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Abstract. We discover a fundamental mechanism for the sharp increase in the diffusion rate
of the motion of a charged particle in a uniform magnetic field when a time-periodic electric-
field propagating orthogonally to the magnetic field is slightly tilted. It is associated with the
degeneracies of the underlying motion; in fact, a two-degree of freedom mechanism of instability
induces this behaviour. Unfolding of this degeneracy enables the analysis of the separatrix
splitting in some limits, giving a power-law rather than the typical exponential estimate of the
splitting.

AMS classification scheme numbers: 70K50, 70K05, 58F05, 58F13, 58F14, 34C37

1. Introduction

The motion of a particle in a unidirectional magnetic field and a field of an infinitely
broad electrostatic propagating wavepacket has been suggested as a fundamental model
for understanding the motion of charged particles in plasma [1-3]. The particle motion is
two dimensional when the wavepacket propagates orthogonally to the magnetic field and is
three dimensional in the oblique propagation case. The resulting motion can be modelled
by a symplectic mapping—two dimensional for the transverse case and four dimensional
for the oblique case. If the magnetic field is uniform and a resonance condition between
the Larmor frequency and the wavepacket frequency is satisfied, a surprising phenomena
occurs; an infinite stochastic web emerges, leading to the existence of unbounded motion
of the particle [4, 3].

In the two-dimensional case, the width of the stochastic web is known to be
asymptotically exponentially small in the non-dimensional paramétef4—7] (K is
proportional to the amplitude of the transverse component of the electrostatic wave). Thus
the probability of a particle belonging to the instability zone is exponentially smatl.in

It has been numerically observed that even the slightest inclusion of an oblique
component of the electrostatic wave to the model (resulting in a four-dimensional symplectic
map) leads to a sharp increase of the diffusion rate and of the measure of the chaotic
component of the phase space [3]. One may speculate that this phenomena is simply
associated with the addition of another degree of freedom to the system. Here, we show
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that in this case the degeneracies of the model, which seems to be associated with its
symmetries, play a crucial role in creating these new instabilities. Picking a specific limit
for the degeneracy’s unfolding parameters as a function of the small parakheterables

us to prove a polynomial rather than an exponential splitting distance.

This paper is organized as follows; in section 2 we follow the derivation of Zaslavsky
et al [3] of the equations of motion, concentrating on the four-fold symmetric case. Then,
we suggest a new model which includes two new unfolding parameteend 6. We
examine the qualitative behaviour of the system—its symmetries and the structure of the
energy surfaces as these parameters are varied. In section 3 we describe the behaviour of
the system in the limit of fast Larmor rotation, find the solutions of the integrable limit and
define the splitting integral and estimate it foe= 0 in the limit of smallA and smallK so
that averaging may be utilized. Section 4 is devoted to our conclusions and a discussion.

2. The equations of motion

The equations of motion of a particle with char@eand massz in the three-dimensional
space under the influence of a constant magnetic field and a time-periodic electric field
corresponds to a 3.5 degrees of freedom system of the form [3]:

P = gE(r, 1)+ g[1'«, B] reR3 (2.2)
m mc
where B is along thez-axis. The electric fieldE(r, ¢) lies in thex, z plane and is chosen

in the following form:

o0 o0
E=—Ey ) _ sin(kr —nAowt) = —Eosintk,x + k.2)T Y 8(t —nT) (2.2)

n=-—00 n=—00

namely, the wavepacket is assumed to be homogeneous and of sufficiently large spectral
width. The time intervall = 27/ Aw determines the frequency interval between harmonics

of the packet. Potential character of the electric field implies ﬁhai: g—g = B. Thus,
equation (2.1) written in components becomes:

o0
5= - 2B sinkor + k) Y 84— nT) +woy

m n=—0o0

§ = —woit (2.3)

o0
i =~ 2T Egsintkx +k2) 3 8 —nT)
m

n=—o00
where wy = %‘: is the Larmor cyclotron frequency. Equations (2.3) do not depend on
y, hence, there exists a conserved quantity—the corresponding generalized momentum.
Indeed, the second equation in (2.3) can be integrated yielding

y + wpx = constant= wox./ k, (2.4)

where x.. is the coordinate of the centre of the cyclotron orbit [8]. Note fiifiat, # O
this constant can be set to 0 by a corresponding shift:irsettingx = x — x./k, and

Z = z + x./k, corresponds to taking., = 0 without changing the equations of motion
(however, see [8,9, 7] for the non-trivial influencexpfwhenk, = 0).
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The existence of the conserved quantity enables us to reduce the number of degrees
of freedom by 1. Thus, this model corresponds to a 2.5 degrees of freedom Hamiltonian
system defined by
_piEp: m

+

o Engz — QT¢ocostkyx +k2) Y 8(t—nT) (2.5)

n=—00

H

where p, and p, are kinetic momenta andy = Eq./k, is the amplitude of the electric
potential. Defining the dimensionless variablasv, w, Z) by

u = kyx/wo v =—kyx Z =k;z w = k,z/wo (2.6)

the Poincae map corresponding to the flow of the Hamiltonian (2.5) can be written as
follows:

Upt+1 = v, Sina + (u, + K sin(v, — Z,,)) cosw

Vpy1 = U, COSa — (u, + K sin(v, — Z,)) sina

2.7
Zyy1=2Z, + 7Twn+l/2 ( )
Wpt1 = Wy + K:BZ Sin(vn - Zn)
where the cross section is chosemd@t— 0, and
Eock k B
Kk = LEoks p="= 0=l = 281 (2.8)
mawo k, mc

If the resonant condition between the eigenfrequeagy and the frequency of the
perturbation is satisfied, i.ex = 27/q, where g is some integer, then the map (2.7)
generates an infinite stochastic web in phase space. Zaslavs#y3] analysed in detail
the mapping (2.7). A resonant Hamiltonian was obtained by reordering the infinite sum of
the § functions in tuples ofy, corresponding heuristically to some averaging procedures.
Then, the resulting Hamiltonian was separated into a mean time-independent part and a
time-dependent perturbation.

One of the most interesting cases, which will be considered henceforth, is the case of the
fourfold symmetry, whery = 4. In this case, the heuristically derived mean Hamiltonian
was found to be integrable [3]. Fgr= 4, (2.7) has the form

Upt1l = Up

Un1 = —u, — K Sin(v, — Z,)
Zyi1 =2y +mwys1/2

Wat1 = wy + KBZsin(v, — Z,).

(2.9)

The parameteg, which couples théu, v) dynamics to th€Z, w) dynamics, plays a critical
role in determining the diffusion rate in the v plane [3]. Even very smalB values lead
to a vast increase in the instability (hence ‘diffusion’) of the particles motion.

In section 3.1, it is shown that the map (2.9) is highly degenerate in the limit of
small K. We introduce two parameters which unfold the degeneracy and break some of
the symmetries of the map (see also the discussion section). Based on this mathematical
consideration, we suggest a new model, in which we add a second electrostaticRyave,
which is parallel to the magnetic fielB, so that (2.2) changes to:

E = —(Eosin(k,x + k.z) + Eysin(k.z + 0)T Y 8(t —nT). (2.10)

n=—0oQ
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Here 6 plays the role of the phase shift introduced by the initial cyclotron centre position
xe, 8 = x./B, and here it cannot be omitted by translationzdfee the remark after (2.4)).
The resulting Hamiltonian of the system is:

pi+p: m 5, S
H = S+ S whx® — qT (do COStkyx + k.2) + drcostk,z +0)) Y 8(t—nT)
27’]’! 2 n=-—00
(2.11)
and the corresponding Poinéamap for the casg = 4 can be written as
Uptl = Uy
Vpe1 = —u, — K sin(v, — Z,)
Faid ! " (2.12)

Zpy1 =2y +1mWey1/2
Was1 = wy + KB(SiN(v, — Z,) — ASINZ, +6))

where A = E;,/Eq, is the ratio of the amplitudes of the electrostatic waves. Symmetries
of this map depend on the value of the parameteandéd. Ford = 0 (or A = 0) there is
an exactZ, symmetry

Zy: (u,v,w,2) — —(u,v,w, Z). (2.13)
For A = 0 (and arbitrary value of) there is a shift symmetry in, v, Z:
u,v,Z,w) > u+m,v+m,Z+m, w) (2.14)

which introduces a 2 shift in v: in the new variables the right-hand side of the second
equation of the map (2.12) has an additiondlr term. Introducing a non-zerd breaks

the shift symmetry (2.14) and introducing a non-zérbreaks theZ, symmetry (2.13). In

the analysis, we consider the unfolding with respectAtotaking® = 0. We leave the
detailed (and, as will be apparent later on, the more complicated) analysis of the influence
of the unfolding with respect t6 to future research.

For asymptotically smalk there are various limits and cases for which the mapping
(2.12) may be analysed. First,gf= 0 andw = 0, (2.12) reduces to 1.5 degrees of freedom
system corresponding to a transverse propagation of the wave, where the initial vaue of
plays the role of the cyclotron centre. In [7] we have carefully analysed the structure and
properties of the stochastic web for a general fie¢x. in [7]), showing that the reduced
system depends very sensitively on the valueZof

If B =0 andw is rational, i.e.w = m/n, then each iteration of, may introduce a
substantial change . However, the #4th iterate ofF, leavesZ unchanged and produces
a near identity two-dimensional diffeomorphism in the v) plane. It may be studied in
the limit K — 0 with similar techniques to those used in [7]. Further information may
be obtained by expanding,” in w near its rational valuew = m/n + Aw, and consider
the limit (K, Aw — 0). From the physical point of view this case corresponds to the
cyclotron resonance between the frequencies of longitudinal and transversal motions. The
casem = n = 1 has been studied in [3].

For small values ofw, the change irZ is small at each iteration, and thus the fourth
iterate F; produces anear identity symplectic diffeomorphism. Physically, this case
corresponds to a fast Larmor rotation with respect to the longitudinal motion. As for the
two-dimensional case, consideridq‘ corresponds heuristically to averaging with respect
to this fast rotation [4].

In the rest of this paper the last case will be analysed. The resulting approximating flow
will be considered as some perturbation of an integrable 2 degrees of freedom Hamiltonian
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system. Analysis of the energy surfaces reveals peculiarities and degeneracies of the
unperturbed motion. Further, Melnikov-type analysis for the limiting flow and averaging
results in estimates for the separatrix splittings.

3. The limit of fast Larmor rotation

Here we analyse the limit of the fast Larmor rotation:

w1 K<L 3.1
Which, using the dimensional parameters, corresponds to
wo > max(k,z, (Q¢ok?/m)Y/?). (3.2)

This implies 2, <« 1, whereQ, = (Q¢ok?/m)Y/? is the transverse bounce frequency
corresponding to the frequency of small oscillations of a particle in the field of the plane
wave with amplitudep, [3]. Thus, we rescalev = §W, where the new small parameter
8 = /K pB? has been defined, ariel is of the order of 1. After expanding the fourth iterate
of 74 in K and$, F; is given, to the first order in these small parameters, by:

u' = u + 2K cosZ sinv

v' = v — 2K cosZ sinu

Z' =Z+2nWs,

W = W — 25((cosu + cosv) SinZ + 2A sin(Z + 6))

whereZ is taken mod 2.

(3.3)

3.1. The limiting flow and its degeneracies

The mapping (3.3) is a near-identity analytic mapping, which, in the limit of asymptotically
small K and§é, can be approximated by a flow of the following autonomous Hamiltonian

K K
H= T”W2 — E(CosZ(cos;u + cosv) + 2A co9Z + 0)) (3.4)
with the corresponding Hamiltonian equations:
d 1
u= ﬂ = — K cosZ sinv
ov 2
oH 1 .
V= mrm = _EK COoSZ sinu
u
8 OH _ém (35)
T Kow 2
W = b _ 9 ((cosu + cosv) sinZ + 2A sin(Z + 6))
T TKaz o 2 v ‘

Note thatW and Z are not canonical variables as the scaling faégd is included in the

above equations, i.e. in the corresponding non-canonical Poisson brackets. We believe the
expression (3.5) corresponds to ttigorous limiting flow which is realized in the singular

limit K,5 — 0. Namely, that there exists a flow for which the time-1 map is given by (3.3)

to the order ofk 8, K2, and (3.5) is the leading-order approximation to this flow. Moreover,
normally hyperbolic sets of the flow and their local stable and unstable manifolds persist and
areC’ close (forC" mapping) to the corresponding sets and manifolds of the mapping (see
[10] for the exact formulation in the two-dimensional case). Heuristically, (3.4) corresponds
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to the Hamiltonian (2.11) expressed in dimensionless variables (2.6) and averaged over the
period of the cyclotron rotation; thus it can be called the mean Hamiltonian, and indeed,
for A =6 = 0 it coincides with the mean Hamiltonian found in [3].

The Hamiltonian system (3.5) is integrable and possesses a second integral of motion
C(u, v) = cosu + cosv. In fact, the solutions to (3.5) may be explicitly calculated. Notice
that the equations in thg&Z, W) plane depend ofu, v) only throughC = C(u, v), and they
may be expressed in terms of the solutions of the pendulum equations. Indeed, introducing
new timet = §¢/2, then,

Z' =aW
/ . . (3.6)
W' = —C(u,v)sinZ — 2Asin(Z + 0).
Defining the constants of motign and v via:
w? = (C(u, v) + 2A cost)? + (24 sinb)? @7
cosyr = (C(u, v) + 2Acosd)/u siny = (2Asin6)/u '

the (Z, W) equations have the form of a standard pendulum
Z' =aW W' = —usin(Z + ¥).

For u > 0, choosing the initial timey such thatZ(zg) = —y, W(zp) = Wy, and using
again the regular time, the rotational solution(Z (¢; to, Wo, ¥), W (t; to, Wo, ¥)) is given
by

W (t: to. Wo. ) = Wodn (7 Wob (s = 10). ) (3.8)
. T
Z(t;tg, Wo, V) = —y + 2 arcsm(sn(Z Wod (t — 1), K)) (3.9
where
2 A
K= —>5<1 (3.10)
7 Wy
defines rotational orbits with period
8
To = . A1
0 7T8W0’C(K) (3.11)

For future calculations, notice that the average of c@Z(¢)) over one rotational period
Tp is given by:

1 b B 1 E(K)
E(k,¥) = 70/0 COoSZ(t)dr = (1— Zp <1— IC(K))) cosyr (3.12)

where/C, £ are the complete elliptic integral of the first/second kind. o 7/2,x < 1,
& is monotonically decreasing with: for large Wy (namelyx — 0) &(x) tends to zero,
whereas near the separatrices—+$ 1) it approaches-1.

Now, examine the behaviour in th&, W) plane foro = 0. Above, we have shown
that for A, 6 # 0 the motion in thgZ, W) plane corresponds to a nonlinear pendulum. The
position of the pendulum’s fixed points are at= —yr, — + 7, wherey, depends on the
values ofC (u, v), A andé via (3.7). The stability of these fixed points is determined by the
sign of u. For A, 0 # 0, u is bounded away from zero for all, thus no bifurcation of the
fixed points occur a€ is varied: changing simply corresponds to a smooth change in the
location of the fixed points. On the other hand@it= 0 theny = 0, andu changes sign
at A = —2C. Indeed, forC > —2A, Z = +x is hyperbolic andZ = 0 is elliptic, whereas
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for C < —2A their stability is exchanged. Namely, there is no continuous transitiod for
going through—2A. Moreover, foré = 0, at C(u, v) = —2A, the pendulum oscillatory
orbits degenerate to @rcle of fixed pointsaat W = 0, Z € [—x, w]—a highly degenerate
situation which, as will be shown, may produce strong instabilities when perturbed.

Now, consider the motion in thé:, v) plane. GivenZ(t; 1y, Wop, ¥) which solves the
pendulum’s equations, the solutions in the v) plane may be found by reparametrization
of the time variable. Indeed, let

u(t) = uo(g(t)) v(t) = vo(g(?))
whereug(t), vo(t) satisfy
up = Sinvg Up = — SiNug
and the functiorg(¢) = g(t; to, Wo, ¥) satisfies the following differential equation
g(t) = 3K cosZ(t; to, Wo, ¥) g(0)=0 (3.13)

where Z(¢) is a solution of the pendulum equation with = C(uo(0), vo(0)). Then
(u(),v(), Z(t), W()) clearly satisfy (3.5) (we thank the referee for pointing this out).
In particular, the four separatrix solutions in te v) plane (i.e. solutions belonging to the
limiting web, on whichC (u, v) = 0) satisfy:

Wt =ivtrw i =41

1 (3.14)
coshlK [, coSZ(t; to, Wo, 6)

These solutions satisfy the correct boundary conditions provided ljming(r) = co and
similarly limsup_, _, g(t) = —oo, and these are fulfilled i («, 6) of (3.12) is non-zero.

Summarizing, if¢, the average of cas along the orbits in th€Z, W) plane, is non-
zero, then the flow projected to tlig, v) plane is described by a uniform diamond-web with
nested invariant web-tori inside each cell, as in the two-dimensional setting (4].v) =0
defines the initial conditions which belong to the web, wher@as v) # 0 defines the initial
conditions which belong to the web-tori.

When ¢ ~ 0, (4, v) = O to leading order, and then the motion in the v) plane
is governed by higher-order terms. For example, for= —7/2 and C(u,v) = 0,
& approximately vanishes near the pendulum elliptic fixed poinZat= /2. This
phenomenon is demonstrated in figure 1, where projections of the phase portrait of the
mapping (2.12) on théx, v) plane are depicted. Fér= 0 there is a clear diamond lattice,
whereas ford = —x/2 the web resembles a square lattice. Moreover, fo allarge
values of Wy, for which & ~ 0, produce extremely complicated and unstable behaviour,
sometimes leading to structures reminiscent of the square web. These two essentially
different patterns with correspondingly different scaling of the separatrices splitting, appear
in the two-dimensional setting for the corresponding cyclotron centre values [7,8]: the
(fixed) cyclotron centrex,., plays the role ofZ in this setting, thug = cosx.. In [7] it has
been shown that as. is varied, there exists a sequence of bifurcations which change the
web’s shape and width from a diamond web with a width of the order of exi7 /2K £) for
€] > ¢ > 0, to a square web with smaller cells and with width of the order of(exp?/K?)
whené& = 0. In this paper we analyse the simpler case for wi§idh bounded away from
zero.

Combining the information gathered on the motion in e W) plane and in théu, v)
plane, the following structure of the integrable motion emerges: for gerderal#~ 0 and
most initial conditions the integrable motion essentially corresponds to a cross product of

sinu’E(t; tg, Wo, 0) = —i sinv’* = +
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Figure 1. The four-dimensional stochastic web projected to thev) plane K = 0.1, 2 =
0.1, A = 1 andWy = 0; the size of the square iscd 4r. (@) Zo=60 =0; (b) Zop = —0 =7/2

the web in the(u, v) plane and a pendulum in tH&€, W) plane. However, whea = 0 and
C(u, v) = —2A the motion in the(Z, W) plane degenerates to a free motion. In particular,
the energy surfacé{ = 0 contains, forA # 0, a torus filled with invariant circles: the
web-tori crossed with the circle of fixed poin®8 = 0, Z € [—n, 7]. When A = 0 this
circle of fixed points occurs exactly @& = 0. Thus, the valueA = O corresponds to a
double degeneracythe energy surface dff = 0 includes (atC = 0) the direct product of

a uniform web in the(u, v) plane and a circle of fixed points in th&, W) plane.

The perturbation to the flow (3.5), created by the next-order terms in the expansion
for the fourth iterate ofF}, is expected to destroy the conservation of the second integral
C(u, v). Hence, the resonant structure which appeais at —2A and the sudden changes
in the structure of the integrable Hamiltonian flow for nea®y is expected to become
significant under these perturbations. Introducing the paramdteasd 6 employs the
standard tool for understanding the behaviour near such sudden changes in phase space.
Using the ‘unfolding parameters’, the corresponding families of systems may be analysed
by standard tools, producing information regarding the singular system in the appropriately
chosen limits.

From the above considerations, it follows that the roledoin the unfolding is of
crucial importance in the vicinity of the pendulum separatrices and near the pendulum’s
oscillatory orbits. In what follows, we analyse only the behaviour for rotational orbits
which are bounded away from the pendulum separatrices, for which the r@kseefims to be
insignificant. Generally, the analysis £ 0 is expected to be more delicate; first, the limit
asA — 0 of the oscillatory orbits is singular as they cease to exist in this limit. Second, the
effect of is introduced to the approximating Hamiltonian flow only througtk®) terms,
whereas ©QK, K §) are sufficient for unfolding the dependence #n Thus,we henceforth
setd to zera Theny =0, u = C+2A andZ, W, g(t; to, Wo, v = 0) = Z, W, g(t; to, Wo).

3.2. Perturbations and separatrix splittings

In the previous section we have found the explicit solutions of the limiting flow (3.5) which
is completely integrable. Here we analyse the influence of the next-order terms on the
heteroclinic solutions to specific invariant circles of the unperturbed flow. More precisely,
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we notice that the hyperbolic fixed points of the web in thev) plane correspond to one-
parameter families of invariant circles of the four-dimensional phase-sa®é;; n, m) =
{(u,v, Z, W|(u,v, Z, W) = (nm,mm, Z(t;0, W), W(t;0, Wo)),n + m = 20 + 1,t €
[0, To(Wo)]}, where (Z(t; O, Wy), W(t; O, Wyp)) are given by (3.9) withu = 24,y = 0,
and To(Wp) by (3.11). W, is the parameter which distinguishes between the different
circles belonging to the family. These circles are normally hyperbolic on the three-
dimensional energy surface providéde) # 0 (see (3.12)), since this condition implies
that their Flouget multipliers are of a hyperbolic nature. Thus, for# 0, these
invariant circles and their two-dimensional stable and unstable manifolds persist under
small perturbations. For the integrable flow (3.5), these manifolds coincide—the solutions
q°(t; to, Wo) = (Z(t; to, Wo), W (t; to, Wo), u(t; to, Wo)), v(r; fo, Wo))) of (3.9) and (3.14)
parametrized by(t; 1o, Wp) span these manifoldsr parametrizes the motion along the
solutions,ry parametrizes the initial phase i and Wy labels the invariant circle and thus
the energy surface. The cage= 0 corresponds to the symmetric solutions for which
W, sin(u), sin(v) are even functions of whereasZ, coqu), cogv) are odd functions of
t. From general principles, we expect that the manifolds will split and in fact intersect
transversely when higher-order terms are added. The rest of this paper is dedicated to
proving such an assertion, and moreover, to estimate the splitting distance.

Before starting on the calculations we will describe the general strategy. To find the
splitting distance we first find the higher-order terms (expanding in powerk,d) of
the fourth iterate of the mapping, from which we obtain, in the limit, the perturbation to
the integrable flow. We discuss the delicate nature of this step below. Then, we measure
AC (tg; Wp), the difference between the values of the unperturbed first intégealv) on
the stable and unstable manifolds near the pgHi0; o, Wo). If AC has simple zeros in
to, it implies that the stable and unstable manifolds of the invariant circle corresponding
to Wy intersect transversely, see [11, 12]. In fa&i] (zo, Wo) measures the component of
the distance betweeg¥ (0; 19, Wp) and ¢*(0; to, Wp) in the VC direction. AC is found by
integratingC along the stable and unstable manifolds, using the first variational equations for
the perturbed solutiong’, ¢“, [12]. Such a Melnikov-type calculation gives a complicated
integral, which depends oy, Wy) in a non-trivial way, see (3.18) below (though it is easy
to observe that the symmetric solutions produce zeros of this integral). In the special limit in
which some terms may be considered as fast oscillating (which, as shown in the appendix,
corresponds to the limit in which averaging with respect to the motion in(#heW)
plane is legitimate) it is possible to estimate this integral. Such an estimate produces a
‘leading order’ term (in powers oK, §) which has an exponentially small factor AK .
This problematic phenomenon is not surprising—it is the usual consistency problem one
encounters in applying a simple-minded perturbational method to the singular problem of
rapid oscillating forcing (see [13,14] and [10, 15] and references therein). However, it is
shown here that, by taking a special limit 4 it is possible to eliminate the exponentially
small dependence ok. Then, in this limit, the expansion ik, § is a valid asymptotic
expansion, and the results prove that in this lilkif' is polynomial inK. It follows from
the form of C that this implies that the distance betwegng" projected to thet, v plane
must be polynomial ink.

We begin the analysis by finding the higher-order terms in the expansioﬁﬁoand
consider the resulting limiting flow a& — 0. The next-order terms ik, § are proportional
to K§ in the equations for, v and tos? in the equations foW, Z. In general, one would
hope to obtain, to any given order in the expansion, a symplectic map with a natural
limiting Hamiltonian flow. However, the straightforward expansion does not produce here
a symplectic map to the order &fé: while the K§ terms which appear in the equations



958 S Pekarsky and V Rom-Kedar

for u, v are of the form(%%, — %) with H; = O(K$), the Q§?) terms in the(Z, W)
equations do not appear to be of the fo%ﬂ[%, —% . Notice that there exists some
freedom in the expansion since in the limiting flow there is no difference betyeamd

qn+1, Whereas for the mapping expansion such differences change higher-order terms, and
thus the symplectic nature of the equations. Henceforthasseimethat it is also possible

to rearrange the equations, without changing the terms irithe) direction, so that the

limiting equations are Hamiltonian to the order; df§. Then, we obtain:
KénW

1 .
0= éK cosZ sinv + coqv + Z) + O(K?)

1 . KénWw
v = —— K cosZ sinu + il (—cosu + Z) + 3cosu — Z)) + O(K?)

2 (3.15)
, _om 2 52

. 1) . .
W= —é((COSu + cosv) SinZ + 2A sin(Z + 0)) + O(8%, K§2).

Thus the additionak § and §° terms of (3.15) can be interpreted as a perturbation of the
integrable flow (A.3). Since the @&?) termg are not included in the perturbation, we
require for consistency thas > K2, or alternatively

B> VK. (3.16)

Notice that the @?) terms are not neglected in the analysis, rather, as will be apparent
below, their explicit form is not important.

Now, we find AC by integratingC along the stable and unstable solutions of the
perturbed flow. By the stable and unstable manifold theorem it followsgthat 7o, Wo) =
q°(¢; to, Wo)+0O(8) on the semi-infinite time interval-oo, 0) and similarly forg® (¢; to, Wo).
SinceC is an integral of the unperturbed flow, it follows that

0

AC(lo, WO) = / C|q“(z;zo,wo) dr +/ C|q»‘(t;zo,wo) dr
0 0

oo
- / (VCY)QD(I‘JO,WO) dt + s
—0o0
= M(tg, W) + - - (3.17)

whereY is the vector field corresponding to the perturbation of the flow (3%, t0, Wo)
denotes the unperturbed separatrix solution of this flow and ‘stand for higher-order
terms (which are polynomial iK', §). SinceC is a function ofu andv coordinates only,

the change irC along the separatrix, depends, to leading order, only on the force acting on
the (u, v) components and the explicit form of the(8®) terms in (3.15) are not needed.
Moreover, the form ofC is such that the above integrals are absolutely converging, and not
just conditionally converging as in the usual case. Substituting the explicit expressions for
Y andVC in (3.17) we find (after some manipulations):

Kém [ . .
M (tg, Wp) = —T / W (t, to)(COSZ cosv Sinu + COSZ cosu Sinv
—0o0
+sinZ sinu sinv) dt. (3.18)
1 Unfortunately, we are not aware of any existing algorithm which produces symplectic truncations of the

symplectic mapfj to a given order.
1 These are responsible for the appearance of the square-like pattern of the web [7].
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Using the unperturbed solutiarP(¢; to, Wo), we obtain for the four separatrices +), i =
+1 of (3.14):
2 dsinut+

= —iWsinZ sinu®* sinv®* dr
K dr

it _ Kém [ .
M"=(tg, Wo) = 4 {4+ D)W, to)
-0

_ KénWo /°° dn(*5% 1, k)
4 ) s cosBg(r + 10))

X <i(i + 1) sinh(g (1 + t0) (2 cr? (”VZO‘S:, K> - 1)

. Wos Woé
+ 2|cn(7r 40 t,K) sn<n 40 t,K)) dr. (3.19)

Notice that the integral vanishes identically fgr= 0 by symmetry. Moreover, it follows
from (3.13) that

g(t) = 1KEr + %K/ (COSZ(t; to, Wo, ) — &) = SKE&t + §(1) (3.20)
0

whereg(t) is a periodic function, with average zero, and with perfgd The integral (3.19)
seems to involve quite complicated expressions. None the less, it is possible to estimate it
in some limits. In particular, notice that the arguments of the elliptic functions are of the
form %t whereas, the argument of the cosh and sinh functions are essentially of the form
%K&t. Thus, fixing«, the elliptic terms which appear in the integral may be considered

as fast oscillating if their periodp 571% is much smaller than the characteristic time

appearing in the cosh and sinh arguments, namgky. 1Since we keep fixed, Wy o /A,
thus the elliptic terms are fast oscillating provided:

K
K < 8Wox BVKA & A > P (3.21)
As shown in the appendix, this condition essentially guarantees that the integrable motion
may be averaged with respect to the motion in ¢tde W) plane. Then, we estimate (3.19)
by neglecting the effect of () on the integral and by Fourier expanding the other elliptic
functions to find:

M E (19, Wp) = sin 7 Wodt, Woo® exp| — ™ i
(to, Wo) ~ (W 0 O)K p( ‘UC(K)E(K)K)
i ) 1 .
XW <:F(| + ]_) (al(/() — Zdl(K)) — |02(K)) (322)

wherea; (x), di(k), (resp.az(x)) are the coefficients of the cosu/K) (resp. sittru/K))
in the Fourier expansion of dm) cré(x), dn(u) (resp. driu) cn(u) sn(u)) respectively. To
leading order in the nome of the elliptic functions= exp(—n ' (k) /K (x)), they are given
by:

3 3

q 2 ¢ 0 q
- d N — N .

K23 (1+ ¢)2 WO~k ire PO o1 p
The expression in (3.22) is ‘leading order’ K, 8, in a regular perturbation series in these
parameters. To restore the double degeneracy present in the original system (and avoid

a(k) ~

1 Such an approach is justified in the appendix by the averaging method. Direct asymptotic justification of this
approach using, for example, the residue method, may be possible yet non-trivial since the elliptic functions
themselves have poles and the functiain) (which includes integrals of the elliptic functions) alters the position

of the poles of seatK¢¢/2).
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the exponential smallness of the leading term) consider the Wmit 0 and W, — 0.

After introducing a new scaled coordinal® = Wy/+/8A /7 = 1/«, the condition of fixed

k < 1, corresponding to the condition that the rotary motion is bounded away from the
separatrix in the(Z, W) plane, impliesW, > 1. The other condition of fast oscillations
(3.21) of the elliptic function in the integral (3.19) (which corresponds to requiring slower
motion in the(u, v) plane than in théZ, W) plane) is satisfied asymptotically K if, for
example,s is fixed andA > K, e.g. we may take:

f: «/flr;jl/l(“

Then, for any positivax there existsKy(«) such that (3.23) implies (3.21) for ang
satisfyingK < Ko(«). It follows that in this limit the maximal separatrix splitting is given,
to leading order, by

a>0 (3.23)

_ 2
Adimf¢MQKH§ﬁw<m;J (3.24)
where f*(Wy) may be found directly from (3.22) (witk = 1/Wp), and constitute (not
identically zero) functions of¥,. Note that for allk < Ko < 1, I?1/K* can be bounded
from below by a constant (frL/Kg) and from above by an arbitrarily small positive power
of K. Thus, for sufficiently small asymptotic values &f the separatrix splitting\C is
polynomially and not exponentially small in the perturbation paraméter

AC o K1*e,

4. Conclusions

We have established that in the fast Larmor rotation limit with unbounded motion in the
longitudinal direction (i.e. rotary motion i), one mechanism which causes a substantial
increase in the diffusion due to a longitudinal component is a degeneracy of the underlying
motion. To analyse this behaviour, we have constructed a limiting flow in the gmiathit

and found it corresponds to a highly degenerate 2 degrees of freedom system. The phase
space for zero values of two integrals of motion is given by a direct product of an infinite
web and a circle of fixed points. Unfolding this degenerate structure and then analysing the
unfolded system in specific limits, using the Melnikov technique, enabled us to prove that
the separatrix splitting becompslynomiallyand not exponentially small in the perturbation
parametelk. This shows that one mechanism for the observed strong instability stems from

a degenerate 2 degrees of freedom mechanism, and is not governed by higher-dimensional
phenomena such as Arnold diffusion.

Note that a rigorous connection between near-identity symplectic maps and their limiting
flows has been established only in the two-dimensional setting [10], in special volume-
preserving maps [15] and in some classes of symplectic maps [18, 19]. None the less, we
have assumed in our analysis that a similar connection may be established in the higher-
dimensional case, and moreover that the symplectic structure of the mappings induces, in
the limit, Hamiltonian flows. Proving such an assertion and finding an algorithm which
produces such Hamiltonian flows is an interesting open problem.

Preliminary numerical experiments seem to confirm the observation that the instability
in B is far more significant in the degenerate case (i.e. whea 6 = 0) than it is for
non-degenerate systemd, = O(1)). Quantitative study of this phenomena is yet to be
performed.
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Finally, we note that the four-dimensional mapping system is very complex and rich.
Other limits (e.g.0 # 0, or Wy « 1) and different symmetries (i.@. # 4) are left for
future studies. Especially interesting is the singular limiting behaviour of the oscillatory
orbits of the pendulum in the limid — 0. While analysing only one limiting case is a
modest achievement in the era of computer simulations, the significance of the analysis lies
in revealing a new mechanism for the instability of four-dimensional symplectic maps which
stems from a new mechanism of instabilitya02 degrees of freedom Hamiltonian system.
Further, the general theme which emerges from this and other studies [16, 4, 3], is that the
symmetries, which are only slightly broken in nature, are associated with degeneracies which
are responsible for many of the strong instabilities which are observed in low-dimensional
systems. Thus, a fundamental study of the implications of symmetries on the emerging
degeneracies of the energy surfaces is needed.
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Appendix. The averaged motion

Here, we show that the limit (3.21), corresponds in fact, to the limit in which averaging
over the motion in théZ, W) plane is legitimate. Under the simplifying assumptébe: 0,
(3.4) has the form

Kn

K
H= TW2 — 5 COSZ(COsu + COSv + 24). (A1)

We choose orbits and the appropriate limitskné for which the motion in the(Z, W)

plane can be considered fast compared with the motion in(ihe) plane. First, we
consider orbits in th&Z, W) plane which are bounded away from the separatrix so that
their period is finite for fixed, K. To examine the dependence of the time-scales, df,

we rescale time by; consider the new time = wf, wherew? = %SZnA is the rotation
frequency in the théZ, W) plane andA is assumed to be positive. (The case of negative
produces essentially the same results and will be briefly discussed later.) Then, the rescaled
Hamiltonian is given by

H= Kty K COSZ(COSu + CoSv + 2A) (A.2)
4w 2w
with the equations
"= % = ﬂ cosZ sinv
dr  BJ2rA
v = % = —ﬂ cosZ sinu
dr  pv2ma (A.3)
f T
Z = ﬂW
W = 1 sinZ(cosu + cosv + 2A)

2Am
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wheres = 8+/K has been substituted. Now, it is evident that for snkalthe motion in
theu, v plane is slower than that of thez, W) plane for any finites.

ChoosingA so that,/K/A is a small parameter, new averaged coordinatesd v,
such thatu = # + /K /Au; andv = v + /K /Av1, can be defined [17] so that

K To . _ K
i = W%R)/o cosZ(t)dr sinv + ﬂz—Afl(r)
(A.4)
To
v =— VK i cosZ(t)dr sinu + Agl(r)
BN2m A To Jo B2A

where Ty is the period of the rotational orbit df (in t units) and fi(t), g1(r) are some
periodic functions inc, which depend om, v as well and are introduced by the averaging
theorem. For the averaging theorem to haldand v" must be small. It means that the
following condition must be satisfied:

VK K

T KleA» (A.5)

BVA B?
which is exactly (3.21). Moreover, averaging over the standard pendulum’s rotational orbits
brings (A.4) to the form:

i = Iﬁsinﬁ+0(1<) v = _Ks sinu + O(K) (A.6)
2w 2w

(recall thatw = O(+v/K)) with & = &(k, 0) of (3.12). It follows from (A.6) that on the slow
time scale @V/Kr), for any £ % 0 the averaged system has, t6«X) the structure of
the two-dimensional web with hyperbolic fixed points connected by separatrices, which are
given by:

sinu siny 1 (A.7)

! coshfit” '

By the averaging theorem, the hyperbolic fixed points and their stable and unstable manifolds
persist as the hyperbolic periodic orbit of the full system, thus it makes sense to speak of
the splitting separatrices of the full system in the above limit.

The higher-order terms coming from the averaging may move the manifolds by at most
O(/K). Thus, in general, such @K) terms may destroy the web, by, for example
splitting the C levels of the hyperbolic fixed points. However, recall that the averaging
procedure may be applied repeatedly to obtain higher-order corrections to the averaged
motion in the (u, v) plane. Since the original motion is integrable, and in particular, the
explicit solutions which were found preserve the heteroclinic connections, it follows that, on
the nth step of the averaging; («, v) is conserved to ordek”/? and thus equations (A.6)
are essentially correct at any order of the averaging ttegm is replaced by a power series
in +/K with the leading-order term (3.12), and the error terniKQ) is replaced by an error
of O(K"+Y/2), Thus, for|¢| > O(v/K), the diamond web is approached asymptotically,
with errors which can be made as small as needek .inGiven the above arguments, the
leading-order term of the averaged flow may be substituted in (3.18), producing, to leading
order, the same results as in (3.22).
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