Conditioned
on the span of R having full rank d — 10, the probability of the random vector b being
orthogonal to the span of R is ¢~(¢~19 which is also negligible. Hence, with overwhelming
probability, at least one of the tests (3) for j + 10 < i < j 4 d will catch the fault in w;.

Startup and finalization. Note that the test (2) applies only to ¢ > d, and moreover that
our analysis assumes that the first d multiplications are correct. Thus, for each of the 2K
multiplication chains of block Wiedemann, we start the computation by computing the first
d multiplications on a reliable general-purpose computer, and then load the state (including
the queue of ¢'w; values for i =0, ...,d) into the device for further multiplications.

Also note that in the analysis, the results of the j-th multiplications are implicitly
checked by (2) for i = j,...,j+d— 1. Thus, in order to properly check the last d multipli-
cations in each chain, we run the device for d extra steps and discard the resulting vectors
but still test (2).

Recovery. The above method will detect a fault within d clock cycles (with overwhelming
probability), but will not correct it. Once the fault is detected, we must backtrack to a
known-good state without undoing too much work. Assuming a sufficiently low probability
of error, it is simplest to dump a full copy of the current vector w; from the device into
a general-purpose computer, at regular but generously-spaced intervals; this can be done
by another special station tapping the pipeline. The backup vectors may be stored on
magnetic media, and thus their storage has negligible cost. When a fault is detected, the
faulty component can be replaced (or a spare device substituted) and the computation
restarted from the last known-good backup.

4.2 Device-Specific Considerations

Implementation. The above scheme requires only the computation of two inner products
(b'w; and ¢'w;) for each multiplication. In the proposed hardware device, this is achieved

1 The sieving and preprocessing steps of NFS yield a matrix A that has nearly full rank and is“random-
looking” except for some biases in the distribution of its values: A is sparse (with density (=~ 100/10°}))
and its density is decreasing with the row number. The first few self-multiplications increase the density
exponentially and smoothen the distribution of values, so that A'° has full and uniform density. The
independence approximation is applicable since we are looking at simple local properties (corresponding
to sparse error vectors), which are “mixed” well by the matrix multiplication. While the resulting matrices
do have some hidden structure, realistic fault patterns are oblivious to that structure.

11



by one additional station along the pipeline, which taps the vector entries flowing along
the pipeline and verifies their correctness by the above scheme. This station contains the
entries of b and ¢ in sequential-access DRAM. For each of the K vectors being handled, it
processes a k-tuple of vector entries at every clock cycle, keeps the d most recent values of
c'w; in a local FIFO queue at this station, and performs the test according to (2).

Halving the cost. The storage cost can be halved by choosing b pseudorandomly instead
of purely randomly; the number of multipliers can also be nearly halved by choosing b to
be very sparse.

Using faulty chips. In addition to the above high-level error-recovery scheme, it is also
useful to work around local faults in the component chips: this increases chip yield and
prevents the need to disassemble multi-chip devices if a fault was discovered after assembly.
To this end, the proposed device offers a significant level of fault tolerance due to its uniform
pipelined design: we can add a “bypass” switch to each station, which effectively removes
it from the pipeline (apart for some latency). Once we have mapped the faults, we can
work around any fault in the internals of some station (this includes the majority circuit
area) by activating the bypass for that station and assigning its role to one of a few spare
stations added in advance. The chip containing the fault then remains usable, and only
slightly less efficient.

5 Cost and Performance

5.1 Cost for 1024-bit NFS Matrix Step

As explained in Section 2, there is considerable uncertainty about the size and density
of the matrices that would appear in the factorization of 1024-bit composites using the
Number Field Sieve. For concreteness and ease of comparison, throughout Section 3 and in
the following we assume the rather conservative “large matrix” parameters (see Section 2).

Clearly there are many possibilities for fixing the different parameters of our device,
depending on such parameters as desired chip size and number of chips. One may even con-
sider combining the above design with the splitting of the processed matrix into submatrices
as put forward in [10], thereby giving up the homogeneity and purely local communication
but decreasing the dimension of the vectors that have to be handled. In the following we
consider a specific parameter set, which focuses on practicality with today’s technology.

We assume 90nm chip manufacturing technology with DRAM-type process'?, a net
chip area of 1 cm?, a per-chip I/O bandwidth of 1024 Gbit/s, and a clock rate of 1GHz.
A DRAM access is assumed to take 70 clock cycles. These parameters are quite realistic
with current technology.

We employ a 300 x 90 array of ASIC chips. Each column of 300 chips contains v = 9600
stations (32 per chip). Each station consists of k£ = 32 processors, communicating over y = 2

12° Amortized DRAM density is assumed to be 0.1pum? per bit, and the logic is assumed to have an average
density of 1.4um? per transistor.
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intra-station channels, with a parallelization factor of 10. Each of the 300 rows, of 90 chips
each, is fed by a 108Gbit DRAM module. Overall, the blocking factor is K = 10-90 = 900.
This array can complete all multiplication chains in ~ 2.4 months.

The total chip area, including the matrix storage, is less than 90 full 30cm wafers.
Assuming a “silicon cost” of US$ 5000 per wafer, and a factor 4 increase for overheads
such as faulty chips, packaging, testing and assembly, the total cost is under US$ 2M.

Comparison to previous designs. A mesh-based design as considered in [11], adapted
to 90nm technology and using 85x85 chips of size 12.25 cm? each, will require about 11.7
months to process the above matrix. The higher complexity of this design limits the clocking
rate to 200 MHz only. Comparing throughput per silicon area, the new device is 6.5 more
efficient; it also has much smaller individual chips and no need for non-local wiring.

Implications for 1024-bit factorization. With the above device and matrix size, the
cost of the NFS linear algebra step is 0.4M US$xyear, which is significantly lower than
that of the NFS sieving step using the TWIRL device [4]. Moreover, TWIRL is expected
to produce a matrix significantly smaller than the conservative estimate used above, so the
cost of the linear algebra step would be lower than the above estimate. Since TWIRL, being
a wafer-scale design, is also more technologically challenging, this reaffirms the conclusion
that at present the bottleneck of factoring large integers is the NFS sieving step [9].

5.2 Further Detalils

To derive concrete cost and performance estimates for the 1024-bit case, several implemen-
tation choices for parameters, such as &y, d¢, 7y, 7, have been determined experimentally as
follows. For the above problem and technology parameters, and a large randomly drawn ma-
trix, we used a software simulation of a station to check for congestions in bus and memory
accesses, and chose design parameters for which such congestions never occur experimen-
tally. Recall that the device’s operation is deterministic and repetitive (see Section 3.4), so
the simulation accurately reflects the device’s operation with the given parameters.

In the following we briefly mention some aspects of the circuit area and its analysis,
as used to derive the above estimate. Note that we employ the split design of Section 3.7,
which puts the matrix storage in plain DRAM chips and the logic and vector storage in
ASIC chips. For these parameters, memory storage dominates area: approximately 97% of
the ASIC chip area is occupied by the DRAM which stores the intermediate vectors (i.e.,
W and W’). Thus, the suitable chip production process is a DRAM process optimized for
maximum memory density (at the expense of slightly larger logic circuits); similar cases
arose in previous proposals [9,10,11]. Each of the k {= 32) processors in each of the 32
stations in each of the 300 x 90 ASIC chips contains the following logic:

— A K/b-bit register for storing the K/b-tuples of GF(2) elements flowing along from the
inter-station pipeline (=~ 8 - K/b transistors).
— A K/b-bit register for each of the v (= 2) intra-station channels (=~ 8-y-K /b transistors).
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— A FIFO queue of depth (2) for storing elements arriving on the inter-station pipeline
along with the number of the internal bus onto which the respective element is to be
written. For this = 2 -8 (K + [logy(7)]) transistors per queue entry are sufficient.

— A FIFO queue of depth (4) for storing elements arriving on the intra-station channels
that have to be XORed to the vector. Each entry consists of a K/b-tuple of bits for
the vector and a row number in the submatrix handled by the station has to be stored.
This occupies ~ 4-8- (K /b+ [logy[D/(ku)]]) (=4 - 8- (10 + 15)) transistors per queue
entry.

In addition to the registers and queues, we need some logic for counters (to identify the end
of a vector and to decide when to read another element from a bus), multiplexers, etc. For
the parameters of interest, < 1500 transistors are sufficient for this. Overall, the 32 x 32
processors on each chip occupy (~ 3.2mm?).

The DRAM needed splits into three parts.

— For storing 2 - K/b vectors in GF(2)!P/®)1 - 9. K/b. D/(uk) bit {(~ 650 Kbit).
— For the fetches table: d, + 1 + [logy(7y)] bits per entry.
— For the updates table: d¢ + 1 + [log, ()] + [logy [ D/(uk)]] bits per entry.

Overall, the DRAM on each chip occupies {~ 67mm?). The time for each of the ~
2D /K matrix-by-vector multiplications is ~ e + D/k clock cycles, where e gives some
leeway for emptying queues and internal buses (for the parameters we are interested in
e < 1000 is realistic).

6 Conclusion

We have described a pipelined systolic design for the matrix-by-vector multiplications of
the block Wiedemann algorithm, which exhibits several advantages over the prior (mesh-
based) approach. It has lower cost and modest technological requirements; specifically,
unlike previous proposals it uses standard chip sizes and purely local communication. The
architecture is scalable, and offers the flexibility to handle problems of varying sizes. The
operation is deterministic and allows local simulation and verification of components. We
have also described an efficient error detection and recovery mechanism, which can also be
adapted to other software or hardware implementations of Wiedemann’s algorithm.

For 1024-bit RSA keys, executing the linear algebra step of the NFS using this device
appears quite realistic with present technology, at a cost lower than that of the NFS sieving
step.
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