
Instabilities and degeneracies of the four-dimensional stochastic web

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 Nonlinearity 10 949

(http://iopscience.iop.org/0951-7715/10/4/010)

Download details:

IP Address: 132.77.4.43

The article was downloaded on 09/09/2008 at 12:51

Please note that terms and conditions apply.

The Table of Contents and more related content is available

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/0951-7715/10/4
http://iopscience.iop.org/0951-7715/10/4/010/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


Nonlinearity10 (1997) 949–963. Printed in the UK PII: S0951-7715(97)78582-7

Instabilities and degeneracies of the four-dimensional
stochastic web

Sergey Pekarsky† and Vered Rom-Kedar‡
Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science,
Rehovot, 76100, Israel

Received 10 October 1996, in final form 10 March 1997
Recommended by V F Lazutkin

Abstract. We discover a fundamental mechanism for the sharp increase in the diffusion rate
of the motion of a charged particle in a uniform magnetic field when a time-periodic electric-
field propagating orthogonally to the magnetic field is slightly tilted. It is associated with the
degeneracies of the underlying motion; in fact, a two-degree of freedom mechanism of instability
induces this behaviour. Unfolding of this degeneracy enables the analysis of the separatrix
splitting in some limits, giving a power-law rather than the typical exponential estimate of the
splitting.

AMS classification scheme numbers: 70K50, 70K05, 58F05, 58F13, 58F14, 34C37

1. Introduction

The motion of a particle in a unidirectional magnetic field and a field of an infinitely
broad electrostatic propagating wavepacket has been suggested as a fundamental model
for understanding the motion of charged particles in plasma [1–3]. The particle motion is
two dimensional when the wavepacket propagates orthogonally to the magnetic field and is
three dimensional in the oblique propagation case. The resulting motion can be modelled
by a symplectic mapping—two dimensional for the transverse case and four dimensional
for the oblique case. If the magnetic field is uniform and a resonance condition between
the Larmor frequency and the wavepacket frequency is satisfied, a surprising phenomena
occurs; an infinite stochastic web emerges, leading to the existence of unbounded motion
of the particle [4, 3].

In the two-dimensional case, the width of the stochastic web is known to be
asymptotically exponentially small in the non-dimensional parameterK [4–7] (K is
proportional to the amplitude of the transverse component of the electrostatic wave). Thus
the probability of a particle belonging to the instability zone is exponentially small inK.

It has been numerically observed that even the slightest inclusion of an oblique
component of the electrostatic wave to the model (resulting in a four-dimensional symplectic
map) leads to a sharp increase of the diffusion rate and of the measure of the chaotic
component of the phase space [3]. One may speculate that this phenomena is simply
associated with the addition of another degree of freedom to the system. Here, we show
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that in this case the degeneracies of the model, which seems to be associated with its
symmetries, play a crucial role in creating these new instabilities. Picking a specific limit
for the degeneracy’s unfolding parameters as a function of the small parameterK, enables
us to prove a polynomial rather than an exponential splitting distance.

This paper is organized as follows; in section 2 we follow the derivation of Zaslavsky
et al [3] of the equations of motion, concentrating on the four-fold symmetric case. Then,
we suggest a new model which includes two new unfolding parameters,A and θ . We
examine the qualitative behaviour of the system—its symmetries and the structure of the
energy surfaces as these parameters are varied. In section 3 we describe the behaviour of
the system in the limit of fast Larmor rotation, find the solutions of the integrable limit and
define the splitting integral and estimate it forθ = 0 in the limit of smallA and smallK so
that averaging may be utilized. Section 4 is devoted to our conclusions and a discussion.

2. The equations of motion

The equations of motion of a particle with chargeQ and massm in the three-dimensional
space under the influence of a constant magnetic field and a time-periodic electric field
corresponds to a 3.5 degrees of freedom system of the form [3]:

r̈ = Q

m
E(r, t)+ Q

mc
[ṙ,B] r ∈ R3 (2.1)

whereB is along thez-axis. The electric fieldE(r, t) lies in thex, z plane and is chosen
in the following form:

E = −E0

∞∑
n=−∞

sin(kr − n4ωt) = −E0 sin(kxx + kzz)T
∞∑

n=−∞
δ(t − nT ) (2.2)

namely, the wavepacket is assumed to be homogeneous and of sufficiently large spectral
width. The time intervalT = 2π/4ω determines the frequency interval between harmonics
of the packet. Potential character of the electric field implies thatkz

kx
= E0z

E0x
= β. Thus,

equation (2.1) written in components becomes:

ẍ = −Q
m
TE0x sin(kxx + kzz)

∞∑
n=−∞

δ(t − nT )+ ω0ẏ

ÿ = −ω0ẋ

z̈ = −Q
m
TE0z sin(kxx + kzz)

∞∑
n=−∞

δ(t − nT )

(2.3)

whereω0 = QB

mc
is the Larmor cyclotron frequency. Equations (2.3) do not depend on

y, hence, there exists a conserved quantity—the corresponding generalized momentum.
Indeed, the second equation in (2.3) can be integrated yielding

ẏ + ω0x = constant= ω0xc/kx (2.4)

wherexc is the coordinate of the centre of the cyclotron orbit [8]. Note thatif kz 6= 0
this constant can be set to 0 by a corresponding shift inz: setting x̄ = x − xc/kx and
z̄ = z + xc/kz corresponds to takinḡxc = 0 without changing the equations of motion
(however, see [8, 9, 7] for the non-trivial influence ofxc whenkz = 0).
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The existence of the conserved quantity enables us to reduce the number of degrees
of freedom by 1. Thus, this model corresponds to a 2.5 degrees of freedom Hamiltonian
system defined by

H = p2
x + p2

z

2m
+ m

2
ω2

0x
2−QTφ0 cos(kxx + kzz)

∞∑
n=−∞

δ(t − nT ) (2.5)

wherepx andpz are kinetic momenta andφ0 = E0x/kx is the amplitude of the electric
potential. Defining the dimensionless variables(u, v,w,Z) by

u = kxẋ/ω0 v = −kxx Z = kzz w = kzż/ω0 (2.6)

the Poincaŕe map corresponding to the flow of the Hamiltonian (2.5) can be written as
follows: 

un+1 = vn sinα + (un +K sin(vn − Zn)) cosα

vn+1 = vn cosα − (un +K sin(vn − Zn)) sinα

Zn+1 = Zn + πwn+1/2

wn+1 = wn +Kβ2 sin(vn − Zn)

(2.7)

where the cross section is chosen atnT − 0, and

K = QE0xkx

mω0
T β = kz

kx
α = ω0T = QB

mc
T . (2.8)

If the resonant condition between the eigenfrequencyω0 and the frequency of the
perturbation is satisfied, i.e.α = 2π/q, where q is some integer, then the map (2.7)
generates an infinite stochastic web in phase space. Zaslavskyet al [3] analysed in detail
the mapping (2.7). A resonant Hamiltonian was obtained by reordering the infinite sum of
the δ functions in tuples ofq, corresponding heuristically to some averaging procedures.
Then, the resulting Hamiltonian was separated into a mean time-independent part and a
time-dependent perturbation.

One of the most interesting cases, which will be considered henceforth, is the case of the
fourfold symmetry, whenq = 4. In this case, the heuristically derived mean Hamiltonian
was found to be integrable [3]. Forq = 4, (2.7) has the form

un+1 = vn
vn+1 = −un −K sin(vn − Zn)
Zn+1 = Zn + πwn+1/2

wn+1 = wn +Kβ2 sin(vn − Zn).

(2.9)

The parameterβ, which couples the(u, v) dynamics to the(Z,w) dynamics, plays a critical
role in determining the diffusion rate in theu, v plane [3]. Even very smallβ values lead
to a vast increase in the instability (hence ‘diffusion’) of the particles motion.

In section 3.1, it is shown that the map (2.9) is highly degenerate in the limit of
small K. We introduce two parameters which unfold the degeneracy and break some of
the symmetries of the map (see also the discussion section). Based on this mathematical
consideration, we suggest a new model, in which we add a second electrostatic wave,E1,
which is parallel to the magnetic fieldB, so that (2.2) changes to:

E = −(E0 sin(kxx + kzz)+E1 sin(kzz + θ))T
∞∑

n=−∞
δ(t − nT ). (2.10)
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Here θ plays the role of the phase shift introduced by the initial cyclotron centre position
xc, θ = xc/β, and here it cannot be omitted by translation ofz (see the remark after (2.4)).
The resulting Hamiltonian of the system is:

H = p2
x + p2

z

2m
+ m

2
ω2

0x
2− qT (φ0 cos(kxx + kzz)+ φ1 cos(kzz + θ))

∞∑
n=−∞

δ(t − nT )

(2.11)

and the corresponding Poincaré map for the caseq = 4 can be written as

F4 :


un+1 = vn
vn+1 = −un −K sin(vn − Zn)
Zn+1 = Zn + πwn+1/2

wn+1 = wn +Kβ2(sin(vn − Zn)− A sin(Zn + θ))

(2.12)

whereA = E1z/E0z is the ratio of the amplitudes of the electrostatic waves. Symmetries
of this map depend on the value of the parametersA andθ . For θ = 0 (orA = 0) there is
an exactZ2 symmetry

Z2 : (u, v,w,Z)→−(u, v,w,Z). (2.13)

For A = 0 (and arbitrary value ofθ ) there is a shift symmetry inu, v, Z:

(u, v, Z,w)→ (u+ π, v + π,Z + π,w) (2.14)

which introduces a 2π shift in v: in the new variables the right-hand side of the second
equation of the map (2.12) has an additional+2π term. Introducing a non-zeroA breaks
the shift symmetry (2.14) and introducing a non-zeroθ breaks theZ2 symmetry (2.13). In
the analysis, we consider the unfolding with respect toA, taking θ = 0. We leave the
detailed (and, as will be apparent later on, the more complicated) analysis of the influence
of the unfolding with respect toθ to future research.

For asymptotically smallK there are various limits and cases for which the mapping
(2.12) may be analysed. First, ifβ = 0 andw = 0, (2.12) reduces to 1.5 degrees of freedom
system corresponding to a transverse propagation of the wave, where the initial value ofZ

plays the role of the cyclotron centre. In [7] we have carefully analysed the structure and
properties of the stochastic web for a general fixedZ (xc in [7]), showing that the reduced
system depends very sensitively on the value ofZ.

If β = 0 andw is rational, i.e.w = m/n, then each iteration ofF4 may introduce a
substantial change inZ. However, the 4nth iterate ofF4 leavesZ unchanged and produces
a near identity two-dimensional diffeomorphism in the(u, v) plane. It may be studied in
the limit K → 0 with similar techniques to those used in [7]. Further information may
be obtained by expandingF4n

4 in w near its rational valuew = m/n + 4w, and consider
the limit (K,4w → 0). From the physical point of view this case corresponds to the
cyclotron resonance between the frequencies of longitudinal and transversal motions. The
casem = n = 1 has been studied in [3].

For small values ofw, the change inZ is small at each iteration, and thus the fourth
iterate F4

4 produces anear identity symplectic diffeomorphism. Physically, this case
corresponds to a fast Larmor rotation with respect to the longitudinal motion. As for the
two-dimensional case, consideringF4

4 corresponds heuristically to averaging with respect
to this fast rotation [4].

In the rest of this paper the last case will be analysed. The resulting approximating flow
will be considered as some perturbation of an integrable 2 degrees of freedom Hamiltonian
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system. Analysis of the energy surfaces reveals peculiarities and degeneracies of the
unperturbed motion. Further, Melnikov-type analysis for the limiting flow and averaging
results in estimates for the separatrix splittings.

3. The limit of fast Larmor rotation

Here we analyse the limit of the fast Larmor rotation:

w � 1 K � 1. (3.1)

Which, using the dimensional parameters, corresponds to

ω0� max(kzż, (Qφ0k
2
x/m)

1/2). (3.2)

This implies�⊥ � 1, where�⊥ = (Qφ0k
2
x/m)

1/2 is the transverse bounce frequency
corresponding to the frequency of small oscillations of a particle in the field of the plane
wave with amplitudeφ0 [3]. Thus, we rescalew = δW , where the new small parameter
δ ≡

√
Kβ2 has been defined, andW is of the order of 1. After expanding the fourth iterate

of F4 in K andδ, F4
4 is given, to the first order in these small parameters, by:

u′ = u+ 2K cosZ sinv

v′ = v − 2K cosZ sinu

Z′ = Z + 2πWδ,

W ′ = W − 2δ((cosu+ cosv) sinZ + 2A sin(Z + θ))

(3.3)

whereZ is taken mod 2π .

3.1. The limiting flow and its degeneracies

The mapping (3.3) is a near-identity analytic mapping, which, in the limit of asymptotically
smallK andδ, can be approximated by a flow of the following autonomous Hamiltonian

H = Kπ

4
W 2− K

2
(cosZ(cosu+ cosv)+ 2A cos(Z + θ)) (3.4)

with the corresponding Hamiltonian equations:

u̇ = ∂H
∂v
= 1

2
K cosZ sinv

v̇ = −∂H
∂u
= −1

2
K cosZ sinu

Ż = δ

K

∂H
∂W
= δπ

2
W

Ẇ = − δ
K

∂H
∂Z
= − δ

2
((cosu+ cosv) sinZ + 2A sin(Z + θ)).

(3.5)

Note thatW andZ are not canonical variables as the scaling factorδ/K is included in the
above equations, i.e. in the corresponding non-canonical Poisson brackets. We believe the
expression (3.5) corresponds to therigorous limiting flow which is realized in the singular
limit K, δ→ 0. Namely, that there exists a flow for which the time-1 map is given by (3.3)
to the order ofKδ,K2, and (3.5) is the leading-order approximation to this flow. Moreover,
normally hyperbolic sets of the flow and their local stable and unstable manifolds persist and
areCr close (forCr mapping) to the corresponding sets and manifolds of the mapping (see
[10] for the exact formulation in the two-dimensional case). Heuristically, (3.4) corresponds
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to the Hamiltonian (2.11) expressed in dimensionless variables (2.6) and averaged over the
period of the cyclotron rotation; thus it can be called the mean Hamiltonian, and indeed,
for A = θ = 0 it coincides with the mean Hamiltonian found in [3].

The Hamiltonian system (3.5) is integrable and possesses a second integral of motion
C(u, v) = cosu+ cosv. In fact, the solutions to (3.5) may be explicitly calculated. Notice
that the equations in the(Z,W) plane depend on(u, v) only throughC = C(u, v), and they
may be expressed in terms of the solutions of the pendulum equations. Indeed, introducing
new timeτ = δt/2, then,{

Z′ = πW
W ′ = −C(u, v) sinZ − 2A sin(Z + θ). (3.6)

Defining the constants of motionµ andψ via:{
µ2 = (C(u, v)+ 2A cosθ)2+ (2A sinθ)2

cosψ = (C(u, v)+ 2A cosθ)/µ sinψ = (2A sinθ)/µ
(3.7)

the (Z,W) equations have the form of a standard pendulum

Z′ = πW W ′ = −µ sin(Z + ψ).
For µ > 0, choosing the initial timeτ0 such thatZ(τ0) = −ψ , W(τ0) = W0, and using
again the regular timet , the rotational solution(Z(t; t0,W0, ψ),W(t; t0,W0, ψ)) is given
by

W(t; t0,W0, ψ) = W0 dn
(π

4
W0δ(t − t0), κ

)
(3.8)

Z(t; t0,W0, ψ) = −ψ + 2 arcsin
(

sn
(π

4
W0δ(t − t0), κ

))
(3.9)

where

κ2 = 4µ

πW 2
0

< 1 (3.10)

defines rotational orbits with period

T0 = 8

πδW0
K(κ). (3.11)

For future calculations, notice thatξ , the average of cos(Z(t)) over one rotational period
T0 is given by:

ξ(κ, ψ) = 1

T0

∫ T0

0
cosZ(t) dt =

(
1− 2

1

κ2

(
1− E(κ)K(κ)

))
cosψ (3.12)

whereK, E are the complete elliptic integral of the first/second kind. Forψ 6= π/2, κ < 1,
ξ is monotonically decreasing withκ: for largeW0 (namelyκ → 0) ξ(κ) tends to zero,
whereas near the separatrices (κ → 1) it approaches−1.

Now, examine the behaviour in the(Z,W) plane forθ = 0. Above, we have shown
that forA, θ 6= 0 the motion in the(Z,W) plane corresponds to a nonlinear pendulum. The
position of the pendulum’s fixed points are atZ = −ψ,−ψ + π , whereψ depends on the
values ofC(u, v), A andθ via (3.7). The stability of these fixed points is determined by the
sign ofµ. ForA, θ 6= 0, µ is bounded away from zero for allC, thus no bifurcation of the
fixed points occur asC is varied: changingC simply corresponds to a smooth change in the
location of the fixed points. On the other hand, ifθ = 0 thenψ = 0, andµ changes sign
at A = −2C. Indeed, forC > −2A, Z = ±π is hyperbolic andZ = 0 is elliptic, whereas
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for C < −2A their stability is exchanged. Namely, there is no continuous transition forC

going through−2A. Moreover, forθ = 0, atC(u, v) = −2A, the pendulum oscillatory
orbits degenerate to acircle of fixed pointsat W = 0, Z ∈ [−π, π ]—a highly degenerate
situation which, as will be shown, may produce strong instabilities when perturbed.

Now, consider the motion in the(u, v) plane. GivenZ(t; t0,W0, ψ) which solves the
pendulum’s equations, the solutions in the(u, v) plane may be found by reparametrization
of the time variable. Indeed, let

u(t) = u0(g(t)) v(t) = v0(g(t))

whereu0(t), v0(t) satisfy

u̇0 = sinv0 v̇0 = − sinu0

and the functiong(t) = g(t; t0,W0, ψ) satisfies the following differential equation

ġ(t) = 1
2K cosZ(t; t0,W0, ψ) g(0) = 0 (3.13)

where Z(t) is a solution of the pendulum equation withC = C(u0(0), v0(0)). Then
(u(t), v(t), Z(t),W(t)) clearly satisfy (3.5) (we thank the referee for pointing this out).
In particular, the four separatrix solutions in the(u, v) plane (i.e. solutions belonging to the
limiting web, on whichC(u, v) = 0) satisfy:

ui,± = iv ± π i = ±1

sinui,±(t; t0,W0, θ) = −i sinvi,± = ± 1

cosh1
2K

∫ t
0 cosZ(t; t0,W0, θ)

.
(3.14)

These solutions satisfy the correct boundary conditions provided lim inft→∞ g(t) = ∞ and
similarly lim supt→−∞ g(t) = −∞, and these are fulfilled ifξ(κ, θ) of (3.12) is non-zero.

Summarizing, ifξ , the average of cosZ along the orbits in the(Z,W) plane, is non-
zero, then the flow projected to the(u, v) plane is described by a uniform diamond-web with
nested invariant web-tori inside each cell, as in the two-dimensional setting [4].C(u, v) = 0
defines the initial conditions which belong to the web, whereasC(u, v) 6= 0 defines the initial
conditions which belong to the web-tori.

When ξ ≈ 0, ( ˙̄u, ˙̄v) = 0 to leading order, and then the motion in the(u, v) plane
is governed by higher-order terms. For example, forθ = −π/2 and C(u, v) = 0,
ξ approximately vanishes near the pendulum elliptic fixed point atZ = π/2. This
phenomenon is demonstrated in figure 1, where projections of the phase portrait of the
mapping (2.12) on the(u, v) plane are depicted. Forθ = 0 there is a clear diamond lattice,
whereas forθ = −π/2 the web resembles a square lattice. Moreover, for allθ , large
values ofW0, for which ξ ≈ 0, produce extremely complicated and unstable behaviour,
sometimes leading to structures reminiscent of the square web. These two essentially
different patterns with correspondingly different scaling of the separatrices splitting, appear
in the two-dimensional setting for the corresponding cyclotron centre values [7, 8]: the
(fixed) cyclotron centre,xc, plays the role ofZ in this setting, thusξ = cosxc. In [7] it has
been shown that asxc is varied, there exists a sequence of bifurcations which change the
web’s shape and width from a diamond web with a width of the order of exp(−π2/2Kξ) for
|ξ | > c > 0, to a square web with smaller cells and with width of the order of exp(−π2/K2)

whenξ ≈ 0. In this paper we analyse the simpler case for whichξ is bounded away from
zero.

Combining the information gathered on the motion in the(Z,W) plane and in the(u, v)
plane, the following structure of the integrable motion emerges: for generalA, θ 6= 0 and
most initial conditions the integrable motion essentially corresponds to a cross product of
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Figure 1. The four-dimensional stochastic web projected to the(u, v) planeK = 0.1, β2 =
0.1, A = 1 andW0 = 0; the size of the square is 4π×4π . (a) Z0 = θ = 0; (b) Z0 = −θ = π/2
.

the web in the(u, v) plane and a pendulum in the(Z,W) plane. However, whenθ = 0 and
C(u, v) = −2A the motion in the(Z,W) plane degenerates to a free motion. In particular,
the energy surfaceH = 0 contains, forA 6= 0, a torus filled with invariant circles: the
web-tori crossed with the circle of fixed pointsW = 0, Z ∈ [−π, π ]. WhenA = 0 this
circle of fixed points occurs exactly atC = 0. Thus, the valueA = 0 corresponds to a
double degeneracy: the energy surface ofH = 0 includes (atC = 0) the direct product of
a uniform web in the(u, v) plane and a circle of fixed points in the(Z,W) plane.

The perturbation to the flow (3.5), created by the next-order terms in the expansion
for the fourth iterate ofF4

4 , is expected to destroy the conservation of the second integral
C(u, v). Hence, the resonant structure which appears atC = −2A and the sudden changes
in the structure of the integrable Hamiltonian flow for nearbyC’s is expected to become
significant under these perturbations. Introducing the parametersA and θ employs the
standard tool for understanding the behaviour near such sudden changes in phase space.
Using the ‘unfolding parameters’, the corresponding families of systems may be analysed
by standard tools, producing information regarding the singular system in the appropriately
chosen limits.

From the above considerations, it follows that the role ofθ in the unfolding is of
crucial importance in the vicinity of the pendulum separatrices and near the pendulum’s
oscillatory orbits. In what follows, we analyse only the behaviour for rotational orbits
which are bounded away from the pendulum separatrices, for which the role ofθ seems to be
insignificant. Generally, the analysis forθ 6= 0 is expected to be more delicate; first, the limit
asA→ 0 of the oscillatory orbits is singular as they cease to exist in this limit. Second, the
effect ofθ is introduced to the approximating Hamiltonian flow only through O(K2) terms,
whereas O(K,Kδ) are sufficient for unfolding the dependence onA. Thus,we henceforth
setθ to zero. Thenψ = 0, µ = C+2A andZ,W, g(t; t0,W0, ψ = 0) ≡ Z,W, g(t; t0,W0).

3.2. Perturbations and separatrix splittings

In the previous section we have found the explicit solutions of the limiting flow (3.5) which
is completely integrable. Here we analyse the influence of the next-order terms on the
heteroclinic solutions to specific invariant circles of the unperturbed flow. More precisely,
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we notice that the hyperbolic fixed points of the web in the(u, v) plane correspond to one-
parameter families of invariant circles of the four-dimensional phase-space:C(W0; n,m) =
{(u, v, Z,W)|(u, v, Z,W) = (nπ,mπ,Z(t; 0,W0),W(t; 0,W0)), n + m = 2` + 1, t ∈
[0, T0(W0)]}, where (Z(t; 0,W0),W(t; 0,W0)) are given by (3.9) withµ = 2A,ψ = 0,
and T0(W0) by (3.11). W0 is the parameter which distinguishes between the different
circles belonging to the family. These circles are normally hyperbolic on the three-
dimensional energy surface providedξ(κ) 6= 0 (see (3.12)), since this condition implies
that their Flouqet multipliers are of a hyperbolic nature. Thus, forξ 6= 0, these
invariant circles and their two-dimensional stable and unstable manifolds persist under
small perturbations. For the integrable flow (3.5), these manifolds coincide—the solutions
q0(t; t0,W0) = (Z(t; t0,W0),W(t; t0,W0), u(t; t0,W0)), v(t; t0,W0))) of (3.9) and (3.14)
parametrized by(t; t0,W0) span these manifolds:t parametrizes the motion along the
solutions,t0 parametrizes the initial phase inZ andW0 labels the invariant circle and thus
the energy surface. The caset0 = 0 corresponds to the symmetric solutions for which
W, sin(u), sin(v) are even functions oft whereasZ, cos(u), cos(v) are odd functions of
t . From general principles, we expect that the manifolds will split and in fact intersect
transversely when higher-order terms are added. The rest of this paper is dedicated to
proving such an assertion, and moreover, to estimate the splitting distance.

Before starting on the calculations we will describe the general strategy. To find the
splitting distance we first find the higher-order terms (expanding in powers ofK, δ) of
the fourth iterate of the mapping, from which we obtain, in the limit, the perturbation to
the integrable flow. We discuss the delicate nature of this step below. Then, we measure
1C(t0;W0), the difference between the values of the unperturbed first integralC(u, v) on
the stable and unstable manifolds near the pointq0(0; t0,W0). If 1C has simple zeros in
t0, it implies that the stable and unstable manifolds of the invariant circle corresponding
to W0 intersect transversely, see [11, 12]. In fact,1C(t0,W0) measures the component of
the distance betweenqs(0; t0,W0) andqu(0; t0,W0) in the∇C direction. 1C is found by
integratingĊ along the stable and unstable manifolds, using the first variational equations for
the perturbed solutionsqs, qu, [12]. Such a Melnikov-type calculation gives a complicated
integral, which depends on(t0,W0) in a non-trivial way, see (3.18) below (though it is easy
to observe that the symmetric solutions produce zeros of this integral). In the special limit in
which some terms may be considered as fast oscillating (which, as shown in the appendix,
corresponds to the limit in which averaging with respect to the motion in the(Z,W)

plane is legitimate) it is possible to estimate this integral. Such an estimate produces a
‘leading order’ term (in powers ofK, δ) which has an exponentially small factor in

√
K.

This problematic phenomenon is not surprising—it is the usual consistency problem one
encounters in applying a simple-minded perturbational method to the singular problem of
rapid oscillating forcing (see [13, 14] and [10, 15] and references therein). However, it is
shown here that, by taking a special limit inA, it is possible to eliminate the exponentially
small dependence onK. Then, in this limit, the expansion inK, δ is a valid asymptotic
expansion, and the results prove that in this limit1C is polynomial inK. It follows from
the form ofC that this implies that the distance betweenqs, qu projected to theu, v plane
must be polynomial inK.

We begin the analysis by finding the higher-order terms in the expansion forF4
4 , and

consider the resulting limiting flow asK → 0. The next-order terms inK, δ are proportional
to Kδ in the equations foru, v and toδ2 in the equations forW,Z. In general, one would
hope to obtain, to any given order in the expansion, a symplectic map with a natural
limiting Hamiltonian flow. However, the straightforward expansion does not produce here
a symplectic map to the order ofKδ: while theKδ terms which appear in the equations
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for u, v are of the form( ∂H1
∂v
,− ∂H1

∂u
) with H1 = O(Kδ), the O(δ2) terms in the(Z,W)

equations do not appear to be of the formδ
K
( ∂H1
∂W
,− ∂H1

∂Z
). Notice that there exists some

freedom in the expansion since in the limiting flow there is no difference betweenqn and
qn+1, whereas for the mapping expansion such differences change higher-order terms, and
thus the symplectic nature of the equations. Henceforth, weassumethat it is also possible
to rearrange the equations, without changing the terms in the(u, v) direction, so that the
limiting equations are Hamiltonian to the order of† Kδ. Then, we obtain:

u̇ = 1

2
K cosZ sinv + KδπW

4
cos(v + Z)+O(K2)

v̇ = −1

2
K cosZ sinu+ KδπW

8
(− cos(u+ Z)+ 3 cos(u− Z))+O(K2)

Ż = δπ

2
W +O(δ2,Kδ2)

Ẇ = − δ
2
((cosu+ cosv) sinZ + 2A sin(Z + θ))+O(δ2,Kδ2).

(3.15)

Thus the additionalKδ and δ2 terms of (3.15) can be interpreted as a perturbation of the
integrable flow (A.3). Since the O(K2) terms‡ are not included in the perturbation, we
require for consistency thatKδ � K2, or alternatively

β �
√
K. (3.16)

Notice that the O(δ2) terms are not neglected in the analysis, rather, as will be apparent
below, their explicit form is not important.

Now, we find1C by integratingĊ along the stable and unstable solutions of the
perturbed flow. By the stable and unstable manifold theorem it follows thatqu(t; t0,W0) =
q0(t; t0,W0)+O(δ) on the semi-infinite time interval(−∞, 0) and similarly forqs(t; t0,W0).
SinceC is an integral of the unperturbed flow, it follows that

1C(t0,W0) =
∫ 0

−∞
Ċ|qu(t;t0,W0) dt +

∫ ∞
0
Ċ|qs(t;t0,W0) dt

=
∫ ∞
−∞
(∇CY)q0(t;t0,W0) dt + · · ·

= M(t0,W0)+ · · · (3.17)

whereY is the vector field corresponding to the perturbation of the flow (3.5),q0(t; t0,W0)

denotes the unperturbed separatrix solution of this flow and ‘. . . ’ stand for higher-order
terms (which are polynomial inK, δ). SinceC is a function ofu andv coordinates only,
the change inC along the separatrix, depends, to leading order, only on the force acting on
the (u, v) components and the explicit form of the O(δ2) terms in (3.15) are not needed.
Moreover, the form ofC is such that the above integrals are absolutely converging, and not
just conditionally converging as in the usual case. Substituting the explicit expressions for
Y and∇C in (3.17) we find (after some manipulations):

M(t0,W0) = −Kδπ
4

∫ ∞
−∞

W(t, t0)(cosZ cosv sinu+ cosZ cosu sinv

+ sinZ sinu sinv) dt. (3.18)

† Unfortunately, we are not aware of any existing algorithm which produces symplectic truncations of the
symplectic mapF4

4 to a given order.
‡ These are responsible for the appearance of the square-like pattern of the web [7].



Instabilities and degeneracies of the web 959

Using the unperturbed solutionq0(t; t0,W0), we obtain for the four separatrices(i,±), i =
±1 of (3.14):

Mi,±(t0,W0) = −Kδπ
4

∫ ∞
−∞
±(i + 1)W(t, t0)

2

K

d sinu1,+

dt
− iW sinZ sinu1,+ sinv1,+ dt

= KδπW0

4

∫ ∞
−∞

dn( πW0δ

4 t, κ)

cosh2(g(t + t0))
×
(
±(i + 1) sinh(g(t + t0)

(
2 cn2

(
πW0δ

4
t, κ

)
− 1

)
+ 2i cn

(
πW0δ

4
t, κ

)
sn

(
πW0δ

4
t, κ

))
dt. (3.19)

Notice that the integral vanishes identically fort0 = 0 by symmetry. Moreover, it follows
from (3.13) that

g(t) = 1
2Kξt + 1

2K

∫ t

0
(cosZ(t; t0,W0, θ)− ξ) = 1

2Kξt + g̃(t) (3.20)

whereg̃(t) is a periodic function, with average zero, and with periodT0. The integral (3.19)
seems to involve quite complicated expressions. None the less, it is possible to estimate it
in some limits. In particular, notice that the arguments of the elliptic functions are of the
form πW0δ

4 t whereas, the argument of the cosh and sinh functions are essentially of the form
1
2Kξt . Thus, fixingκ, the elliptic terms which appear in the integral may be considered
as fast oscillating if their periodT0 ∝ 1

δW0
is much smaller than the characteristic time

appearing in the cosh and sinh arguments, namely 1/K. Since we keepκ fixed,W0 ∝
√
A,

thus the elliptic terms are fast oscillating provided:

K � δW0 ∝ β
√
KA⇔ A� K

β2
. (3.21)

As shown in the appendix, this condition essentially guarantees that the integrable motion
may be averaged with respect to the motion in the(Z,W) plane. Then, we estimate (3.19)
by neglecting the effect of̃g(t) on the integral and by Fourier expanding the other elliptic
functions to find†:

Mi,±(t0,W0) ≈ sin

(
π2

4K(κ)W0δt0

)
W 2

0 δ
2

K
exp

(
− π3

4K(κ)ξ(κ)
W0δ

K

)
× π4

2K(κ)ξ(κ)2

(
∓(i + 1)

(
a1(κ)− 1

2
d1(κ)

)
− ia2(κ)

)
(3.22)

wherea1(κ), d1(κ), (resp.a2(κ)) are the coefficients of the cos(πu/K) (resp. sin(πu/K))
in the Fourier expansion of dn(u) cn2(u), dn(u) (resp. dn(u) cn(u) sn(u)) respectively. To
leading order in the nome of the elliptic functionsq ≡ exp(−πK′(κ)/K(κ)), they are given
by:

a1(κ) ≈ π3

κ2K3

q

(1+ q)2 d1(κ) ≈ 2π

K
q

1+ q2
a2(κ) ≈ π3

κ2K3

q

1− q2
.

The expression in (3.22) is ‘leading order’ inK, δ, in a regular perturbation series in these
parameters. To restore the double degeneracy present in the original system (and avoid

† Such an approach is justified in the appendix by the averaging method. Direct asymptotic justification of this
approach using, for example, the residue method, may be possible yet non-trivial since the elliptic functions
themselves have poles and the functiong̃(t) (which includes integrals of the elliptic functions) alters the position
of the poles of sech(Kξt/2).
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the exponential smallness of the leading term) consider the limitA → 0 andW0 → 0.
After introducing a new scaled coordinate,W̄0 = W0/

√
8A/π = 1/κ, the condition of fixed

κ < 1, corresponding to the condition that the rotary motion is bounded away from the
separatrix in the(Z,W) plane, impliesW̄0 > 1. The other condition of fast oscillations
(3.21) of the elliptic function in the integral (3.19) (which corresponds to requiring slower
motion in the(u, v) plane than in the(Z,W) plane) is satisfied asymptotically inK if, for
example,β is fixed andA� K, e.g. we may take:

√
A =
√
K ln 1/Kα

β
α > 0 (3.23)

Then, for any positiveα there existsK0(α) such that (3.23) implies (3.21) for anyK
satisfyingK < K0(α). It follows that in this limit the maximal separatrix splitting is given,
to leading order, by

4Ci,± ≈ f i,±(W̄0)K
1+α π2√2πW̄0

2K(κ)ξ(κ)

(
ln

1

Kα

)2

(3.24)

wheref i,±(W̄0) may be found directly from (3.22) (withκ = 1/W̄0), and constitute (not
identically zero) functions ofW̄0. Note that for allK < K0 < 1, ln2 1/Kα can be bounded
from below by a constant (ln2 1/Kα

0 ) and from above by an arbitrarily small positive power
of K. Thus, for sufficiently small asymptotic values ofK the separatrix splitting4C is
polynomially and not exponentially small in the perturbation parameterK:

4C ∝ K1+ε .

4. Conclusions

We have established that in the fast Larmor rotation limit with unbounded motion in the
longitudinal direction (i.e. rotary motion inZ), one mechanism which causes a substantial
increase in the diffusion due to a longitudinal component is a degeneracy of the underlying
motion. To analyse this behaviour, we have constructed a limiting flow in the smallK limit
and found it corresponds to a highly degenerate 2 degrees of freedom system. The phase
space for zero values of two integrals of motion is given by a direct product of an infinite
web and a circle of fixed points. Unfolding this degenerate structure and then analysing the
unfolded system in specific limits, using the Melnikov technique, enabled us to prove that
the separatrix splitting becomespolynomiallyand not exponentially small in the perturbation
parameterK. This shows that one mechanism for the observed strong instability stems from
a degenerate 2 degrees of freedom mechanism, and is not governed by higher-dimensional
phenomena such as Arnold diffusion.

Note that a rigorous connection between near-identity symplectic maps and their limiting
flows has been established only in the two-dimensional setting [10], in special volume-
preserving maps [15] and in some classes of symplectic maps [18, 19]. None the less, we
have assumed in our analysis that a similar connection may be established in the higher-
dimensional case, and moreover that the symplectic structure of the mappings induces, in
the limit, Hamiltonian flows. Proving such an assertion and finding an algorithm which
produces such Hamiltonian flows is an interesting open problem.

Preliminary numerical experiments seem to confirm the observation that the instability
in β is far more significant in the degenerate case (i.e. whenA = θ = 0) than it is for
non-degenerate systems (A, θ = O(1)). Quantitative study of this phenomena is yet to be
performed.
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Finally, we note that the four-dimensional mapping system is very complex and rich.
Other limits (e.g.θ 6= 0, or W0 � 1) and different symmetries (i.e.q 6= 4) are left for
future studies. Especially interesting is the singular limiting behaviour of the oscillatory
orbits of the pendulum in the limitA → 0. While analysing only one limiting case is a
modest achievement in the era of computer simulations, the significance of the analysis lies
in revealing a new mechanism for the instability of four-dimensional symplectic maps which
stems from a new mechanism of instability of a 2 degrees of freedom Hamiltonian system.
Further, the general theme which emerges from this and other studies [16, 4, 3], is that the
symmetries, which are only slightly broken in nature, are associated with degeneracies which
are responsible for many of the strong instabilities which are observed in low-dimensional
systems. Thus, a fundamental study of the implications of symmetries on the emerging
degeneracies of the energy surfaces is needed.
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Appendix. The averaged motion

Here, we show that the limit (3.21), corresponds in fact, to the limit in which averaging
over the motion in the(Z,W) plane is legitimate. Under the simplifying assumptionθ = 0,
(3.4) has the form

H = Kπ

4
W 2− K

2
cosZ(cosu+ cosv + 2A). (A.1)

We choose orbits and the appropriate limits inK, δ for which the motion in the(Z,W)
plane can be considered fast compared with the motion in the(u, v) plane. First, we
consider orbits in the(Z,W) plane which are bounded away from the separatrix so that
their period is finite for fixedδ,K. To examine the dependence of the time-scales onδ,K,
we rescale time byδ; consider the new timeτ = ωt , whereω2 = 1

2δ
2πA is the rotation

frequency in the the(Z,W) plane andA is assumed to be positive. (The case of negativeA

produces essentially the same results and will be briefly discussed later.) Then, the rescaled
Hamiltonian is given by

H = Kπ

4ω
W 2− K

2ω
cosZ(cosu+ cosv + 2A) (A.2)

with the equations

u′ = du

dτ
=
√
K

β
√

2πA
cosZ sinv

v′ = dv

dτ
= −

√
K

β
√

2πA
cosZ sinu

Z′ =
√
π

2A
W

W ′ =
√

1

2Aπ
sinZ(cosu+ cosv + 2A)

(A.3)
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whereδ = β√K has been substituted. Now, it is evident that for smallK the motion in
theu, v plane is slower than that of the(Z,W) plane for any finiteβ.

ChoosingA so that
√
K/A is a small parameter, new averaged coordinatesū and v̄,

such thatu = ū+√K/Au1 andv = v̄ +√K/Av1, can be defined [17] so that

ū′ =
√
K

β
√

2πA

1

T0

∫ T0

0
cosZ(τ) dτ sinv̄ + K

β2A
f1(τ )

v̄′ = −
√
K

β
√

2πA

1

T0

∫ T0

0
cosZ(τ) dτ sinū+ K

β2A
g1(τ )

(A.4)

whereT0 is the period of the rotational orbit ofZ (in τ units) andf1(τ ), g1(τ ) are some
periodic functions inτ , which depend onu, v as well and are introduced by the averaging
theorem. For the averaging theorem to holdu′ and v′ must be small. It means that the
following condition must be satisfied:

√
K

β
√
A
� 1⇔ A� K

β2
(A.5)

which is exactly (3.21). Moreover, averaging over the standard pendulum’s rotational orbits
brings (A.4) to the form:

ū′ = Kξ

2ω
sinv̄ +O(K) v̄′ = −Kξ

2ω
sinū+O(K) (A.6)

(recall thatω = O(
√
K)) with ξ = ξ(κ, 0) of (3.12). It follows from (A.6) that on the slow

time scale O(
√
Kτ), for any ξ 6≈ 0 the averaged system has, to O(

√
K) the structure of

the two-dimensional web with hyperbolic fixed points connected by separatrices, which are
given by:

sinū = − sinv̄ = − 1

coshKξτ2ω

. (A.7)

By the averaging theorem, the hyperbolic fixed points and their stable and unstable manifolds
persist as the hyperbolic periodic orbit of the full system, thus it makes sense to speak of
the splitting separatrices of the full system in the above limit.

The higher-order terms coming from the averaging may move the manifolds by at most
O(
√
K). Thus, in general, such O(

√
K) terms may destroy the web, by, for example

splitting theC levels of the hyperbolic fixed points. However, recall that the averaging
procedure may be applied repeatedly to obtain higher-order corrections to the averaged
motion in the(u, v) plane. Since the original motion is integrable, and in particular, the
explicit solutions which were found preserve the heteroclinic connections, it follows that, on
the nth step of the averaging,C(u, v) is conserved to orderKn/2 and thus equations (A.6)
are essentially correct at any order of the averaging: theξ term is replaced by a power series
in
√
K with the leading-order term (3.12), and the error term (O(K)) is replaced by an error

of O(K(n+1)/2). Thus, for |ξ | > O(
√
K), the diamond web is approached asymptotically,

with errors which can be made as small as needed inK. Given the above arguments, the
leading-order term of the averaged flow may be substituted in (3.18), producing, to leading
order, the same results as in (3.22).
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