## Homework \#6

Due: Jan 6, 2015

1. Show that the map:

$$
\begin{equation*}
F_{\mu}: x_{n+1}=x_{n}+\mu-x_{n}^{2} \quad x_{n} \in R \tag{1}
\end{equation*}
$$

undergoes a saddle-node bifurcation at $(x, \mu)=(0,0)$; show that for $\mu<0$ it has no fixed points whereas for $\mu>0$ it has two fixed points, one stable and one unstable. Draw the bifurcation diagram for $F_{\mu}$.
2. Consider a general one dimensional family of maps $F_{\mu}(x): R \rightarrow R$. Find conditions under which $F_{\mu}(x)$ undergoes a saddle-node bifurcation at some value $(x, \mu)=\left(x^{*}, \mu^{*}\right)$ : define $G(x, \mu)=F_{\mu}(x)-x$, and using the implicit function theorem find conditions under which $G(x, \mu)=0$ has a unique parabola like solution $G(x, \mu(x))$ for $\mu>\mu^{*}$ (and $\left|\mu-\mu^{*}\right|$ and $\left|x-x^{*}\right|$ small). Verify that (1) indeed satisfies these conditions.
3. Show that the flow:

$$
f_{\mu}: \dot{x}=\mu x-x^{2} \quad x \in R
$$

undergoes a transcritical bifurcation at $(x, \mu)=(0,0)$; show that the stability of the two fixed points is interchanged at the origin. Draw the bifurcation diagram for $f_{\mu}$. Such a bifurcation occurs when symmetry/modeling constraints imply that $x=0$ is always a solution.
Optional: You may want to verify that by breaking this symmetry assumption we are back to the saddle-node case. You may want to derive general conditions for a flow $f_{\mu}$ having this symmetry to have a transcritical bifurcation.
4. Consider the initial value problem

$$
\dot{y}=\lambda y, \quad y(0)=1, \quad \lambda=-50 .
$$

For $t=[0,1]$ display $(y, t)$ graph for both the analytic solution and the numerical solution by solving with:
(a) Explicit Euler and RK4 methods for different time steps $h$. What $h$ should be, for the method to converge?
(b) "ode45" and "ode15s" functions in Matlab. Try to increase $|\lambda|$ and $t$ and describe the difference between them.
5. Consider the tent map: $x_{n+1}=F\left(x_{n}\right)$

$$
F(x)=\left\{\begin{array}{cc}
a x & x<1 / 2  \tag{2}\\
a(1-x) & x>1 / 2
\end{array} \quad x \in[0,1], \quad a \in[0,2] .\right.
$$

(a) Find the fixed points of $F$ and their stability.
(b) Show graphically convergence to a stable fixed point and divergence from an unstable fixed point (choose appropriate $a$ values).
(c) Draw the graph of $F^{2}(x)$ for $a=2$. How many fixed points it has? How about $F^{n}(x)$ ?

