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Symmetry-breaking perturbations and strange attractors
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The asymmetrically forced, damped Duffing oscillator is introduced as a prototype model for analyzing the
homoclinic tangle of symmetric dissipative systems vayimmetry-breakingisturbances. Even a slight fixed
asymmetry in the perturbation may cause a substantial change in the asymptotic behavior of the system, e.g.,
transitions from two-sided to one-sided strange attractors as the other parameters are varied. Moreover, slight
asymmetries may cause substantial differences in the relative size of the basins of attraction of the two wells.
These changes seem to be associated with homoclinic bifurcations. Numerical evidence indicatesnteat
attractors appear near curves corresponding to specific secondary homoclinic bifurcations. These curves are
found using analytical perturbational too]$1063-651X97)00804-Q

PACS numbdrs): 05.45+b, 02.30.Hqg, 46.90:s

[. INTRODUCTION these may attain strange attract¢®A\s) and periodic sinks
simultaneously.[SAs are attractors with sensitive depen-
The forced and damped Duffing oscillator dence on initial conditions, i.e., attractors which have a dense

. orbit with positive Lyapunov exponefisee[9]).] Moreover,
X+eox—x+x3=gycodwt), (x,t)eR'XRY, (1) the existence of the SA is extremely sensitive to changes in
parameter values. The existence of Newhouse sinks near ho-
has served as a prototype model for investigating low dimenmqclinic tangencies implies that small changes in the param-
sional chaotic behavior in numerous publicatiesse[1-4],  eters may destroy the SA. These observations are reflected in
and references therginits significance lies in its simple the difficulties of proving the existence of SA in such sys-
“typical form” which appears in many applications. Indeed, tems(see review$1,4]). Analytical results regarding the ex-
the unperturbed Duffing oscillator represents the normajstence of SA{10], their basins of attractiofl1], and the
form for Hamiltonian systems witd, symmetry[5]. Thus  construction of unique natural invariant meas[ttee Sinai-
whether different types of perturbations lead to substantiallryelle-Bowen(SRB) measurg[12] have recently been pub-
different dynamics is of mathematical and physical signifi-lished for the Haon map. These proofs are in the strong
cance. The perturbation of Eq(l) has two specific dissipation limit, for which the SA appears as a one dimen-
properties—it has no nonlinear terms»x and it is sym-  sional attractor multiplied by a cantor set. Some of these
metric; Eqg.(1) is invariant undex— —x, t—t+ 7/ w. results may be applied locally to neighborhoods of ho-
Numerical simulations suggest that the inclusion of a nonmoclinic tangencie§13].
linear dissipation term in the perturbation does not alter the It follows that SAs are expected to emerge near ho-
gualitative behavior of the forced systei]. Namely, no  moclinic tangencies. We use analytical tools for locating pri-
new bifurcation sequences or new types of attractors appeamary homaoclinic tangencigshe Melnikov analysis,1]) and
though the location of the various bifurcation curves of Eq.secondary homoclinic tangenci¢the secondary Melnikov
(1) changes. The effect of asymmetric potentials has beefunction (SMF) [14]]. [Primary homoclinic tangencies are
investigated when the forcing is adiabatic, §ég8], and ref-  one-loop homoclinic orbits which ai®(¢) close to the un-
erences therein. In this paper we examine the effect of asynperturbed homoclinic orbits fare (—«,%). Secondary ho-
metric forcing on the Duffing oscillator by introducing the moclinic tangencies are two-loop homoclinic orbits which
asymmetrically forced, damped, Duffing oscilla{&DO): are O(e) close to the unperturbed homoclinic orbits for
e (—o,tg],[t1,), see also Sec. [I.See[15-19 for other

X+ 6X—x+x3= (x— Bx?) ycoq wt), works on the subject of multipulse homoclinic orbits in other
settings. This presents the first application of the SMF to a
(x,t) e RIxX KL, (2)  dissipative system. Since homoclinic bifurcations are consid-

ered an important source of structural instabilities of dynami-
which contains the asymmetry perturbation parameger cal system$19—24, their location in parameter space should
Here we show that the inclusion of thghysically typical indicate regions in which dramatic structural changes appear.
asymmetric forcing perturbations alters thealitative be-  Clearly higher-order tangencies exist as well, and finding
havior of the system in some range of parameter values. them all is a useless mission, in particular in view of New-
Theoretical and numerical investigation of forced andhouse work. The philosophy here is that not all homoclinic
damped systems with homoclinic tangle is problematic sincéangencies have the same significance: primary tangencies
are more important than secondary, secondary more than
third order, etc. Thus there is a sense in locating the bifurca-
*Electronic address: litvak@wisdom.weizmann.ac.il tion curves of the lower-order homoclinic tangencies. This
"Electronic address: vered@wisdom.weizmann.ac.il approach is backed up by the TAltbpological approxima-
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tion method 25,26)), which asserts that many features of thehomoclinic orbits, with periodic orbits nested within and
dynamical system are determined already by the characterisround them. The period of the unperturbed periodic orbits,
tics of the primary and secondary homoclinic orbits. TheP(H), has the following asymptotic expansion néé=0
TAM was developed for nondissipative systems and hagexact formulas for alH are availabld 1,4]):
been recently generalized to dissipative systE27.

The last part of this work consists of a numerical search p( {In(16/—H)[1nL O(H)], H—0-
for SAs at parameter values which are close to the analyti- =
cally predicted bifurcation curves. SAs have been observed 2In(16H)[1+O(H)], H—0+.

in various systems exhibiting homoclinic chags, including In the unperturbed system the stable and the unstable
the forced and damped Duffing oscnla_[dﬂ, the Heon map manifolds of the saddle point (0,0) coincide. F&¥ 0, and
[23], and the forced and damped cubic poteritd]. In the =0, the unstable manifold of the saddle point near the ori-

latter work the correspondence between the appearance fn falls into the two sinks created neat (,0). As for the
homoclinic tangencies of specific character and SAs has be ffing oscillator, it may be proved that, for sufficiently

noted, a correspondence which seems to persist for thgmallvalues ofy the closure of the unstable manifdidhich

AFDO. ; o ;
This paper is ordered as follows. In Sec. Il we present th cg)ntalns the saddle and the sinks an attracting set of Eg.

basic phase space structure of the AFDO, the Melniko

analysis, and the bifurcation curves for primary and second- A Poincaremap in time is used to simplify the phase
ary homoclinic bifurcations. Numerical evidence suggestin space portrait for the time dependent systeyw0). Keep-

. - Lo . qng 6>0, and increasing, the following scenario occurs on
the existence of SAs near specific homoclinic b|furcat|on§0th sides of the fixed point; for small values pfthe Poin-

curves is present_ed in Sec. II_I, as are the typical size an are map is topologically equivalent to the Poinc D
shape of the basins of attraction of the attractors. Conclu- . = N . ara

. . . . with y=0, which is structurally stable. Ag increases, reso-
sions and a discussion are presented in Sec. IV.

nance bands of higher period and higher amplitudes are cre-
ated. Asvy is further increased, in addition to the resonances,
Il. TEMPLATES OF THE HOMOCLINIC TANGLE a homoclinic bifurcation occurs, after which the stable and
A. Basic properties of the AFDO the unstable manifolds of the saddle point of the Poincare
map intersect inransversal homaoclinic orbitsThe presence
of these orbits implies the existence of a complicated non-
wandering Cantor set which possesses infinitely many un-
stable periodic orbits of arbitrary long period as well as

(6)

Introducing the phase space coordinateg/(e 92, one
rewrites Eq.(2) as

X=Y, (3 bounded nonperiodic motions. The Smale-Birkhoff ho-
. 3 ) moclinic theorem implies that in this case the system has
Yy=X=X"+(X— BXx")e ycog wt) — e dy. chaotic dynamics. Whep=0, as in the forced Duffing os-

. o ) cillator (1), the sequence of bifurcations described above oc-
Physically,s represents the dissipati¢the damping y the .o simultaneously on both sides of the fixed point. When

amplitude of the forcingw the frequency, an@ the asym- B>0 this changes as described below.
metry disturbances. These parameters are real and by sym- 1o Melnikov functionM (to+ 6/w) measures the signed

metry may be taken to be non-negativeis a "perturbation  gistance between the stable and the unstable manifolds of a
scaling parameter,” assumed to be small. E@r0, there are  pynerholic fixed pointup to a multiplication by a constant
two differences between the AFDQ) and the Duffing 0s-  Thjs distance is measured at the Poinc@etionwt= 6, and

cillator (1). The substantial difference is that B@) includes { 'vepresents a parametrization along the unstable manifold.
the asymmetry parametgr The second difference is that for £ the AFDO[Eq. (3)] two Melnikov functions are defined:
convenience, with no loss of generality, the SymmetryMr(to;y,w,ﬁ,&)EMr(to) [M,(to)] measures the signed dis-

x— —xt—t+7/w of Eq. (1) is replaced by the symmetry (5nce petween the righileft] branches of the stable and un-
x——xfor =0 in Eq.(2), hence the origin is fixed for all ' g¢apje manifolds. These functions are given by
e,B. B#0 corresponds to symmetry-breaking disturbances.

The unperturbed system corresponds to the integrable 1 (t,:y,w,8,9)
Hamiltonian system with a symmetric quartic potential: ’

x? x = fﬁ [yx(1—pBx) VCOS(wt)_é\yzﬂ[qO(t),,, g dt

V(X)Z—?‘f’z, (4)

= ysin(wto)F (®,8)— 34, (7
and with the Hamiltonian functiofenergy:
whereqo(t)” are the right and left unperturbed homoclinic

2 orbits of the system:

HOxy) =% + V()=

N[ <

x2  x*
- E + Z (5)
q°(t), = = (\/2sech, — \2sechtantt), 8
The unperturbed system, which is identical to that of the
unperturbed Duffing oscillator, has three equilibrium points:and
two centers at X,y)=(%£1,0), and a saddle at
(x,y)=(0,0). The saddle point is connected to itself by two Fi(w,B)=[Fi(w)— BFi(w)], 9
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FIG. 1. The Melnikov function amplitud€a) F,(w), Fy(w);

(b) the ratioF,(w)/F(w).

Fi(w,8)=[Fi(0)+BF(w)],

Tw
Filw)= ww%sc)‘( 7) ,

Fo(w)= \/?Eﬂ'w(l—i— w%sec?ﬁ?).

Figure 1 shows F;(w),Fy(w), and the
Fo(w)/Fi(w). Notice that Fi(w) and F,(w) are non-

negative for allw.

B. Primary homoclinic intersection points

For ¢ sufficiently small simpledegeneratezeros of the
Melnikov function imply primary homoclinic transverse in-
tersectiongtangenciesof the stable and the unstable mani-
Requiring
M(tg)=M'(tg)=0, it follows from Eq.(7) that primary ho-

folds of the hyperbolic fixed point[1].

moclinic bifurcations occur near

4
3[Fi(w)+ BF(w)]

s’y,’|(5;w,,8)=85

EsﬁRg(w,,B).

relation

1.5 T ~—T< T T T

FIG. 2. Intersections of stable and unstable manifolds.——— ,

stable manifold; ——, unstable manifold.
Hence, if
3y|F1(w)— BF;(w)| s< 3Y[Fi(w)+ BF(w)]
4 N 4 '

(14)

then the left branches of the stable and the unstable mani-
folds intersect, while the right branches do not, see, for ex-
ample, Fig. 2the intersections on the right hand side of this
figure correspond to secondary homoclinic points, as de-
scribed in Sec. Il € Similarly, if

s< 37|F1(w)4—,3Fz(w)|’ (15

then the stable and unstable manifolds intersect on both left
and right sides of the hyperbolic fixed point, see, for ex-
ample, Fig. 7. Schematic phase space portraits are shown in
each region.

It follows that the parameter space is divided into three
regions(see Figs. 3 and)4

() For y/ <Ry (w,B) there are no primary intersections
of the stable and the unstable manifolds.

(I ForR, (w,B8) <yl 5<R; (w,B) the stable and the un-
stable manifolds have primary intersection points on the left
side of the saddle point, and do not have primary intersection
points on the right sidéasymmetric behavigr

() For y/8>R;(w,B) primary intersections of the
stable and the unstable manifolds occur both on the left and
the right sides of the saddle poifdas in Eg.(1), but in an
asymmetric manner fg8#0].

Since
Ra(w,ﬁ): 1-BFa(0)/Fy(w)| _ ( Fz(w)) 16
Ry (®,8) |1+BFyw)/Fi(w)| Fi(w))’

the relative size of region Il depends on the values of
x=BF,(w)/F4(w), and may be derived from the graph of
r(x) (Fig. 5 for the correspondingd and w values; fixing
B+ 0, the relative size of region Il varies with as described
below. First, notice thaF,(w)/F;(w) is bounded from be-
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FIG. 3. Primary homoclinic bifurcation curves. Schematic phase 091
space portraits are shown in each region. 08l
low by a positive constanty~0.7, and that it grows mono- 07
tonically (in fact asymptotically linearlywith o (see Fig. L 06
Therefore, and since(x)=1 atx=0.0 only, it follows that £
for any finite nonvanishingo value region Il is of nonvan- %os
ishing measurdsee, for example, Figs. 5 and. 45ince x =
grows monotonically withw, andx> B¢, the relative size
of region Il increases withw up to the threshold value 03
w*(B) at  which Fy(o*)/Fi(0*)=1/8 [i.e., 0ol
X(B,0* (B))=1]. (If B>max,[F(w)/F,(w)]=1/cy, then o
w*(B) does not exist, and may be considered as infinite. '
For x>1, r(x) s.trlctly increases with x, thus .for % o5 ] 15 5 >3
w>w*(B) the relative size of region Il decreasesasn- (b) x

creases. Atx=1, r(x)=0, namely, Rj(w,8)—> as o _
w— w*. For these values, regions | and Il occupy most of FIG. 5. The relative size of region ta) //y:(w,5=0.1), see
the parameter space, and region IIl shrinks till it disappearss9- (13 (b) 1(x), see Eq(16).

to ordere, at w=w* (B). . -
B tural indices of a homoclinic tangle. Then, we present the

C. Secondary homoclinic intersection points analytical(perturbationgl method for finding these structural

First d ib trically th darv h i . indices.
Irst, we describe geometrically the secondary NOMOCINIC & gigar values of the dissipation parameidor which

intersection points, their transition numbers, and the struc,fhe Melnikov functionM,(to:,3) [M,(te:x,8] has two

5 . . , , : simple zerogsee Sec. || B Denote the corresponding PIPs
(primary homoclinic intersection pointsordered by the di-

rection of the unstable manifold, bpl, (prg) and glg

(grg); see Fig. 6. Also, denote their ordered images under

the Poincare map F by pl,ql; (pri.ar),

i=0,+1,+2,+3,...,i.e.,F'(plg)=pl; and so on. The ar-

eas enclosed by the segments of the stable and the unstable

manifolds connecting two successive PIPs are cdtbes

Denote the lobes enclosed by segments of the stable and the

unstable manifolds connecting; ,ql; by DI;, and the ones

that between qlj,pli;1, by EIlj, when again,

DI,=F'(Dly),El,=F'(Ely) (the equivalent notation is used

] for the right side; see Fig. 6.

If EI;NDly#< (ErjNDro=(J) for some non-negative

0.5t
integerj, orif DI, sNErg# < (Dr, 1NEly#J) for some
% 0.2 0.4 06 0.8 1 12 non-negative integek, then there exist secondary intersec-

3y tion points(SIP9 in these intersections. The integgrk are

the transition numbersf the corresponding SIH29]. The

FIG. 4. Primary homoclinic bifurcation curvesn (6/vy,w) minimal transition numbergthe minimal integerg,k) for
spacé. which this happens on the left sideght side of the hyper-
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0.8 T T T T T

0.6

0.4r

= ar FIG. 6. lllustration of lobes, PIPs, and SIPs.

———, stable manifold; ——, unstable manifold.

bolic fixed point are calledhe structural indices/,/,, &, Simple zerogdegenerate zerp®f Eq. (17) imply trans-
(/1 ./y) of the homoclinic tangle[29]. Namely, these verse secondary homoclinic intersectigtengencieswith a
structural indices are exactly theansition numbersf the  transition number
secondary homoclinic points which belong to the first inter-

section of the corresponding lobes. For example, in Fig. 6 the

structural indices are’, =1, /|,=1, /=1, and/,, =2. Jed(to,e)=
Each such structural index imposes minimal complexity for

the structure of the homoclinic tangle. For example, the

length growth rate of line segments along the unstable mani- O=<to<T (19

fold (the topological entropyincreases as the indices de-

crease. Thus dividing the parameter space into regions aGhere[x] is the integer part ok, T=27/w is the period of
cording to the values of these indices correspondsihe perturbation, ans(t,) is either 0 or 1, depending on the
approximately, to a plot of “level sets” of the topological jnterval to whicht, belongs[Eq. (24) below]. The structural
entropy. The dividing curves correspond to secondary hoj,qex /eq (c,de{l,r}) is defined to be the minimal transi-
m.oclini.c bifurcations.. _Large SAs_ which are not associatgqion numberj.4(to,&). For sufficiently small this analyti-
with primary homoclinic tangencies seem to appear only in.5| gefinition of the structural index meets the geometrical

regions in which at least one structural index is less than Ofefinition described abovgL4]. It follows that typically a

equal to 1(see alsd28]). _ change in the structural index may be found at a bifurcation
The perturbational method for calculating the secondar;boim for Eq.(17). [Another source for changes in the struc-

homoclinic bifurcation curves is described below. For sim-; 4l indices are points of discontinuity of(to), see[27].]

plicity it is presented specifically for the AFDO model. More Indeed, under some generic conditions hﬁ“j(to & 10,0)

generally, it may be applied to nearly Hamiltonian dissipa-,q strL;cturaI indices satisfi4] e

tive systems, which satisfy some generic assumptiges

thd(tO 18)

T —S(tp),

[27]). .
Consider the secondary Melnikov functior(see 7 ca=Jcdtocd 8ca)y,  Cde{l,r} (20)
[25,26,14,27):
q B where ocq.&cq) (ec4 SMal) are the solutions to the standard
h5%(to,8) = Mc(to) + Mg(tica(to.)), equations for a bifurcation point:
cdefl,r} (g hS%tg,e)=0 O<to<T (22)
whereM(t) is the Melnikov function, and; . is defined by é,hgd(to,s) - o2
at s
to+ P(eMc(to)),  Mc(to)<0 °
tlcd(to,s): 1 C,de{l,r} . . . . .
tot z P(eMc(tg)), Mc(tg)>0 8 defined in the appropriate time interval for.
18

/gt s(t T<ticq(tocd:
P(H) is the period of the unperturbed periodic orbit with [ cat S{toca) IT=trcaltoca &co)
energyH, andH =0 on the separatrix. For sufficiently small <[/ cqtS(toeq) +1]T, (23
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find approximations to the secondary homoclinic bifurcation
points (ty,e44(tp)), c,defl,r}, ie{1,2. The solutions for
B=0, §=0 may be used to solve these equationsger0

0.9Hy=1, p=0.1, 8=0.05

081 or/and 6+ 0 small by the use of asymptotic expansions in
o7l powers of 3 and é for i=1, and in powers 0f31/3 and
61/3 for i=2. To get more accurate results, usiRgH)
08¢ instead of its approximate form, we use a Newton method,
&7 0.5¢ combined with a linear prolongation scheisee the Appen-
0l dix and [27] for detail9. Plotting the bifurcation values,
' eeg(w,7,8,8,7cq), c,de{l,r}, i e{1,2, obtained from the
03¢ solutions to these equations, fer 8, 6 fixed and varying
02k w, gives the secondary homoclinic bifurcation curves in pa-
ol rameter spaced, &), labeled by the structural indiceg,q

=0,1,2,...,m<o, as in Fig. Ta).
A simple lower bound to the homoclinic bifurcation
curves[compare with Eq(A2)] is given by

P Y27l w)(/ gt 1))
max |M(to)]

P Y47l w)(/ gt 1))
max [M(to)]

S_Cd(wi’%ﬂvﬁv/]cd):

, C#d.
(29
Therefore, using Eqg6) and (7), we find

1&7(2w/w)(/cd+ 1)

max{|yF.— 34],|yFo+ 44}
(26)

Siaz(w,’y,ﬁ,ﬁ,/cd)Z

. . l . . These give a simple lower bound on the secondary ho-
-15 -1 -05 0 05 1 15 moclinic bifurcation curve$Note that since the approxima-

* tion to leading order irH for the period functionP(H) is
used here to calculate,y, we get thate.q=¢.. (see the
Appendix for more details Hence the curves (£ ..=n)
serves as a lower bound to all the eight secondary ho-
moclinic bifurcation curves, related to the structural index
/ee=N, €24/ cc=n), with ¢c,d e {l,r} andn=0.] Moreover,

FIG. 7. Secondary homoclinic bifurcation curves and the ho-

moclinic tangle. —}, ; ———, €2 ; ——— , stable manifold; —,

unstable manifold.

0. to.c OI> geometrically these lower bounds correspond to the values of
» 0cd 2 ¢ for which the lobes may get involved in a 1;{+ 1) reso-
S(toca) = - (24 nance(see below
1, tOCd e E ,T) y

Comparison between numerical and analytical results

. _ The analytical method described above for finding the

wheretycq(to, ) is defined by Eq(18). , secondary homoclinic bifurcations is of a perturbational na-

Typically, for e¢q sufﬂmelntly sémall, one finds a sequence y,re Thys, as proved {f14], in the limit of smalle values it
of two bifurcation valuesg;4<&c4. The corresponding so- s guaranteed to supply a good approximation to the actual
lutions (tocq.ecq). i =1.2 of Egs.(21) and (22) divide the  pifurcation value. Here we examine how good an approxi-
parameter space into three regions: below the hypersurfaggation the analytical formulas supply for finite values.
e=egq(w,7.B,8,/ ¢4 there are no SIPs, between the hyper-Indeed, excellent agreement is achieved between the analyti-
surface58:séd(w,y,ﬁ,é,/’cd) and szsgd(w,y,,B,b‘,/cd) cal predictions for the occurrence of SIPs and the numerical
two SIPs occui(see, for example, the intersections denotedcalculations of the stable and unstable manifolds £oas
by an arrow in Fig. ¥, and above the hypersurface large as 0.3 and’;4=1, c,de{l,r}, see, for example, Fig.
8=8§d(w,y,,8,5,/cd) two additional SIPs occufsee, for 7. In this figure thex at the (,e) parameter space indicates
example, the intersections of the lobes above the origin ithe parameter values for which the manifolds, presented in
Fig. 7). the right figure, are calculated. In the right figure, the corre-

Moreover, Egs.(17)—(22) may be brought to a simple sponding near tangency of the manifolds is indicated by an
form, as shown in the Appendix. Using the asymptotic ex-arrow. In fact, the larger thEs, the larger thes values for
pansion for the period functioR(H) [Eqg. (6)], these equa- which the zeroth-order approximation is found to be ad-
tions may be solved analytically if bot=0 and5=0, to  equate. For example, fof =2 we find excellent agreement
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up toe=~1. This is not surprising since lardés (and finite  the modulus of the ladtl;; Lyapunov exponent values. The
) correspond to large’s for which the Melnikov function program stops if one of the following events occurs
coefficient becomes exponentially small, thus the effective (1) The largest Lyapunov exponent is negative. Then
perturbation is small. there exists a periodic sink. The exact value of the negative
For /..=0 the agreement between the numerical and thé.yapunov exponent is not sought.

analytical results is not as favorab{aotice that this is a
finite ¢ effect: lettinge —0, With all other parameters held oo roxoxe oo orx
fixed, necessarily implies that—«). This is due to the h ,
passage of the manifolds through a 1:1 resonance relation ~ '[°°°°*c°xexecqgeoxxxoocoooccooqooa

O****XOO*OO;)%OK 0000000CO0O0O0ODROOO

between the periodic orbits inside the homoclinic loop and

T T 7 T
0000000000000
!

!

the forcing period 2/ w; namely, the energy level to which 08¢ cooixox¥xkooooooooo |
the manifolds are pushed by the Melnikov function is near !
the energy level for which a 1:1 resonance occurs. |

R . . . BFOC0OD OO X000O0OO%X000OD0CODOD0ODODOOO0OOJOOOO O
(Indeed, the Im resonance relation for the periodic orbits of cooooxcooxxoxofooooooo0000ho0o000
Eq. (3) is given by P(H)=2mm/w. Since by definition of
ticc [see Eq(18)], P(eccMc(toce)) =ticc—toce, and by con- o4r

dition (23), ticc—toece (Zec(27 ©),{/ e+ 1} (27 w)), the
manifolds “pass” through the 1:1 resonance zone for 02l _
/«c=0.) Now, the construction of the SMF uses the Whisker : e

map (see[30,29,31,32,25,26,14,33in which the motion of -7 L B00,5005
the interior orbits is approximated by unperturbed periodic o
motion. This approximation fails near a 1:1 resonance. (a) ®
Hence the analytical approximation for thg.=0 bifurca-
tion curve is inaccurate even for small valuessofNotice

that in this limitw is varied withe, hence this observation is 1r 0000
not contradictory to the SMF theorems which hold in the o000
limit e —0 with all other parameters held fix¢#l4]. Indeed, osl oo oo

to avoid passage of the manifolds through a 1:1 resonance,
& should satisfy the conditios <P~ }(27/w)/M¢(toeo)-

This condition holds for/..=1. For the outer indices 0.6f cooo
/4, C#d the problem of 1:1 resonance was not encoun- *
tered. 0al |

IIl. STRANGE ATTRACTORS o2r -

In this section numerical evidence for the existence of ¥=1, B=0.01, 3-095 ‘ ‘
SAs, and observations regarding their location in parameter 8s 1 . 18 2
space and their structural properties in phase space are pre® ®
sented. ] . . . ' _ '
0.9¢ / ; ,’I a
A. Numerical scheme for detecting SAs / i i
, 0.8F ¥=1,B=0.1, 5095 ; S i
Simple numerical experiments showing Poincaraps of ’ o i
the AFDO (usingbsTooLs[34]) suggested that SAs appear 0.7 [y
in the area of the parameter space related to the structural o6} [
indices/ .q=0, c,de{l,r}. To investigate this subject more o5l i
thoroughly the Lyapunov exponents of orbits of E8). were | i
computedsee[35]). Viewing Eq.(3) as an autonomous sys- 041 !
tem, each orbit has three Lyapunov exponents, one zero, one 441 | !
negative, and the third may be either positive or negative. A ‘\.\ /
positive third Lyapunov exponent indicates the existence ofa %[
strange attractofsee[9]), while a negative third Lyapunov oaf
exponent indicates that the orbit is attracted to a periodic - .
1.6 18

sink.

An efficient stopping criteria for the Lyapunov exponents (c)
calculation is developed, using the distinction between SAs
or sinks with long transients and simple sinks. Fi,rst, to re- FIG. 8. Secondary homoclinic bifurcation curves and SAsa
move transient behavioN;, iterations of the Poincarmap  SA (positive Lyapunov exponentsO, a periodic orblt(negatlve
(N;,=200 was found sufficiehtare calculated. Then, every Lyapunov exponent €L ——— €2 e -, R
N;; iterations (;;=100) a line is fitted to the logarithm of (a) =0, §=0.05.(b) 8=0.01,5=0.95.(c) 8=0.1, 5= 0 95.
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FIG. 9. Secondary homoclinic bifurcation curves and SAs: Magnification of certain regions of FBs3(8).

(2) The largest Lyapunov exponent is positive and thee,, , ey, are not defined for the specifiesl values[since the
slope of the fitted line is nearly zer@p to an error of Melnikov function M,(t,) has no zerds) While theoreti-
cally such regions should appear near all tangent bifurcations

le—6).
(3) The total number of Poincanmap iterations exceeds jith arbitrary/, we did not detect in our numerical search
10 000. In this case no decision is made regarding the eXisyny SAs near the bifurcation curves witfi>0. This sug-

tencg or nonexistence of an attractor. In p_ractice the stoppin@ests that the size of the parameter regions for which SAs
criteria (1) and (2) occur before 10 000 iterates are com- appear decreases dramatically with
In fact, our perturbational methods for detecting the ho-

puted.

In case(2), when a positive Lyapunov exponent is de- moclinic tangencies associated with the structural indices

tected, all the Lyapunov exponents are calculated. Hence th/e —0 are inaccurate. see Sec. Il C. Nonetheless. the pre-

Lyapunov dimensiofi36] of the SA may be calculated. Note ’d.”t_d wiical bif ’ i ' fdf 0 od | P
that the Lyapunov dimensioB, is an upper limit for the Icted analytical biturcation CUrves 1ofqq=1, ¢, eilr}

still lie in the area of parameter space near which the actual

bifurcation curves exist. Moreover, we observe that the SAs

capacity(or box-counting dimensionD [36].
In the numerical experiments, 8, are fixed and: and i )
appear only in the region of the parameter spaeee],
which is above the second secondary bifurcation curve

o are varied along and near the secondary homoclinic bifur<
cation curvese.q(w,y,8,6,/cy), i=1,2, c,de{l,r}, of : .
Sec. Il C ed @ 7.8 d) fhr} sﬁ(w,y,ﬂ,é,/”:l) (see Sec. Il @ For <1, our predic-
' ' tions for this curve are accurate, hence this curve may be
considered as a lower bound to the region in parameter space

B. Windows of SA . - .
in which SAs appear, see Fig. 8.
For various parameter values, numerical evidence sug- Another feature of the windows of SAs is that they all
gests the existence of SAs in “windows” in the parameterseem to appear above a threshold vade,y,3,5)=0.2.
space. These windows are aligned near the secondary hamely, they do not seem to extend to the smakalues to
moclinic bifurcation curves which are related to the struc-which some of the”=0 bifurcation curves extend. Numeri-
tural indices), ,/|; =0, see Fig. 8, and the magnification of cal calculations of the stable and the unstable manifolds of
the origin for the minimak values for which SAs are found
suggest that this curve is a specific homoclinic bifurcation

the windows in Fig. 9(Notice that in Fig. 8) =0 hence
curve; above this curve the loli#l; intersects the lob®l,

ej=¢}, and e\, =¢},, whereas in Fig. @) ¢/ #0¢}, and
&), # &y , but, for clarity,e;, , ;, are not plotted. In Fig. @)
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FIG. 10. The stable and the unstable manifolds corresponding to SA. ——— , stable manifold; ——, unstable manifold.

at five or more(six, seven, or eighthomoclinic intersection Fig. 12. These features persist in the window shown in Fig.
points. See, for example, Fig. 10. Notice that the homoclinic9(a), and even whea =1, though the attractor is more struc-
bifurcation curvesi(w,v,8,6,/,,=1) in the (0,e) param- tured, it has “fat” regions in which no filamentation is ob-
eter space gives a lower bound to this curve. served. The positive Lyapunov exponent corresponding to
The structures of the SAs that are obtained vary with thehis figure is log(«;)~0.1987, and the corresponding
parameters. The main forms of the attractors which were yapunov dimension i$, ~1.9036. The SAs indicated in

found are described next. Fig. 8@) are of such structure. Most of these attractors have
a positive Lyapunov exponent of about 0.2. The maximal
C. The phase space structure of the SAs observed deviation from this value is 0.02. Nearly conserva-

The observed SAs have the following two distinct prop-tive one-sided SAs were not observed.
erties. When 6/ is not small ¢/y=0.2 is already in this re-

(1) The attractors may be one sidéck., the attractor is gion), the structure of the SA is associated with the folding
contained in the right or left half phase space pJametwo  of the unstable manifold as in strongly dissipative systems,
sided(with one or two componenks see Fig. 13. The corresponding positive Lyapunov exponent

(2) The attractors may have strong dissipative featores is l0g,(«;)~0.1741, and the Lyapunov dimension is
may have nearly conservative features. D, ~1.2975. Comparing with the above results for the nearly

The first property depends on the location of the parameonservative attractors, we observe that the Lyapunov expo-
eter values with respect to the division into regions I, I, andnent is less sensitive to the attractor's structure than the
Ill. One-sided SAs may appear in region Il near secondary.yapunov dimension. The SAs indicated in FigbPare of
homoclinic bifurcations or near the borders between the restrongly dissipative nature; some are two sided with a posi-
gions, namely, near primary homoclinic tangencies, see Figive Lyapunov exponent very close to 0.17, with maximal
11. There, the transition between two-sided SAs, denoted bgteviation of 0.03, and some are one sided.

T, and one-sided SAs, denoted By is shown.(This transi- In Fig. 14 such a one-sided SA is shown; its positive
tion is not continuous ird/y; between the value of/y for ~ Lyapunov exponent is lg§a)~0.0862, and its Lyapunov
which a two-sided SA appears, and the valuesdy for  dimension isD, ~1.1453. The SAs presented in FigcBare
which a one-sided SA appears, there may be some values afl one-sided strongly dissipatielenon-like) SAs. The val-

8l for which no SAs appearlin fact, near the border be- ues of the positive Lyapunov exponent are 3:@804, about
tween regions Il and 1l three different SAs may appear: ahalf of the Lyapunov exponents of the two-sided SA.
one-sided SA on the right half plan®yo one-sided SAs or a The Lyapunov exponent and dimension of the attractors
two-sided SA. Near the border between regions | and Il lefiseems to be quite robust. The dependence of the Lyapunov
sided SAs, coexisting with a sink on the right half plane,exponents on the values efalong a secondary homoclinic
were observed. bifurcation curve related to a structural inde%4=0 is

The second property seems to depend mainly on the ratishown in Fig. 15. An example for the dependence of the
6/y and is roughly independent of the other parameters Lyapunov dimensions on the values@tlong such a bifur-
regions where SAs existthis is somewhat surprising since cation curve is shown in Fig. 16. The plunges in the figure
the area contraction per Poincammap is given by correspond to parameter values for which no SAs exist.
exp(— & 627/ w)—thus strong dissipation may be achieved In [27] symbolic dynamics of segments of the unstable
for fixed &/ by increase ok, without essential changes in manifold is constructed for the AFDO, and for general dis-
the structure of the SA. Fa¥/ y<1, the two-sided SA seems sipative systems which unfold homoclinic tangencies. From
to have nearly conservative features of a chaotic region, sehis symbolic dynamics a transfer matrix may be constructed
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tion curve e= € (w,7,8,.1,,). (b) Zoom in on e values in the &/ ¥=0.05, andl,=0. (@ Samples ofe values along the bifurca-
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for each set of the structural indicegy, c,de{l,r}. It fol- : .
lows from [37,2€ that log,(\), where\ is the modulus of Lyapunov exponents .co.rrespoidlng fo a dense orb of
: A i.e., for the structural indiceg’;4=0 we get
the largest eigenvalue of the transfer matrix, gives a lower
bound on the topological entropy of the Poincamap. The
lower bound on the topological entropy for the AFDO with
/¢q=0, c,de{l,r}, corresponding to the region in param-
eter space where two-sided SAs appear, is,(8®231)

=1.9720. The lower bound on the topological entropy for

h(p)<\i=log,(a;)<logy(\)<higp.

Notice that the lower bounds obtained for the topological
entropy are larger by an order of magnitude than the corre-
: . i sponding Lyapunov exponents and that there is very little
the AFDO, corresponding to the existence of one-sided SAaifference between the one-sided and the two-sided cases.

s 100,(3.6709)=1.8761. . . . . See[25,27] for the construction of the symbolic dynamics of
The above results are consistent with the inequalities det'he lobes, and details on how the transfer matrices and the

scribing the rel'ati(_)r)s bgtween topolpgical entropy, entromfower bounds on the topological entropy may be calculated
(Kolmogorov-Sinai invariant and positive Lyapunov expo- '

nents(see[9,38)):
D. Basins of attraction

=
h(p)=Nrop. Initial conditions may be attracted to the various attractors
which exist in the phase space. Here, we distinguish between
h(p)< E A three types of attractors: those located entirely on the left
\i>0 (right) half plane and those which are located on both sides

of they axis. We do not distinguish here between the basins
wherep is an ergodic measure with compact support, withof attraction of different sinks or SAs, s€24,39—-41,28for
respect to a diffeomorphic map, and\; are the positive detailed study of these issues.
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The flux of phase space area into the left or right sides may be calculated to first oedéyimtegrating the Melnikov
function:

8mo M 0 Vse[OT
- SOM T ) 3g ' S0~ St ()< se[0,T)
I,r_f0 I,r(s)ds+ j51Ml,r(S)dS_ 2'y 48 211/2 48 - 48 (27)
"o ”[ _(3%”” _ﬁza“’s"ésw.,r)”‘ S0

1 [ 46 ™
So=_arcsi 3, ) 1=~ So,
.

where sy,s;, are determined by, ;(s)<O0 for sy<s<s;  near the borderline between the regions, this picture may
e[0,T]. Thus on thenth iterate the initial phase space area,change dramatically; there are cases for which all the initial
| If‘,|exp(27-ra onlw), is swept into the left or right side. In conditions which are numerically integrated are attracted to
region I, M, (s)<O0Vse[0,T), and|A]"|=|A"| to ordere. the right side.

SinceF,<F, it can be easily shown that">|Al" in re- Num_erical calculations of the basins of_attraction of the
gions Il and III. Thus for parameter values corresponding tdeft or right attractors suggest a more detailed description.
these regions the influx to the right side is always larger than (1) No intersections on both sides — region I: To order

the influx to the left siddrecall that3>0). &, by Eq. (27) the left and right influx areas are equal, but
If M, ,(s) has simple zerogos,#s,) then, similarly, the ~ high-order terms alter these results. Indeed, numerically it is
flux out of the left or right sides is given by found that the right basin is larger than the left one. More-
over, its area seems to grow monotonicallysadecreases to
s 2 45 \2]12 its threshold value, 3F /4.
A?Lr't:f M, r(s,)ds:—[ YF 11— (—) } (2) Intersections on the left side or on both sides—regions
' so w ' 3vFis Il and Ill: As & is further decreased, the area of the right

basin continues to grow. However, the growth in the basin’s
46 | 46 278 4 . ) : .
+ —arcsi - area seems to be discontinuous. This phenomenon is associ-
3 3vFir 3 (28)  ated with the “boundary metamorphosig41] of the sub-

harmonics. For some parameter values in region lta-
In region 1, A?'=0, hence obviouslyA?{=|A®] in this  sidedperiodic orbit or a SA may exist, hence in these cases,
region, and it can be shown tHat™|=|A®] in region lllas  some(or mos} of the initial conditions are attracted neither
well (i.e., for 6<3vyF,/4). to a left nor to a right attractor.
One might expect that the ratio between the fluxes to the There seems to be a correlation between the discontinui-
right and left regions determines the ratio between the sizeties and the occurrence of homoclinic tangencies. See, for
of the basins of attraction. However, in regions Il and Il example, Fig. 17. In this figure the percentage of the sampled
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phase space area which is swept to the left or right side, up tence between the fluxes to the right and left regions deter-
an approximated error af 0.03, is presented as a function of mines the ratio between the sizes of the basins of attraction.
¢ (all the other parameters are fiedvhere the values of This occurs in a continuous and natural way in region I,
e which correspond to secondary homoclinic bifurcationhowever, near the border between regions Il and Ill, where
curves are specified. The results of this figure are somewhane-sided SA may appeéon either side of jt this picture
puzzling; one would expect that left or right attractors aremay change dramatically; there are cases for which all the
composed, for"’=0, from the attracting resonances. Hence,initial conditions which are numerically integrated are at-
when the unstable manifold intersects through the resonandeacted to the right side.
region, it depletes the resonance, thus decreasing the relative The robust, observabl@aence physically significapSAs
area of the basin of attraction of the corresponding sideappear near primary homoclinic tangencies and near second-
However, in Fig. 17, along with results that confirm this ary homoclinic tangencies with small structural index. A key
scenario(see, for example, the jump near=0.06), we ob- perturbational tool for finding the latter is the SMEA4].
serve quite the contrary resul¢see, for example, the huge Generally, it is found that the SMF supplies excellent ana-
jump neare =0.5). Possibly other, undetected bifurcation is lytical prediction to the occurrence of secondary homoclinic
responsible for these results. tangencies even for relatively large valuessofHowever, it

In [28], numerical results regarding the relation betweerfails near the/’=0 homoclinic bifurcations, exactly in the
homoclinic and other bifurcation curves and the basins ofegion where robust SAs exist. Thus only lower bounds and
attraction of systems with a cubiclike potential well are pre-approximate curves for the regions where SAs are observed
sented. There, it has been suggested that the bifurcaticare found. We suspect that both phenoméhe failure of
curve, corresponding to what we call here a secondary hadhe SMF and the appearance of $Ase associated with the
moclinic bifurcation curve with a structural inde%=0, is of  involvement of the stable and unstable manifolds in a 1:1
great significance, since closely beneath it they numericallyesonance. Thus we derive a simple lower bound:fabove
observed a chaotic escafiee., a destruction of the basin of which the manifolds enter the 1:1 resonafiEg. (25)]. The
attraction of the SA Their chaotic escape corresponds, in astudy of the relation between the resonance, the manifolds,
case of atlosedsystem, to a decrease in the basin of attracand the SAs, and the construction of a more accurate ap-
tion of one side and an increase in the basin of attraction ogproximation to the homoclinic bifurcation curves near a 1:1
the other side(A system is callectlosedif some forward resonance are left for future work.
iteration of the Poincarenap of a segment of the unstable  The structure of the SAs varies with the parameters; as the
manifold which has left the left or right region returns to it. ratio §/y increases the values of the positive Lyapunov ex-
See[27] for a more precise definitionThus the current re- ponent slightly decrease and the Lyapuritracta) dimen-
sults are in agreement with the results obtainedi2i] for ~ sion decreases significantly. Surprisingly, we find that fixing
opensystems. Possibly, the critical curvésear which SAs this ratio and varying the other parameters in one of the
appear or lose stabilifthat they have observed numerically “windows” for which SAs exist, the structure, Lyapunov
correspond to the curves discussed above: the homocliniexponent, and Lyapunov dimension of the SAs hardly
bifurcation curve above which the loHdel; intersects the change. Such a variation does change, in particular, the dis-
lobe DI, at least five points, and the curve at which thesipation(area contractingrate per Poincarenap.
unstable manifold intersects the resonance region.
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moclinic intersections or tangencies occur only on one side
of the saddle fixed pointregion Il plus its neighborhood APPENDIX: EINDING SECONDARY HOMOCLINIC
This region may be of significant size even for very small BIFURCATION CURVES
asymmetry valuesg<<1) if the forcing frequency is appro-
priately set. It is of negligible size in the adiabatic limit, In this appendix some technical aspects regarding the
hence, to the best of our knowledge, was not observed imethod of solution of Eq917)—(21) are described.
previous works which have considered asymmetric poten- From Eqgs.(17)—(21) we construct the equations
tials with adiabatic forcing. In this fat region Il, the system
may posses one one-sided $#trange attractoystwo one- tilcd(tO): Malyi(_ M (to)+jcaT, (A1)
sided SAs, or one two-sided SA. In the former case the at-
tractor may be situated on either side of the fixed point;

however, the nature of the basin of attraction of the left and P~ ticq(to) —to) _
right SAs seems to be different. i M(to) '

We find that the relative size of the basin of attraction to &cd(to) = P12t (ty)—ty)) (A2)
the left or right attractors is usually not sensitive to its edt 707 077 o4d
strangenes§.e., the size of the basin does not change sig- Me(to)

nificantly when a SA is destroyed or creakelh general, the
basin of attraction of the right attractor is always a bit largerwherec,de{l,r}; i=1,2; j.qe N, and from Eq.(7) for the
than that of the left attractor, where in most cases the differMelnikov function of the AFDO, one gets



X 45 )

M Hx)= iarcsir{ +
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Notice thatMgl'i(x) are undefined for

X N 45 -
YF4(w,B8)  3yFy(w,B) ’

hence there are some values ©f in [0,T) for which
ecq(to) from Eq. (A2) are undefined. From Eq$20) and
(23) we get that fortge[0,T): jcg=¢"catS(to), where
s(tg) =0 fortye[0,T/2), ands(ty) =1, fortye[T/2,T). The
above equationfEgs. (Al) and (A2)] are dependent on the
perturbation parameter8 (asymmetry, & (dissipation, vy
(the amplitude of the forcing and w (the frequency of the
forcing). In addition, for |H|=|eM/(tg)|<<1 we get[see
Egs.(6), (21), (22), and(Al1)]

o 6to.)
o atg

Mé(%))
TROSTAN

~M¢(to) +Mgy(Mg ' (— Mc(to)))( 1-

c,de{l,r}, i=12.
Hence for the AFDO Eq(Al) becomes
1 F.w,
t1eq(to) = P 27+ arcsir( - %sin(wto)
dlo,
y 2
3 F(0.8) [ eats(to]_- (A4)
1 Fe(w,B)
tieq(to) = 5{ w—arcsir< - Fd%ﬁis'mwt")
80 2
3 F(0.8) [ cats(to)]_-, (AS)
a
O, t0€|:0,_
S(tg)= c,def{l,r}

v r
1, tye Z’?
and Eq.(A2) becomes
—16exgto—th 4(to)]
yF(w)sin(wty) —46/3’

16expty—t).q4(to)]
yF(w)sin(wty) —446/3°

c=d

etg(to) =~
c+d

i=1,2. (A6)
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These approximations are valid for sufficiently sntalk of
the period functiorjsee Eq.(6)], namely, for

. ) 45
s'cc(to)( yF(w)sin(wtg) — ?)—>O—, (A7)

_ _ 46
Slcd(to)( YFc(w)sin(wtg) — 3)—>0+- (A8)

And, for such sufficiently small values &f, Eq. (A3) is

Fel@.B) i oto)+cog ot (to)]
Fd(w,ﬁ) 0 1cd\*0
x [ tar(wtg) — wsm(wtol —|~o0,
st~ 3 F (0.8)
(A9)

whereF;,F4 are as in Eqs(9) and (10) of Sec. Il A for
c,de{l,r}, ande 4(to) is calculated here with the use of the
approximated value of the period function of AFDO,
P(H), from Eq. (6).

Remark: Since the exact inverse function of the period
function of the AFDOP 1(x), cannot be found analytically,
(ty,ecq(ty)), 1=1,2 are found by solving the equations

P(eM¢(to)) = Thq(to), (A10)
IP(eMc(to))  I7e(to)
o oty (ALD
where
[ tedto) Tt Mo(tg)<0
Tedfo) = 2[theq(to)—tol, Mc(tg)>0, c#d
(A12)
2T
cdef{lr}, ie{l,2, tye[0T), TZ?’

by a Newton method, combined with a linear prolongation
scheme. As the initial guesses for the Newton method we use
the approximated values fd, and e 4(ty). See[27] for
details on how these approximated values may be obtained.
When approximation to leading order kh for P(H) [as
in Eq. (6)] is used to calculate,4(t,), one gets that to lead-
ing order ing, |ecq4(to)| =|ecc(to)| for §=0. Actually, more
accurate approximationéuch as using higher terms and
Newton methogl show that they are different.
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