Homework #7

Due: Jan. 13, 2015

- 1. Questions 2,3 of Homework #5 of M. Cross class (ref. (C) on the web-site).
- 2. Let Σ_N consist of all sequences of natural numbers $\{0, 1, 2, ..., N-1\}$. Let σ denote the shift map on these sequences.
 - (a) Find *CardPer*_k(σ) : the number of the periodic points of σ of period *k*.
 - (b) Show that σ has a dense orbit.
 - (c) Consider the map: $x_{n+1} = 3x_n \mod 1$. Prove that the map is chaotic (hint: use the symbolic dynamics on Σ_3). Prove that the middle-third Cantor set Λ is invariant under the map and that the map has a dense orbit on Λ (hint: use the subset of Σ_3 of sequences containing only the symbols $\{0,2\}$).
- 3. Questions 2,3 of section 4.13 of Meiss book (M, pg. 159)

4. Bonus questions (nice questions on 1d maps):

- Construct numerically, by iterating initial conditions and leaving out the transients, the bifurcation diagram for:
 - (a) The quadratic map: $x_{n+1} = rx_n(1-x_n)$ $x_n \in [0,1]$ for $r \in [0,4]$
 - (b) The sine map: $x_{n+1} = r \sin \pi x_n$ $x_n \in [0, 1]$ for $r \in [0, 1]$
 - (c) Let r_n denote the *n*th period doubling bifurcation in the doubling bifurcation sequence. For both maps, find numerically, for as large an *n* as you can, the ratio: $\delta_n = \frac{r_n r_{n-1}}{r_{n+1} r_n}$. Can you see convergence to the Universal Feigenbaum constant $\delta = 4.669201..?$ (can you derive more sophisticated ways to find δ_n ?). Read about the universality of the period doubling bifurcation.
- Questions 4 of Homework #5 of M. Cross class