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Abstract 

When an unperturbed Hamiltonian is degenerate and some resonance conditions are satisfied a stochastic web is formed. 
A classical example of this phenomena is the wave-particle interaction in a constant uniform magnetic field. Recently, Dana 
has observed that for wide wave packets, the initial position of the cyclotron orbit center, xc. may influence dramatically 
the diffusion of particles in phase space. A consistent method for finding the bare-web and the rigorous bounds on the 
separatrix splitting are derived for arbitrary position of the cyclotronic orbit center. The dramatic, sensitive dependence of 
the width of the stochastic layer on xc is thus revealed. It is then argued that x, = 0 corresponds to a nongenetic case, 
resolving contradictory results found for estimating the width of the stochastic layer in the commonly studied x, = 0 case. 

1. Introduction 

In a general nondissipative physical system of sufficiently large dimension chaotic behavior is irremovable, 

meaning that under quite general conditions for most values of the parameters there exist some regions of phase 
space for which the system has chaotic dynamics. The number of degrees of freedom (d.o.f.) in the system N 
essentially determines whether these regions are isolated or form a connected web in the phase space. In case 

of a perturbation of a nondegenerate integrable system KAM theory [ 141 implies that for N 6 2 invariant tori 

divide the phase space while for N > 2 some of the chaotic regions form a connected web which gives rise to 
Arnold’s diffusion [ 31. The minimal dimensionality of a system in which chaotic regions appear is Nin = 1 i 

corresponding to a time-dependent perturbation of an autonomous d.o.f. Hamiltonian system. 
It follows that near integrable nondegenerate 1.5 d.o.f. Hamiltonian systems are stable near elliptic fixed 

points; under sufficiently small perturbations KAM tori bound a finite size neighborhood from escaping [4] 
(though in the resonant case local instabilities may occur). Surprisingly, Zaslavsky et al. [ 281 have found 
that degenerate near-integrable 1.5 d.o.f. Hamiltonian systems may become globally unstable for infinitesimal 
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resonant perturbation. A stochastic web is then observed in the phase space - there exists a web of split 
separatrices leading to nearby chaotic motion which is unbounded in space. The width of the chaotic region 
along the web may be approximately constant in the whole space (a uniform web) or exponentially diminishing 
with the distance - making the web effectively finite. A fundamental example for this phenomena is the wave- 
particle interaction in a constant uniform magnetic field; a uniform web is created by an infinitely wide 
electrostatic wave packet whereas a single harmonic wave produces an exponentially diminishing web (see Ref. 
[ 251) . Variations on this example appear in numerous applications in plasma physics [ 16,251. 

While uniform stochastic webs are nongeneric and are probably structurally unstable, nearby systems are 
vastly influenced by the web’s global instabilities. This exemplifies the general notion that singular, nongenetic 
systems are worth studying not only because of their mathematical beauty, but also because of their strong 
impact on neighboring systems. Indeed, though in the plasma physics applications the conditions for generating 
a uniform stochastic web (degeneracy, resonance, infinitely wide wave packet) may be only approximately 
fulfilled, the underlying instabilities of the web are clearly felt [ 281. 

The general Hamiltonian describing a periodically kicked charge in a uniform magnetic field has the form 

HZ2 +KoV(kx) 2 8(t -nT), 
II=--00 

(1) 

where P = p - (q/c) A is the kinetic momentum of a particle with charge q and mass M in a uniform magnetic 
field B (in the z-direction, with vector potential A), Ko is a parameter, k is the wave-vector taken in the 
x-direction, V is a general periodic potential with period 27r, and T is the period. Introducing dimensionless 
variables u = Px/wo and u = P,,/oa (wc = qB/c is the cyclotron frequency), setting, with no loss of generality 
m=k=l,andusingx,=x+PY/wo=x+o, (1) becomes [30,7], 

u* + v* 00 

H=wo 2 - + KoV(x, - v) c qt -nT). 
n=--00 

(2) 

with the canonical conjugate pairs (u, o) and (x,, y,), the latter being the coordinates of the center of a 
cyclotron orbit. As long as H is independent of y,, the cyclotron x coordinate, x,, is a constant of motion. 

Analysis of this model was mainly done under the tacit assumption V(x) = - cos(x), x, = 0 (e.g., see Ref. 
[ 301). Then, in the resonance case (r = ooT = 2mm/n, a stochastic web appears for arbitrarily small values of 
Ka. In the singular small Ka limit there exists a “bare web” corresponding to an integrable Hamiltonian with 
infinite web of heteroclinic connections, which is singularly perturbed by an infinite tail of harmonics. 

Some nonrigorous methods have been applied to obtain the bare web structure and the effect of the tail of 
harmonics. For xc = 0, this leads to qualitative correct results, i.e. the structure of the bare web was discovered 
and exponentially small (in Ko) splitting distances were predicted [ 1,171. However, it appears that different 
nonrigorous schemes produce different results, even for the exponential factor of the splitting distance, see 
Appendix A. Moreover, a simple application of these schemes to an odd potential (x, = 7r/2) produces no 
information regarding the bare web (Dana, private communication). 

Dana [7], and Dana and Amit [6] have shown numerically that the structure of the web and the diffusion 
along it vary considerably as X, is varied. Here, we set forth the theoretical foundations for the analysis of the 
bare web and the separatrix splitting for general xc in the limit of small Ko. Physically, a general ensemble of 
particles is expected to have a distribution of X, values [ 61. Moreover, any yC dependence of V will cause xc 
to vary - thus a study of the xc = const f 0 is bound to appear in some averaged framework. Finally, if the 

electric field is nontransverse to the magnetic field [ 291, the longitudinal coordinate plays a similar role to xc, 
see Ref. [ 211. Beyond the physical reasons for studying the general X, case, we show that these considerations 
produce an explanation to the contradictory nonrigorous results found for xc = 0. 
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As in Ref. [30], consider the Poincare map that corresponds to the general Hamiltonian with arbitrary value 
of X, and choose the potential to be of the standard type, V(x) = - cos(x). Then the following mapping with 

a twist is obtained [ 61, 

M, : ii = [u +Ksin(v - x,)] cosq +usin(cY,), 

fi = -[u + Ksin(u - x,)] since, + ucos(a,), (3) 

where K = Ko/T and the primary resonance condition oq E wJ = 2s-/q is satisfied for some integer q. 

Henceforth the case q = 4 (the “web-map”), which is one of the crystalline-type symmetric webs, will be 
analyzed 

Mq : u’ = v, u’ = --u - Ksin(u - x,). (4) 

This mapping is obviously simplectic and, loosely speaking, corresponds to a kick followed by a rotation by 
r/2. A central observation is that the fourth iterate of the web-map Mi is an analytical near identity mapping 

[ 30,181; Hence, a whole machinery developed for the analysis of near identity diffeomorphisms (see, e.g., 

Refs. [ 9,10,2] ) can be applied. Using this machinery we find rigorous results regarding the bare-web structure 
and the sequence of bifurcations it undergoes as xc is varied. Moreover, rigorous upper bounds on the separatrix 

splittings are found. 
The paper is organized as follows. In Section 2 the bare web is constructed, and its bifurcations as xc is 

varied are found. In Section 3 estimates for the separatrix splitting and the width of the stochastic layer are 

derived. These estimates are compared with numerical results in Section 4; the issue of the transport in the 

system is also addressed there. In the last section we discuss possible applications of these results. 

2. Uniform web structure 

In the first part of this section the symmetries of the map (4) are found. In the second part the asymptotic 
behavior for small K is investigated. 

For general, fixed, xc, the map possesses the following time reversal symmetry, 

MT1 =sort!lqos, (5) 

where S : {u’ = v, v’ = u} is a reflection with respect to the u = v line. For particular values of xc additional 
symmetries arise; for X, = 0 or 7~ there is an exact Z2 symmetry: IA 4 -a, v + --o. For xc = 7r/2 the map is 
invariant under the following transformations: u -+ -u + r, o -+ --u + r. 

The map is also invariant, up to a shift, with respect to simultaneous translations or inversions of coordinates 

and the constant xc. The transformations 

xc + xc + T, u--+v+lr, U+U+T 

xc + --xc, v --) -v, u --+ -u, (6) 

introduce a 27r shift or no shift in u, respectively. Thus, xc may be restricted to range from 0 to n-/2. 
To analyze the properties of this map for small K consider its fourth iterate, 

fi=u+Ksin(v-x,)+Ksin{v+x,-Ksin[u+Ksin(u-x,)+x,]}, 

g = v - Ksin(ii -x,) - Ksin[u + Ksin(u -x,) +x,1, (7) 

which produces a near identity mapping. The limit K + 0 of this map corresponds to a singular perturbation 

of a system of differential equations, which is found by replacing the difference operator ii - u of (7) with 
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a differential [9,2], and expanding the right hand side in K. The system thus obtained corresponds to the 
Hamiltonian flow of 

H= -(K/2)(cos~+cosu)cosx, - (K*/4)sin(u+x,)sin(u+x,) +0(K3). (8) 

The level set H = 0 of the Hamiltonian (8) describes the approximate structure of the bare web. Other level 
sets describe the “web-tori” which are nested in the web cells. Refs. [ 30,171 have used this approach and 
another heuristic “averaging” approach to obtain the bare web for the case xc = 0. The two approaches give the 
same results to linear order in K, while the “averaging” method does not produce nonlinear terms in K. Since 
for xc = 7r/2 the first order terms in K vanish, the analysis near xc = 7r/2 must include higher order terms. 

Thus, to proceed, we divide the x, range into two main regions: 
- The diamond lattice region: xc E [ 0, r/2] \ 1,. 
- The square lattice region: x, E I, = [7r/2 - cuK, 7r/2], CY = O( 1). 
Recall that by symmetry (6) it is sufficient to consider only these regions. 
Consider the diamond lattice first. Fixed points of the Hamiltonian equations (equivalently of M$) can be 

found perturbationally in K, 

uo=rm+ (-l)]“l(K/2)sinx,, UO=T~+(-l)]“‘](K/2)sinx,. (9) 

Linearization in the neighborhood of these fixed points shows that they are elliptic for m + n = 21 and hyperbolic 
for m + n = 21+ 1, with eigen-values proportional to Kcos(x,). In the later case heteroclinic connections of 
stable and unstable manifolds form a connected web. For K + 0 they correspond to the lines u = fu+ (2j+ I)T, 
producing the diamond lattice (Fig. la). 

Now, consider the square lattice, for which xc E Z, i.e. xc = 7r/2 - pK and p is of order 1. It turns out that 
at least third order terms in K of the Hamiltonian (8) are needed to unfold the bifurcations of the bare web in 
this regime of xc. Expanding the right hand side of (7) to third order in K we find 

H= -(K/2)(cos~+cosu)cosx,- (K*/4)sin(u+x,)sin(o+x,) 

+(K3/8)[cos(u+x,)sin2(u+x,)+cos(u+x,)sin2(u+x,)]. (10) 

Thus, perturbationally in K, there are three families of fixed points of the corresponding Hamiltonian equations. 
(i) Fixed points defined by the conditions 

sin u = sin u = K/2, 

which are elliptic centers for any value of p except for the region 

(11) 

+ < IPI <P--v 
1 1 + 3K2/2 

P-=5 1+p * (12) 

where half of them become hyperbolic. Namely, for p > 0 fixed points determined by the condition cos u, cos u > 
0 become hyperbolic while the rest are elliptic, and for p < 0 fixed points determined by the condition 
cos U, cos u < 0 become hyperbolic while the rest are elliptic. The bifurcating points are the centers from which 
fixed points ( 15) are born. 

(ii) Fixed points defined by the conditions 

sin u = sin u = -K/2, (13) 

which are hyperbolic, with eigenvalues proportional to K*, for IpI > p+ and elliptic for ]p] < p+, where 

p+=&/m, P+ < & (14) 
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(b) Cc) 

Cd) (e) (f) 

Fig. 1. Structure of the stochastic web for different values of parameters. (a) K = 0.1, XC = 0; (b) K = O.l,r, = 1.45; (c) 

K ~0.5,~~ = 1.3208; (d) K = 0.5,x, = 1.3307; (e) K =0.5,& = 1.3451; (f) K =0.1,x, = 1.5708. 

(iii) Fixed points defined by the conditions 

cos u =cosu= PC2 - GK% (15) 

which are hyperbolic, with eigenvalues proportional to K*, and exist only for 0 6 IpI < i. 
For xc = 7r/2 (p = 0) the bare web consists of heteroclinic connections between the hyperbolic fixed points of 

( 15) which connect in a square lattice (Fig. If). It follows that a global bifurcation must occur for p+ < p < i 
(see Fig. lc and le). 

Fig. 1 shows the numerical realization of a sequence of bifurcations that occur in the web-map for small K 
(K = 0.1,0.5), when x, changes from 0 to r/2. It is seen that the analysis supplies accurate predictions for 
the changes in the phase portrait. However, we note that while the corresponding level sets of (10) coincide 
with the bare web of the map for n, $! I,, for xc E Z, there are differences even in the asymptotic limit. 

For xc = 0 the phase portrait is well-known and represents a symmetric infinite web inside each cell of 
which there are cross sections of invariant tori (Fig. la). All cells are identical and of the area 21r*. When 
xc is increased4 the separatrices undergo deformation; at the same time, elliptic and hyperbolic fixed points 
shift in opposite directions (9) breaking 22 symmetry (Fig. lb). At xc = 7r/2 - p-K, where p_ is defined by 
( 12), half of the elliptic centers ( 11) become hyperbolic, with the sign of p determining the position of the 
bifurcating points5 . Then, at n, = 7r/2 - K/2 these fixed points change their stability back, and, at the same 
time, four hyperbolic fixed points (15) are born from them (Fig. 1~ and Fig. 2). Heteroclinic intersections 
corresponding to these saddles form a new web that merges with the old one at the global bifurcation (Fig. 
Id). Then at xc = 1r/2 - p+K, where p+ is defined by (14) another local bifurcation occurs (Fig. le) and 
( 13) becomes stable. Finally, for xc = ?r/2 a new symmetric infinite web with cells of the area ?;L is formed, 

4 In fact, similar phenomena occur when K is increased, thus, K was taken 0.1 in Figs. la, lb, If. 
5 This bifurcation was not detected numerically. 
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(a) (b) 

Fig. 2. Enlargement of the local bifurcation of Fig. Ic; the size of the square is 1.9 x 1.9; K = 0.5; (a) X, = 1.32 ; (b) xc = I .321 

(Fig. If), these cells being half the size the diamond lattice cells. Further increase in xc causes the above 
sequence of bifurcations to repeat itself in the reverse order and with the position of the bifurcating centers 
( 11) interchanged. When the value of xc = v is reached the phase portrait is identical to the case xc = 0. 

3. Stochastic layer 

The bare webs found in Section 2 consist of coinciding stable and unstable manifolds of hyperbolic fixed 
points. It is well known that under small perturbations, i.e. for any finite K, these manifolds generically split. 
The splitting distance, in this singular setting, is expected to be exponentially small. Rigorous upper bounds6 
on the exponential factor of the splitting distance are easily obtained in Section 3.1 by applying Fontich and 
Sim6’s [9] results for the square and diamond lattices. More elaborate schemes may be used to estimate the 
power-law [ 15,10,2] and even the constant factors of the splitting distance [26], however this is beyond the 
scope of this paper. In Section 3.2 the heuristic approach of [l] is adapted to find nonautonomous perturbation 
for the bare web. Formal estimates of the separatrix splitting are then found using the usual Melnikov technique 
[20]. xc = 0 is found to be a nongeneric perturbation for which the leading order exponential factor has a zero 
coefficient. 

Gelfreich et al. [lo] proved that the width of the instability zone created by the separatrix splittings is 
proportional to the angle of the separatrix splitting. Determining more precisely the thickness of the chaotic 
region is hindered theoretically and computationally, as in the usual near-integrable 1.5 d.o.f. systems, by the 
appearance of islands, of sticky islands, and the abrupt breaking of the web-tori. Approximating the orbits near 
the web by the separatrix mapping leads to estimates of this thickness [27,30,5]. Measuring it numerically 
confirms at least the exponential factor dependence which is found by the heuristic calculations. 

3.1. Separatrix splittings in the web-map 

Fontich and Sim6 [9] considered analytic near identity diffeomorphisms with limiting flows attaining hete- 
roclinic or homoclinic connections. Using the Birkhoff normal form, they have established exponentially small 
upper bounds on the splittings of the separatrices for small perturbation parameter K. The exponent is related 
to the complex singularities of the homoclinic/heteroclinic solutions of the limiting flow 

Ah x Nexp(--2&/lnA), (16) 

6 Lower bounds for the separatrix splittings in the near-identity limit have been established only for the extensively studied standard map 

by using a computer-assisted proof [ 151. 
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where ( ln( N( K) ) ( < ) - 27rS/ In A] as K + 0, 6 is the distance from the real axis to the nearest singularity of 
the homoclinic orbit of the unperturbed flow, and 4 is the larger eigenvalue of the linearized diffeomorphism 
near the hyperbolic fixed point. 

Since Mi is an analytic near identity map which may be put in the form considered in Ref. [9], ( 16) is 
applicable for the estimation of the upper bound on the splitting distance Ah: 

- For the diamond lattice case (x, $Z I,), the limiting Hamiltonian flow 

H= -(K/2)cos~,(cos~+cosu) = -R(cosu+cosu), (17) 

has hyperbolic fixed points (9). Its heteroclinic solutions are 

1 1 
sinu = -sinu = -- = -- 

cash f2t cash r ’ (18) 

where R = $K cos xc (recall that the deformation seen in Fig. 1 for X, # 0 comes from 0( K2) terms) and 
r is the appropriate resealed time of the Hamiltonian flow. Their closest singularities to the real axis are at 
r = &r/2, hence 6 = 7r/2. The larger eigenvalue of the linearized diffeomorphism is equal to LI = 1+2K cos xc, 
and In A = 2K cos xc Thus 

(19) 

- For the square lattice ( xc E Z, ), the limiting Hamiltonian flow 

2 

H= ~(cosu+coso) - (K2/4)cosucosu (20) 

has hyperbolic fixed points (15). Separatrices for small deviations from 7r/2 do not differ substantially from 
those at xc = 7r/2, which are given by horizontal and vertical lines, 

us*1 1 1 

lr/2 ’ ‘OS ’ = ‘cash tit/4 = ’ cash v 
(21) 

and 

u=fJ- 1 1 

?r/2’ coSU=‘coshKzt/4 =‘coshy’ 
(22) 

where Y = $K2 t is the resealed time. The closest singularities to the real axis is at r = &r/2, hence, again, 
S = r/2. The larger eigenvalue of the linearized diffeomorphism is equal to A = 1 + K2, and InA = K2. Thus 

Ah = Nexp( -?rz/K*>. (23) 

Here N is some function of K and x,. 
( 19) and (23) provide rigorous upper bounds on separatrix splittings in the web-map. In the next section 

perturbation of the integrable Hamiltonian flow will be considered and nonrigorous estimates for the thickness 
of the stochastic layer will be derived. 

3.2. Perturbation of the web-jaw 

Consider the following perturbation of the bare web Hamiltonian [ 291, 
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CO 

V=-Kcosx,~[cosu+(-l)mcosu]cos7rmt 
In=1 

- Ksinx,e[ sinucos7r(m- 1/2)t+ (-l)msinusin7r(m- 1/2)t]. (24) 
m=l 

It was obtained by reordering the infinite sum of the S functions in tuples of 4, corresponding heuristically to 
some averaging procedures. This procedure produces naturally only linear terms in K. Further only the first 
harmonic in (24) will be retained. Thus, V corresponds to a time-periodic perturbation of the Hamiltonians 
( 17) and (20), and the splitting distance between the manifolds may be formally calculated by using the 
Melnikov integral - the integral of (29, V} along the unperturbed separatrices. Then, one may use these results 
to estimate the width of the stochastic layer by constructing the separatrix mapping 

H n+~ = Hn + M(h) 7 tn+l = tn + $W,+d. 

Here P(H) denotes the period function of orbits inside the cell and M(t) is the Melnikov function, 

M(to) = o;{H(q”(t)),v(qo(r),r+to)~dr=Wfo) +Mz(ro), 
s 

-Kl 

(25) 

where Ml, A42 correspond to different harmonics of the perturbation (24), and the integration is along the 
solutions (18) or (21). 

Consider separately the two regions of possible values of xc: 
(i) For the diamond shape lattice, x, $ Z,, straightforward calculations of (25) along ( 18) give, after 

substituting exp for cash and sinh 

M(to) = -873COSTtaexp(-d/24) - 273 tanx, 
( 

sin T - cos 7 
> 

exp( --m2/4n), (26) 

Then, the separatrix mapping is given by the following expression, 

H n+l = Hn - 82 cos rt, exp( -1T2/2L?) - 27? tanx, sin F - cos 3 
> 

exp( -$/40), 

1 
tn+1 = tn + n In - 

( > ,PE:*, ’ 

where asymptotics near the separatrix for the period T have been used. The width of the stochastic web is 
estimated using the following condition [ 301, 

which is a rough criterion of local instability present in the phase space. Hence, the border of stochasticity 
region is defined by 

Hs= & [tanx,exp(-&/2Kcosx,) +8exp(-d/Kcosn,)]. 
c 

(27) 

Note that for general xc and for small K the second term is much smaller than the first one. However, the first 
term vanishes for xc = 0. Thus, xc = 0 corresponds to a nongenetic case (see Appendix A). 



282 S. Pekarsky, V. Rom-Kedar/Physics Letters A 225 (1997) 274-286 

(ii) Consider the square lattice case, i.e. x, = 7r/2 + pK and IpI < 1. The Melnikov function is given by 

00 M 

M(fo) = J Ij(r,to)dt= f J cosu(cosu-2p)cos(~(t+ro)/2)dt, 

where integration is performed along separatrix (21) . Upon integration and substituting exp for cash and sinh 

M(to) = 2rKcos 

Thus, the separatrix mapping has the following form, 

2 
H n+~ = H,, + $cos,. ntn exp( -d/K*), 

4 K* 
~I+I =b+ zln ,H,+t,, 

where the period of the motion near the separatrix T(H) = ( 16/K2) ln(K*/IHI) was used (see Ref. [30]) 
and we have neglected p comparing to r/K*. 

Finally, the border of stochastic layer is determined by 

Hs = $ exp(-r*/K*). (29) 

Note that the expression in the exponent is proportional to l/K* and not to l/K as it is in (27). This implies 
that the stochastic layer is much smaller when xc belongs to the neighborhood of 7r/2 or 31r/2. 

Notice the general agreement between formulas ( 19) and (26), and (23) and (28), respectively. The 
difference is only in the case xc = 0,~ when the leading term in (27) vanishes due to tan xc being equal 
to 0. But, as mentioned above, this corresponds to a nongeneric case, and the general upper bounds (16) 
cannot capture it. Hence, we can conclude that Hamiltonian (8) and its perturbation in the form (24) give 
correct asymptotic results to exponential order for the width of stochastic layer for the whole range of xc, 
except possibly tiny intervals near xc = f (7~ f K) that correspond to a cascade of bifurcations, and thus are 
extraordinarily difficult to describe analytically. 

4. Numerics - stochastic layer width and transport 

Obtaining numerical estimations for asymptotically small K requires introduction of sophisticated arithmetics 
[9] or numerical schemes in the complex plane [ 15,2] in order to avoid errors induced by machine precision. 
Since only exponential factors are sought here, we avoid these problems by keeping the range of K values above 
0.4. Furthermore, here the width of the stochastic layer is sought; locating its precise boundary, determined by 
the last RAM torus, is hindered by the complicated fractal structure of the stochastic layer. 

Nevertheless, one can see from Fig. 3 that agreement between analytical and numerical results is very good. 
Dependence of the web’s width on the value of the parameter xc for fixed K is shown in Fig. 4. One sees that 
xc = 0 corresponds, as predicted by (27), to a nongeneric case. 

To examine the influence of the changes in the separatrix splittings on the transport of particles in phase 
space, numerical simulations of many-particles ( 103) evolution are performed. The diffusion coefficient, defined 
as the average of the particle distances square divided by the number of iterates, 

D = (u2 + u2) 
N ’ 

is measured as a function of K and x,. Three factors which vastly influence such a computation are the 
numerical errors introduced by the computation, the choice of the initial ensemble of the particles and the 
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(4 

(c) Cd) 

Fig. 3. Logarithmic width of the web. Comparison of analytical estimates (27) and (29) (continuous line) and numerical results (points) 
for various parameter values; (a) xc = 0; (b) xc = 0.05; (c) xc = 0.1; (d) xF = 7r/2. 

simulation time N. Lattice maps (see Ref. [ 81 and references therein) and shadowing theorems [22,13,12] 
may be used to establish that long-term numerical computations of chaotic trajectories represent true orbits of 
a Hamiltonian system. In practice, no essential differences between floating point and lattice-map simulations 
were observed for N = 104. On the other hand the value of N and the method of selecting the initial ensemble 
vastly influence the results. 

Below we summari ze the results for the diffusion character and coefficients obtained by using the same type 
of initial ensembles and sufficiently large N (N = lo5 > 300x turn-over time) : 

(i) Diffusion is uniform in all directions. Introduce coordinates R2 = u2 + v2, 4 = tan( u/v), Then, for any 
values of parameters K and xc the distribution of the angle 4 on [ -7r/2, r/2] has mean approximately 0 and 
variation approximately d/12 M 0.8, as the deviation of a uniform distribution on [ -~/2,7r/2 1. 

(ii) Diffusion for xc = 0 is substantially smaller than for small positive values of x,; for K < 1 the diffusion 
coefficient at x, = 0 is approximately half of the diffusion coefficient at n, = 0.1. This fact again indicates that 



284 S. Pekarsky. V. Rom-Kedar/Physics Letters A 225 (1997) 274-286 

-3.25{ 

Fig. 4. Dependence of the web’s width on the value of the parameter xc for fixed K = 0.7. 

x, = 0 is a nongeneric value, and is in agreement with results for the width of stochastic layer (see (27) and 
Figs. 4 and 3). 

(iii) Diffusion is extremely weak for xc M 7r/2; the diffusion coefficient for K < 1 at xc = 1r/2 is by order of 
magnitude smaller than the diffusion coefficient at xc = 0.1. This shows the physical realization of the change 
in the character of the web near xc = n-/2. 

The above results are obtained using the standard choice for the ensemble - namely picking up the initial 
conditions randomly in a close vicinity of a hyperbolic saddle and then excluding regular trajectories from the 
averaging. An alternative approach would be choosing initial points in a lobe, the area between consecutive 
intersections of the stable and unstable manifolds. There are two advantages to this approach; first, all informa- 
tion may be gathered by considering lobe intersections [ 23,241, hence, no questions regarding the validity of 
the ensemble arise. Second, by choosing initial conditions in the lobe it is guaranteed that no initial conditions 
belong to stable islands of one cell. (Though they may belong to elliptic islands visiting several cells, like the 
accelerating modes. These are expected to be small for small K.) 

5. Conclusions and discussions 

The bare stochastic web formed in the phase space changes its patterns as the coordinate of the cyclotron 
orbit center xc is changing. This transition is accompanied by a series of local bifurcations associated with 
the change of stability of fixed points. Moreover, a global saddle connection bifurcation occurs symbolizing 
transition between diamond and square web structures. The hyperbolic saddles change their stability as xc is 
varied. This fact has important consequences for the analysis of the full 2; d.o.f. system, which is produced 
when the potential V in (2) depends on yC or when longitudinal degree of freedom is added due to oblique 
propagation of the wave packet. 

Rigorous upper bounds on the splitting distance reveal a sensitive dependence on the value of x,, with a 
different exponential dependence for general n, and for x, near 7~/2; the exponential proportional to 1/K 
and 1 /K2 for the diamond and square lattices, respectively. Moreover, (27) and Fig. 4 suggest that x, = 0 
corresponds to a nongeneric case, for which the coefficient of the leading order term of the splitting distance 
vanishes. This fact leads to much confusion in the literature (see Appendix A). 

The above finding implies that the motion of a charged particle in a uniform magnetic field and an infinitely 
wide transverse wave packet may depend sensitively on the initial location of its cyclotron center with respect 
to the electric wave packet troughs. For most values of the xc coordinate of the cyclotron center the width of 
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the instability zone decays as exp( -?r2/2Kcosx,). If the xc coordinate of the cyclotron center is near 7r/2 
(located near an inflection point of the wave-packet envelope) then the width of the instability zone decays as 
exp( -d/K’). If xc is located on the symmetry line (x, = 0), then the width of the instability zone decays 
as exp( -d/K). The width of the stochastic layer influences the observable dynamics. First, the probability to 
belong to the stochastic zone is proportional to the stochastic zone width. Second, the width of the stochastic 
zone determines the diffusion rate. 

In the case of oblique propagation of the wave packet additional degree of freedom arises which corresponds 
to the motion parallel to the magnetic field. Evolution of the corresponding coordinates has substantial influence 
on the dynamics in the (u, v) plane. Some aspects of this dynamics in the full 4-dimensional phase space were 
investigated in Ref. [29]. In Ref. [21], we study some of the implications of the current work on the phase 
space structure of the full 21 d.o.f. system. 
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Appendix A 

In this Appendix we present results for the width of stochastic layer obtained using the linearized Mi map 
and then we point out why they are wrong for the case xc = 0. This problem lead to the appearance of different 
results for the stochastic layer width in the literature [ 17,30,15]. Consider the forth iterate of the map, expand 
it as a power series in K and keep only first order terms. Then 

ii=u+2Ksin(v-x,), L, = u - 2Ksin(ii -x,). 

This map corresponds to the following Hamiltonian, 

B= -(K/~)cosx, 
( 

cosv+cosU 2 &St-n) . 
ll=-LX > 

It can be represented as a sum of unperturbed integrable Hamiltonian and time-dependent perturbation, 

f;l=x-z+v H=-(K/2)cosx,(cosv+cosu) =-fl(cosv+cosu), 

V= -(K/2)cosx,cosu 25os(n~t,2) = -2L%osu~cos(nat/2), 
%I n=l 

where R = $ K cos xc. Note, that in the first order approximation both H and V vanish for xc = r/2. 
With the assumptions on higher harmonics and separatrix form made above the separatrix map has the 

following form, 

H n+l =H,+2~cos(~t,/2)exp(-~/4~), 

Then the width of the stochastic layer is given by 

H d 
2?73 

s- - n exp( -?r2/40) = -exp(-1?/2Kcosx,). 
K cos xc 
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This expression supplies the correct exponential behavior for n, # 0 (see e.g. (27)). However, for n, = 0 
it gives wrong result - the coefficient in the exponent has an extra multiplier l/2, while the correct result is 
proportional to the nonleading term in (27). A possible explanation for this is that while the original map 
is nongenetic at X, = 0, in the sense that the leading order term in the expansion for the separatrix splitting 
has a zero coefficient, its linearization produces a generic near-identity map for which this term has a nonzero 
coefficient. 
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