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Elliptic islands appearing in near-ergodic flows
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Abstract. It is proved that periodic and homoclinic trajectories which are tangent to the
boundary of any scattering (ergodic) billiard produce elliptic islands in the ‘nearby’ Hamiltonian
flows i.e. in a family of two-degrees-of-freedom smooth Hamiltonian flows which converge
to the singular billiard flow smoothly where the billiard flow is smooth and continuously
where it is continuous. Such Hamiltonians exist; indeed, sufficient conditions are supplied,
and thus it is proved that a large class of smooth Hamiltonians converges to billiard flows in this
manner. These results imply that ergodicity may be lost in the physical setting, where smooth
Hamiltonians which are arbitrarily close to the ergodic billiards, arise.

AMS classification scheme numbers: 58F15, 82C05, 34C37, 58F05, 58F13, 58F14

1. Introduction

The behaviour of a point particle travelling with a constant speed in a region, undergoing
elastic collisions at the region’s boundary, is known as the billiard problem. This system
has been extensively studied both in its classical and quantized formulation. Numerous
applications lead to the study of such a model problem. First, there exist direct mechanical
realizations of this model. For example, the motion ofN rigid d-dimensional spheres in
a d-dimensional box may be reduced to a billiard problem, possibly in higher dimensions
[31, 32, 9, 17]. See also [2, 8] for the inelastic case. Second, it serves as an idealized
model for the motion of charged particles in a potential, a model which enables the
examination of the relation between classical and quantized systems, see [18, 34] and
references therein. Finally, and most importantly, this model has been suggested [31] as
a first step for substantiating the basic assumption of statistical mechanics—the ergodic
hypothesis of Boltzmann (see especially the discussion and references in [32, 35]).

In all the applications of this model, in particular that mentioned above, of special
interest are so-calledscattering billiards, i.e. billiards in a complement to the union of a
finite number of convex regions, see figure 1. For example, the two-dimensional idealization
of the Lorenz gas in the form of a lattice of rigid disks produces a scattering billiard (‘the
Sinai billiard’). The motion in a scattering billiard is highly unstable and thus produces
strong mixing in the phase space. More precisely, it has been shown [31, 13, 3] that the
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 (a)
 (b)

Figure 1. Tangent trajectories in scattering billiards. (a) Singular (tangent) periodic trajectory.
(b) - - - - Non-singular periodic trajectory, —— tangent homoclinic trajectory to the periodic
orbit.

corresponding dynamical system is (non-uniformly) hyperbolic, it is ergodic with respect
to the natural invariant measure and it possesses theK-property. Based on this theory,
statistical properties of various scattering systems have been analysed (see [7, 6]).

Do small perturbations ruin the ergodicity property of a scattering billiard? Here we
consider the perturbation caused by smoothening of the billiard flow. The influence of such
smoothening is a non-trivial question, since the dynamical system associated with the billiard
we consider (in the simplest setting, this is a two-dimensional area-preserving mapping [31])
is singular. In particular, as explained more precisely in section 2.1, singularities appear near
trajectories which are tangent to the billiard’s boundary—like the ones shown in figure 1.
Thus, even though the scattering billiard is hyperbolic almost everywhere, the singular set
(e.g. singular periodic orbits) might produce stability islands under small perturbation. While
such a phenomenon seems to be quite common, a general theory does not exist. Indeed,
it is clear that the results are not straightforward—namely, it is not true that all smooth
systems approaching a singular hyperbolic and mixing system have stable periodic orbits,
nor is the converse—that they have the same ergodic properties as the singular system. (As
an example, consider an analogous problem for one-dimensional maps; for a family of tent
maps of an interval which is known to be ergodic and mixing, the ergodicity property may
be easily destroyed in an arbitrarily close smooth family: if the maximum of the interval
image produces a periodic orbit, it is clearly stable. However, the smooth one-dimensional
map does not always possess stable periodic orbits: there may be a positive measure set of
parameter values for which the smooth maps are ergodic and mixing [20]).

In this paper we prove (theorems 1 and 2) that, indeed,a perturbation of a scattering
billiard to a smooth Hamiltonian flow may create stability islands near singular periodic and
homoclinic orbits of the billiard.

More precisely, we consider smooth Hamiltonian flows which converge to the singular
billiard flow, smoothly where the billiard flow is smooth and continuously where it is
continuous (see section 2). For such approximations, we propose two mechanisms for the
appearance of elliptic islands which destroy the ergodic properties of scattering billiards; one
mechanism is controlled by the existence, in the billiard flow, of a singular periodic orbit
and another mechanism is controlled by the existence of a singular homoclinic orbit. First,
we study the phase-space structure of the local Poincaré map near such orbits, showing that
locally these create a ‘sharp’ horseshoe. Embedding the billiard in a one-parameter family
of billiards in which the boundary of the billiard table slightly moves with the parameter
γ near the tangent point, we show that the horseshoe unravels asγ varies (see figure 6).
Then, considering a two-parameter family of smooth Hamiltonian flowsht (ε; γ ) which
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approaches the family of billiards asε → 0, we establish that for sufficiently smallε there
exist a series of bifurcations associated with the disappearance of a Smale’s horseshoe. It
is well established that generically elliptic islands are created in such a process. Thus, it
follows that for each sufficiently smallε there exist intervals ofγ values for which elliptic
islands exist.

We expect that singular homoclinic and periodic orbits are, in fact, unavoidable in
scattering billiards; we conjecture that systems possessing such orbits are dense among all
scattering billiards. We provide a numerical example which supports such a conjecture
regarding the density of billiards with singular homoclinic orbits. A proof of this conjecture
combined with the results presented here would imply thatfor any given scattering billiard
on a plane, there exists a close smooth Hamiltonian flow possessing elliptic islands.

Furthermore, we establish sufficient conditions on the potentials of natural Hamiltonian
systems so that their corresponding flows indeed converge to the billiard flows as assumed
above. Surprisingly, the connection between the billiard model and the smooth Hamiltonian
flows with steep potentials was not previously formalized. However, by our current results,
the problem of relating the statistics manifested by the billiard dynamical systems to actual
physical applications must inevitably include the study of the smoothening of the billiard
potential. In many works, this connection has been implicitly assumed, see [19] and
references therein. Nevertheless, our analysis reveals non-trivial requirements on smooth
potentials approaching the step-function (billiard) potential, which are essential for the
dynamics of the corresponding Hamiltonian system to follow the dynamics of the billiard
flow.

In [27] a more general question of the behaviour of the symplectic structure when a
family of smooth Hamiltonians approaches a singular limit is studied and related to the
general study of distributions on manifolds. In this setting, it is shown that some properties
of the smooth Hamiltonians are preserved by the singular one. For example, it is proved
that if a family of Hamiltonians is uniformly mixing, then the mixing property carries to the
singular system as well. Here we investigate the other direction of the above result: given
a singular system which is mixing—what can be said on families of smooth Hamiltonian
which appropriately approach this limiting system?

Finite-range potentials supported on a finite number of disks were extensively studied,
see for example [30, 24, 25, 1, 23, 10] and references therein. In these works, the form of
the potentials on each disk is taken to be radially axisymmetric, thus locally integrable.
In such systems, the effect of the potential is to produce a finite-length travel1θ(φ)

along the scattering disk, thus the study of such systems elegantly reduces to the study
of the ‘generalized Sinai billiard’ with the reflection lawφ → −φ, s → s + 1θ(φ) (mod
2π ), where (φ, s) correspond to the incidence angle and position on the disk boundary
respectively. In [30, 24, 25, 1, 11] such potentials producing ergodic systems were sought.
In [1, 23] non-ergodic behaviour was proved and studied for step-function potentials (where
1θ ′(φ) = constant< 2). However, thebilliard limit has not been studied in these works.
In [10] it has been shown that for certain types of potentials,1θ(φ) produces focusing shifts
near tangent trajectories and thus, that for any given energy level (high energies correspond,
roughly, to the billiard limit) there exists an arrangement of the disks for which elliptic
islands exist (see in particular theorems 5.3 and 5.4 of [10]). More closely related, in [19],
it has been noted that the diamagnetic Kepler problem near singular homoclinic orbits of the
four-disk billiard system (which has similar spatial structure) may produce elliptic islands
by homoclinic tangencies.

Here, a completely different approach is taken, which in particular, does not assume
any specific geometry of the scatterers nor that the potential is of a finite-range or locally
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axisymmetric. Most importantly, in the limitε → 0, our Hamiltonian flows do approach
the billiard flow, a necessary property for establishing meaningful asymptotic results.

The general scheme of the paper is as follows. In 2.1 we introduce the billiard
flow in a general domain, and describe its nature near regular and tangent collision
points and its relation to the standard billiard map. In 2.2, we define the smooth
Hamiltonian approximation of the billiard flow and state some immediate consequences
of this definition. In section 3 we prove the existence of elliptic islands in Hamiltonian
flows which approximate scattering (Sinai) billiards. In section 4 the appearance of
persistent singular homoclinics and singular (tangent) periodic orbits for scattering billiards
is conjectured and the former is numerically demonstrated. Section 5 is devoted to a
discussion on the implication of these results. In the appendix we formulate conditions on
smooth Hamiltonians and prove these are sufficient to insure that the Hamiltonians flows
approximate properly the corresponding billiard flows.

2. Billiards and their smooth Hamiltonian approximations

2.1. Billiard flow

Consider an open bounded regionD on a plane with a piecewise smooth (Cr+1, r > 2)
boundaryS. On S there is a finite setC of so-calledcorner pointsc1, c2, . . . such that
the arc of the boundary that connects two neighbouring corner points isCr+1-smooth. Let
us call these arcsthe boundary arcsand denote them byS1, S2, . . . . The setC includes
all the points where the boundary loses smoothness and all the points where the curvature
of the boundary vanishes. Thus, the curvature has a constant sign on each of the arcsSi .
Being equipped with the field of inward normals, the arc is calledconvexif its curvature is
negative (with respect to the chosen equipment) and it is calledconcaveif its curvature is
positive (see figure 2).

Considerthe billiard flow on D̄. The phase space of the flow is co-ordinatized by
q ≡ (x, y, px, py) where (x, y) is the position of the particle inD̄ and (px, py) is the
(non-zero) velocity vector:

ẋ = px ẏ = py. (2.1)

Henceforth, we reserve the term ‘orbit’ for the orbits in the phase space and the term
‘trajectory’ for the projection of an orbit to the(x, y)-plane. The velocity vector(px, py)
is constant in the interior, and at the boundary it changes by the elastic reflection rule so
p2
x + p2

y = constant and the angle of reflection equals the angle of incidence with the
opposite sign. Taking the point of reflection as the origin of the coordinate frame and the
boundary’s normal at that point as they-axis, the reflection rule is simply

px → px, py →−py; (2.2)

namely, the angle of incidenceφ is arctanpy/px . This law is well defined only when
the normal can be well defined: it is invalid at the corners (including inflection points).
Generally, the incidence angleφ belongs to [−π

2 ,
π
2 ], whereφ = ±π

2 , which corresponds to
a trajectory tangent toS (figure 2) may be attained only when the boundary arc is concave.

Denote the time t map of the billiard flow asbt : q0(x0, y0, px0, py0) 7→
qt (xt , yt , pxt , pyt ). By writing qt = btq0, we mean, in particular, that the piece of trajectory
that connects(x0, y0) and(xt , yt ) is on a finite distance of the corner setC, though it may
have one or more points of tangency with concave components ofS.

A point q in the phase space is calledan inner point if (x, y) 6∈ S, and a collision
point if (x, y) ∈ (S\C). Obviously, if q0 andqt = btq0 are inner points, thenqt depends
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 (a)

 (b)

Figure 2. Billiard trajectories. (a) • standard corner points,� inflection corner points,S1,3,5

concave boundary arcs,S2,4,6,7 - convex arcs. —— Regular reflection,- - - - tangent trajectory.
(b) — · — Tangent trajectory terminated at an inflection point.

continuously onq0 and t . Otherwise, ifqt is a (non-tangent) collision point, the velocity
vector undergoes a jump; denoting byqt−0 = bt−0q0 andqt+0 = bt+0q0 the points just before
and just after the collision, it follows that(pxt+0, pyt+0) and(pxt−0, pyt−0) are related by the
elastic reflection law. To avoid ambiguity we assume that at a collision point the velocity
vector is oriented insideD; thus, we putbt ≡ bt+0.

Further, if qt is an inner point and if the piece of trajectory that connects(x0, y0) and
(xt , yt ) does not have tangencies with the boundary, thenqt dependsCr -smoothly onq0 and
t . However [31], the mapbt loses smoothness at any pointq0 whose trajectory is tangent
to the boundary at least once on the interval [0, t ]. Indeed, choosing coordinates so that
the origin is a point on a concave boundary arcSi , the y-axis is the normal toSi and the
x-axis is tangent toSi , the arc is locally given by the equation

y = −x2+ · · · .
It follows that for smallδ > 0 the timet = δ map of the slanted line(x0 = −δ/2+ay0, px0 =
1, py0 = 0) has a square-root singularity in the limity0 → −0 which corresponds to the
tangent trajectory (see figure 3;a 6= 0 for graphical purposes):

(xδ, yδ, pxδ, pyδ) = ( 1
2δ + ay0, y0, 1, 0) at y0 > 0

= ( 1
2δ + ay0+O(δy0), 2

√−y0δ

+O(δy0), 1+O(y0), 2
√−y0+O(y0)) at y0 6 0

If q0 andqt = btq0 are inner points, then for two arbitrary small cross sections in the
phase space, one throughq0 and the other throughqt , the local Poincaré mapis defined by
the orbits of the billiard flow. If no tangency to the boundary arcs is encountered between
q0 andqt , thenthe Poincaré map is locally aCr -diffeomorphism.

One can easily prove that the same remains valid ifq0, qt , or both are collision points,
provided the corresponding cross sections are composed of the nearby collision points. In
fact, the collision set (the surface(x, y) ∈ S in the phase space) provides aglobal cross
section for the billiard flow. The corresponding Poincaré map relating consecutive collision
points is calledthe billiard map. A point on the surface is determined by the positions
on the boundaryS and by the reflection angleφ which yields the direction of the outgoing
velocity vector (the absolute value of the velocity does not matter). The initial conditions,
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Figure 3. Singularity near a tangent trajectory.

corresponding to a trajectory directed to a corner or tangent to a boundary arc at the moment
of the next collision, formthe singular seton the(s, φ)-surface. Generically, the singularity
set is a collection of smooth curves which may be glued at some points. The billiard map is
aCr -diffeomorphism outside the singular set; it may be discontinuous at the singular points.
Near a singular point corresponding to the tangent trajectory the continuity of the map can
be restored locally by taking two iterations of the map on half of the neighbourhood of the
singular point (see figure 3). The obtained map will, nevertheless, be non-smooth at the
singular point, having the square-root singularity described above.

If a trajectory has exactly one tangency to the billiard boundary and does not approach
the corner points it is called asimple singulartrajectory (and its corresponding orbitsimple
singular orbit). For periodic orbits, the same definition applies per period.

2.2. Smooth Hamiltonian approximation

Formally, the billiard flow may be considered as a Hamiltonian system of the form

Hb = p2
x

2
+ p

2
y

2
+ Vb(x, y) (2.3)

where,

Vb(x, y) =
{

0 (x, y) ∈ D
+∞ (x, y) 6∈ D.

(2.4)

Clearly, this is an approximate model of the motion of a pointwise particle in asmooth
potential which stays nearly constant in the interior region and grows very fast near the
boundary. However, it is not obvious immediately when (and in which sense) this motion
is indeed close to the billiard motion. We say that a family ofCr smooth Hamiltonian flows
ht (ε) r-convergesto the billiard flow if the following assumption holds.

Ar . If q0 and qt = btq0 are inner phase points, and if the billiard trajectory ofq0 has
no tangencies to the boundary for the time interval[0, t ], then, asε → 0, the timet map
ht (ε) of the smooth Hamiltonian flow limits to the mapbt in the Cr -topology in a small
neighbourhood ofq0. However, if a tangency occurs, thenht (ε)→ bt in theC0 sense.

Obviously, one needs to show that the above definition is not vacuous.

Lemma 2.1. For any billiard domainD there exist families of Hamiltonian flows satisfying
assumptionAr .
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Indeed, in the appendix we consider the family of Hamiltonian systems associated with

H = p2
x

2
+ p

2
y

2
+ V (x, y; ε) (2.5)

where the potentialV (x, y; ε) tends to zero inside the regionD as ε → 0 and it tends to
infinity outside. We prove that there exists a large class of smooth (C∞) potentials for which
assumptionAr holds for any finiter. For example, the potentials which are of the following
form near the boundary (whereQ denotes, roughly, the distance from the boundary):

ε

Qβ
, (1−Qβ)

1
ε , εe

− 1
Qβ , ε| lnQ|β, ε ln . . . | lnQ|, β > 0 (2.6)

produce Hamiltonian flows which satisfyAr for all finite r.
Moreover, it is proved that adding anyCr smooth functionHε(x, y, px, py; ε) which

is uniformly small inD̄ asε → 0 still produces a family of flows satisfyingAr .

Lemma 2.2. For any billiard domainD there exist families of Hamiltonian flows in general
position which satisfyAr .

AssumptionAr implies that the Poincaré maps defined by the billiard and Hamiltonian
flows are close. Letq0 and qt = btq0 be inner phase points. The local Poincaré sections
throughqt andq0 are three dimensional, and are foliated by equi-energy two-dimensional
surfaces. For sufficiently smallε, similar foliation exists for the smooth Hamiltonian flow,
thus a reduced two-dimensional Poincaré map is well defined.

Corollary 2.1. Provided the billiard trajectory betweenq0 andqt does not have tangencies
to the boundary of the billiard domain, asε → 0 the reduced Poincar´e map of the smooth
Hamiltonian flow satisfyingAr converges, inCr -topology, to a Poincar´e map of the billiard
flow as does the flight time. If the tangency does occur, the convergence is onlyC0.

Corollary 2.1 allows us to utilize persistence theorems regarding two-dimensional area-
preserving diffeomorphisms (e.g. see [16, 21]) in order to establish relations between
periodic orbits of the billiard flow and of the Hamiltonian flows under consideration. For
a non-singular periodic orbit, and a cross section through an inner point on it, the reduced
Poincaŕe map of the billiard flow is locally a diffeomorphism, and the intersection of the
periodic orbit with the cross section in the phase space is a fixed point of the diffeomorphism.
Generally, the fixed point is either hyperbolic or elliptic (for the scattering billiards it is
hyperbolic). Fixed points of both types are preserved under small smooth perturbations in
the class of area-preserving diffeomorphisms.

Corollary 2.2 (Persistence of periodic orbits).If a non-singular periodic orbitL0 of the
billiard flow is hyperbolic or elliptic, then atε sufficiently small the Hamiltonian flowht (ε)
satisfyingAr with r > 1 has a unique continuous family of hyperbolic or, respectively, elliptic
periodic orbitsLε in the fixed energy level ofL0 which limit toL0 asε → 0.

If L0 is hyperbolic, the local stable (Ws
loc(Lε)) and unstable (Wu

loc(Lε)) manifolds of
Lε depend continuously onε (as smooth manifolds) and limit toWs

loc(L0) andWu
loc(L0)

respectively. The global stable and unstable manifolds -Wu(Lε) andWs(Lε)—are obtained
as the continuation ofWs

loc(Lε) andWu
loc(Lε) by the orbits of the flow. Note that for the

billiard flow, by applying the continuation process, tangencies to the boundary and corner
points are bound to be encountered by some points belonging to the manifolds. Using local
cross sections as above, it is easy to see that the following result holds.



582 D Turaev and V Rom-Kedar

Corollary 2.3 (Extensions of stable and unstable manifolds).Under the same assump-
tions as corollary 2.2, and assumingL0 is hyperbolic, any pieceK0 of Wu(L0) or Ws(L0)

obtained as a timet > 0 shift of some region inWu
loc(L0) (respectively, a timet < 0 shift of

some region inWs
loc(L0)) is aC0, or if no tangencies to the boundary are encountered in the

continuation process,Cr -limit of a family of surfacesKε ⊂ Wu(Lε) (resp.Kε ⊂ Ws(Lε)).

The above persistence results apply only to non-singular periodic orbits; near the singular
periodic orbits, which are studied next, the billiard flow is non-smooth and the standard
theory is not valid.

3. Elliptic islands

Hereafter, consider the case of the so-calledscattering billiards. Scattering billiards are
billiards composed of concave arcs with the curvature bounded away from zero, and non-
zero angles between the arcs at the corner points. Then, the billiard flow is hyperbolic
whence all non-singular periodic orbits are hyperbolic. We, nevertheless, show that the
simple singularperiodic orbits give rise to stable (elliptic) periodic orbits in the Hamiltonian
systems limiting to the scattering billiards.

3.1. Structure near singular periodic orbits

The hyperbolic structure of the phase space of the scattering billiards plays a crucial role in
the understanding of the behaviour near a singular periodic orbit. For the billiard mapB,
the presence of hyperbolic structure implies that for almost every pointP(s, φ) in the phase
space there exist stable and unstable directionsEuP andEsP , depending continuously onP .
The system of stable and unstable directions is invariant with respect to the linearized map:
dPBE

s(u) = Es(u)BP , which is uniformly expanding along the unstable direction and uniformly
contracting along the stable direction: ifv ∈ Eu (v ∈ Es), then ||dPBv|| > eλτ ||v|| (resp.
||dPBv|| 6 e−λτ ||v||) in a suitable norm; here,τ is the flight time fromP to BP , the
uniformity means that the valueλ > 0 is independent ofP (see details in [5]).

Equivalently, there is an invariant family of stable and unstable cones: the unstable
cone at a pointP is taken by the linearized mapdPB into the unstable cone at the point
BP ; the image is stretched in the unstable direction and shrinks in the stable direction.
Similar behaviour appears for the stable cone under backward iterations. There is an explicit
geometrical description of these cones for scattering billiards [36]. Consider a point(s, φ)

in the phase space and a small curve passing through this point. Taking two points on this
curve defines two inward directed rays emanating from the billiard boundary nears (see
figure 4). If these rays intersect, then the tangent direction to this curve belongs to the stable
cone of(s, φ); otherwise, it belongs to the unstable cone (in other words, the unstable cones
are given by ds · dφ > 0 and the stable cones by ds · dφ < 0). Moreover, it can also be
shown that if the intersection of the rays with each other occurs before the first intersection
of the rays with the billiard boundary, then the tangent direction to the forward image of
the small curve under consideration belongs to the unstable cone of the image of(s, φ).

It follows that the tangent to a line of singularity (the line composed of the points whose
trajectories are tangent to the billiard boundary) at any point lies in the stable cone, and the
tangent to any iteration of the singularity line by the billiard map lies in the corresponding
unstable cone. In particular, the intersections of the singularity lines with their images are
always transverse.

Utilizing these observations, we find the normal form of the first return map of the
billiard map near a simple singular periodic orbit. Consider a periodic orbitL with the
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Figure 4. Hyperbolic structure—the stable and unstable cones. (a) Geometrical interpretation
of stable/unstable directions. (b) Phase space structure.

corresponding sequence of collision pointsPi(si, φi) (i = 0, . . . , n − 1): Pi+1 = BPi
wherePn = P0. Let P ≡ P0 belong to the singular set (so|φ1| = π/2). Take a small
neighbourhoodU of P and denote as6 the line of singular points inU .

Proposition 3.1. Given a simple singular periodic orbitL as above, the local return map
nearP0 may be reduced to the form,{

ū = v
v̄ = ξ(v −

√
max(v, 0))− u+ · · · (3.1)

wherev = 0 gives the singularity line,u = 0 is its image, and|ξ | > 2.

Proof. Consider the local structure inU , near the singularity line6. The line6 divides
U into two parts,Ur and Us ; the orbits starting onUr (e.g. P ′′0 in figure 5) do not hit
the boundary nears1 and approach it near the points2, the orbits starting onUs (e.g.P ′0
in figure 5) have a nearly tangent collision with the boundary in a neighbourhood ofs1.
Without loss of generality we assume that6 is locally a straight line(s−s0)+k(φ−φ0) = 0,
wherek > 0 because6 must lie in the stable cone(s − s0)(φ − φ0) < 0, and thatUr is
given by(s − s0)+ k(φ − φ0) < 0 andUs by (s − s0)+ k(φ − φ0) > 0.

Considerthe first return mapB̄ defined onU . The mapB̄ equalsBn−1 . . . B2B1B0

on Us andBn−1 . . . B2B0 on Ur whereBi is a restriction of the billiard map on a small
neighbourhood ofPi . According to section 2.1.1,̄B is a continuous map which loses
its smoothness on6. Namely, the restrictionB0s of B0 on Us exhibits the square-root
singularity described in section 2.1.1 whereas the mapB|Ur is regular and it can be continued
onto the wholeU as a smooth mapB0r : erasing a small piece of the boundary containing
the tangency points1, B0r will simply be the billiard map fromU to a small neighbourhood
of P2 (see the action ofB0r on P ′0 in figure 5). Obviously,B0r6 = B1B0s6, therefore
the first return mapB̄ is continuous. One may represent the mapB̄ as a superposition of
regular and singular maps:

B̄ = B(r) · B(s)
where

B(r) = Bn−1 . . . B2B0r

and

B(s) =
{

id on Ur

B−1
0r B1B0s on Us .
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Figure 5. Structure near singular periodic orbit. (a) Phase-space structure near singular periodic
orbit: 1234 is mapped onto 1′2′3′4′. (b) Action of billiard map near a singular segment of
trajectory.

The singular partB(s) : U → U may be obtained by inverted reflection near the tangency
point s1 (see the action ofB(s) on P ′0 in figure 5). It is not too difficult to calculate that
B(s) is given by{

S ′ = S + k
√

max(S + k8, 0)+ · · ·
8′ = 8−

√
max(S + k8, 0)+ · · ·

whereS = s − s0,8 = φ − φ0 are coordinates inU , and the dots stand for the quantities
infinitely small in comparison withS, 8 or

√
max(S + k8, 0) asS,8→ 0.

The regular partB(r) is, by definition, the first return map for the auxiliary billiard
obtained by pushing the boundary near the tangency points1 slightly aside from the trajectory
of L. The pointP is a fixed point forB(r) (as well as for the map̄B). Since the auxiliary
billiard is still scattering, the pointP is a hyperbolic fixed point forB(r). Moreover, the
unstable coneS · 8 > 0 must be mapped inside itself by the linearization ofB(r) at P .

If

(
b11 b12

b21 b22

)
is the corresponding linearization matrix, the last condition is equivalent

to the requirement that allbij are of the same sign. Recall thatB(r) is an area-preserving
diffeomorphism, so

b11b22− b12b21 = 1.

Superposition ofB(r) andB(s) gives, to leading order inS, 8 and
√

max(S + k8, 0),
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the following formula for the map̄B:{
S̄ = b11S + b128− (b12− b11k)

√
max(S + k8, 0)+ · · ·

8̄ = b21S + b228− (b22− b21k)
√

max(S + k8, 0)+ · · · .
(3.2)

Provided inequalities (3.3) are satisfied, as proved in the lemma below, the normal form
(3.1) is obtained from the above expression by changing to the new coordinatesu, v where
u is aligned with the singularity line (v ∝ S+k8) andv is aligned with its image. From the
calculation, it follows that the quantityξ is (b11+b22), i.e. it is the trace of the linearization
matrix of the first return mapB(r) of the auxiliary billiard about the periodic orbit. Since the
auxiliary billiard is scattering, its regular periodic orbits are hyperbolic, hence|ξ | > 2. �

Lemma 3.1. The coefficientsbij in (3.2) obey the inequalities,

(b12− b11k)(b22− b21k) > 0, |b12| < |b11|k, |b22| < |b21|k. (3.3)

Proof. Since the imageB̄6 of the singularity lineS + k8 = 0 must lie in the unstable
coneS̄ · 8̄ > 0, (3.2) implies the first inequality in (3.3).

For a small piecel of a straight line throughP which lies in the unstable cone, i.e. for
which the increase ofs is followed with the increase ofφ (see figure 5—imagine a line
going throughP ′′0 , P0, P

′
0) the image ofl ∩Ur by B0 and the image ofl ∩Us by B1B0 both

lie to one side of the pointP2 (or the points2 when projected to the configuration plane).
Namely, these images both belong to the same half of the unstable cone ofP2 corresponding
to a definite sign of(s − s2). Since the linearization of each of the mapsBi preserves the
decomposition into the stable and unstable cones, it follows that the image ofl by B̄ is a
folded line with the vertex atP which dividesB̄l into two parts both belonging to the same
half of the unstable cone ofP ; i.e. S̄ and8̄ have the same sign on̄B(l∩Ur) andB̄(l∩Us).
By (3.2), it is equivalent to the condition that the sign of(b12−b11k) is opposite to the sign
of b12 andb11 and the sign of(b22− b21k) is opposite to the sign ofb22 andb21 (recall that
all bij have the same sign). Thus, the second and third inequalities in (3.3) hold. �

Now, embed the billiard in a one-parameter family of scattering billiardsbt (·; γ ) for
which all arcs depend smoothly on the parameterγ , while the corner points are held fixed;
suppose the billiard with the simple singular periodic orbitL is realized atγ = 0. The
regular partB(r) of the first return map ofU depends smoothly onγ , hence its hyperbolic
fixed point P (r)γ is also a smooth function ofγ . The same is valid for the position of
the singularity line6γ . For a generic family of billiards, the parametrization byγ may
be chosen so that the distance betweenP (r)γ and6γ is proportional toγ (it is true if, for
instance, one changes the billiard boundary locally, near the tangency points1 only: such a
perturbation moves the singularity line but the mapB(r) and the position of its fixed point
remain unchanged). Assume, with no loss of generality, thatP (r)γ ∈ Ur for γ > 0 and that
P (r)γ ∈ Us for γ < 0. Therefore, by the definition ofB(r), its fixed point is a fixed point of
B̄ for γ > 0, and its fixed point is imaginary whenγ < 0.

For such a family of billiards, the normal form (3.1) of the first return mapB̄ is rewritten
as {

ū = v
v̄ = ξ(γ + v −

√
max(v, 0))− u+ · · · . (3.4)

This map looks similar to the H́enon map (though it has a singular nonlinearity).
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Figure 6. Sharp horseshoe bifurcation near singular
periodic orbit. One iterate of the indicated box by the
truncation(ū=v, v̄=ξ(γ +v−√max(v, 0))−u) of the
normal form (3.4). In all figuresξ = 3, δ = 0.05.
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γ = γ− = − 1
30.

Proposition 3.2. Consider the map (3.4). For a small fixed neighbourhoodU of the origin,
let �γ be the set of all orbits of̄Bγ which never leaveU . Then there exist smallγ± values
such that�γ = ∅ for γ = γ− < 0, and if γ = γ+ > 0, then�γ is in one-to-one
correspondence with the set of all sequences composed of two symbols(r, s): ‘ r ’ corresponds
to enteringUr and ‘s’ corresponds to enteringUs .

Proof. Take a smallδ > 0 and let the neighbourhoodU be a rectangle{−δ < u < κδ,−δ <
v < κδ} whereκ = 1

2(
1
2|ξ | − 1) > 0 (recall that|ξ | > 2). Let γ+ = ( 1

2 − 1
ξ
)δ > 0 and

γ− = − 2
|ξ |δ. Then, for sufficiently smallδ, one may check that for the given choice ofU

the map (3.4) takes the horizontal boundaries ofU (marked 1 and 3 in figure 6) on a finite
distance ofU for all γ ∈ [γ−, γ+]. The images of the vertical boundaries 2 and 4 which
intersect the singularity line, fold as indicated in figure 6: the segments 2a,4a are mapped to
2a’,4a’ and the segments 2b,4b are mapped to 2b’,4b’. The folded lines 2’,4’ may intersect
U but they lie on a finite distance of their pre-images (the boundaries 2 and 4) for all
γ ∈ [γ−, γ+]. Thus, the image ofU by B̄γ has a specific shape of a sharp horseshoe.



Elliptic islands appearing in near-ergodic flows 587

Changingγ shifts the horseshoe along thev-axis, so atγ = γ+ the intersection of the
horseshoe withU consists of two distinct connected components (figure 6(b)). On each
component the map̄Bγ is smooth and hyperbolic. The statement regarding the one-to-one
correspondence to Bernoulli shift on two symbols follows as in the standard construction of
the horseshoe map [33, 26]. In particular, it implies that each of the two components has a
hyperbolic fixed point. Moreover, one of the fixed points has two positive multipliers and
the other two negative multipliers. On the other hand, atγ = γ− the intersection ofB̄γ U
with U is empty (figure 6(c)). �

Note the following three conclusions from the proof of the above proposition. First,
that there existγ± values such that forγ+ two hyperbolic fixed points exist and forγ− no
fixed points exist in the square regionU near the intersection of the singularity line with
its image. Second, thatγ± may be chosen arbitrarily small (by taking smallerU ). Third,
no fixed points can pass through the boundary ofU asγ varies fromγ− to γ+ because the
image of the horizontal boundaries ofU never intersects the boundary ofU and the image
of the vertical boundariesU may intersect only the horizontal parts of the boundary.

Now, take a two-parameter family of smooth Hamiltonian flowsht (·; ε, γ ) which
approach, uniformly with respect toγ , the family of billiard flows bt (·; γ ) as ε → 0,
as in assumptionAr . Note that for the billiard flow, the structure of the Poincaré map of an
arbitrary small cross sectionω through aninner point on the simple singular periodic orbit
L is absolutely the same as described above (see section 2.1). Due to theC0-closeness of
the billiard flow and the smooth Hamiltonian flow it follows that forε sufficiently small
the corresponding Poincaré map5εγ for the Hamiltonian system transforms a rectangle
U ′ ⊂ ω (analogous to the rectangleU ) to a horseshoe shape (which is now smooth because
the Hamiltonian system is smooth at allε > 0). At γ = γ− the intersection5εγU

′ ∩U ′ is
empty for smallε whence5εγ− has no fixed points inU ′. Moreover, no fixed points can
pass through the boundary ofU ′ asγ varies fromγ− to γ+ because the fixed points of the
first return billiard map stay a finite distance from the boundary ofU ′ for all γ ∈ [γ−, γ+].

The two fixed points of the Poincaré map of the billiard flow which exist atγ = γ+
are hyperbolic and do not belong to the singularity line. Thus, by corollary 2.2, each of
these hyperbolic fixed points exists for the map5εγ+ at all sufficiently smallε, moreover
the multipliers of one of the fixed points are negative as for the billiard. Now, fixing
any ε small enough, a fixed point of5εγ+ changes continuously asγ decreases, until it
merges with some other fixed point (as we mentioned, the fixed point must disappear before
γ = γ− and it cannot leaveU ′ via crossing the boundary). Since fixed points may disappear
only when their multipliers are equal to 1, it follows that the fixed point with the negative
multipliers atγ = γ+ must become elliptic for some interval ofγ values before the moment
of disappearance. Thus we have proved the following.

Proposition 3.3. Consider a one-parameter family of scattering billiards which has a simple
singular periodic orbitL for the parameter valueγ = 0. Consider a two-parameter family
of Cr, r > 1 smooth Hamiltonian flowsht (ε, γ ) satisfyingAr uniformly inγ . Then, for any
smallε there exists an interval ofγ on which elliptic periodic orbits exist in the energy level
of L. As ε → 0 these intervals accumulate to zero and the elliptic periodic orbits limit to
the singular periodic orbit.

In a generic family of sufficiently smooth (Cr, r > 5 [29]) two-degrees-of-freedom
Hamiltonian systems non-resonant elliptic periodic orbits are stable, and in particular they
are surrounded by KAM tori, creating the so-called elliptic islands.
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Theorem 1. Consider a scattering billiard which has a simple singular periodic orbitL.
Then, there exists a one parameter family ofCr, r > 5 smooth Hamiltonian flows̄ht (ε),
which r-converges to the billiard flow asε → 0, and for which there exists a sequence of
intervals ofε converging to 0 where elliptic islands exist.

Proof. Embed the billiard in a one-parameter family of scattering billiards as in the above
proof. Consider a two-parameter family of Hamiltonian flowsht (ε, γ ) which r-converge
to the family of billiards asε → 0, uniformly in γ . Such families exist by lemma 2.1. By
proposition 3.3 there exists a path(ε, γ (ε)) which intersects regions where elliptic periodic
orbits exist. Since, by lemma 2.2,ht (ε, γ ) may always be put in a general position, its
elliptic periodic orbits are generic and hence stable. �

In fact, it is desirable to state the above fornatural Hamiltonian systems(systems of the
form (2.5)). For that, we need to show that some coefficient in the Birkhoff normal form is
non-zero for generic potentials. This obviously seems to be correct (otherwise non-resonant
elliptic periodic orbits of natural systems would not be generically stable). However, we
failed to find the corresponding reference.

3.2. Singular homoclinic orbits

Consider anon-singular hyperbolic periodic orbitL0 of the billiard flow. Suppose, its
stable and unstable manifolds intersect along some orbit0. This is ahomoclinicorbit; i.e.
it asymptotesL0 exponentially ast →±∞. Assume that0 is simple singularwhich means
that its trajectory has one point of tangency with the billiard’s boundary (see figure 1(b)).

Let P(s, φ) and P̄ (s̄, φ̄) be collision points on0: P is the last before the tangency
and P̄ is the first after the tangency. By definition,P̄ = B2P whereB is the billiard map.
Consider, in the(s, φ) plane, the local segmentWu of the unstable manifold ofL0 to which
P belongs. Since the tangent toWu at P belongs to the unstable cone, it must intersect
the singularity line transversely atP . Thus, as explained in the proof of lemma 3.1, the
image ofWu in a neighbourhood ofP̄ by the billiard map folds with a sharp square root
singularity atP̄ , see figure 7. Now, the point̄P belongs to the stable manifold as well.
Since the tangent toWs belongs to the stable cone, it follows that the folded image ofWu

lies to one side ofWs , so a sharp homoclinic tangency is created atP̄ , as shown in figure 7.
In a generic family of scattering billiards (as in section 3.1), two transverse homoclinic

intersections appear atγ > 0 and none atγ < 0. For the corresponding two-parameter
Hamiltonian family, arguments analogous to those in the proof of proposition 3.3 show that
generically, for anyε sufficiently small there existsγ ∗(ε) for which a quadratic homoclinic
tangency occurs.

Recall that the occurrence of homoclinic tangencies is a well known mechanism for
the creation of elliptic islands [28] for smooth Hamiltonian flows. Thus, using the same
arguments as in theorem 1 we have established the following.

Theorem 2. If a scattering billiard has a simple singular homoclinic orbit0, then there exists
a one-parameter family ofCr, r > 5 smooth Hamiltonian flows̄ht (ε) which r-converges to
the billiard flow asε → 0 and for which there exists a sequence of intervals ofε values
converging to zero for which elliptic islands exist in the energy level of0.

The period of the elliptic periodic orbits mentioned in theorem 2 goes to infinity as
ε → 0. In fact, in the two-parameter family of smooth Hamiltonians elliptic periodic orbits
of bounded period limit, asε → 0, to singular periodic orbits corresponding toγ 6= 0. Thus,
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Figure 7. Bifurcation of singular homoclinic orbit. (a) γ = 0 near6, (b) γ = 0 near6’s
image, (c) γ > 0, (d) γ < 0, near6’s image,• homoclinic points.

theorems 1 and 2 are very much related. Indeed, like the appearance of stable periodic orbits
near a homoclinic tangency is proved in smooth situations (see [14, 28, 15]), one may show
that in a generic family of scattering billiards having a sharp homoclinic tangency atγ = 0
there is a sequence of values ofγ accumulating atγ = 0 for which singular periodic orbits
exist.

Now the reference to theorem 1 gives another proof of theorem 2.

4. On the genericity of the elliptic islands creation

It is well known [22, 4, 5] that for scattering billiards the hyperbolic non-singular periodic
orbits are dense in the phase space. The stable/unstable manifolds of such orbits cover the
phase space densely and the orbits of their homoclinic intersections also form a dense set.

It follows that the periodic orbits and the homoclinic orbits get arbitrarily close to
the singularity set. It seems thus intuitively clear that for any scattering billiard very
small smooth perturbations may be applied to place a specific periodic orbit or a specific
homoclinic orbit exactly on the singularity line, so that theorem 1 and 2 may be applied.
Proving these intuitive statements turns out to be quite a delicate issue, thus we formulate
these as conjectures.

Conjecture 1. Any scattering billiard may be slightly perturbed to a scattering billiard for
which a singular (tangent) periodic orbit exists.

Conjecture 2. Any scattering billiard may be slightly perturbed to a scattering billiard for
which there exists a non-singular hyperbolic periodic orbit which has a singular homoclinic
orbit.
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Figure 8. Billiard between four disks.

4.1. Numerically produced singular homoclinic orbits

To examine the appearance of singular homoclinic orbits we consider the billiard in a domain
bounded by four symmetrical circles

x2+
(
y ± 1

γ

)2

= R2; (x ± 1

γ
)2+ y2 = R2

whereR2 = 1 + (1 − 1
γ
)2. The quantityγ (which is, approximately, the curvature of

the circles) serves as the free parameter for unfolding the singularity. We found explicitly
the corresponding billiard map, and using DSTOOL package [12], we found numerically
hyperbolic periodic orbits of this mapping and their stable and unstable manifolds. The
billiard map is found on the fundamental domain of the billiard—a triangular region cut
by an arc as shown in figure 8. We find the return map to the slanted side of the triangle,
which is parametrized bys, the horizontal coordinate, and byφ, the outgoing angle to the
normal vector(−1,−1), see figure 8. We choose an arbitrary value ofγ and the simplest
hyperbolic non-singular periodic orbit, as shown in the figure (the fixed point of the return
map to the slanted side of the reduced domain). Then, we construct the stable and unstable
manifolds for this periodic orbit. We examine how these manifolds vary by small variation
of γ , until we find a value ofγ for which a singular homoclinic orbit appears. The success
(see figure 9 and 10) of the very crude search for such a delicate phenomena, near every
γ value we have chosen, supports conjecture 2 regarding the density of systems for which
such orbits exist. In fact we have found, by such a search nearγi = i ∗0.05, i = 1, . . . ,10,
eleven sharp homoclinics to this specific periodic orbit (atγ ≈ 0.0837, 0.101 65, 0.1018,
0.153, 0.2077, 0.2552, 0.292 45, 0.3329, 0.3832, 0.4143, 0.4692).
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Figure 9. Numerically produced sharp homoclinics.

5. Conclusion

The main result of this paper is that we have established that if a scattering billiard (we
use the particular hyperbolic structure associated with such billiards) has a singular periodic
orbit or a singular homoclinic orbit, then arbitrarily close to it smooth Hamiltonian flows
may possess elliptic islands, hence these are not ergodic (theorem 1 and 2). Moreover, we
have conjectured, and have provided numerical support to these conjectures, that billiards
with singular periodic orbits and singular homoclinic orbits are dense among scattering
billiards (conjectures 1 and 2 of section 4). If these conjectures are correct, then our results
will imply that arbitrarily close to any scattering billiard there exists a family of non-ergodic
smooth Hamiltonian flows.

Such statements imply thatergodicity and mixing results concerning two-dimensional
non-smooth systems cannot be directly applied to the smooth dynamics they model. Whether
the same holds for higher-dimensional systems, e.g. three-dimensional billiards or multi-
particle billiards, is yet to be studied.

On the other hand, even though stability islands may appear in smooth billiard-like
problems, the size of an individual island is expected to be very small. Thus, without
doubt, while the smooth flow may be non-ergodic, it will ‘seem’ to be ergodic for a very
long time. Statistics (e.g. correlation functions) which are based upon finite-time realizations
may appear to behave as in the scattering billiards (e.g. fall off quasi-exponentially [7]).
Whether longer realizations will reveal very different statistical properties, depends on the
number of elliptic islands, the total area they cover in the phase space and in the parameter
space, and on the ‘typical’ period of the islands. Thus, estimates of the islands sizes,
their periods, and of the real potential steepness (the ‘physicalε’) are necessary to supply
estimates on the time scale for which the mixing property will appear to hold.

We may try to estimate the periodicity of the elliptic periodic orbits of smooth flows
approaching generic scattering billiards, by very naive arguments. Indeed, since stable
periodic orbits are generated from singular periodic orbits of the billiard, one may expect (if
conjecture 1 is correct) that the least period of stable periodic orbits of a smooth Hamiltonian
system which isε-close to the billiard is of the order of the Poincaré return time to an
ε-neighbourhood of the singularity surface for the billiard flow. Note that the billiard flow
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Figure 10. Magnification near numerically produced
sharp homoclinics. (a) γ = 0.28 below sharp
tangency, (b) γ = 0.292 45 at sharp tangency. (c) γ =
0.31 above sharp tangency.

is a hyperbolic system; therefore, the return time in the billiard and, correspondingly, the
typical period of the stable periodic motions in its smooth approximation must, essentially,
belogarithmic in ε and not of a power-law type. Namely, very smallε values, corresponding
to very steep potentials, may still produce stability islands which are observable on physical
timescales.
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Appendix A. Class of smooth Hamiltonians

We prove the following.

Theorem 3. Consider the Hamiltonian systems associated with,

H = p2
x

2
+ p

2
y

2
+ V (x, y; ε)+Hε(x, y, px, py; ε). (A.1)

If the potentialV (x, y; ε) satisfies conditionsI–IV stated below, andHε(x, y, px, py; ε)
tends to zero asε → 0 uniformly in some neighbourhood ofD̄ along with all its derivatives,
then the Hamiltonian flow (A.1)r-converges to the billiard flow inD.

Note that, in particular,Hε , which is introduced for greater genericity, may be taken to
be identically zero.

A.1. ConditionsI–IV on V (x, y; ε)

Condition I. For any compact regionK ⊂ D the potentialV (x, y; ε) diminishes along with
all its derivatives asε→ 0:

lim
ε→+0
||V (x, y; ε)|{(x,y)∈K}||Cr+1 = 0. (A.2)

The growth of the potential to infinity across the boundary is a more delicate issue. We
assume thatV is evaluated along the level sets of somefinite function near the boundary.
Namely, suppose that in a neighbourhood of(D̄\C) (C is the set of corner points) there
exists a pattern functionQ(x, y; ε) which is Cr+1 with respect to(x, y) and it depends
continuously onε (in Cr+1-topology) atε > 0 (it has, along with all derivatives, a proper
limit as ε→ 0). Assume that:

Condition IIa. The billiard boundary is composed of level lines ofQ(x, y; 0):
Q(x, y; ε = 0)|(x,y)∈Si ≡ Qi = constant. (A.3)

For each boundary componentSi , for Q close toQi , let us definea barrier function
Wi(Q; ε) which does not depend explicitly on(x, y) and assume that:

Condition IIb. There exists a small neighbourhoodNi of the arcSi in which

V (x, y; ε)|(x,y)∈Ni ≡ Wi(Q(x, y; ε); ε) (A.4)

and

Condition IIc. ∇V does not vanish in a finite neighbourhood of the boundary arcs, thus:

∇Q|(x,y)∈Ni 6= 0 (A.5)

and
d

dQ
Wi(Q; ε) 6= 0. (A.6)

Now, the rapid growth of the potential across the boundary may be described in terms
of the barrier functionsWi alone. Choose any of the arcsSi and henceforth suppress the
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index i. Without loss of generality assumeQ = 0 on S. By (A.5), the pattern function
Q is monotonically increasing acrossS and assumeQ is positive insideD near S and
negative outside (otherwise, change inequalities in (A.7) to the opposite ones). Assume the
following.

Condition III. As ε → +0 the barrier function increases from zero to infinity across the
boundarySi :

lim
ε→+0

W(Q; ε) =
{
+∞ Q < 0

0 Q > 0.
(A.7)

To formulate the final condition on the potential, note that by (A.6) the value ofQ may
be considered as a function ofW (andε) near the boundary arc. At smallε, a finite change
in W corresponds to a small change inQ (by III ). Therefore, the following condition makes
sense.

Condition IV. Asε→+0, for any finite, strictly positiveW1 andW2, the functionQ(W ; ε)
tends to zero uniformly on the interval[W1,W2] along with all its(r + 1) derivatives.

A few remarks are now in order.
We study the limiting behaviour (asε → +0) of the smooth Hamiltonian system

(A.1) in a neighbourhood of a given billiard orbit, thus near afixed non-zero energy level
H = constant. The conservation of energy implies that all trajectories stay in the region
W 6 H ∗ for any ε. It follows, in particular, that the symbol+∞ in (A.7) may be replaced
by any value greater thanH ∗.

Clearly, if the potentialV satisfies conditionI , the particle moves in the interior of
D with essentially constant velocity along a straight line until it reaches a thin layer near
the boundaryS where the potential runs from small to very large values (the smaller the
value of ε, the thinner the boundary layer). ByIII , if the particle enters the layer near
an interior point of some boundary arc (corner points are not considered in this paper), it
is either reflected, exiting the boundary layer near the point where it entered, or it might,
in principle, stick into the layer, travelling along the boundary far away from the entrance
point. ConditionsII formalize the natural requirement that the reaction force must be
normal to the boundary, so they guarantee that the reflection will be of the right character,
approximately preserving the tangential component (px) of the momentum and changing
the sign of the normal component (py). However, conditionsI–III are insufficient for
preventing the existence of non-reflecting trajectories; adding conditionIV with r = 1
guarantees that the travel distance along the boundary vanishes asymptotically.

Moreover, conditionII guarantees a correct reflection law only in theC0-topology
and not in theCr -topology. To explain this statement, take the same initial conditions
(x0, y0, px0, py0) for an orbit of the Hamiltonian system (A.1) and for a billiard orbit.
Consider a time intervalt for which the billiard orbit collides with the boundaryS only
once, at some point(xc, yc) (see figure A.1). Here, the incidence angleφ in is the angle
between the vector(x0 − xc, y0 − yc) and the inward normal toS at the point(xc, yc); the
reflection angleφout is the angle between the vector(xt −xc, yt −yc) and the normal, where
(xt , yt ) is the point reached by the billiard trajectory at the timet . Define the incidence
and reflection angles for the trajectory of the Hamiltonian system in the same way where
(xc, yc) is set by the billiard trajectory and(xt (ε), yt (ε)) is defined by the Hamiltonian flow
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Figure A.1. Reflection by Hamiltonian flow.

(see figure A.1). We expect the trajectory of the Hamiltonian system to be close to the
billiard trajectory; in particular, it should demonstrate a correct reflection law

φ in(ε)+ φout(ε) ≈ 0

for sufficiently smallε. Note, however, that(φ in+φout) is a function of the initial conditions,
and to satisfy assumptionAr this function must be close to zeroalong with all the derivatives.

ConditionsI–IV are in fact quite general; for the pattern function, consider any smooth
function Q depending on two variables(x, y). Corners are created at the singularities
of the level sets and at the points of inflection. For the barrier functionW(Q, ε) many
‘classical’ monotonically decreasing functions satisfyI–IV , see the list (2.6). Moreover,
one may easily produce more examples as there is no restriction on the growth rate: given
any potentialV satisfying conditionsI–IV the potentialψ(V ) also satisfies these conditions
providedψ is a smooth, non-singular, strictly monotonic function ofV ∈ [0,∞) such that
ψ(0) = 0, ψ(∞) = ∞.

Proof of theorem 3. We should prove that assumptionAr is satisfied for any inner point
q0 whose timet billiard trajectory does not enter the corner points. It is enough to consider
the case where the billiard trajectory hits the boundary only once on the time interval
under consideration. The two different cases of tangent and non-tangent trajectories are
considered.

We use the termthe smoothorbit of q0 for the orbit of the flow defined by the
Hamiltonian (A.1). Since the Hamiltonian flow isCr -close to the billiard flow outside
an arbitrarily small boundary layer (by virtue ofI ), we only need to consider the behaviour
of the smooth orbit in the boundary layerNδ = {|Q(x, y; ε) − Q(xc, yc; ε)| 6 δ} where
(xc, yc) is the collision point for the billiard trajectory ofq0. The quantityδ slowly tends
to zero asε→+0.

For small ε, the smooth trajectory entersNδ at some timet in(δ, ε) at a point
(x in(δ, ε), y in(δ, ε)) close to (xc, yc) with the velocity (pin

x (δ, ε), p
in
y (δ, ε)) close to

(px0, py0). We denote the moment of exiting the boundary layer astout(δ, ε) and the
corresponding phase point is denoted asqout(δ, ε). Our aim is to prove that in the limit
limδ→0 limε→0 in theCr (resp.C0) topology for the non-tangent (resp. tangent) case,

(xout, yout, tout)− (x in, y in, t in)→ 0

(pout
x )

2+ (pout
y )

2− (pin
x )

2− (pin
y )

2→ 0

(pout
x − pin

x )Qy(x
in, y in)− (pout

y − pin
y )Qx(x

in, y in)→ 0

(A.8)
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which coincides with the billiard reflection law asδ → 0. The second line of (A.8) is
clearly correct; sinceQout = Qin, andHε → 0 uniformly in D̄, the conservation of energy
implies that the total momentum is asymptotically conserved.

Move the origin of the coordinate system inD to the reflection point, so(xc, yc) = (0, 0);
without loss of generality assumeQ = 0 at the origin. By conditionIIa , the boundary
arc passing through the point of reflection isQ(x, y; 0) = 0. Let the interior ofD
correspond to positive values ofQ(x, y; 0). Let the x-axis be tangent to the level line
Q(x, y; ε) = 0 and they-axis be inward normal to it. Thus, the partial derivativesQx and
Qy satisfy

Qx |(0,0;ε) = 0, Qy |(0,0;ε) = 1. (A.9)

By (A.1), near the boundary the equations of motion have the form,

ẋ = px + o(1) ṗx = −W ′(Q)Qx + o(1)

ẏ = py + o(1) ṗy = −W ′(Q)Qy + o(1)
(A.10)

where the o(1) terms correspond to the partial derivatives ofHε(x, y, px, py; ε) which are
assumed to be uniformly small.

Lemma A.1. There existsξ(δ, ε) which diminishes to zero asδ→ 0, ε → 0 such that

tout− t in 6 ξ (A.11)

and for anyt ∈ [t in, tout]

x(t) = x in +O(ξ), y(t) = y in +O(ξ) (A.12)

px(t) = pin
x +O(ξ). (A.13)

p2
y(t)

2
+W(Q(x(t), y(t)); ε) = p2

y(t
in)

2
+W(δ; ε)+O(ξ). (A.14)

Proof. First we prove that (A.12)–(A.14) are valid for anyt ∈ [t in, t in + ξ ] for any ξ
(provided ξ > o(1) terms coming fromHε). Indeed, (A.12) follows sincėx and ẏ are
uniformly bounded by the energy constraint. From (A.9) and (A.12) it follows that

Qx(x, y; ε) = O(ξ), Qy(x, y; ε) = 1+O(ξ). (A.15)

at t ∈ [t in, t in + ξ ]. Divide this time interval into two regions:I< where|W ′(Q)| < 1 and
I> where |W ′(Q)| > 1. In I<, the change inpx is obviously O(ξ). In I>, sinceQy 6= 0
(see (A.15)),ṗy does not vanish, hencėpx may be divided toṗy in (A.10):

dpx
dpy
= Qx

Qy

+ o(1). (A.16)

By (A.15), this implies that the change inpx is O(ξ) times the total variation inpy . The
latter is uniformly bounded; indeed,py is a uniformly bounded smooth function of time,
the time interval under consideration is finite, and the derivativeṗy is bounded from below.
Thus, (A.13) is proved. The approximate conservation law (A.14) follows from (A.13) and
the exact conservation of energyH .

To complete the proof, we takeξ � √δ, and prove that for sufficiently smallε (for
which (A.12)–(A.14) are satisfied), the trajectory which enters the boundary layerNδ at
t = t in must exit it beforet in + ξ .
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Consider first the case of nearly tangent trajectory, wherepin
y ≈ 0. By (A.14), since

inside Nδ the value ofW(Q) is bigger thanW in = W(δ), it follows that |py(t)| =
|pin
y | + O(

√
ξ). Thus, |py | stays small unless the trajectory leavesNδ or t − t in becomes

large. For positive energy level, the smallness of|pin
y | implies that|pin

x | > 0. By (A.13)
it follows that px(t) is bounded away from zero, on the same time interval. Hence, the
trajectory is close to a straight line parallel to thex-axis.

We assume the curvature of the boundary arcs is non-zero; i.e.Qxx 6= 0. Thus, a straight
line must exit the boundary layer|Q| 6 δ at a distance O(

√
δ) from the entrance point.

Since|px(t)| is bounded away from zero, the time spent by the nearly tangent trajectory in
the boundary layer istout− t in = O(

√
δ), i.e. it is indeed less than the chosenξ .

Now consider the case of non-tangent trajectory, so thatpin
y (δ, ε) is bounded away from

zero (it is negative). Since the value ofW in = W out = W(Q = δ) vanishes asε→ +0, it
follows from (A.14) that the normal momentumpy(t) stays bounded away from zero unless
the potentialW(Q) reaches some finite value.

Therefore, if we take some sufficiently smallν and consider the partN(1) of the
boundary layerNδ which corresponds tosmall values ofW : W(Q; ε) 6 ν, then the
value of d

dt Q(x, y) = pxQx + pyQy is bounded away from zero inN(1) (becauseQx

is small andpy is non-zero). Thus, the trajectory enteringN(1) must approach the inner
part N(2) : W(Q; ε) > ν at time which is proportional to the width ofN(1) (it is O(δ)).
Moreover, if the trajectory leavesN(2) after some time, it must have positivepy , hence,
by the same arguments, it must leave the whole boundary layerNδ after an additional time
of order δ. It follows that tout − t in = O(δ)+the time spent inN(2). The latter, in turn,
vanishes asε → 0. Indeed, since|py | is bounded from above, this time must be bounded
by constant× ((minN(2) W ′(Q))−1) (see (A.10)). Now note that inN(2) the value of the
potential is bounded away from zero (and it is bounded from above by the initial value of
H ) whence, according to conditionIV , W ′(Q)(≡ Q′(W)−1)→∞ asε → 0.

Thus, we have shown that asε → 0, the total collision time is O(δ) in the non-tangent
case. This completes the lemma. �

This lemma proves theC0-version of the theorem (indeed, cf (A.11)–(A.14) with (A.8)
and note that in our coordinate frameQx → 0 as(x, y) → (xc, yc)). Thus, it remains to
prove theCr -convergence for the non-tangent case.

As in the lemma above we divideNδ into two partsN(1) : W 6 ν andN(2) : W > ν.
There is a freedom in the choice ofν and we consider the limit limδ→0 limν→0 limε→0.

In N(1), the value ofQ̇ is non-zero. Thus, we divide the equations of motion (A.10) to
Q̇:

dx

dQ
= px

Qxpx +Qypy
+ o(1)

dpx
dQ
= −W ′(Q) Qx

Qxpx +Qypy
+ o(1)

dy

dQ
= py

Qxpx +Qypy
+ o(1)

dpy
dQ
= −W ′(Q) Qy

Qxpx +Qypy
+ o(1)

dt

dQ
= 1

Qxpx +Qypy
+ o(1)

(A.17)
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or, in the integral form,

x(Q2)− x(Q1) =
∫ Q2

Q1

X dQ y(Q2)− y(Q1) =
∫ Q2

Q1

Y dQ

px(Q2)− px(Q1) = −
∫ W(Q2)

W(Q1)

P11 dW(Q)+
∫ Q2

Q1

P12 dQ

py(Q2)− py(Q1) = −
∫ W(Q2)

W(Q1)

P21 dW(Q)+
∫ Q2

Q1

P22 dQ

t(Q2)− t (Q1) =
∫ Q2

Q1

T dQ

(A.18)

where X, Y, Pij , T denote, schematically, some functions of(x, y, px, px) which are
uniformly bounded along with all derivatives (see (A.17), the boundedness follows since
Q̇ ≡ Qxpx +Qypy is bounded away from zero inN(1)).

In the region under consideration, the change inW is bounded by the smallν and the
change inQ is bounded by the smallδ. Thus, the integrals in the right-hand side are small.
It follows (applying, say, the successive approximation method) that asδ→ 0, ν → 0, the
Poincaŕe map fromQ = Q1 to Q = Q2 which is found as the solution of (A.18), limits to
the identical map, along with all derivatives with respect to initial conditions.

Thus, only the regionN(2) gives a non-trivial contribution to the Poincaré map defined
by the Hamiltonian flow. It is convenient to evaluate the Poincaré map inN(2) for the
cross section in the phase space defined by fixing the absolute value ofpy rather than the
corresponding value ofW (by (A.14), it does not make a great difference).

In N(2), asε → 0, the value of the potential is bounded away from zero and infinity
(ν 6 W 6 H ). Thus, according to conditionIV , the value of the pattern functionQ may
be considered as a function of the value of the potentialQ = Q(W ; ε) and this function is
uniformly small along with all derivatives.

In particular,W ′(Q) ≡ Q′(W)−1 is bounded away from zero. Thus, we may divide the
equations of motion (A.10) tod

dt py and takepy as a new time variable. We obtain

dx

dpy
= −Q′(W) px

Qy

+ o(1)
dpx
dpy
= Qx

Qy

+ o(1). (A.19)

HereQx andQy are known functions ofx andy and the value ofy is uniquely determined
by the values ofx andQ (sinceQy 6= 0). The value ofQ is considered as the function of
the potentialW and the value ofW is found from the conservation of energy:

W = H − 1
2(p

2
x + p2

y)−Hε. (A.20)

Thus, equations (A.19) and (A.20) are self-consistent and define the orbit completely.
According to conditionIV , equations (A.19) have the following system as theCr -limit
asε→+0:

dx

dpy
= 0

dpx
dpy
= Qx

Qy

|Q(x,y;0)=0. (A.21)

The solution of this system is theCr -limit of the solution of (A.19) (because the change
in py—i.e. the interval of integration—is finite). This, in fact, finishes the proof of the
theorem, because the solution of (A.21) gives exact billiard reflection law: by the first
equation,x is constant whencexout = x in = xc and the same is true fory and t , and
plugging (x, y) = (x in, y in) in the right-hand side of the second equation gives the last
equation of (A.8). �
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