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ABSTRACT

Field experiments show that the poleward velocity of high-altitude weather balloons may, on rare occasions, be much
higher than the observed poleward winds, while their eastward velocity is much slower than the observed eastward winds.
Considering a simple physical model of horizontal particle’s motion in the atmosphere, which includes a realistic model
of the pressure field, it is shown that the existence of a nearly flat parabolic resonance in the model gives rise to such
flights of balloons on the observed timescales even though the associated atmospheric pressure field does not support
large poleward velocities.

1. Introduction west) speed (Julian et al. 1977; Levanon and Julian
1977). While these meridional squirts were encoun-
The dynamics of weather balloons is of vast intetered only in about 1% of the balloons and thus are by
est for meteorological and for environmental studiesp means representative of the mean balloons trajec-
inducing expensive large-scale field experiments [e.tpries, their existence poses several fundamental dif-
the TWERL experiment (Julian et al. 1977) and tHeulties. First, these infrequent Lagrangian findings
planned 1999 STRATEOLE experiment, with an eseem to contradict the Eulerian observations and the
timated cost of several million dollars]. One questiamsults obtained from Eulerian general circulation
that is addressed in these experiments is the stabilihddels (GCMs) of the atmosphere on the global
instability of the balloons in the meridional (i.e., northwinds, which together show that the prevailing winds
south) direction. Indeed, observations on the meriflewing around the globe are mainly zonal. There have
onal excursion of high-altitude (10-15 km above s&éaen no other reports on observations of either such
level) constant-level balloons launched in middle arfngh meridional winds or of such low zonal winds
low latitudes have shown that in the course of theixcept for those resulting from monitoring constant-
flight these balloons can have extended periods [@vel balloon trajectories. Another related issue, result-
particular exceeding 1 day) during which the flight i;g from the balloons’ meridional rather than zonal
directed entirely poleward. During these periods tlfigght, is the pressure field associated with this veloc-
balloons move with a meridional speed of over 30 iy. It is well known that, to a very good approxima-
(about 15 m3) and with nearly zero zonal (i.e., easttion, the velocity of air parcels in the planetary
atmosphere is determined by a balance, called
geostrophy, between the local pressure gradient force
*Department of Applied Mathematics and Computer Scienc?,Ctlng on It ar]d the Coriolis forF:e. The latter results
Weizmann Institute of Science, Rehovot, Israel. rom the rotation of the earth acting to produce a force
*Department of Atmospheric Sciences, Hebrew University glerpendicular to the parcel’s velocity relative to the
Jerusalem, Jerusalem, Israel. rotating earth. According to classic theory this balance
e ol e o e, ey tabished inabout 1 day fom the applcatin o
Institute oF;pScience, P.O.B. 26, Rehovcr))t 76100, Israél. dh initial pregsure _gradlent. Thus one expects to find
E-mail: vered@wisdom.weizmann.ac.i a pressure field with a s_trong zonf_all gradient to sup-
In final form 7 August 1997. port the observed meridional velocity of these excep-
©1997 American Meteorological Society tional poleward flights. By calculating the pressure

Bulletin of the American Meteorological Society 2779



field for the time when the meridional squirts took y u 0 A( )
place, it became obvious that no such zonal gradients— = usin«p%+ A ke 22 cos(kA —at).
of pressure existed so that the velocity as inferred from 9t cosp Ccos@
the balloons’ flight could not have been in geostrophic
balance with the pressure. do _

Here, we propose that a Lagrangian mechanism ot v, 1)
may explain the above-mentioned observations of
exceptional poleward squirts. Traditionally, two
simple models have been used for describing the mo- du _ —usin¢§+ u

|:| I
tion of particles in the atmosphere. One model pro- dat cosqu_ B (¢)
- eA(g)sin(kA - at).

poses that the geostrophic wind, which provides a
first-order steady (i.e., time independent) approxima-
tion to the observed air velocity in the planetary atmo-
sphere for a given pressure field, carries the ballooHsese equations are written in nondimensional form,
as Lagrangian particles. Perturbing the geostropmibere the length is normalized by the radius of the
flow by adding time-dependent components can yiedérth and time by 12 hf2(velocity scale is thus
the chaotic transport. Yet, as mentioned above, sudi m st and energy 0n? s?). Thus, the relevant at-
models have not resulted in an explanation of the largeespheric velocities are @f{0.01) corresponding to
scale meridional squirts. At the other extreme lies tdanensional velocities of order 10 m.g he Coriolis
simplest time-dependent model of a particle flow iforce, on a global scale, is the first term in the equa-
the atmosphere—the inertial motion—where no presns ford/&'that includes the convergence of longi-
sure gradient, or other forces, exists and the Coridiisles at the poles termicosp resulting from the
force causes an acceleration of air parcels. In suckpherical geometry. HerB(¢) andA(¢) represent the
model the effect of the atmospheric pressure variatiatitude-dependent amplitudes of the constant pressure
is considered small; thus the particle motion may b&rm and the traveling pressure wave, respectively. The
treated as nearly inertial, see Paldor and Killworttonstants is smaller than 1, whilk and o are the
(1988), Paldor and Boss (1992), and Rom-Kedar etwhvenumber and frequency of the zonally traveling
(1997). One way of bridging the gap between these twave whose phase speegequalsork.

simplified models is to introduce into the time-

dependent inertial model the steady, meridional pres-

sure gradient corresponding to the zonal geostrop@cThe near-geostrophic model

winds. Then the equilibrium solutions of the new time-

dependent model correspond exactly to the steady geo+or steady, zonally independent pressure fiedds (
strophic winds, and nearby solutions correspond+d0), the corresponding motion of weather balloons
oscillations about geostrophy. Moreover, in such(ae., particles with small kinetic energy) is very
model it is natural to introduce additional perturbatiagimple: for midlatitudes it always corresponds to small
terms in the pressure gradient, which is, in additiooscillations around a mean valpand a drift in lon-
time and zonally dependent. Physically, such a modjitude, with mean zonal velocity

proposes that the weather balloon is driven by the at-

mosphere via the atmospheric pressure field exerted

upon it, while the particle’s velocity is determined by 1, 88’(@) 1
balancing this pressure gradient with the Coriolis force E\ sin(2$) 2-
that results from its own motion. Thus, one obtains the

following near-geostrophic model for the eastward and

northward velocity components, () and the rate of To obtain our new realistic model, we take a steady
change of the longitude and latitude coordinateg)( pressure term that is monotonically decreasing
of a particle in the atmosphere: poleward, allowing strong zonal jets to appear ggar

dA u ¥ -4
—_—=— B(¢p) = Btanh——2,
dt cosg’ ((p) Atan a
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[B=-0.001, geostrophic model when the total pressure field con-
sists of a zonally standing wave multiplied by an ar-

@ = 30°= 0.5236, (2) bitrary latitude-dependent coefficient [i.B!(¢) = 0,
o =0]. Notice that in this case, the mean drift near the
o =0.05. elliptic equilibria vanishes for ath. In this case, even

the slightesk value [e.g.£ = O(10%)] can cause rare

Such a form fits well with th&).S. Standard Atmo- squirts extending from the equator vicinity to the
sphere, 1976@lata on the geopotential of the 150 mBoles; see Fig. 1a. Mathematically, this situation cor-
creating a zonally propagating jeigat 30°+ 7° with  responds to the existence of a singular energy surface
a maximal eastward velocity of 25 m.s on which no KAM tori survive the perturbation. Any

Near the equator, three types of balloon motiosguation that is close to the above, for example, our
may appear: the typical motions correspond to eithealistic situation that includes small wave speeds and
small oscillations restricted to one hemisphere (as ®(@) << 1, results in a nearly flat parabolic resonance
the midlatitude case), or to equator-crossing exctior which the instability exists in a somewhat reduced
sions. The special initial conditions, lying on thérm. This phenomenon was demonstrated for an ar-
boundary between these two regions that produce tifieial function B(¢) in Rom-Kedar (1996). Here, we
typical behaviors, correspond to an asymptotic coshow that the model with the realistic valuesaind
vergence to the equator (homoclinic motion). Thée realistic form oB(¢) gives rise to a similar phe-
maximal latitude to which all such near-equatorimlomenon and, moreover, that the resulting timescale
motions may reach isoundedandsmallfor the ini- for the balloons’ squirts fits the field observations well
tial velocities associated with weather balloons. Thudulian et al. 1977; Levanon and Julian 1977).
with this simple model, north—south large-scale mo- To better understand the mathematical origin of
tion of equatorial particles occurs only for particlethis phenomenon, Eq. (1) is transformed to the new
with large initial velocities. For example, an equat@anonical coordinateg(u, D, A), whereD is the an-
rial particle with small initial poleward velocity maygular momenturh[D = cosg1/2cogp + u)] andA is
reach Antarctica (60°S) only if it has an initial westhe longitude coordinate moved into the traveling
ward velocity of order 250 nt’s which is two orders pressure wave framé & A — ct). In these new coor-
of magnitude faster than the observed equatorial \énates the system (1) is transformed into a canonical
locities in the atmosphere. Hamiltonian system:

Zonally traveling pressure waves# 0) that per-
turb the geopotential surface from its mean axis-

symmetrical shape cause some of the particles to move aA = DZ - % _D (3a)
chaotically (Paldor and Killworth 1988; Paldor and dt  cos"¢ 2t

Boss 1992). Such zonal waves correspond to variation

in the geopotential height of the isobaric surface of dD

O(¢) in nondimensional units, corresponding to height e —keA(g) cos(kn), (3b)

variations of order & in meters. Thus, the observed
amplitude of zonal waves of about 100 m (Holton q
1975) corresponds = 0(0.001) in our model. The a9 _ v, (3c)
analysis (Rom-Kedar et al. 1997) [performedBtyp) t
= 0] shows that depending on the wave smeed/k,
the wavenumbek, and the initial conditions, suchqy lsm( )% 4D? O

zonal waves may create many different types of chige ~ B'(¢) - eA (¢)sin(kn). (3d)
otic motions, some of which are highly nonuniform

in the zonal direction. Nonetheless, the existence of
KAM tori (Arnold 1988) prevents, in most cases, thiotice that D= O(¢), thus to zeroth order the angular

envelope of the chaotic solutions from deviating tggomentunD is indeed a constant of motion. Linear
much from the corresponding unperturbed motion.

The exception to this rule appears when a flat, or nearly

flat, parabolic resonance occurs (Rom-Kedar 199%)otice that in our previous publications (Rom-Kedar 1997; Rom-
The flat parabolic resonance appears in the negesdar et al. 1997) we have used2D, A= 1/2\.

cos (pE_
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For most values af(i.e., except those
values where resonance occurs), by
KAM theorem, the motion near the ellip-
tic points hardly changes under small
[w.r.t. the typical size of (3b) and (3d);
i.e., € = 0(0.01)] perturbations. On the
other hand, the homaoclinic motion pro-
duces chaotic behavior. Usually, the
width of the chaotic zone near the
homoclinic loop is of ordes. Moreover,
it is exponentially small irc and in

Fic. 1. Mer.idional sql_Jir_tfs, for tht_e_negr-inertial model with zonally standin],P/hdLJzt?ngr?];;?\r?alhhei ((p),faal_’r?(kj)?cl)lrcsraoa_llrllt.
waves. Evolution of one initial condition in the (\) plane A(¢) = cos@). B(¢) = ! )
0.£=0.0004k = 3,c= 0.u, = 0.0038125y, = 0, = 0.087266 = 5% = 2.3712 Values of, near-equatorial weather bal-
=135.9°. (a} = 500= 40 days, (b} = 1750. loons do not rise to high latitudes on any
timescale; see, for example, Figs. 2b,c
(similar results appear in the near-iner-
stability of the near-equatorial motion w.r.t. smalial model).
north—south deviations [i.e., fer= 0, fix D and con- However, notice from (3) that for any giveralue
sider, in the @, v) plane, the linear stability of the ori-the motion of the particle along the equator coincides
gin?] reveals that there exists a with the traveling wave motion fd =D =c + 1/2
[i.e., A(p=0v=10,D_ c) = 0]. Then, in the moving
frame, any initial condition on the equator with
-B"(0) =D, is a fixed point of (3) foe = 0. This situation is
highly degenerate. If it happens for|> D, in which
case the equator is stable w.r.t. north—south deviations,
value such that fdb| > D, it is linearly stable (i.e., cen-then a strong elliptic resonance occurs, leading to zon-
ter since the system is Hamiltonian), wheread4bpr ally localized motion near the equator. The width (in
< Dpthe motion is linearly unstable. Indeed, [@f< D) of such an elliptic resonance is of ore: If |D |
D, there exist a homaclinic loop in the, Q) plane, < D,, then a hyperbolic resonance occurs (Haller and
emanating from the origin and extending up to latitud#iggins 1995); the motion is chaotic near the
aroundt arccos (D). This loop separates initial condi-homoclinic loop that extends up to latitu@rccos
tions that oscillate about a mean zonal motion restric2{® |, with the chaotic zone being of ordgf [unlike
to one hemisphere [f@'(¢) = O this corresponds tothe usualO(g) width associated with the regular
the well-known westward-migrating inertial oscillahomoclinic chaotic zone]. The parabolic resonance
tions on g8 plane] from those traveling between theccurs whenever the fixed motion along the equator
two hemispheres. Ab =D _the equatorial motion is occurs exactly where the equator is parabolic w.r.t.
parabolic; namely, both tﬁe frequency of the oscillaorth—south motion; that is, whén= Dp. This occurs
tion and the growth rate in the, ) plane vanish.  for a specific pressure wave zonal veIo«:jl:ycp:
Notice that near-equatorial weather balloons cor-
respond tagp= 0,u, v =0(0.01); hence these have ini- 1 1
tial angular momentur® = 1/2. Moreover, it follows c,=D,-== —( 1-4B"(0) —1) =0.001. (4)
from (2) thaB"(0) < 1, hencer= 1/2. Therefore, it 2 2
follows thatweather balloons launched near the equa-
tor correspond to initial conditions that are close tdn this case, the motion of some of the particles is dra-
the parabolic region in phase space. matically changed.
In Figs. 1a,b and 2a we demonstrate the possible
2For simplicity of the presentatidd(¢) and A are henceforth effect of this phenomenon by showing the trajectories

assumed to be even. Similar expressions may be found for _@H‘@SpeCIfIC initial Cond'tlo_nS; 'n Fig. 18(¢) =0, and
nonsymme[ric case, where the fixed poin[ in W]Ia)o p|ane is itis demonstrated that n thIS case even extremely

shifted from the origin. small zonal dependence#£ 10*) may create squirts

NP
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extending close to the poles, sinc
this case corresponds to a flat par:
bolic resonance. Moreover, we
show that the trajectories may b
localized in longitude even after
very long integration time. In Fig. 2a
we show a trajectory of (1) when
the realistic pressure field (2) anc
the realistic size of zonal-depender
pressure fieldg= 0.0011) are used.
The value ot is chosen according
to (4) so that a (nearly flat) para-
bolic resonance occurs. Suclt a
corresponds to a zonally traveling
wave with a period of roughly 1 yr.
Comparison with Figs. 2b,c dem-
onstrates that such slowly varying
waves affect the equatorial bal-
loons’ stability much more than the

higher-frequency waves.
The orbits shown correspond to Fic. 2. Near-equatorial motion for the near-geostrophic model. Evolution of one initial

St i ; condition in the A\, @) plane. A(¢g) = cos(), B(¢) =—0.001 tanh & — 0.5238)/0.05t =
I’al'ehlnltléél Condltlonsffor \éVhICh 300,6=0.0011k = 3u,=0.0049242y,=0.0011¢,=0.12=6.9°A,= 1.855 = 106.3°.
northward squirts are found. M(_)r a) Under parabolic resonance conditiors0.001; (b) non-monotonic zonal behavior,
generally, several types of motion. - o1 (c) far from parabolic resonance conditions, monotonic zonal motdh,1.
are possible near the equator under

the parabolic conditions. First, as
for the elliptic resonance case, the particle may pémndeed, we find numerically that doubling the value
form relatively regular, essentially quasiperiodi@f € to 0.002 produces a squirt like the one shown in
north—south excursions up to latitudes of orelér Fig. 1a that reaches the pole in 20 instead of 40 days.
Second, the particle may get trapped inside the pavsreover, the numerically observed squirts last about
bolic resonance zone. When trapped, its motion c@50 nondimensional time units, which agrees well
sists of two different segments; one going eastwasith ke = 0.0033. Indeed, in the TWERL field experi-
w.r.t. to the wave speed, corresponding to north—soutlent (Julian et al. 1977) balloon 1274 was launched
excursions that reach latitudes@ff'?) and that are on 1 September 1975 from American Samoa (14°S,
zonally limited to regions of order&™. The other 170°W) and crossed 60°S latitude on 1 October; that
segment corresponds to motion in one hemispherejsythat balloon traveled nearly 45° in 30 days. Thus,
which the particle oscillates about a mean northwang conclude that our model, in which the order of
(or southward) motion along the unperturbed stabigagnitude of all parameters, includiaghave been
equilibrium branch of solutions. These excursions aletermined from atmospherical Eulerian observations,
unlimited in latitude foB(¢) = 0,c = 0 and are of large produces the observed timescale of the Lagrangian
magnitude for small (w.r.t. B'(¢) and|c —c|. The squirts.
smaller these are, the larger the latitude tF‘nat may beMathematically, the behavior of near-flat parabolic
reached by such a trapped trajectory. Moreover, lorigsonances provides a new type of strong chaotic in-
time integration of such solutions contains, in marsgability for a two degrees of freedom (d.o.f.) Hamilto-
cases, the long squirts that are shown in Figs. 2a aiah system (Rom-Kedar 1997). There, it was establish-
1 and, with them, the possible transfer to a neighbed that the occurrence of parabolic resonances is a
ing resonance cell, corresponding to a different zor@dimension one phenomenon (i.e., it will typically
region. occur in any one-parameter family of a near-integrable
Finally, notice that to have long squillsmust two d.o.f. Hamiltonian system); hence it is expected
change by a®(1) quantity. It follows from (3b) that to appear in numerous applications. Moreover, the
the timescale for such squirts is at le@l/ke). basic idea that the addition of another nonseparable
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