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Symmetry-breaking perturbations and strange attractors

Anna Litvak-Hinenzon* and Vered Rom-Kedar†

The Faculty of Mathematical Sciences, The Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
~Received 28 October 1996!

The asymmetrically forced, damped Duffing oscillator is introduced as a prototype model for analyzing the
homoclinic tangle of symmetric dissipative systems withsymmetry-breakingdisturbances. Even a slight fixed
asymmetry in the perturbation may cause a substantial change in the asymptotic behavior of the system, e.g.,
transitions from two-sided to one-sided strange attractors as the other parameters are varied. Moreover, slight
asymmetries may cause substantial differences in the relative size of the basins of attraction of the two wells.
These changes seem to be associated with homoclinic bifurcations. Numerical evidence indicates thatstrange
attractorsappear near curves corresponding to specific secondary homoclinic bifurcations. These curves are
found using analytical perturbational tools.@S1063-651X~97!00804-0#

PACS number~s!: 05.451b, 02.30.Hq, 46.90.1s
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I. INTRODUCTION

The forced and damped Duffing oscillator

ẍ1«d ẋ2x1x35«gcos~vt !, ~x,t !PR13R1, ~1!

has served as a prototype model for investigating low dim
sional chaotic behavior in numerous publications~see@1–4#,
and references therein!. Its significance lies in its simple
‘‘typical form’’ which appears in many applications. Indee
the unperturbed Duffing oscillator represents the norm
form for Hamiltonian systems withZ2 symmetry@5#. Thus
whether different types of perturbations lead to substanti
different dynamics is of mathematical and physical sign
cance. The perturbation of Eq.~1! has two specific
properties—it has no nonlinear terms inx,ẋ and it is sym-
metric; Eq.~1! is invariant underx→2x, t→t1p/v.

Numerical simulations suggest that the inclusion of a n
linear dissipation term in the perturbation does not alter
qualitative behavior of the forced system@6#. Namely, no
new bifurcation sequences or new types of attractors app
though the location of the various bifurcation curves of E
~1! changes. The effect of asymmetric potentials has b
investigated when the forcing is adiabatic, see@7,8#, and ref-
erences therein. In this paper we examine the effect of as
metric forcing on the Duffing oscillator by introducing th
asymmetrically forced, damped, Duffing oscillator~AFDO!:

ẍ1d ẋ2x1x35~x2bx2!gcos~vt !,

~x,t !PR13R1, ~2!

which contains the asymmetry perturbation parameterb.
Here we show that the inclusion of thephysically typical
asymmetric forcing perturbations alters thequalitative be-
havior of the system in some range of parameter values

Theoretical and numerical investigation of forced a
damped systems with homoclinic tangle is problematic si

*Electronic address: litvak@wisdom.weizmann.ac.il
†Electronic address: vered@wisdom.weizmann.ac.il
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these may attain strange attractors~SAs! and periodic sinks
simultaneously.@SAs are attractors with sensitive depe
dence on initial conditions, i.e., attractors which have a de
orbit with positive Lyapunov exponent~see@9#!.# Moreover,
the existence of the SA is extremely sensitive to change
parameter values. The existence of Newhouse sinks nea
moclinic tangencies implies that small changes in the par
eters may destroy the SA. These observations are reflecte
the difficulties of proving the existence of SA in such sy
tems~see reviews@1,4#!. Analytical results regarding the ex
istence of SAs@10#, their basins of attraction@11#, and the
construction of unique natural invariant measure@the Sinai-
Ruelle-Bowen~SRB! measure# @12# have recently been pub
lished for the He´non map. These proofs are in the stro
dissipation limit, for which the SA appears as a one dime
sional attractor multiplied by a cantor set. Some of the
results may be applied locally to neighborhoods of h
moclinic tangencies@13#.

It follows that SAs are expected to emerge near h
moclinic tangencies. We use analytical tools for locating p
mary homoclinic tangencies~the Melnikov analysis,@1#! and
secondary homoclinic tangencies@the secondary Melnikov
function ~SMF! @14##. @Primary homoclinic tangencies ar
one-loop homoclinic orbits which areO(«) close to the un-
perturbed homoclinic orbits fortP(2`,`). Secondary ho-
moclinic tangencies are two-loop homoclinic orbits whi
areO(«) close to the unperturbed homoclinic orbits fort
P(2`,t0#,@ t1 ,`), see also Sec. II.# See@15–18# for other
works on the subject of multipulse homoclinic orbits in oth
settings. This presents the first application of the SMF t
dissipative system. Since homoclinic bifurcations are cons
ered an important source of structural instabilities of dyna
cal systems@19–24#, their location in parameter space shou
indicate regions in which dramatic structural changes app
Clearly higher-order tangencies exist as well, and find
them all is a useless mission, in particular in view of Ne
house work. The philosophy here is that not all homoclin
tangencies have the same significance: primary tangen
are more important than secondary, secondary more
third order, etc. Thus there is a sense in locating the bifur
tion curves of the lower-order homoclinic tangencies. T
approach is backed up by the TAM~topological approxima-
4964 © 1997 The American Physical Society
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55 4965SYMMETRY-BREAKING PERTURBATIONS AND STRANGE . . .
tion method@25,26#!, which asserts that many features of t
dynamical system are determined already by the charact
tics of the primary and secondary homoclinic orbits. T
TAM was developed for nondissipative systems and
been recently generalized to dissipative systems@27#.

The last part of this work consists of a numerical sea
for SAs at parameter values which are close to the ana
cally predicted bifurcation curves. SAs have been obser
in various systems exhibiting homoclinic chaos, includi
the forced and damped Duffing oscillator@1#, the Hénon map
@23#, and the forced and damped cubic potential@28#. In the
latter work the correspondence between the appearanc
homoclinic tangencies of specific character and SAs has b
noted, a correspondence which seems to persist for
AFDO.

This paper is ordered as follows. In Sec. II we present
basic phase space structure of the AFDO, the Melnik
analysis, and the bifurcation curves for primary and seco
ary homoclinic bifurcations. Numerical evidence suggest
the existence of SAs near specific homoclinic bifurcat
curves is presented in Sec. III, as are the typical size
shape of the basins of attraction of the attractors. Con
sions and a discussion are presented in Sec. IV.

II. TEMPLATES OF THE HOMOCLINIC TANGLE

A. Basic properties of the AFDO

Introducing the phase space coordinates (x,y)P R2, one
rewrites Eq.~2! as

ẋ5y, ~3!

ẏ5x2x31~x2bx2!«gcos~vt !2«dy.

Physically,d represents the dissipation~the damping!, g the
amplitude of the forcing,v the frequency, andb the asym-
metry disturbances. These parameters are real and by
metry may be taken to be non-negative.« is a ‘‘perturbation
scaling parameter,’’ assumed to be small. For«Þ0, there are
two differences between the AFDO~2! and the Duffing os-
cillator ~1!. The substantial difference is that Eq.~2! includes
the asymmetry parameterb. The second difference is that fo
convenience, with no loss of generality, the symme
x→2x,t→t1p/v of Eq. ~1! is replaced by the symmetr
x→2x for b50 in Eq. ~2!, hence the origin is fixed for al
«,b. bÞ0 corresponds to symmetry-breaking disturbanc

The unperturbed system corresponds to the integr
Hamiltonian system with a symmetric quartic potential:

V~x!52
x2

2
1
x4

4
, ~4!

and with the Hamiltonian function~energy!:

H~x,y!5
y2

2
1V~x!5

y2

2
2
x2

2
1
x4

4
. ~5!

The unperturbed system, which is identical to that of
unperturbed Duffing oscillator, has three equilibrium poin
two centers at (x,y)5(61,0), and a saddle a
(x,y)5(0,0). The saddle point is connected to itself by tw
is-
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homoclinic orbits, with periodic orbits nested within an
around them. The period of the unperturbed periodic orb
P(H), has the following asymptotic expansion nearH50
~exact formulas for allH are available@1,4#!:

P~H !5H ln~16/2H !@11O~H !#, H→02

2ln~16/H !@11O~H !#, H→01.
~6!

In the unperturbed system the stable and the unst
manifolds of the saddle point (0,0) coincide. Ford.0, and
g50, the unstable manifold of the saddle point near the o
gin falls into the two sinks created near (61,0). As for the
Duffing oscillator, it may be proved that for sufficientl
small values ofg the closure of the unstable manifold~which
contains the saddle and the sinks! is an attracting set of Eq
~3!.

A Poincarémap in time is used to simplify the phas
space portrait for the time dependent system (gÞ0). Keep-
ing d.0, and increasingg, the following scenario occurs on
both sides of the fixed point; for small values ofg, the Poin-
caré map is topologically equivalent to the Poincare´ map
with g50, which is structurally stable. Asg increases, reso
nance bands of higher period and higher amplitudes are
ated. Asg is further increased, in addition to the resonanc
a homoclinic bifurcation occurs, after which the stable a
the unstable manifolds of the saddle point of the Poinc´
map intersect intransversal homoclinic orbits.The presence
of these orbits implies the existence of a complicated n
wandering Cantor set which possesses infinitely many
stable periodic orbits of arbitrary long period as well
bounded nonperiodic motions. The Smale-Birkhoff h
moclinic theorem implies that in this case the system
chaotic dynamics. Whenb50, as in the forced Duffing os
cillator ~1!, the sequence of bifurcations described above
curs simultaneously on both sides of the fixed point. Wh
b.0 this changes as described below.

The Melnikov functionM (t01u/v) measures the signe
distance between the stable and the unstable manifolds
hyperbolic fixed point~up to a multiplication by a constant!.
This distance is measured at the Poincare´ sectionvt5u, and
t0 represents a parametrization along the unstable manif
For the AFDO@Eq. ~3!# two Melnikov functions are defined
Mr(t0 ;g,v,b,d)[Mr(t0) @Ml(t0)# measures the signed dis
tance between the right@left# branches of the stable and un
stable manifolds. These functions are given by

Mr ,l~ t0 ;g,v,b,d!

5E
2`

`

@yx~12bx!gcos~vt !2dy2#u [q0~ t !r ,l ,t1t0]
dt

5gsin~vt0!Fr ,l~v,b!2 4
3d, ~7!

whereq0(t) r ,l are the right and left unperturbed homoclin
orbits of the system:

q0~ t !r ,l56~A2secht,2A2sechttanht !, ~8!

and

Fr~v,b!5@F1~v!2bF2~v!#, ~9!
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Fl~v,b!5@F1~v!1bF2~v!#, ~10!

F1~v!5pv2cschS pv

2 D , ~11!

F2~v!5
A2
3

pv~11v2!sechS pv

2 D . ~12!

Figure 1 shows F1(v),F2(v), and the relation
F2(v)/F1(v). Notice that F1(v) and F2(v) are non-
negative for allv.

B. Primary homoclinic intersection points

For « sufficiently small simple~degenerate! zeros of the
Melnikov function imply primary homoclinic transverse in
tersections~tangencies! of the stable and the unstable man
folds of the hyperbolic fixed point @1#. Requiring
M (t0)5M 8(t0)50, it follows from Eq.~7! that primary ho-
moclinic bifurcations occur near

«g r ,l~d;v,b!5«d U 4

3@F1~v!7bF2~v!#
U

[«dR0
6~v,b!. ~13!

FIG. 1. The Melnikov function amplitude.~a! F1(v), F2(v);
~b! the ratioF2(v)/F1(v).
Hence, if

3guF1~v!2bF2~v!u
4

,d<
3g@F1~v!1bF2~v!#

4
,

~14!

then the left branches of the stable and the unstable m
folds intersect, while the right branches do not, see, for
ample, Fig. 2~the intersections on the right hand side of th
figure correspond to secondary homoclinic points, as
scribed in Sec. II C!. Similarly, if

d<
3guF1~v!2bF2~v!u

4
, ~15!

then the stable and unstable manifolds intersect on both
and right sides of the hyperbolic fixed point, see, for e
ample, Fig. 7. Schematic phase space portraits are show
each region.

It follows that the parameter space is divided into th
regions~see Figs. 3 and 4!.

~I! For g/d,R0
2(v,b) there are no primary intersection

of the stable and the unstable manifolds.
~II ! ForR0

2(v,b),g/d,R0
1(v,b) the stable and the un

stable manifolds have primary intersection points on the
side of the saddle point, and do not have primary intersec
points on the right side~asymmetric behavior!.

~III ! For g/d.R0
1(v,b) primary intersections of the

stable and the unstable manifolds occur both on the left
the right sides of the saddle point@as in Eq.~1!, but in an
asymmetric manner forbÞ0#.

Since

R0
2~v,b!

R0
1~v,b!

5U12bF2~v!/F1~v!

11bF2~v!/F1~v!
U[r S b

F2~v!

F1~v! D , ~16!

the relative size of region II depends on the values
x5bF2(v)/F1(v), and may be derived from the graph
r (x) ~Fig. 5! for the correspondingb andv values; fixing
bÞ0, the relative size of region II varies withv as described
below. First, notice thatF2(v)/F1(v) is bounded from be-

FIG. 2. Intersections of stable and unstable manifolds.––
stable manifold; ——, unstable manifold.
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55 4967SYMMETRY-BREAKING PERTURBATIONS AND STRANGE . . .
low by a positive constantc0'0.7, and that it grows mono
tonically ~in fact asymptotically linearly! with v ~see Fig. 1!.
Therefore, and sincer (x)51 atx50,̀ only, it follows that
for any finite nonvanishingv value region II is of nonvan-
ishing measure~see, for example, Figs. 5 and 4!. Sincex
grows monotonically withv, andx.bc0, the relative size
of region II increases withv up to the threshold value
v* (b) at which F2(v* )/F1(v* )51/b @i.e.,
x„b,v* (b)…51#. „If b.maxv@F1(v)/F2(v)#51/c0, then
v* (b) does not exist, and may be considered as infini…
For x.1, r (x) strictly increases with x, thus for
v.v* (b) the relative size of region II decreases asv in-
creases. At x51, r (x)50, namely, R0

1(v,b)→` as
v→v* . For these values, regions I and II occupy most
the parameter space, and region III shrinks till it disappe
to order«, atv5v* (b).

C. Secondary homoclinic intersection points

First, we describe geometrically the secondary homocl
intersection points, their transition numbers, and the str

FIG. 3. Primary homoclinic bifurcation curves. Schematic pha
space portraits are shown in each region.

FIG. 4. Primary homoclinic bifurcation curves@in (d/g,v)
space#.
.
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tural indices of a homoclinic tangle. Then, we present
analytical~perturbational! method for finding these structura
indices.

Consider values of the dissipation parameterd for which
the Melnikov functionMl(t0 ;m,d) @Mr(t0 ;m,d# has two
simple zeros~see Sec. II B!. Denote the corresponding PIP
~primary homoclinic intersection points!, ordered by the di-
rection of the unstable manifold, bypl0 (pr0) and ql0
(qr0); see Fig. 6. Also, denote their ordered images un
the Poincare´ map F by pli ,qli (pri ,qri),
i50,61,62,63, . . . , i.e., Fi(pl0)5pli and so on. The ar-
eas enclosed by the segments of the stable and the uns
manifolds connecting two successive PIPs are calledlobes.
Denote the lobes enclosed by segments of the stable an
unstable manifolds connectingpli ,qli by Dl i , and the ones
that between qli ,pli11, by Eli , when again,
Dl i5Fi(Dl 0),Eli5Fi(El0) ~the equivalent notation is use
for the right side!; see Fig. 6.

If El jùDl 0ÞB (Er jùDr 05B) for some non-negative
integerj , or if Dl k11ùEr0ÞB (Dr k11ùEl0ÞB) for some
non-negative integerk, then there exist secondary interse
tion points~SIPs! in these intersections. The integersj ,k are
the transition numbersof the corresponding SIPs@29#. The
minimal transition numbers~the minimal integersj ,k) for
which this happens on the left side~right side! of the hyper-

e

FIG. 5. The relative size of region II.~a! g l /g r(w,b50.1), see
Eq. ~13!; ~b! r (x), see Eq.~16!.
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FIG. 6. Illustration of lobes, PIPs, and SIP
–––, stable manifold; ——, unstable manifold.
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bolic fixed point are calledthe structural indicesl l l ,l lr
(l rr ,l rl ) of the homoclinic tangle@29#. Namely, these
structural indices are exactly thetransition numbersof the
secondary homoclinic points which belong to the first int
section of the corresponding lobes. For example, in Fig. 6
structural indices arel l l51, l lr51, l rl51, and l rr52.
Each such structural index imposes minimal complexity
the structure of the homoclinic tangle. For example,
length growth rate of line segments along the unstable m
fold ~the topological entropy! increases as the indices d
crease. Thus dividing the parameter space into regions
cording to the values of these indices correspon
approximately, to a plot of ‘‘level sets’’ of the topologica
entropy. The dividing curves correspond to secondary
moclinic bifurcations. Large SAs which are not associa
with primary homoclinic tangencies seem to appear only
regions in which at least one structural index is less than
equal to 1~see also@28#!.

The perturbational method for calculating the second
homoclinic bifurcation curves is described below. For si
plicity it is presented specifically for the AFDO model. Mo
generally, it may be applied to nearly Hamiltonian dissip
tive systems, which satisfy some generic assumptions~see
@27#!.

Consider the secondary Melnikov function~see
@25,26,14,27#!:

h2
cd~ t0 ,«!5Mc~ t0!1Md„t1cd~ t0 ,«!…,

c,dP$ l ,r % ~17!

whereMc(t) is the Melnikov function, andt1cd is defined by

t1cd~ t0 ,«!5H t01P„«Mc~ t0!…, Mc~ t0!,0

t01
1
2 P„«Mc~ t0!…, Mc~ t0!.0

c,dP$ l ,r %

~18!

P(H) is the period of the unperturbed periodic orbit wi
energyH, andH50 on the separatrix. For sufficiently sma
-
e

r
e
i-

c-
s,

-
d
n
r

y
-

-

«, simple zeros~degenerate zeros! of Eq. ~17! imply trans-
verse secondary homoclinic intersections~tangencies! with a
transition number:

j cd~ t0 ,«!5F t1cd~ t0 ,«!

T G2s~ t0!,

0<t0,T ~19!

where@x# is the integer part ofx, T52p/v is the period of
the perturbation, ands(t0) is either 0 or 1, depending on th
interval to whicht0 belongs@Eq. ~24! below#. The structural
index l cd (c,dP$ l ,r %) is defined to be the minimal trans
tion numberj cd(t0 ,«). For sufficiently small« this analyti-
cal definition of the structural index meets the geometri
definition described above@14#. It follows that typically a
change in the structural index may be found at a bifurcat
point for Eq.~17!. @Another source for changes in the stru
tural indices are points of discontinuity oft1(t0), see@27#.#
Indeed, under some generic conditions onh2

cd(t0 ,«;m,d),
the structural indices satisfy@14#

l cd5 j cd~ t0cd ,«cd!, c,dP$ l ,r % ~20!

where (t0cd ,«cd) («cd small! are the solutions to the standa
equations for a bifurcation point:

h2
cd~ t0 ,«!50 0<t0,T ~21!

]h2
cd~ t0 ,«!

]t0
50, ~22!

defined in the appropriate time interval fort1:

@ l cd1s~ t0cd!#T<t1cd~ t0cd ,«cd!

,@ l cd1s~ t0cd!11#T, ~23!
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55 4969SYMMETRY-BREAKING PERTURBATIONS AND STRANGE . . .
s~ t0cd!5H0, t0cdPF0,T2D
1, t0cdPFT2 ,TD , ~24!

wheret1cd(t0 ,«) is defined by Eq.~18!.
Typically, for «cd sufficiently small, one finds a sequenc

of two bifurcation values,«cd
1 ,«cd

2 . The corresponding so
lutions (t0cd

i ,«cd
i ), i51,2 of Eqs.~21! and ~22! divide the

parameter space into three regions: below the hypersur
«5«cd

1 (v,g,b,d,l cd) there are no SIPs, between the hyp
surfaces«5«cd

1 (v,g,b,d,l cd) and «5«cd
2 (v,g,b,d,l cd)

two SIPs occur~see, for example, the intersections deno
by an arrow in Fig. 7!, and above the hypersurfac
«5«cd

2 (v,g,b,d,l cd) two additional SIPs occur~see, for
example, the intersections of the lobes above the origin
Fig. 7!.

Moreover, Eqs.~17!–~22! may be brought to a simple
form, as shown in the Appendix. Using the asymptotic e
pansion for the period functionP(H) @Eq. ~6!#, these equa-
tions may be solved analytically if bothb50 andd50, to

FIG. 7. Secondary homoclinic bifurcation curves and the
moclinic tangle. ——,e rr

1 ; –––,e rr
2 ; ––– , stable manifold; ——,

unstable manifold.
ace
r-

d

in

x-

find approximations to the secondary homoclinic bifurcati
points „t0

i ,«cd
i (t0

i )…, c,dP$ l ,r %, iP$1,2%. The solutions for
b50, d50 may be used to solve these equations forbÞ0
or/anddÞ0 small by the use of asymptotic expansions
powers ofb and d for i51, and in powers ofb1/3 and
d1/3 for i52. To get more accurate results, usingP(H)
instead of its approximate form, we use a Newton meth
combined with a linear prolongation scheme~see the Appen-
dix and @27# for details!. Plotting the bifurcation values
«cd
i (v,g,b,d,l cd), c,dP$ l ,r %, iP$1,2%, obtained from the
solutions to these equations, forg, b, d fixed and varying
v, gives the secondary homoclinic bifurcation curves in p
rameter space (v,«), labeled by the structural indices,l cd
50,1,2,. . . ,m,`, as in Fig. 7~a!.

A simple lower bound to the homoclinic bifurcatio
curves@compare with Eq.~A2!# is given by

«̄cd~v,g,b,d,l cd!55
P21

„~2p/v!~ l cd11!…

maxt0uMc~ t0!u
, c5d

P21
„~4p/v!~ l cd11!…

maxt0uMc~ t0!u
, c5” d.

~25!

Therefore, using Eqs.~6! and ~7!, we find

«cd
1,2~v,g,b,d,l cd!>

16e2~2p/v!~ l cd11!

max$ugFc2
4
3du,ugFc1

4
3du%

.

~26!

These give a simple lower bound on the secondary
moclinic bifurcation curves@Note that since the approxima
tion to leading order inH for the period functionP(H) is
used here to calculate«̄cd , we get that«̄cd[«̄cc ~see the
Appendix for more details!. Hence the curve«̄cc(l cc5n)
serves as a lower bound to all the eight secondary
moclinic bifurcation curves, related to the structural ind
l cc5n, «cd

1,2(l cc5n), with c,dP$ l ,r % andn>0.# Moreover,
geometrically these lower bounds correspond to the value
« for which the lobes may get involved in a 1:(l cd11) reso-
nance~see below!.

Comparison between numerical and analytical results

The analytical method described above for finding t
secondary homoclinic bifurcations is of a perturbational n
ture. Thus, as proved in@14#, in the limit of small« values it
is guaranteed to supply a good approximation to the ac
bifurcation value. Here we examine how good an appro
mation the analytical formulas supply for finite« values.
Indeed, excellent agreement is achieved between the ana
cal predictions for the occurrence of SIPs and the numer
calculations of the stable and unstable manifolds for« as
large as 0.3 andl cd>1, c,dP$ l ,r %, see, for example, Fig
7. In this figure the3 at the (v,«) parameter space indicate
the parameter values for which the manifolds, presented
the right figure, are calculated. In the right figure, the cor
sponding near tangency of the manifolds is indicated by
arrow. In fact, the larger thel ’s, the larger the« values for
which the zeroth-order approximation is found to be a
equate. For example, forl 52 we find excellent agreemen

o-
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4970 55ANNA LITVAK HINENZON AND VERED ROM-KEDAR
up to «'1. This is not surprising since largel ’s ~and finite
«) correspond to largev ’s for which the Melnikov function
coefficient becomes exponentially small, thus the effect
perturbation is small.

For l cc50 the agreement between the numerical and
analytical results is not as favorable~notice that this is a
finite « effect: letting«→0, with all other parameters hel
fixed, necessarily implies thatl →`). This is due to the
passage of the manifolds through a 1:1 resonance rela
between the periodic orbits inside the homoclinic loop a
the forcing period 2p/v; namely, the energy level to whic
the manifolds are pushed by the Melnikov function is ne
the energy level for which a 1:1 resonance occu
„Indeed, the 1:m resonance relation for the periodic orbits
Eq. ~3! is given byP(H)52pm/v. Since by definition of
t1cc @see Eq.~18!#, P„«ccMc(t0cc)…5t1cc2t0cc , and by con-
dition ~23!, t1cc2t0ccP„l cc(2p/v),$l cc11%(2p/v)…, the
manifolds ‘‘pass’’ through the 1:1 resonance zone
l cc50.… Now, the construction of the SMF uses the Whisk
map ~see@30,29,31,32,25,26,14,33#! in which the motion of
the interior orbits is approximated by unperturbed perio
motion. This approximation fails near a 1:1 resonan
Hence the analytical approximation for thel cc50 bifurca-
tion curve is inaccurate even for small values of«. Notice
that in this limitv is varied with«, hence this observation i
not contradictory to the SMF theorems which hold in t
limit «→0 with all other parameters held fixed@14#. Indeed,
to avoid passage of the manifolds through a 1:1 resona
« should satisfy the condition«cc,P21(2p/v)/Mc(t0cc).
This condition holds forl cc>1. For the outer indices
l cd , cÞd the problem of 1:1 resonance was not enco
tered.

III. STRANGE ATTRACTORS

In this section numerical evidence for the existence
SAs, and observations regarding their location in param
space and their structural properties in phase space are
sented.

A. Numerical scheme for detecting SAs

Simple numerical experiments showing Poincare´ maps of
the AFDO ~usingDSTOOLS @34#! suggested that SAs appe
in the area of the parameter space related to the struc
indicesl cd50, c,dP$ l ,r %. To investigate this subject mor
thoroughly the Lyapunov exponents of orbits of Eq.~3! were
computed~see@35#!. Viewing Eq.~3! as an autonomous sys
tem, each orbit has three Lyapunov exponents, one zero,
negative, and the third may be either positive or negative
positive third Lyapunov exponent indicates the existence
strange attractor~see@9#!, while a negative third Lyapunov
exponent indicates that the orbit is attracted to a perio
sink.

An efficient stopping criteria for the Lyapunov exponen
calculation is developed, using the distinction between S
or sinks with long transients and simple sinks. First, to
move transient behavior,Nin iterations of the Poincare´ map
(Nin5200 was found sufficient! are calculated. Then, ever
Nit iterations (Nit5100) a line is fitted to the logarithm o
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the modulus of the lastNit Lyapunov exponent values. Th
program stops if one of the following events occurs

~1! The largest Lyapunov exponent is negative. Th
there exists a periodic sink. The exact value of the nega
Lyapunov exponent is not sought.

FIG. 8. Secondary homoclinic bifurcation curves and SAs,* , a
SA ~positive Lyapunov exponents!; s, a periodic orbit~negative
Lyapunov exponent!; ——, e lr

1 ; ––– , e lr
2 ; • • • • , e l l

1 ; - •- •, e l l
2 .

~a! b50, d50.05. ~b! b50.01,d50.95. ~c! b50.1, d50.95.
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FIG. 9. Secondary homoclinic bifurcation curves and SAs: Magnification of certain regions of Figs. 8~a!–8~c!.
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~2! The largest Lyapunov exponent is positive and
slope of the fitted line is nearly zero~up to an error of
1e26).

~3! The total number of Poincare´ map iterations exceed
10 000. In this case no decision is made regarding the e
tence or nonexistence of an attractor. In practice the stop
criteria ~1! and ~2! occur before 10 000 iterates are com
puted.

In case~2!, when a positive Lyapunov exponent is d
tected, all the Lyapunov exponents are calculated. Hence
Lyapunov dimension@36# of the SA may be calculated. Not
that the Lyapunov dimensionDL is an upper limit for the
capacity~or box-counting! dimensionD0 @36#.

In the numerical experiments,g,b,d are fixed and« and
v are varied along and near the secondary homoclinic bi
cation curves «cd

i (v,g,b,d,l cd), i51,2, c,dP$ l ,r %, of
Sec. II C.

B. Windows of SA

For various parameter values, numerical evidence s
gests the existence of SAs in ‘‘windows’’ in the parame
space. These windows are aligned near the secondary
moclinic bifurcation curves which are related to the stru
tural indicesl l l ,l lr50, see Fig. 8, and the magnification
the windows in Fig. 9.„Notice that in Fig. 8~a! b50 hence
« l l
i [« rr

i and « lr
i [« rl

i , whereas in Fig. 8~b! « l l
i Þ0« rr

i and
« lr
i Þ« rl

i , but, for clarity,« rr
i , « rl

i are not plotted. In Fig. 8~c!
e

is-
ng

he

r-

g-
r
o-
-

« rr
i , « rl

i are not defined for the specifiedv values@since the
Melnikov function Mr(t0) has no zeros#.… While theoreti-
cally such regions should appear near all tangent bifurcat
with arbitrary l , we did not detect in our numerical searc
any SAs near the bifurcation curves withl .0. This sug-
gests that the size of the parameter regions for which S
appear decreases dramatically withl .

In fact, our perturbational methods for detecting the h
moclinic tangencies associated with the structural indi
l l l50 are inaccurate, see Sec. II C. Nonetheless, the
dicted analytical bifurcation curves forl cd50, c,dP$ l ,r %
still lie in the area of parameter space near which the ac
bifurcation curves exist. Moreover, we observe that the S
appear only in the region of the parameter space (v,«),
which is above the second secondary bifurcation cu
« l l
2 (v,g,b,d,l l l51) ~see Sec. II C!. For «,1, our predic-
tions for this curve are accurate, hence this curve may
considered as a lower bound to the region in parameter s
in which SAs appear, see Fig. 8.

Another feature of the windows of SAs is that they a
seem to appear above a threshold value«̃(v,g,b,d)>0.2.
Namely, they do not seem to extend to the small« values to
which some of thel 50 bifurcation curves extend. Numer
cal calculations of the stable and the unstable manifolds
the origin for the minimal« values for which SAs are found
suggest that this curve is a specific homoclinic bifurcat
curve; above this curve the lobeEl1 intersects the lobeDl 0
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FIG. 10. The stable and the unstable manifolds corresponding to SA. ––– , stable manifold; ——, unstable manifold.
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at five or more~six, seven, or eight! homoclinic intersection
points. See, for example, Fig. 10. Notice that the homocli
bifurcation curve« l l

2 (v,g,b,d,l l l51) in the (v,«) param-
eter space gives a lower bound to this curve.

The structures of the SAs that are obtained vary with
parameters. The main forms of the attractors which w
found are described next.

C. The phase space structure of the SAs

The observed SAs have the following two distinct pro
erties.

~1! The attractors may be one sided~i.e., the attractor is
contained in the right or left half phase space plane! or two
sided~with one or two components!.

~2! The attractors may have strong dissipative featuresor
may have nearly conservative features.

The first property depends on the location of the para
eter values with respect to the division into regions I, II, a
III. One-sided SAs may appear in region II near second
homoclinic bifurcations or near the borders between the
gions, namely, near primary homoclinic tangencies, see
11. There, the transition between two-sided SAs, denoted
T, and one-sided SAs, denoted byO, is shown.~This transi-
tion is not continuous ind/g; between the value ofd/g for
which a two-sided SA appears, and the value ofd/g for
which a one-sided SA appears, there may be some value
d/g for which no SAs appear.! In fact, near the border be
tween regions II and III three different SAs may appear
one-sided SA on the right half plane,two one-sided SAs or a
two-sided SA. Near the border between regions I and II
sided SAs, coexisting with a sink on the right half plan
were observed.

The second property seems to depend mainly on the r
d/g and is roughly independent of the other parameters~in
regions where SAs exist!; this is somewhat surprising sinc
the area contraction per Poincare´ map is given by
exp(2«d2p/v)—thus strong dissipation may be achiev
for fixed d/g by increase of«, without essential changes i
the structure of the SA. Ford/g!1, the two-sided SA seem
to have nearly conservative features of a chaotic region,
c

e
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-

y
e-
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by

of

a

ft
,

tio

ee

Fig. 12. These features persist in the window shown in F
9~a!, and even when«51, though the attractor is more struc
tured, it has ‘‘fat’’ regions in which no filamentation is ob
served. The positive Lyapunov exponent corresponding
this figure is log2(a1)'0.1987, and the correspondin
Lyapunov dimension isDL'1.9036. The SAs indicated in
Fig. 8~a! are of such structure. Most of these attractors ha
a positive Lyapunov exponent of about 0.2. The maxim
observed deviation from this value is 0.02. Nearly conser
tive one-sided SAs were not observed.

When d/g is not small (d/g50.2 is already in this re-
gion!, the structure of the SA is associated with the foldi
of the unstable manifold as in strongly dissipative system
see Fig. 13. The corresponding positive Lyapunov expon
is log2(a1)'0.1741, and the Lyapunov dimension
DL'1.2975. Comparing with the above results for the nea
conservative attractors, we observe that the Lyapunov ex
nent is less sensitive to the attractor’s structure than
Lyapunov dimension. The SAs indicated in Fig. 9~b! are of
strongly dissipative nature; some are two sided with a po
tive Lyapunov exponent very close to 0.17, with maxim
deviation of 0.03, and some are one sided.

In Fig. 14 such a one-sided SA is shown; its positi
Lyapunov exponent is log2(a1)'0.0862, and its Lyapunov
dimension isDL'1.1453. The SAs presented in Fig. 8~c! are
all one-sided strongly dissipative~Hénon-like! SAs. The val-
ues of the positive Lyapunov exponent are 0.0860.04, about
half of the Lyapunov exponents of the two-sided SA.

The Lyapunov exponent and dimension of the attract
seems to be quite robust. The dependence of the Lyapu
exponents on the values of« along a secondary homoclini
bifurcation curve related to a structural indexl cd50 is
shown in Fig. 15. An example for the dependence of
Lyapunov dimensions on the values of« along such a bifur-
cation curve is shown in Fig. 16. The plunges in the figu
correspond to parameter values for which no SAs exist.

In @27# symbolic dynamics of segments of the unstab
manifold is constructed for the AFDO, and for general d
sipative systems which unfold homoclinic tangencies. Fr
this symbolic dynamics a transfer matrix may be construc
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FIG. 11. Transition from two-sided to one-sided SA.
FIG. 12. Nearly conservative SA.

FIG. 13. Two-sided SA with structure referring to large valu
of the relationd/g.

FIG. 14. One-sided SA.
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for each set of the structural indicesl cd , c,dP$ l ,r %. It fol-
lows from @37,26# that log2(l), wherel is the modulus of
the largest eigenvalue of the transfer matrix, gives a low
bound on the topological entropy of the Poincare´ map. The
lower bound on the topological entropy for the AFDO wi
l cd50, c,dP$ l ,r %, corresponding to the region in param
eter space where two-sided SAs appear, is log2(3.9231)
51.9720. The lower bound on the topological entropy
the AFDO, corresponding to the existence of one-sided S
is log2(3.6709)51.8761.

The above results are consistent with the inequalities
scribing the relations between topological entropy, entro
~Kolmogorov-Sinai invariant!, and positive Lyapunov expo
nents~see@9,38#!:

h~r!<htop,

h~r!< (
l i.0

l i ,

wherer is an ergodic measure with compact support, w
respect to a diffeomorphic mapF, and l i are the positive

FIG. 15. The positive Lyapunov exponent variation.b50,
d/g50.05, andl lr50. ~a! Samples ofe values along the bifurca
tion curve e5e lr

1 (v,g,b,d,l lr ). ~b! Zoom in on e values in the
interval @0.2, 0.25#.
r

r
s

e-
y

Lyapunov exponents corresponding to a dense orbit ofF,
i.e., for the structural indicesl cd50 we get

h~r!<l1' log2~a1!, log2~l!<htop.

Notice that the lower bounds obtained for the topologi
entropy are larger by an order of magnitude than the co
sponding Lyapunov exponents and that there is very li
difference between the one-sided and the two-sided ca
See@25,27# for the construction of the symbolic dynamics
the lobes, and details on how the transfer matrices and
lower bounds on the topological entropy may be calculat

D. Basins of attraction

Initial conditions may be attracted to the various attract
which exist in the phase space. Here, we distinguish betw
three types of attractors: those located entirely on the
~right! half plane and those which are located on both si
of they axis. We do not distinguish here between the bas
of attraction of different sinks or SAs, see@24,39–41,28# for
detailed study of these issues.

FIG. 16. The Lyapunov dimension variation.b50,
d/g50.05, andl lr50. ~a! Samples ofe values along the bifurca-
tion curve e5e lr

1 (v,g,b,d,l lr ). ~b! Zoom in on e values in the
interval @0.2, 0.25#.
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The flux of phase space area into the left or right sides may be calculated to first order in« by integrating the Melnikov
function:

D l ,r
in 5E

0

s0
Ml ,r~s!ds1E

s1

T

Ml ,r~s!ds5H 2
8pd

3v
, s05s1 , Ml ,r~s!,0 ;sP@0,T!

2
2g

v
Fl ,rF12S 4d

3gFl ,r
D 2G1/22 4d

3vF2arcsinS 4d

3gFl ,r
D1p G , s05” s1

~27!

s05
1

v
arcsinS 4d

3gFl ,r
D , s15

p

v
2s0 ,

FIG. 17. The relative size of the right and le
basins of attraction. ——, the right basin siz
––– , the left basin size; *, sampled values
e. The secondary homoclinic bifurcation value
e( l cc51) are denoted by3 and the secondary
homoclinic bifurcation valuese( l cd51) are de-
noted bys.
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where s0 ,s1 are determined byMl ,r(s)<0 for s0<s<s1
P@0,T#. Thus on thenth iterate the initial phase space are
uD l ,r

in uexp(2p«dn/v), is swept into the left or right side. In
region I,Ml ,r(s),0;sP@0,T), and uD r

inu5uD l
inu to order«.

SinceFr,Fl it can be easily shown thatuD r
inu.uD l

inu in re-
gions II and III. Thus for parameter values corresponding
these regions the influx to the right side is always larger t
the influx to the left side~recall thatb.0).

If Ml ,r(s) has simple zeros~sos0Þs1) then, similarly, the
flux out of the left or right sides is given by

D l ,r
out5E

s0

s1
Ml ,r~s!ds5

2

v H gFl ,rF12S 4d

3gFl ,r
D 2G1/2

1
4d

3
arcsinS 4d

3gFl ,r
D2

2pd

3 J . ~28!

In region II, D r
out50, hence obviouslyuD l

outu>uD r
outu in this

region, and it can be shown thatuD l
outu>uD r

outu in region III as
well ~i.e., for d<3gFr /4).

One might expect that the ratio between the fluxes to
right and left regions determines the ratio between the s
of the basins of attraction. However, in regions II and
,

o
n

e
es

near the borderline between the regions, this picture m
change dramatically; there are cases for which all the ini
conditions which are numerically integrated are attracted
the right side.

Numerical calculations of the basins of attraction of t
left or right attractors suggest a more detailed description

~1! No intersections on both sides — region I: To ord
«, by Eq. ~27! the left and right influx areas are equal, b
high-order terms alter these results. Indeed, numerically
found that the right basin is larger than the left one. Mo
over, its area seems to grow monotonically asd decreases to
its threshold value, 3gFl /4.

~2! Intersections on the left side or on both sides—regio
II and III: As d is further decreased, the area of the rig
basin continues to grow. However, the growth in the basi
area seems to be discontinuous. This phenomenon is as
ated with the ‘‘boundary metamorphosis’’@41# of the sub-
harmonics. For some parameter values in region III atwo-
sidedperiodic orbit or a SA may exist, hence in these cas
some~or most! of the initial conditions are attracted neithe
to a left nor to a right attractor.

There seems to be a correlation between the disconti
ties and the occurrence of homoclinic tangencies. See,
example, Fig. 17. In this figure the percentage of the samp



p
of
f
on
h
re
e
n
at
id
is

e
is

e
o

re
ti
h

al
f
a

ac

le
it.

ly
lin

he

m
o-
id

al
-
it,
d
en
m

a
in
n

to
its
ig

e
fe

ter-
ion.
I,
ere

the
t-

ond-
ey

a-
nic

nd
rved

1:1

lds,
ap-
:1

the
x-

ng
the
v
dly
dis-

-
by

the

4976 55ANNA LITVAK HINENZON AND VERED ROM-KEDAR
phase space area which is swept to the left or right side, u
an approximated error of60.03, is presented as a function
« ~all the other parameters are fixed!, where the values o
« which correspond to secondary homoclinic bifurcati
curves are specified. The results of this figure are somew
puzzling; one would expect that left or right attractors a
composed, forl >0, from the attracting resonances. Henc
when the unstable manifold intersects through the resona
region, it depletes the resonance, thus decreasing the rel
area of the basin of attraction of the corresponding s
However, in Fig. 17, along with results that confirm th
scenario~see, for example, the jump near«50.06), we ob-
serve quite the contrary results~see, for example, the hug
jump near«50.5). Possibly other, undetected bifurcation
responsible for these results.

In @28#, numerical results regarding the relation betwe
homoclinic and other bifurcation curves and the basins
attraction of systems with a cubiclike potential well are p
sented. There, it has been suggested that the bifurca
curve, corresponding to what we call here a secondary
moclinic bifurcation curve with a structural indexl 50, is of
great significance, since closely beneath it they numeric
observed a chaotic escape~i.e., a destruction of the basin o
attraction of the SA!. Their chaotic escape corresponds, in
case of aclosedsystem, to a decrease in the basin of attr
tion of one side and an increase in the basin of attraction
the other side.~A system is calledclosed if some forward
iteration of the Poincare´ map of a segment of the unstab
manifold which has left the left or right region returns to
See@27# for a more precise definition.! Thus the current re-
sults are in agreement with the results obtained in@28# for
opensystems. Possibly, the critical curves~near which SAs
appear or lose stability! that they have observed numerical
correspond to the curves discussed above: the homoc
bifurcation curve above which the lobeEl1 intersects the
lobe Dl 0 at least five points, and the curve at which t
unstable manifold intersects the resonance region.

IV. DISCUSSION AND CONCLUSIONS

The qualitative differences between the flows under sy
metric and asymmetric forcing loom when primary h
moclinic intersections or tangencies occur only on one s
of the saddle fixed point~region II plus its neighborhood!.
This region may be of significant size even for very sm
asymmetry values (b!1) if the forcing frequency is appro
priately set. It is of negligible size in the adiabatic lim
hence, to the best of our knowledge, was not observe
previous works which have considered asymmetric pot
tials with adiabatic forcing. In this fat region II, the syste
may posses one one-sided SA~strange attractors!, two one-
sided SAs, or one two-sided SA. In the former case the
tractor may be situated on either side of the fixed po
however, the nature of the basin of attraction of the left a
right SAs seems to be different.

We find that the relative size of the basin of attraction
the left or right attractors is usually not sensitive to
strangeness~i.e., the size of the basin does not change s
nificantly when a SA is destroyed or created!. In general, the
basin of attraction of the right attractor is always a bit larg
than that of the left attractor, where in most cases the dif
to
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ence between the fluxes to the right and left regions de
mines the ratio between the sizes of the basins of attract
This occurs in a continuous and natural way in region
however, near the border between regions II and III, wh
one-sided SA may appear~on either side of it!, this picture
may change dramatically; there are cases for which all
initial conditions which are numerically integrated are a
tracted to the right side.

The robust, observable~hence physically significant! SAs
appear near primary homoclinic tangencies and near sec
ary homoclinic tangencies with small structural index. A k
perturbational tool for finding the latter is the SMF@14#.
Generally, it is found that the SMF supplies excellent an
lytical prediction to the occurrence of secondary homocli
tangencies even for relatively large values of«. However, it
fails near thel 50 homoclinic bifurcations, exactly in the
region where robust SAs exist. Thus only lower bounds a
approximate curves for the regions where SAs are obse
are found. We suspect that both phenomena~the failure of
the SMF and the appearance of SAs! are associated with the
involvement of the stable and unstable manifolds in a
resonance. Thus we derive a simple lower bound for« above
which the manifolds enter the 1:1 resonance@Eq. ~25!#. The
study of the relation between the resonance, the manifo
and the SAs, and the construction of a more accurate
proximation to the homoclinic bifurcation curves near a 1
resonance are left for future work.

The structure of the SAs varies with the parameters; as
ratio d/g increases the values of the positive Lyapunov e
ponent slightly decrease and the Lyapunov~fractal! dimen-
sion decreases significantly. Surprisingly, we find that fixi
this ratio and varying the other parameters in one of
‘‘windows’’ for which SAs exist, the structure, Lyapuno
exponent, and Lyapunov dimension of the SAs har
change. Such a variation does change, in particular, the
sipation~area contracting! rate per Poincare´ map.
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APPENDIX: FINDING SECONDARY HOMOCLINIC
BIFURCATION CURVES

In this appendix some technical aspects regarding
method of solution of Eqs.~17!–~21! are described.

From Eqs.~17!–~21! we construct the equations

t1cd
i ~ t0!5Md

21,i
„2Mc~ t0!…1 j cdT, ~A1!

«cd
i ~ t0!55

P21
„t1cd
i ~ t0!2t0…

Mc~ t0!
, c5d

P21
„2~ t1cd

i ~ t0!2t0!…

Mc~ t0!
, c5” d

~A2!

wherec,dP$ l ,r %; i51,2; j cdPN, and from Eq.~7! for the
Melnikov function of the AFDO, one gets
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Md
21,1~x!5

1

v
arcsinS x

gFd~v,b!
1

4d

3gFd~v,b! D ,
Md

21,2~x!5
p

v
2
1

v
arcsinS x

gFd~v,b!
1

4d

3gFd~v,b! D .
Notice thatMd

21,i(x) are undefined for

U x

gFd~v,b!
1

4d

3gFd~v,b!
U.1,

hence there are some values oft0 in @0,T) for which
«cd
i (t0) from Eq. ~A2! are undefined. From Eqs.~20! and

~23! we get that for t0P@0,T): j cd5l cd1s(t0), where
s(t0)50 for t0P@0,T/2), ands(t0)51, for t0P@T/2,T). The
above equations@Eqs. ~A1! and ~A2!# are dependent on th
perturbation parametersb ~asymmetry!, d ~dissipation!, g
~the amplitude of the forcing!, andv ~the frequency of the
forcing!. In addition, for uHu5u«Mc(t0)u!1 we get @see
Eqs.~6!, ~21!, ~22!, and~A1!#

05
]h2

cd~ t0 ,«!

]t0

'Mc8~ t0!1Md8~Md
21,i

„2Mc~ t0!…!S 12
Mc8~ t0!

Mc~ t0!
D , ~A3!

c,dP$ l ,r %, i51,2.

Hence for the AFDO Eq.~A1! becomes

t1cd
1 ~ t0!5

1

v F2p1arcsinS 2
Fc~v,b!

Fd~v,b!
sin~vt0!

1
8d

3gFd~v,b! D G1@ l cd1s~ t0!#
2p

v
, ~A4!

t1cd
2 ~ t0!5

1

v Fp2arcsinS 2
Fc~v,b!

Fd~v,b!
sin~vt0!

1
8d

3gFd~v,b! D G1@ l cd1s~ t0!#
2p

v
, ~A5!

s~ t0!5H0, t0PF0,pv D
1, t0PFpv ,

2p

v D c,dP$ l ,r %

and Eq.~A2! becomes

«cd
i ~ t0!'5

216exp@ t02t1cd
i ~ t0!#

gFc~v!sin~vt0!24d/3
, c5d

16exp@ t02t1cd
i ~ t0!#

gFc~v!sin~vt0!24d/3
, c5” d

i51,2. ~A6!
These approximations are valid for sufficiently smallH ’s of
the period function@see Eq.~6!#, namely, for

«cc
i ~ t0!S gFc~v!sin~vt0!2

4d

3 D→02, ~A7!

«cd
i ~ t0!S gFc~v!sin~vt0!2

4d

3 D→01. ~A8!

And, for such sufficiently small values ofH, Eq. ~A3! is

Fc~v,b!

Fd~v,b!
sin~vt0!1cos@vt1cd

i ~ t0!#

3S tan~vt0!2
vsin~vt0!

sin~vt0!2
4d

3gFc~v,b!
D '0,

~A9!

whereFc ,Fd are as in Eqs.~9! and ~10! of Sec. II A for
c,dP$ l ,r %, and«cd

i (t0) is calculated here with the use of th
approximated value of the period function of AFDO
P(H), from Eq. ~6!.

Remark:Since the exact inverse function of the perio
function of the AFDO,P21(x), cannot be found analytically
„t0
i ,«cd

i (t0
i )…, i51,2 are found by solving the equations

P„«Mc~ t0!…5tcd
i ~ t0!, ~A10!

]P„«Mc~ t0!…

]t0
5

]tcd
i ~ t0!

]t0
, ~A11!

where

tcd
i ~ t0!5H t1cci ~ t0!2t0 , Mc~ t0!,0

2@ t1cd
i ~ t0!2t0#, Mc~ t0!.0, c5” d

~A12!

c,dP$ l ,r %, iP$1,2%, t0P@0,T!, T5
2p

v
,

by a Newton method, combined with a linear prolongati
scheme. As the initial guesses for the Newton method we
the approximated values fort0

i and «cd
i (t0

i ). See @27# for
details on how these approximated values may be obtain

When approximation to leading order inH for P(H) @as
in Eq. ~6!# is used to calculate«cd

i (t0
i ), one gets that to lead

ing order inb, u«cd
i (t0

i )u5u«cc
i (t0

i )u for d50. Actually, more
accurate approximations~such as using higher terms an
Newton method! show that they are different.
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