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1. Introduction

The dynamics of weather balloons is of vast inter-
est for meteorological and for environmental studies,
inducing expensive large-scale field experiments [e.g.,
the TWERL experiment (Julian et al. 1977) and the
planned 1999 STRATEOLE experiment, with an es-
timated cost of several million dollars]. One question
that is addressed in these experiments is the stability/
instability of the balloons in the meridional (i.e., north–
south) direction. Indeed, observations on the meridi-
onal excursion of high-altitude (10–15 km above sea
level) constant-level balloons launched in middle and
low latitudes have shown that in the course of their
flight these balloons can have extended periods (in
particular exceeding 1 day) during which the flight is
directed entirely poleward. During these periods the
balloons move with a meridional speed of over 30 kt
(about 15 m s−1) and with nearly zero zonal (i.e., east–

west) speed (Julian et al. 1977; Levanon and Julian
1977). While these meridional squirts were encoun-
tered only in about 1% of the balloons and thus are by
no means representative of the mean balloons trajec-
tories, their existence poses several fundamental dif-
ficulties. First, these infrequent Lagrangian findings
seem to contradict the Eulerian observations and the
results obtained from Eulerian general circulation
models (GCMs) of the atmosphere on the global
winds, which together show that the prevailing winds
flowing around the globe are mainly zonal. There have
been no other reports on observations of either such
high meridional winds or of such low zonal winds
except for those resulting from monitoring constant-
level balloon trajectories. Another related issue, result-
ing from the balloons’ meridional rather than zonal
flight, is the pressure field associated with this veloc-
ity. It is well known that, to a very good approxima-
tion, the velocity of air parcels in the planetary
atmosphere is determined by a balance, called
geostrophy, between the local pressure gradient force
acting on it and the Coriolis force. The latter results
from the rotation of the earth acting to produce a force
perpendicular to the parcel’s velocity relative to the
rotating earth. According to classic theory this balance
is established in about 1 day from the application of
an initial pressure gradient. Thus one expects to find
a pressure field with a strong zonal gradient to sup-
port the observed meridional velocity of these excep-
tional poleward flights. By calculating the pressure
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field for the time when the meridional squirts took
place, it became obvious that no such zonal gradients
of pressure existed so that the velocity as inferred from
the balloons’ flight could not have been in geostrophic
balance with the pressure.

Here, we propose that a Lagrangian mechanism
may explain the above-mentioned observations of
exceptional poleward squirts. Traditionally, two
simple models have been used for describing the mo-
tion of particles in the atmosphere. One model pro-
poses that the geostrophic wind, which provides a
first-order steady (i.e., time independent) approxima-
tion to the observed air velocity in the planetary atmo-
sphere for a given pressure field, carries the balloons
as Lagrangian particles. Perturbing the geostrophic
flow by adding time-dependent components can yield
the chaotic transport. Yet, as mentioned above, such
models have not resulted in an explanation of the large-
scale meridional squirts. At the other extreme lies the
simplest time-dependent model of a particle flow in
the atmosphere—the inertial motion—where no pres-
sure gradient, or other forces, exists and the Coriolis
force causes an acceleration of air parcels. In such a
model the effect of the atmospheric pressure variation
is considered small; thus the particle motion may be
treated as nearly inertial; see Paldor and Killworth
(1988), Paldor and Boss (1992), and Rom-Kedar et al.
(1997). One way of bridging the gap between these two
simplified models is to introduce into the time-
dependent inertial model the steady, meridional pres-
sure gradient corresponding to the zonal geostrophic
winds. Then the equilibrium solutions of the new time-
dependent model correspond exactly to the steady geo-
strophic winds, and nearby solutions correspond to
oscillations about geostrophy. Moreover, in such a
model it is natural to introduce additional perturbation
terms in the pressure gradient, which is, in addition,
time and zonally dependent. Physically, such a model
proposes that the weather balloon is driven by the at-
mosphere via the atmospheric pressure field exerted
upon it, while the particle’s velocity is determined by
balancing this pressure gradient with the Coriolis force
that results from its own motion. Thus, one obtains the
following near-geostrophic model for the eastward and
northward velocity components (u, υ) and the rate of
change of the longitude and latitude coordinates (λ, φ)
of a particle in the atmosphere:
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These equations are written in nondimensional form,
where the length is normalized by the radius of the
earth and time by 12 h/2π (velocity scale is thus
103 m s−1 and energy 106 m2 s−2). Thus, the relevant at-
mospheric velocities are of O(0.01) corresponding to
dimensional velocities of order 10 m s−1. The Coriolis
force, on a global scale, is the first term in the equa-
tions for u⋅, υ⋅ that includes the convergence of longi-
tudes at the poles term u/cosφ resulting from the
spherical geometry. Here, B(φ) and A(φ) represent the
latitude-dependent amplitudes of the constant pressure
term and the traveling pressure wave, respectively. The
constant ε is smaller than 1, while k and σ are the
wavenumber and frequency of the zonally traveling
wave whose phase speed, c, equals σ/k.

2. The near-geostrophic model

For steady, zonally independent pressure fields (ε
= 0), the corresponding motion of weather balloons
(i.e., particles with small kinetic energy) is very
simple: for midlatitudes it always corresponds to small
oscillations around a mean value φ̄ and a drift in lon-
gitude, with mean zonal velocity

1

2
1

8

2

1

2
−

′( )
( ) −

B φ

φsin .

To obtain our new realistic model, we take a steady
pressure term that is monotonically decreasing
poleward, allowing strong zonal jets to appear near φ
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β = −0.001,

φ
0
 = 30° ≈ 0.5236, (2)

α = 0.05.

Such a form fits well with the U.S. Standard Atmo-
sphere, 1976 data on the geopotential of the 150 mB,
creating a zonally propagating jet at φ = 30° ± 7° with
a maximal eastward velocity of 25 m s−1.

Near the equator, three types of balloon motions
may appear: the typical motions correspond to either
small oscillations restricted to one hemisphere (as for
the midlatitude case), or to equator-crossing excur-
sions. The special initial conditions, lying on the
boundary between these two regions that produce the
typical behaviors, correspond to an asymptotic con-
vergence to the equator (homoclinic motion). The
maximal latitude to which all such near-equatorial
motions may reach is bounded and small for the ini-
tial velocities associated with weather balloons. Thus,
with this simple model, north–south large-scale mo-
tion of equatorial particles occurs only for particles
with large initial velocities. For example, an equato-
rial particle with small initial poleward velocity may
reach Antarctica (60°S) only if it has an initial west-
ward velocity of order 250 m s−1, which is two orders
of magnitude faster than the observed equatorial ve-
locities in the atmosphere.

Zonally traveling pressure waves (ε ≠ 0) that per-
turb the geopotential surface from its mean axis-
symmetrical shape cause some of the particles to move
chaotically (Paldor and Killworth 1988; Paldor and
Boss 1992). Such zonal waves correspond to variation
in the geopotential height of the isobaric surface of
O(ε) in nondimensional units, corresponding to height
variations of order 105 ε in meters. Thus, the observed
amplitude of zonal waves of about 100 m (Holton
1975) corresponds to ε = O(0.001) in our model. The
analysis (Rom-Kedar et al. 1997) [performed for B(φ)
= 0] shows that depending on the wave speed c ≡ σ/k,
the wavenumber k, and the initial conditions, such
zonal waves may create many different types of cha-
otic motions, some of which are highly nonuniform
in the zonal direction. Nonetheless, the existence of
KAM tori (Arnold 1988) prevents, in most cases, the
envelope of the chaotic solutions from deviating too
much from the corresponding unperturbed motion.
The exception to this rule appears when a flat, or nearly
flat, parabolic resonance occurs (Rom-Kedar 1997).
The flat parabolic resonance appears in the near-

geostrophic model when the total pressure field con-
sists of a zonally standing wave multiplied by an ar-
bitrary latitude-dependent coefficient [i.e., B′(φ) ≡ 0,
σ = 0]. Notice that in this case, the mean drift near the
elliptic equilibria vanishes for all φ̄. In this case, even
the slightest ε value [e.g., ε = O(10−4)] can cause rare
squirts extending from the equator vicinity to the
poles; see Fig. 1a. Mathematically, this situation cor-
responds to the existence of a singular energy surface
on which no KAM tori survive the perturbation. Any
situation that is close to the above, for example, our
realistic situation that includes small wave speeds and
B′(φ) << 1, results in a nearly flat parabolic resonance
for which the instability exists in a somewhat reduced
form. This phenomenon was demonstrated for an ar-
tificial function B(φ) in Rom-Kedar (1996). Here, we
show that the model with the realistic value of ε and
the realistic form of B(φ) gives rise to a similar phe-
nomenon and, moreover, that the resulting timescale
for the balloons’ squirts fits the field observations well
(Julian et al. 1977; Levanon and Julian 1977).

To better understand the mathematical origin of
this phenomenon, Eq. (1) is transformed to the new
canonical coordinates (φ, υ, D, Λ), where D is the an-
gular momentum1 [D = cosφ(1/2cosφ + u)] and Λ is
the longitude coordinate moved into the traveling
pressure wave frame (Λ = λ − ct). In these new coor-
dinates the system (1) is transformed into a canonical
Hamiltonian system:
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Notice that D
·
 = O(ε), thus to zeroth order the angular

momentum D is indeed a constant of motion. Linear

1Notice that in our previous publications (Rom-Kedar 1997; Rom-
Kedar et al. 1997) we have used D ̄= 2D, Λ̄ = 1/2Λ.
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stability of the near-equatorial motion w.r.t. small
north–south deviations [i.e., for ε = 0, fix D and con-
sider, in the (φ, υ) plane, the linear stability of the ori-
gin2] reveals that there exists a

D D Bp= ≡ − ′′( )1

4
0

value such that for |D| > D
p
 it is linearly stable (i.e., cen-

ter since the system is Hamiltonian), whereas for |D|
< D

p
 the motion is linearly unstable. Indeed, for |D| <

D
p
, there exist a homoclinic loop in the (φ, υ) plane,

emanating from the origin and extending up to latitude
around ± arccos (2|D|). This loop separates initial condi-
tions that oscillate about a mean zonal motion restricted
to one hemisphere [for B′(φ) ≡ 0 this corresponds to
the well-known westward-migrating inertial oscilla-
tions on a β plane] from those traveling between the
two hemispheres. At D = D

p
 the equatorial motion is

parabolic; namely, both the frequency of the oscilla-
tion and the growth rate in the (φ, υ) plane vanish.

Notice that near-equatorial weather balloons cor-
respond to φ ≈ 0, u, υ = O(0.01); hence these have ini-
tial angular momentum D ≈ 1/2. Moreover, it follows
from (2) that B′′(0) << 1, hence D

p
 ≈ 1/2. Therefore, it

follows that weather balloons launched near the equa-
tor correspond to initial conditions that are close to
the parabolic region in phase space.

For most values of c (i.e., except those
values where resonance occurs), by
KAM theorem, the motion near the ellip-
tic points hardly changes under small
[w.r.t. the typical size of (3b) and (3d);
i.e., ε = o(0.01)] perturbations. On the
other hand, the homoclinic motion pro-
duces chaotic behavior. Usually, the
width of the chaotic zone near the
homoclinic loop is of order ε. Moreover,
it is exponentially small in c and in
1/distance from the parabolic point.
Thus, for most values of c and for small
values of ε, near-equatorial weather bal-
loons do not rise to high latitudes on any
timescale; see, for example, Figs. 2b,c
(similar results appear in the near-iner-

tial model).
However, notice from (3) that for any given c value

the motion of the particle along the equator coincides
with the traveling wave motion for D = D

c
 ≡ c + 1/2

[i.e., Λ· (φ = υ = 0, D
c
; c) = 0]. Then, in the moving

frame, any initial condition on the equator with D
= D

c
 is a fixed point of (3) for ε = 0. This situation is

highly degenerate. If it happens for |D
c
| > D

p
, in which

case the equator is stable w.r.t. north–south deviations,
then a strong elliptic resonance occurs, leading to zon-
ally localized motion near the equator. The width (in
D) of such an elliptic resonance is of order ε1/2. If |D

c
|

< D
p
, then a hyperbolic resonance occurs (Haller and

Wiggins 1995); the motion is chaotic near the
homoclinic loop that extends up to latitude ± arccos
2|D

c
|, with the chaotic zone being of order ε1/2 [unlike

the usual O(ε) width associated with the regular
homoclinic chaotic zone]. The parabolic resonance
occurs whenever the fixed motion along the equator
occurs exactly where the equator is parabolic w.r.t.
north–south motion; that is, when D

c
 = D

p
. This occurs

for a specific pressure wave zonal velocity c = c
p
:
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In this case, the motion of some of the particles is dra-
matically changed.

In Figs. 1a,b and 2a we demonstrate the possible
effect of this phenomenon by showing the trajectories
of specific initial conditions; in Fig. 1a B(φ) ≡ 0, and
it is demonstrated that in this case even extremely
small zonal dependence (ε = 10−4) may create squirts

2For simplicity of the presentation B(φ) and A(φ) are henceforth
assumed to be even. Similar expressions may be found for the
nonsymmetric case, where the fixed point in the (φ, υ) plane is
shifted from the origin.

FIG. 1. Meridional squirts for the near-inertial model with zonally standing
waves. Evolution of one initial condition in the (φ, Λ) plane. A(φ) = cos(φ). B(φ) ≡
0. ε = 0.0004, k = 3, c = 0. u

0
 = 0.0038125, υ

0
 = 0, φ

0
 = 0.087266 = 5°, λ

0
 = 2.3712

= 135.9°. (a) t = 500 ≈ 40 days, (b) t = 1750.
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extending close to the poles, since
this case corresponds to a flat para-
bolic resonance. Moreover, we
show that the trajectories may be
localized in longitude even after
very long integration time. In Fig. 2a
we show a trajectory of (1) when
the realistic pressure field (2) and
the realistic size of zonal-dependent
pressure field (ε = 0.0011) are used.
The value of c is chosen according
to (4) so that a (nearly flat) para-
bolic resonance occurs. Such a c
corresponds to a zonally traveling
wave with a period of roughly 1 yr.
Comparison with Figs. 2b,c dem-
onstrates that such slowly varying
waves affect the equatorial bal-
loons’ stability much more than the
higher-frequency waves.

The orbits shown correspond to
rare initial conditions for which
northward squirts are found. More
generally, several types of motion
are possible near the equator under
the parabolic conditions. First, as
for the elliptic resonance case, the particle may per-
form relatively regular, essentially quasiperiodic,
north–south excursions up to latitudes of order ε1/2.
Second, the particle may get trapped inside the para-
bolic resonance zone. When trapped, its motion con-
sists of two different segments; one going eastward
w.r.t. to the wave speed, corresponding to north–south
excursions that reach latitudes of O(ε1/2) and that are
zonally limited to regions of order 2π k−1. The other
segment corresponds to motion in one hemisphere, by
which the particle oscillates about a mean northward
(or southward) motion along the unperturbed stable
equilibrium branch of solutions. These excursions are
unlimited in latitude for B(φ) ≡ 0, c = 0 and are of large
magnitude for small (w.r.t. 1) B′(φ) and |c − c

p
|. The

smaller these are, the larger the latitude that may be
reached by such a trapped trajectory. Moreover, long-
time integration of such solutions contains, in many
cases, the long squirts that are shown in Figs. 2a and
1 and, with them, the possible transfer to a neighbor-
ing resonance cell, corresponding to a different zonal
region.

Finally, notice that to have long squirts D must
change by an O(1) quantity. It follows from (3b) that
the timescale for such squirts is at least O(1/kε).

Indeed, we find numerically that doubling the value
of ε to 0.002 produces a squirt like the one shown in
Fig. 1a that reaches the pole in 20 instead of 40 days.
Moreover, the numerically observed squirts last about
350 nondimensional time units, which agrees well
with kε = 0.0033. Indeed, in the TWERL field experi-
ment (Julian et al. 1977) balloon 1274 was launched
on 1 September 1975 from American Samoa (14°S,
170°W) and crossed 60°S latitude on 1 October; that
is, that balloon traveled nearly 45° in 30 days. Thus,
we conclude that our model, in which the order of
magnitude of all parameters, including ε, have been
determined from atmospherical Eulerian observations,
produces the observed timescale of the Lagrangian
squirts.

Mathematically, the behavior of near-flat parabolic
resonances provides a new type of strong chaotic in-
stability for a two degrees of freedom (d.o.f.) Hamilto-
nian system (Rom-Kedar 1997). There, it was establish-
ed that the occurrence of parabolic resonances is a
codimension one phenomenon (i.e., it will typically
occur in any one-parameter family of a near-integrable
two d.o.f. Hamiltonian system); hence it is expected
to appear in numerous applications. Moreover, the
basic idea that the addition of another nonseparable

FIG. 2. Near-equatorial motion for the near-geostrophic model. Evolution of one initial
condition in the (Λ, φ) plane. A(φ) = cos(φ), B(φ) = −0.001 tanh (φ2 − 0.52362)/0.05 t =
300, ε = 0.0011, k = 3 u

0
 = 0.0049242, υ

0
 = 0.0011, φ

0
 = 0.12 = 6.9°, λ

0
 = 1.855 = 106.3°.

(a) Under parabolic resonance conditions c = 0.001; (b) non-monotonic zonal behavior,
c = 0.01; (c) far from parabolic resonance conditions, monotonic zonal motion, c = 0.1.
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d.o.f. may be considered from the bifurcation theory
point of view as the addition of another parameter
(Lerman and Umanskii 1994a,b) applies to higher
d.o.f. as well; for example, we may think of the wave
speed c as another conserved quantity of a larger sys-
tem showing that for higher-dimensional systems the
parabolic resonance case may be generic.

3. Conclusions

The mechanism of nearly flat parabolic resonance
that appears in the proposed near-geostrophic model
(1) offers an explanation for both peculiar observa-
tions on the balloons’ trajectories; the large meridi-
onal velocity goes together with a very small zonal
velocity during the times when the parabolic reso-
nance dominates the flow. These resonant flows hap-
pen in highly limited longitudinal bands—thus the
low probability of the balloons entering the resonance
band—and last, this resonant flow of the balloons is
not in geostrophic balance, so the pressure field does
not have to adjust to the velocity field. Moreover, it
has been demonstrated that using realistic magnitudes
of meridional and zonal pressure gradients in the
model produce poleward squirts that occur on the
experimentally observed timescales. We also note that
the proposed model (1) exhibits (as does almost any
low-dimensional Lagrangian model for chaotic advec-
tion) exponential divergence of nearby trajectories on
small timescales and possibly slowly decaying cor-
relations on longer timescales, which are responsible
for both super- and subdiffusive behavior. These well-
known properties of typical chaotic low-dimensional
Hamiltonian systems [see Schlesinger et al. (1993)
and references therein] fit well with atmospherical ob-
servations on particle motion, much better than the
traditional turbulent diffusional models.
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