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Elliptic islands appearing in near-ergodic flows
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Abstract. It is proved that periodic and homoclinic trajectories which are tangent to the
boundary of any scattering (ergodic) billiard produce elliptic islands in the ‘nearby’ Hamiltonian
flows i.e. in a family of two-degrees-of-freedom smooth Hamiltonian flows which converge
to the singular billiard flow smoothly where the billiard flow is smooth and continuously
where it is continuous. Such Hamiltonians exist; indeed, sufficient conditions are supplied,
and thus it is proved that a large class of smooth Hamiltonians converges to billiard flows in this
manner. These results imply that ergodicity may be lost in the physical setting, where smooth
Hamiltonians which are arbitrarily close to the ergodic billiards, arise.

AMS classification scheme numbers: 58F15, 82C05, 34C37, 58F05, 58F13, 58F14

1. Introduction

The behaviour of a point particle travelling with a constant speed in a region, undergoing
elastic collisions at the region’s boundary, is known as the billiard problem. This system
has been extensively studied both in its classical and quantized formulation. Numerous
applications lead to the study of such a model problem. First, there exist direct mechanical
realizations of this model. For example, the motionMofrigid d-dimensional spheres in

a d-dimensional box may be reduced to a billiard problem, possibly in higher dimensions
[31, 32, 9, 17]. See also [2, 8] for the inelastic case. Second, it serves as an idealized
model for the motion of charged particles in a potential, a model which enables the
examination of the relation between classical and quantized systems, see [18, 34] and
references therein. Finally, and most importantly, this model has been suggested [31] as
a first step for substantiating the basic assumption of statistical mechanics—the ergodic
hypothesis of Boltzmann (see especially the discussion and references in [32, 35]).

In all the applications of this model, in particular that mentioned above, of special
interest are so-calledcattering billiards, i.e. billiards in a complement to the union of a
finite number of convex regions, see figure 1. For example, the two-dimensional idealization
of the Lorenz gas in the form of a lattice of rigid disks produces a scattering billiard (‘the
Sinai billiard’). The motion in a scattering billiard is highly unstable and thus produces
strong mixing in the phase space. More precisely, it has been shown [31, 13, 3] that the
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Figure 1. Tangent trajectories in scattering billiard®) Singular (tangent) periodic trajectory.
(b) - - - - Non-singular periodic trajectory, —— tangent homoclinic trajectory to the periodic
orbit.

corresponding dynamical system is (hon-uniformly) hyperbolic, it is ergodic with respect
to the natural invariant measure and it possessesktiproperty. Based on this theory,
statistical properties of various scattering systems have been analysed (see [7, 6]).

Do small perturbations ruin the ergodicity property of a scattering billiard? Here we
consider the perturbation caused by smoothening of the billiard flow. The influence of such
smoothening is a non-trivial question, since the dynamical system associated with the billiard
we consider (in the simplest setting, this is a two-dimensional area-preserving mapping [31])
is singular. In particular, as explained more precisely in section 2.1, singularities appear near
trajectories which are tangent to the billiard’s boundary—like the ones shown in figure 1.
Thus, even though the scattering billiard is hyperbolic almost everywhere, the singular set
(e.g. singular periodic orbits) might produce stability islands under small perturbation. While
such a phenomenon seems to be quite common, a general theory does not exist. Indeed,
it is clear that the results are not straightforward—namely, it is not true that all smooth
systems approaching a singular hyperbolic and mixing system have stable periodic orbits,
nor is the converse—that they have the same ergodic properties as the singular system. (As
an example, consider an analogous problem for one-dimensional maps; for a family of tent
maps of an interval which is known to be ergodic and mixing, the ergodicity property may
be easily destroyed in an arbitrarily close smooth family: if the maximum of the interval
image produces a periodic orbit, it is clearly stable. However, the smooth one-dimensional
map does not always possess stable periodic orbits: there may be a positive measure set of
parameter values for which the smooth maps are ergodic and mixing [20]).

In this paper we prove (theorems 1 and 2) that, indeeplerturbation of a scattering
billiard to a smooth Hamiltonian flow may create stability islands near singular periodic and
homoclinic orbits of the billiard

More precisely, we consider smooth Hamiltonian flows which converge to the singular
billiard flow, smoothly where the billiard flow is smooth and continuously where it is
continuous (see section 2). For such approximations, we propose two mechanisms for the
appearance of elliptic islands which destroy the ergodic properties of scattering billiards; one
mechanism is controlled by the existence, in the billiard flow, of a singular periodic orbit
and another mechanism is controlled by the existence of a singular homoclinic orbit. First,
we study the phase-space structure of the local Pdnmap near such orbits, showing that
locally these create a ‘sharp’ horseshoe. Embedding the billiard in a one-parameter family
of billiards in which the boundary of the billiard table slightly moves with the parameter
y near the tangent point, we show that the horseshoe unravelsvasies (see figure 6).
Then, considering a two-parameter family of smooth Hamiltonian flays; y) which
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approaches the family of billiards as— 0, we establish that for sufficiently smallthere

exist a series of bifurcations associated with the disappearance of a Smale’s horseshoe. It
is well established that generically elliptic islands are created in such a process. Thus, it
follows that for each sufficiently smadl there exist intervals of values for which elliptic
islands exist.

We expect that singular homoclinic and periodic orbits are, in fact, unavoidable in
scattering billiards; we conjecture that systems possessing such orbits are dense among all
scattering billiards. We provide a numerical example which supports such a conjecture
regarding the density of billiards with singular homoclinic orbits. A proof of this conjecture
combined with the results presented here would imply thaany given scattering billiard
on a plane, there exists a close smooth Hamiltonian flow possessing elliptic islands.

Furthermore, we establish sufficient conditions on the potentials of natural Hamiltonian
systems so that their corresponding flows indeed converge to the billiard flows as assumed
above. Surprisingly, the connection between the billiard model and the smooth Hamiltonian
flows with steep potentials was not previously formalized. However, by our current results,
the problem of relating the statistics manifested by the billiard dynamical systems to actual
physical applications must inevitably include the study of the smoothening of the billiard
potential. In many works, this connection has been implicitly assumed, see [19] and
references therein. Nevertheless, our analysis reveals non-trivial requirements on smooth
potentials approaching the step-function (billiard) potential, which are essential for the
dynamics of the corresponding Hamiltonian system to follow the dynamics of the billiard
flow.

In [27] a more general question of the behaviour of the symplectic structure when a
family of smooth Hamiltonians approaches a singular limit is studied and related to the
general study of distributions on manifolds. In this setting, it is shown that some properties
of the smooth Hamiltonians are preserved by the singular one. For example, it is proved
that if a family of Hamiltonians is uniformly mixing, then the mixing property carries to the
singular system as well. Here we investigate the other direction of the above result: given
a singular system which is mixing—what can be said on families of smooth Hamiltonian
which appropriately approach this limiting system?

Finite-range potentials supported on a finite number of disks were extensively studied,
see for example [30, 24, 25, 1, 23, 10] and references therein. In these works, the form of
the potentials on each disk is taken to be radially axisymmetric, thus locally integrable.
In such systems, the effect of the potential is to produce a finite-length tragép)
along the scattering disk, thus the study of such systems elegantly reduces to the study
of the ‘generalized Sinai billiard’ with the reflection lagv — —¢,s — s + A6(¢) (mod
2m), where (¢, s) correspond to the incidence angle and position on the disk boundary
respectively. In [30, 24, 25, 1, 11] such potentials producing ergodic systems were sought.
In [1, 23] non-ergodic behaviour was proved and studied for step-function potentials (where
A0’ (¢) = constant< 2). However, thebilliard limit has not been studied in these works.

In [10] it has been shown that for certain types of potentia(¢) produces focusing shifts

near tangent trajectories and thus, that for any given energy level (high energies correspond,
roughly, to the billiard limit) there exists an arrangement of the disks for which elliptic
islands exist (see in particular theorems 5.3 and 5.4 of [10]). More closely related, in [19],

it has been noted that the diamagnetic Kepler problem near singular homoclinic orbits of the
four-disk billiard system (which has similar spatial structure) may produce elliptic islands
by homoclinic tangencies.

Here, a completely different approach is taken, which in particular, does not assume
any specific geometry of the scatterers nor that the potential is of a finite-range or locally
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axisymmetric. Most importantly, in the limig — 0, our Hamiltonian flows do approach
the billiard flow, a necessary property for establishing meaningful asymptotic results.

The general scheme of the paper is as follows. In 2.1 we introduce the billiard
flow in a general domain, and describe its nature near regular and tangent collision
points and its relation to the standard billiard map. In 2.2, we define the smooth
Hamiltonian approximation of the billiard flow and state some immediate consequences
of this definition. In section 3 we prove the existence of elliptic islands in Hamiltonian
flows which approximate scattering (Sinai) billiards. In section 4 the appearance of
persistent singular homoclinics and singular (tangent) periodic orbits for scattering billiards
is conjectured and the former is numerically demonstrated. Section 5 is devoted to a
discussion on the implication of these results. In the appendix we formulate conditions on
smooth Hamiltonians and prove these are sufficient to insure that the Hamiltonians flows
approximate properly the corresponding billiard flows.

2. Billiards and their smooth Hamiltonian approximations

2.1. Billiard flow

Consider an open bounded regi@gnon a plane with a piecewise smoota’(:, r > 2)
boundaryS. On S there is a finite seC of so-calledcorner pointscy, ¢y, ... such that
the arc of the boundary that connects two neighbouring corner poirdtsfssmooth. Let
us call these arcthe boundary arcsand denote them by, So,.... The setC includes
all the points where the boundary loses smoothness and all the points where the curvature
of the boundary vanishes. Thus, the curvature has a constant sign on each of the arcs
Being equipped with the field of inward normals, the arc is cafledvexif its curvature is
negative (with respect to the chosen equipment) and it is cabbedaveif its curvature is
positive (see figure 2).

Considerthe billiard flow on D. The phase space of the flow is co-ordinatized by
g = (x,y, px, py) Where(x, y) is the position of the particle i and (py, py) is the
(non-zero) velocity vector:

X = px y= Py- (2.1)
Henceforth, we reserve the term ‘orbit’ for the orbits in the phase space and the term
‘trajectory’ for the projection of an orbit to théx, y)-plane. The velocity vectop,, p,)
is constant in the interior, and at the boundary it changes by the elastic reflection rule so
p? + p§ = constant and the angle of reflection equals the angle of incidence with the
opposite sign. Taking the point of reflection as the origin of the coordinate frame and the
boundary’s normal at that point as tleaxis, the reflection rule is simply

Px = Px> Py = —DPy; (2.2)
namely, the angle of incidencg is arctap,/p,. This law is well defined only when
the normal can be well defined: it is invalid at the corners (including inflection points).
Generally, the incidence angebelongs to -7, 7], where¢ = +7, which corresponds to
a trajectory tangent t§ (figure 2) may be attained only when the boundary arc is concave.

Denote the timer map of the billiard flow asb, : go(xo, yo. pxo, Pyo) +>
q:(X¢, Yi, Dxt, Pyr)- By writing g, = b,go, we mean, in particular, that the piece of trajectory
that connectgxo, yo) and (x,, y,) is on a finite distance of the corner gt though it may
have one or more points of tangency with concave componenss of

A point ¢ in the phase space is callesh inner pointif (x,y) ¢ S, anda collision
point if (x,y) € (S\C). Obviously, ifgo andgq, = b,qo are inner points, then, depends
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Figure 2. Billiard trajectories. &) ® standard corner point§] inflection corner pointsSi 35
concave boundary arcSz 4,67 - convex arcs. —— Regular reflection; - - tangent trajectory.
(b) — - — Tangent trajectory terminated at an inflection point.

continuously ongg and¢. Otherwise, ifg, is a (hon-tangent) collision point, the velocity
vector undergoes a jump; denotingddyo = b;_ogo andg;o = b, 10qo the points just before
and just after the collision, it follows th@p,+o0, pyr+0) @and(py.—o, py—o) are related by the
elastic reflection law. To avoid ambiguity we assume that at a collision point the velocity
vector is oriented insid®; thus, we puth, = b, ,o.

Further, ifg, is an inner point and if the piece of trajectory that connégts yo) and
(x;, y;) does not have tangencies with the boundary, thetepend<”-smoothly ongg and
t. However [31], the map, loses smoothness at any poiptwhose trajectory is tangent
to the boundary at least once on the intervaltJ0 Indeed, choosing coordinates so that
the origin is a point on a concave boundary &rcthe y-axis is the normal tc&; and the
x-axis is tangent td;, the arc is locally given by the equation

y=_x2+....

It follows that for smalls > 0 the timer = § map of the slanted linéxg = —38/2+ayo, p.o =
1, pyo = 0) has a square-root singularity in the limig — —0 which corresponds to the
tangent trajectory (see figure @;# 0 for graphical purposes):

(X5, Y5, Pxs» Pys) = (38 + ayo, yo, 1, 0) atyo >0
= (38 4 ayo + O(8y0), 2/=y0d
+0(8y0), 1+ O(y0), 2¢/—y0 + O(y0)) atyo < 0

If go andg, = b,qo are inner points, then for two arbitrary small cross sections in the
phase space, one througkand the other througl,, the local Poinca€” mapis defined by
the orbits of the billiard flow. If no tangency to the boundary arcs is encountered between
go andgq,, thenthe Poincag map is locally aC”-diffeomorphism

One can easily prove that the same remains valig,if;,, or both are collision points,
provided the corresponding cross sections are composed of the nearby collision points. In
fact, the collision set (the surfade, y) € S in the phase space) providesggbbal cross
section for the billiard flow. The corresponding Poirecanap relating consecutive collision
points is calledthe billiard map A point on the surface is determined by the position
on the boundary and by the reflection angl¢ which yields the direction of the outgoing
velocity vector (the absolute value of the velocity does not matter). The initial conditions,
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Figure 3. Singularity near a tangent trajectory.

corresponding to a trajectory directed to a corner or tangent to a boundary arc at the moment
of the next collision, fornthe singular sebn the(s, ¢)-surface. Generically, the singularity
set is a collection of smooth curves which may be glued at some points. The billiard map is
a C"-diffeomorphism outside the singular set; it may be discontinuous at the singular points.
Near a singular point corresponding to the tangent trajectory the continuity of the map can
be restored locally by taking two iterations of the map on half of the neighbourhood of the
singular point (see figure 3). The obtained map will, nevertheless, be non-smooth at the
singular point, having the square-root singularity described above.

If a trajectory has exactly one tangency to the billiard boundary and does not approach
the corner points it is called simple singulartrajectory (and its corresponding orlsimple
singular orbi). For periodic orbits, the same definition applies per period.

2.2. Smooth Hamiltonian approximation

Formally, the billiard flow may be considered as a Hamiltonian system of the form
2

2
X p
Hy= 54 2+ vixy) (2.3)
where,
0 (x,y)e D
Vp(x,y) = (2.4)

+00 (x,y) & D.

Clearly, this is an approximate model of the motion of a pointwise particle smaoth
potential which stays nearly constant in the interior region and grows very fast near the
boundary. However, it is not obvious immediately when (and in which sense) this motion
is indeed close to the billiard motion. We say that a familyCéfsmooth Hamiltonian flows
h:(¢) r-convergego the billiard flow if the following assumption holds.
A:. If go and g, = b,qo are inner phase points, and if the billiard trajectory @f has
no tangencies to the boundary for the time interf@l¢], then, ase — 0, the timer map
h,(¢) of the smooth Hamiltonian flow limits to the mapin the C”-topology in a small
neighbourhood of. However, if a tangency occurs, thépe) — b, in the C° sense.
Obviously, one needs to show that the above definition is not vacuous.

Lemma 2.1. For any billiard domainD there exist families of Hamiltonian flows satisfying
assumptiorA;.
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Indeed, in the appendix we consider the family of Hamiltonian systems associated with

p: P
H="2+4+=2 14V, y e (2.5)
2 2
where the potentiaV/ (x, y; €) tends to zero inside the regidh ase — 0 and it tends to
infinity outside. We prove that there exists a large class of sma@ttt) potentials for which
assumptiorA; holds for any finiter. For example, the potentials which are of the following
form near the boundary (wher@ denotes, roughly, the distance from the boundary):

€
0F’
produce Hamiltonian flows which satisfy; for all finite r.

Moreover, it is proved that adding ary” smooth functionH. (x, y, px, py; €) which
is uniformly small inD ase — 0 still produces a family of flows satisfying;.

(1— 0!, ce o, €|InQf, eln...|[InQ|, B>0 (2.6)

Lemma 2.2. For any billiard domainD there exist families of Hamiltonian flows in general
position which satisfA,.

AssumptionA; implies that the Poincérmaps defined by the billiard and Hamiltonian
flows are close. Letp andg, = b,qo be inner phase points. The local Poircaections
throughg, andgo are three dimensional, and are foliated by equi-energy two-dimensional
surfaces. For sufficiently smadl similar foliation exists for the smooth Hamiltonian flow,
thus a reduced two-dimensional Poirteanap is well defined.

Corollary 2.1. Provided the billiard trajectory betweegy and g, does not have tangencies
to the boundary of the billiard domain, as— 0 the reduced Poincarmap of the smooth
Hamiltonian flow satisfyind\, converges, irC"-topology, to a Poincae'map of the billiard
flow as does the flight time. If the tangency does occur, the convergence i8%nly

Corollary 2.1 allows us to utilize persistence theorems regarding two-dimensional area-
preserving diffeomorphisms (e.g. see [16, 21]) in order to establish relations between
periodic orbits of the billiard flow and of the Hamiltonian flows under consideration. For
a non-singular periodic orbit, and a cross section through an inner point on it, the reduced
Poincaé map of the billiard flow is locally a diffeomorphism, and the intersection of the
periodic orbit with the cross section in the phase space is a fixed point of the diffeomorphism.
Generally, the fixed point is either hyperbolic or elliptic (for the scattering billiards it is
hyperbolic). Fixed points of both types are preserved under small smooth perturbations in
the class of area-preserving diffeomorphisms.

Corollary 2.2 (Persistence of periodic orbits).If a non-singular periodic orbitLy of the
billiard flow is hyperbolic or elliptic, then at sufficiently small the Hamiltonian flow, (¢)
satisfyingA; with» > 1 has a unique continuous family of hyperbolic or, respectively, elliptic
periodic orbitsL. in the fixed energy level dfy which limit to Ly ase — 0.

If Lo is hyperbolic, the local stableW(;.(L.)) and unstable W .(L.)) manifolds of
L. depend continuously oa (as smooth manifolds) and limit t&;.(Lo) and W,!.(Lo)
respectively. The global stable and unstable manifold$({..) and W*(L.)—are obtained
as the continuation oW (L) and Wjs.(L.) by the orbits of the flow. Note that for the
billiard flow, by applying the continuation process, tangencies to the boundary and corner
points are bound to be encountered by some points belonging to the manifolds. Using local
cross sections as above, it is easy to see that the following result holds.
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Corollary 2.3 (Extensions of stable and unstable manifolds)Under the same assump-
tions as corollary 2.2, and assumirg, is hyperbolic, any piec&o of W*(Lg) or W*(Lg)
obtained as a time > 0 shift of some region i .(Lo) (respectively, a time < O shift of
some region i .(Lo)) is a P, or if no tangencies to the boundary are encountered in the
continuation procesg;”-limit of a family of surfacek. ¢ W"(L.) (resp. K. C W*(L,)).

The above persistence results apply only to non-singular periodic orbits; near the singular
periodic orbits, which are studied next, the billiard flow is non-smooth and the standard
theory is not valid.

3. Elliptic islands

Hereafter, consider the case of the so-caBedttering billiards. Scattering billiards are
billiards composed of concave arcs with the curvature bounded away from zero, and non-
zero angles between the arcs at the corner points. Then, the billiard flow is hyperbolic
whence all non-singular periodic orbits are hyperbolic. We, nevertheless, show that the
simple singularperiodic orbits give rise to stable (elliptic) periodic orbits in the Hamiltonian
systems limiting to the scattering billiards.

3.1. Structure near singular periodic orbits

The hyperbolic structure of the phase space of the scattering billiards plays a crucial role in
the understanding of the behaviour near a singular periodic orbit. For the billiardBmap

the presence of hyperbolic structure implies that for almost every gainte) in the phase
space there exist stable and unstable directi®fisand E%,, depending continuously oA.

The system of stable and unstable directions is invariant with respect to the linearized map:
dpBE*W = Efg(;‘,), which is uniformly expanding along the unstable direction and uniformly
contracting along the stable direction:iife E* (v € E®), then||dpBv|| > €7||v|| (resp.
[ldpBv|| < €*7||v]]) in a suitable norm; herer is the flight time fromP to BP, the
uniformity means that the value > 0 is independent oP (see details in [5]).

Equivalently, there is an invariant family of stable and unstable cones: the unstable
cone at a pointP is taken by the linearized mafy B into the unstable cone at the point
BP; the image is stretched in the unstable direction and shrinks in the stable direction.
Similar behaviour appears for the stable cone under backward iterations. There is an explicit
geometrical description of these cones for scattering billiards [36]. Consider a(point
in the phase space and a small curve passing through this point. Taking two points on this
curve defines two inward directed rays emanating from the billiard boundarysngsae
figure 4). If these rays intersect, then the tangent direction to this curve belongs to the stable
cone of(s, ¢); otherwise, it belongs to the unstable cone (in other words, the unstable cones
are given by d - d¢ > 0 and the stable cones by dd¢ < 0). Moreover, it can also be
shown that if the intersection of the rays with each other occurs before the first intersection
of the rays with the billiard boundary, then the tangent direction to the forward image of
the small curve under consideration belongs to the unstable cone of the imé&ge pf

It follows that the tangent to a line of singularity (the line composed of the points whose
trajectories are tangent to the billiard boundary) at any point lies in the stable cone, and the
tangent to any iteration of the singularity line by the billiard map lies in the corresponding
unstable cone. In particular, the intersections of the singularity lines with their images are
always transverse.

Utilizing these observations, we find the normal form of the first return map of the
billiard map near a simple singular periodic orbit. Consider a periodic drhitith the
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Figure 4. Hyperbolic structure—the stable and unstable cona¥.Geometrical interpretation
of stable/unstable directionsb)(Phase space structure.

corresponding sequence of collision poirgs;,¢;) (i = 0,...,n —1). P,;; = BP;
where P, = Py. Let P = Py belong to the singular set (S¢;] = n/2). Take a small
neighbourhoods of P and denote aX the line of singular points /.

Proposition 3.1. Given a simple singular periodic orbit as above, the local return map
near Py may be reduced to the form,

<
Il

v

v=£§0v—ymaxw,0) —u+---

wherev = 0 gives the singularity liney = 0 is its image, andé| > 2.

(3.1)

Proof. Consider the local structure i, near the singularity lin&. The line X divides
U into two parts,U, and U,; the orbits starting orU, (e.g. P§ in figure 5) do not hit
the boundary near; and approach it near the poist, the orbits starting o, (e.g. P,

in figure 5) have a nearly tangent collision with the boundary in a neighbourhoed of
Without loss of generality we assume thais locally a straight lings —so) +k (¢ —¢o) = 0,
wherek > 0 becausez must lie in the stable con& — sg)(¢ — ¢o) < 0, and thatU, is
given by (s — so) + k(¢ — ¢o) < 0 andU; by (s — so) + k(¢ — ¢o) > 0.

Considerthe first return mapB defined onU. The mapB equalsB,_; ... BB By
on U; and B,_1...B2By on U, where B; is a restriction of the billiard map on a small
neighbourhood ofP,. According to section 2.1.1B is a continuous map which loses
its smoothness or. Namely, the restrictionBy, of By on U, exhibits the square-root
singularity described in section 2.1.1 whereas the Bgp is regular and it can be continued
onto the wholeU as a smooth mapg,: erasing a small piece of the boundary containing
the tangency poind;, By, will simply be the billiard map fronU to a small neighbourhood
of P, (see the action 0By on P§ in figure 5). Obviously,Bo,X = B1Bg, X, therefore
the first return mapB is continuous. One may represent the nyas a superposition of
regular and singular maps:

B=RB".B®
where
B = B,_1...B2By,
and
id on U,

B® —
By, B1Bos on U,.
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'B(S) Py

Figure 5. Structure near singular periodic orbia)(Phase-space structure near singular periodic
orbit: 1234 is mapped onto’Z3'4'. (b) Action of billiard map near a singular segment of
trajectory.

The singular partB® : U — U may be obtained by inverted reflection near the tangency
point s; (see the action oB“ on P in figure 5). It is not too difficult to calculate that
B® is given by

S =S +kymaxsS +k®,0) + -
= —/maxS+kd,0+---

whereS = s — sg, ® = ¢ — ¢ are coordinates i/, and the dots stand for the quantities
infinitely small in comparison witl§, ® or /max(§ + k®, 0) as S, ® — 0.

The regular partB™ is, by definition, the first return map for the auxiliary billiard
obtained by pushing the boundary near the tangency ppgtightly aside from the trajectory
of L. The pointP is a fixed point forB™ (as well as for the mag). Since the auxiliary
billiard is still scattering, the poinP is a hyperbolic fixed point foB™. Moreover, the
unstable cones - ® > 0 must be mapped inside itself by the linearizationBs? at P.
If (Z; ZZ) is the corresponding linearization matrix, the last condition is equivalent
to the requirement that al;; are of the same sign. Recall thBt” is an area-preserving
diffeomorphism, so

b11b2o — b1obyr = 1.

Superposition ofB™ and B® gives, to leading order i§, ® and ./max(§ + k®, 0),
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the following formula for the magB:
S = b11S + b12® — (b12 — byik)/max(S + k®,0) + - - -

o= b21S 4 boo® — (bop — bork)y/max(S + kd,0) + - --

Provided inequalities (3.3) are satisfied, as proved in the lemma below, the normal form
(3.1) is obtained from the above expression by changing to the new coordinateghere

u is aligned with the singularity linev(oc S+k®) andv is aligned with its image. From the
calculation, it follows that the quantity is (b11+ b22), i.€. it is the trace of the linearization
matrix of the first return maB " of the auxiliary billiard about the periodic orbit. Since the
auxiliary billiard is scattering, its regular periodic orbits are hyperbolic, heépce 2. O

(3.2)

Lemma 3.1. The coefficient$;; in (3.2) obey the inequalities,
(b12 — b11k) (b22 — b21k) > O, |b12| < |b1alk, |b22| < |baalk. (3.3)

Proof. Since the imageBX of the singularity lineS + k® = 0 must lie in the unstable
coneS - ® > 0, (3.2) implies the first inequality in (3.3).

For a small piecé of a straight line through? which lies in the unstable cone, i.e. for
which the increase of is followed with the increase ap (see figure 5—imagine a line
going throughP{, Py, Pg) the image of N U, by By and the image of N U, by B1By both
lie to one side of the poinP, (or the points, when projected to the configuration plane).
Namely, these images both belong to the same half of the unstable céaeafresponding
to a definite sign ofs — s2). Since the linearization of each of the maRspreserves the
decomposition into the stable and unstable cones, it follows that the imalgbyoB is a
folded line with the vertex aP which dividesB! into two parts both belonging to the same
half of the unstable cone @#; i.e. § and® have the same sign ah( NU,) and B(INU;).

By (3.2), it is equivalent to the condition that the sign(bf, — b11k) is opposite to the sign
of b1, andby1 and the sign ofb.o — bo1k) is opposite to the sign df,; andby; (recall that
all b;; have the same sign). Thus, the second and third inequalities in (3.3) hold. O

Now, embed the billiard in a one-parameter family of scattering billidrds y) for
which all arcs depend smoothly on the parametewhile the corner points are held fixed,;
suppose the billiard with the simple singular periodic orbiis realized aty = 0. The
regular partB™ of the first return map ot/ depends smoothly op, hence its hyperbolic
fixed point P)E’) is also a smooth function of. The same is valid for the position of
the singularity lineX,. For agenericfamily of billiards, the parametrization by may
be chosen so that the distance betwé¥fi and X, is proportional toy (it is true if, for
instance, one changes the billiard boundary locally, near the tangencyspoinlty: such a
perturbation moves the singularity line but the mafy and the position of its fixed point
remain unchanged). Assume, with no loss of generality, H;jéte U, for y > 0 and that
P{" € U for y < 0. Therefore, by the definition a8, its fixed point is a fixed point of
B for y > 0, and its fixed point is imaginary when < 0.

For such a family of billiards, the normal form (3.1) of the first return nBais rewritten
as

N
Il

v

v=&(y+v—ymaxv,0) —u—+---.

This map looks similar to the #&hon map (though it has a singular nonlinearity).

(3.4)
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Proposition 3.2. Consider the map (3.4). For a small fixed neighbourh@bdf the origin,
let Q, be the set of all orbits oB, which never leavé/. Then there exist smajl* values
such thatQ, = ¢ fory = y~ < 0, and ify = y* > 0, then, is in one-to-one
correspondence with the set of all sequences composed of two symbplsr’ corresponds
to enteringU, and ‘s’ corresponds to entering/;.

Proof. Take a smalb > 0 and let the neighbourhodd be a rectanglé—5 < u < k8, —§ <
1

v < k8} wherex = 3(3|&] — 1) > O (recall that|¢| > 2). Lety* = (3 — £)8 > 0 and

Yy~ = —%5. Then, for sufficiently smalb, one may check that for the given choice bf

the map {3.4) takes the horizontal boundarie#/ofmarked 1 and 3 in figure 6) on a finite
distance ofU for all y € [y, y*]. The images of the vertical boundaries 2 and 4 which
intersect the singularity line, fold as indicated in figure 6: the segments 2a,4a are mapped to
2a’,4a’ and the segments 2b,4b are mapped to 2b’,4b’. The folded lines 2',4" may intersect
U but they lie on a finite distance of their pre-images (the boundaries 2 and 4) for all
y € [y~,y*]. Thus, the image ot/ by By has a specific shape of a sharp horseshoe.
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Changingy shifts the horseshoe along theaxis, so aty = y* the intersection of the
horseshoe withy consists of two distinct connected components (figut®)6(On each
component the mag, is smooth and hyperbolic. The statement regarding the one-to-one
correspondence to Bernoulli shift on two symbols follows as in the standard construction of
the horseshoe map [33, 26]. In particular, it implies that each of the two components has a
hyperbolic fixed point. Moreover, one of the fixed points has two positive multipliers and
the other two negative multipliers. On the other handy at ¥~ the intersection o3, U

with U is empty (figure 6)). O

Note the following three conclusions from the proof of the above proposition. First,
that there exisy* values such that fop* two hyperbolic fixed points exist and for- no
fixed points exist in the square regid@h near the intersection of the singularity line with
its image. Second, that* may be chosen arbitrarily small (by taking small&). Third,
no fixed points can pass through the boundary/adsy varies fromy~ to y ™ because the
image of the horizontal boundaries of never intersects the boundary @fand the image
of the vertical boundarie& may intersect only the horizontal parts of the boundary.

Now, take atwo-parameterfamily of smooth Hamiltonian flows:,(-; €, y) which
approach, uniformly with respect tp, the family of billiard flowsb,(-; y) ase — 0,
as in assumptioi,. Note that for the billiard flow, the structure of the Poireeanap of an
arbitrary small cross sectian through aninner point on the simple singular periodic orbit
L is absolutely the same as described above (see section 2.1). Dued8-theseness of
the billiard flow and the smooth Hamiltonian flow it follows that fersufficiently small
the corresponding PoindamapIl,, for the Hamiltonian system transforms a rectangle
U’ C o (analogous to the rectanglé) to a horseshoe shape (which is now smooth because
the Hamiltonian system is smooth at all- 0). At y = y~ the intersectiorll,, U' N U’ is
empty for smalle whencell.,- has no fixed points i/’. Moreover, no fixed points can
pass through the boundary bf asy varies fromy~ to y* because the fixed points of the
first return billiard map stay a finite distance from the boundaryofor all y € [y, y*].

The two fixed points of the Poindamap of the billiard flow which exist at = y*
are hyperbolic and do not belong to the singularity line. Thus, by corollary 2.2, each of
these hyperbolic fixed points exists for the midp,+ at all sufficiently smalle, moreover
the multipliers of one of the fixed points are negative as for the billiard. Now, fixing
any e small enough, a fixed point dfl.,.+ changes continuously gs decreases, until it
merges with some other fixed point (as we mentioned, the fixed point must disappear before
y =y~ and it cannot leav®&’ via crossing the boundary). Since fixed points may disappear
only when their multipliers are equal to 1, it follows that the fixed point with the negative
multipliers aty = y ™ must become elliptic for some interval pfvalues before the moment
of disappearance. Thus we have proved the following.

Proposition 3.3. Consider a one-parameter family of scattering billiards which has a simple
singular periodic orbitL for the parameter valug = 0. Consider a two-parameter family
of C”", r > 1 smooth Hamiltonian flows, (e, y) satisfyingA; uniformly iny. Then, for any
smalle there exists an interval gf on which elliptic periodic orbits exist in the energy level
of L. Ase — 0 these intervals accumulate to zero and the elliptic periodic orbits limit to
the singular periodic orbit.

In a generic family of sufficiently smooth ¢",r > 5 [29]) two-degrees-of-freedom
Hamiltonian systems non-resonant elliptic periodic orbits are stable, and in particular they
are surrounded by KAM tori, creating the so-called elliptic islands.
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Theorem 1. Consider a scattering billiard which has a simple singular periodic orbit
Then, there exists a one parameter familyt » > 5 smooth Hamiltonian flows; (¢),
which r-converges to the billiard flow as — 0, and for which there exists a sequence of
intervals ofe converging to 0 where elliptic islands exist.

Proof. Embed the billiard in a one-parameter family of scattering billiards as in the above
proof. Consider a two-parameter family of Hamiltonian floinyge, ) which r-converge

to the family of billiards ass — 0, uniformly iny. Such families exist by lemma 2.1. By
proposition 3.3 there exists a path y (¢)) which intersects regions where elliptic periodic
orbits exist. Since, by lemma 2.2, (¢, y) may always be put in a general position, its
elliptic periodic orbits are generic and hence stable. O

In fact, it is desirable to state the above fatural Hamiltonian systemgsystems of the
form (2.5)). For that, we need to show that some coefficient in the Birkhoff normal form is
non-zero for generic potentials. This obviously seems to be correct (otherwise non-resonant
elliptic periodic orbits of natural systems would not be generically stable). However, we
failed to find the corresponding reference.

3.2. Singular homoclinic orbits

Consider anon-singular hyperbolic periodic orbitLy of the billiard flow. Suppose, its
stable and unstable manifolds intersect along some brbithis is ahomoclinicorbit; i.e.

it asymptoted.o exponentially ag — +oo. Assume thar" is simple singularwhich means
that its trajectory has one point of tangency with the billiard’s boundary (see fighje 1(

Let P(s, ¢) and P(5, ) be collision points orl™: P is the last before the tangency
and P is the first after the tangency. By definitioR,= B?P whereB is the billiard map.
Consider, in thes, ¢) plane, the local segmefit* of the unstable manifold afy to which
P belongs. Since the tangent " at P belongs to the unstable cone, it must intersect
the singularity line transversely d&. Thus, as explained in the proof of lemma 3.1, the
image of W* in a neighbourhood of by the billiard map folds with a sharp square root
singularity atP, see figure 7. Now, the poinP belongs to the stable manifold as well.
Since the tangent t&* belongs to the stable cone, it follows that the folded imag&éf
lies to one side of¥*, so a sharp homoclinic tangency is create®aas shown in figure 7.

In a generic family of scattering billiards (as in section 3.1), two transverse homoclinic
intersections appear at > 0 and none aty < 0. For the corresponding two-parameter
Hamiltonian family, arguments analogous to those in the proof of proposition 3.3 show that
generically, for anye sufficiently small there exists*(¢) for which a quadratic homoclinic
tangency occurs.

Recall that the occurrence of homoclinic tangencies is a well known mechanism for
the creation of elliptic islands [28] for smooth Hamiltonian flows. Thus, using the same
arguments as in theorem 1 we have established the following.

Theorem 2. If a scattering billiard has a simple singular homoclinic orbit then there exists
a one-parameter family af”, » > 5 smooth Hamiltonian flows, (¢) which r-converges to
the billiard flow ase — 0 and for which there exists a sequence of intervalg ohlues

converging to zero for which elliptic islands exist in the energy levél.of

The period of the elliptic periodic orbits mentioned in theorem 2 goes to infinity as
€ — 0. In fact, in the two-parameter family of smooth Hamiltonians elliptic periodic orbits
of bounded period limit, as — 0, to singular periodic orbits correspondingpte# 0. Thus,
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Figure 7. Bifurcation of singular homoclinic orbit.a) y = 0 nearX, (b) y = 0 nearX’s
image, €) y >0, (d) ¥ <0, nearX’s image, ® homoclinic points.

theorems 1 and 2 are very much related. Indeed, like the appearance of stable periodic orbits
near a homoclinic tangency is proved in smooth situations (see [14, 28, 15]), one may show
thatin a generic family of scattering billiards having a sharp homoclinic tangengy at 0
there is a sequence of valuesyoficcumulating aty = 0 for which singular periodic orbits
exist.

Now the reference to theorem 1 gives another proof of theorem 2.

4. On the genericity of the elliptic islands creation

It is well known [22, 4, 5] that for scattering billiards the hyperbolic non-singular periodic
orbits are dense in the phase space. The stable/unstable manifolds of such orbits cover the
phase space densely and the orbits of their homoclinic intersections also form a dense set.

It follows that the periodic orbits and the homoclinic orbits get arbitrarily close to
the singularity set. It seems thus intuitively clear that for any scattering billiard very
small smooth perturbations may be applied to place a specific periodic orbit or a specific
homoclinic orbit exactly on the singularity line, so that theorem 1 and 2 may be applied.
Proving these intuitive statements turns out to be quite a delicate issue, thus we formulate
these as conjectures.

Conjecture 1. Any scattering billiard may be slightly perturbed to a scattering billiard for
which a singular (tangent) periodic orbit exists.

Conjecture 2. Any scattering billiard may be slightly perturbed to a scattering billiard for
which there exists a non-singular hyperbolic periodic orbit which has a singular homoclinic
orbit.
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Figure 8. Billiard between four disks.

4.1. Numerically produced singular homoclinic orbits

To examine the appearance of singular homoclinic orbits we consider the billiard in a domain
bounded by four symmetrical circles

2 1\? 2 1, 2 2
x*+|yx—) =R5 xEx—=)Y+y"=R
14 14

where R? = 1+ (1 — %)2. The quantityy (which is, approximately, the curvature of

the circles) serves as the free parameter for unfolding the singularity. We found explicitly
the corresponding billiard map, and using DSTOOL package [12], we found numerically
hyperbolic periodic orbits of this mapping and their stable and unstable manifolds. The
billiard map is found on the fundamental domain of the billiard—a triangular region cut
by an arc as shown in figure 8. We find the return map to the slanted side of the triangle,
which is parametrized by, the horizontal coordinate, and lgy the outgoing angle to the
normal vector(—1, —1), see figure 8. We choose an arbitrary valueyadind the simplest
hyperbolic non-singular periodic orbit, as shown in the figure (the fixed point of the return
map to the slanted side of the reduced domain). Then, we construct the stable and unstable
manifolds for this periodic orbit. We examine how these manifolds vary by small variation

of y, until we find a value of/ for which a singular homoclinic orbit appears. The success
(see figure 9 and 10) of the very crude search for such a delicate phenomena, near every
y value we have chosen, supports conjecture 2 regarding the density of systems for which
such orbits exist. In fact we have found, by such a searchpeari «0.05,i =1, ..., 10,

eleven sharp homoclinics to this specific periodic orbityat 0.0837, 0.10165, 0.1018,
0.153, 0.2077, 0.2552, 0.292 45, 0.3329, 0.3832, 0.4143, 0.4692).



Elliptic islands appearing in near-ergodic flows 591

sin(o)
I

Figure 9. Numerically produced sharp homoclinics.

5. Conclusion

The main result of this paper is that we have established that if a scattering billiard (we
use the particular hyperbolic structure associated with such billiards) has a singular periodic
orbit or a singular homoclinic orbit, then arbitrarily close to it smooth Hamiltonian flows
may possess elliptic islands, hence these are not ergodic (theorem 1 and 2). Moreover, we
have conjectured, and have provided numerical support to these conjectures, that billiards
with singular periodic orbits and singular homoclinic orbits are dense among scattering
billiards (conjectures 1 and 2 of section 4). If these conjectures are correct, then our results
will imply that arbitrarily close to any scattering billiard there exists a family of non-ergodic
smooth Hamiltonian flows.

Such statements imply thargodicity and mixing results concerning two-dimensional
non-smooth systems cannot be directly applied to the smooth dynamics they Wbdgier
the same holds for higher-dimensional systems, e.g. three-dimensional billiards or multi-
particle billiards, is yet to be studied.

On the other hand, even though stability islands may appear in smooth billiard-like
problems, the size of an individual island is expected to be very small. Thus, without
doubt, while the smooth flow may be non-ergodic, it will ‘'seem’ to be ergodic for a very
long time. Statistics (e.g. correlation functions) which are based upon finite-time realizations
may appear to behave as in the scattering billiards (e.g. fall off quasi-exponentially [7]).
Whether longer realizations will reveal very different statistical properties, depends on the
number of elliptic islands, the total area they cover in the phase space and in the parameter
space, and on the ‘typical’ period of the islands. Thus, estimates of the islands sizes,
their periods, and of the real potential steepness (the ‘physicalre necessary to supply
estimates on the time scale for which the mixing property will appear to hold.

We may try to estimate the periodicity of the elliptic periodic orbits of smooth flows
approaching generic scattering billiards, by very naive arguments. Indeed, since stable
periodic orbits are generated from singular periodic orbits of the billiard, one may expect (if
conjecture 1 is correct) that the least period of stable periodic orbits of a smooth Hamiltonian
system which ise-close to the billiard is of the order of the Poinéareturn time to an
e-neighbourhood of the singularity surface for the billiard flow. Note that the billiard flow
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Figure 10. Magnification near numerically produced

sharp homoclinics. & y = 0.28 below sharp
tangency, lf) y = 0.292 45 at sharp tangencyc)(y =
S 0.31 above sharp tangency.

is a hyperbolic system; therefore, the return time in the billiard and, correspondingly, the
typical period of the stable periodic motions in its smooth approximation must, essentially,
belogarithmicin € and not of a power-law type. Namely, very smallalues, corresponding

to very steep potentials, may still produce stability islands which are observable on physical
timescales.
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Appendix A. Class of smooth Hamiltonians

We prove the following.
Theorem 3. Consider the Hamiltonian systems associated with,
2 2
Py

p
H = 7+7’V+V(x,y; &) + He(x, y, px, py; €). (A1)

If the potentialV(x, y; ¢) satisfies conditions-IV stated below, andi.(x, y, p., py; €)
tends to zero as — 0 uniformly in some neighbourhood 6f along with all its derivatives,
then the Hamiltonian flow (A.1}-converges to the billiard flow iD.

Note that, in particularH,, which is introduced for greater genericity, may be taken to
be identically zero.

A.1. Conditiond—IV on V(x, y; &)

Condition I. For any compact regiolk C D the potentialV (x, y; ¢) diminishes along with
all its derivatives ag — O:

Ei”lOHV(x, ¥ Oliyekyller = 0. (A2)

The growth of the potential to infinity across the boundary is a more delicate issue. We
assume thav is evaluated along the level sets of sofimte function near the boundary.
Namely, suppose that in a neighbourhood(BhC) (C is the set of corner points) there
existsa pattern functionQ(x, y; ) which is C"* with respect to(x, y) and it depends
continuously ore (in C"*-topology) ats > 0 (it has, along with all derivatives, a proper
limit as ¢ — 0). Assume that:

Condition lla. The billiard boundary is composed of level lines@€x, y; 0):

0(x,y; ¢ = 0)|xyes, = Q; = constant (A.3)

For each boundary componesit, for Q close toQ;, let us definea barrier function
W;(Q; ¢) which does not depend explicitly aix, y) and assume that:

Condition IIb. There exists a small neighbourhodd of the arcsS; in which
V(x,y: &)lwypen = Wi(Q(x, y; €); &) (A4)

and

Condition llc. VV does not vanish in a finite neighbourhood of the boundary arcs, thus:

VQ|(x,y)eNi ?é 0 (A5)
and

d

agVi(@:e) £0 (A-6)

Now, the rapid growth of the potential across the boundary may be described in terms
of the barrier functiong¥; alone. Choose any of the ars and henceforth suppress the
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index i. Without loss of generality assum@ = 0 on S. By (A.5), the pattern function

Q is monotonically increasing across and assumeg) is positive insideD near S and
negative outside (otherwise, change inequalities in (A.7) to the opposite ones). Assume the
following.

Condition Ill. Ase — +0 the barrier function increases from zero to infinity across the
boundarys;:
. +o00 0<0
lim W(Q;¢) = A.7
m, W(Q: ) Io 0 > 0. (A7)

To formulate the final condition on the potential, note that by (A.6) the valug ofay
be considered as a function Bf (and¢) near the boundary arc. At small a finite change
in W corresponds to a small changegn(by IIl ). Therefore, the following condition makes
sense.

Condition IV. Ase — 40, for any finite, strictly positivé¥; and W,, the functionQ (W; &)
tends to zero uniformly on the intervidV,, W] along with all its (» + 1) derivatives.

A few remarks are now in order.

We study the limiting behaviour (as — +0) of the smooth Hamiltonian system
(A.1) in a neighbourhood of a given billiard orbit, thus nedfidx@d non-zero energy level
H = constant. The conservation of energy implies that all trajectories stay in the region
W < H* for anye. It follows, in particular, that the symbaloo in (A.7) may be replaced
by any value greater thaH*.

Clearly, if the potentialV satisfies conditiorl, the particle moves in the interior of
D with essentially constant velocity along a straight line until it reaches a thin layer near
the boundaryS where the potential runs from small to very large values (the smaller the
value of ¢, the thinner the boundary layer). Byl , if the particle enters the layer near
an interior point of some boundary arc (corner points are not considered in this paper), it
is either reflected, exiting the boundary layer near the point where it entered, or it might,
in principle, stick into the layer, travelling along the boundary far away from the entrance
point. Conditionsll formalize the natural requirement that the reaction force must be
normal to the boundary, so they guarantee that the reflection will be of the right character,
approximately preserving the tangential componeni (of the momentum and changing
the sign of the normal componenp,). However, conditiond—lIl are insufficient for
preventing the existence of non-reflecting trajectories; adding conditiomwith r = 1
guarantees that the travel distance along the boundary vanishes asymptotically.

Moreover, conditionll guarantees a correct reflection law only in tG&-topology
and not in theC"-topology. To explain this statement, take the same initial conditions
(x0, Yo, pxo, pyo) for an orbit of the Hamiltonian system (A.1) and for a billiard orbit.
Consider a time interval for which the billiard orbit collides with the boundary only
once, at some pointx., y.) (see figure A.1). Here, the incidence anglé is the angle
between the vectotxo — x., yo — y.) and the inward normal t§ at the point(x., y.); the
reflection anglep® is the angle between the vectos, — x., y; — y.) and the normal, where
(x;, y;) is the point reached by the billiard trajectory at the timeDefine the incidence
and reflection angles for the trajectory of the Hamiltonian system in the same way where
(xc, yc) is set by the billiard trajectory and; (¢), y;(¢)) is defined by the Hamiltonian flow
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Figure A.1. Reflection by Hamiltonian flow.

(see figure A.1). We expect the trajectory of the Hamiltonian system to be close to the
billiard trajectory; in particular, it should demonstrate a correct reflection law
¢"(e) +¢*(e) ~ 0

for sufficiently smalls. Note, however, thaip™ +¢°") is a function of the initial conditions,
and to satisfy assumptiok, this function must be close to zeatong with all the derivatives

Conditionsl-IV are in fact quite general; for the pattern function, consider any smooth
function O depending on two variablegc, y). Corners are created at the singularities
of the level sets and at the points of inflection. For the barrier funcha, ¢) many
‘classical’ monotonically decreasing functions satisfyV , see the list (2.6). Moreover,
one may easily produce more examples as there is no restriction on the growth rate: given
any potentialV satisfying conditions—IV the potentiak/ (V) also satisfies these conditions
providedy is a smooth, non-singular, strictly monotonic functionVfe [0, co) such that
¥ (0) =0, ¥ (c0) = oo0.

Proof of theorem 3. We should prove that assumptidy is satisfied for any inner point
go whose timer billiard trajectory does not enter the corner points. It is enough to consider
the case where the billiard trajectory hits the boundary only once on the time interval
under consideration. The two different cases of tangent and non-tangent trajectories are
considered.

We use the ternthe smoothorbit of go for the orbit of the flow defined by the
Hamiltonian (A.1). Since the Hamiltonian flow i€"-close to the billiard flow outside
an arbitrarily small boundary layer (by virtue bf, we only need to consider the behaviour
of the smooth orbit in the boundary layd; = {|Q(x, y; &) — Q(x., y.; €)| < 8} where
(x¢, o) is the collision point for the billiard trajectory afp. The quantitys slowly tends
to zero asx — +0.

For small ¢, the smooth trajectory enterfys at some timer"(s,¢) at a point
(x"(8,¢), y"(8,¢)) close to (x.,y) with the velocity (pI'(s,¢), p{'(3, &) close to
(pxo» Pyo). We denote the moment of exiting the boundary layer:¥%s, ) and the
corresponding phase point is denotedg84(s, £). Our aim is to prove that in the limit
lims_olim._o in the C” (resp. C°) topology for the non-tangent (resp. tangent) case,

(xout’ yout’ tout) _ (xin’ yin’ tin) -0
(PI% + (P2 — (P = (P)* — 0 (A.8)
(p)c()ut_ an)Qy(xin, yin) _ (p;)ut_ piyn)QX(xin, yin) -0
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which coincides with the billiard reflection law & — 0. The second line of (A.8) is
clearly correct; since@®"' = Q™", and H, — 0 uniformly in D, the conservation of energy
implies that the total momentum is asymptotically conserved.

Move the origin of the coordinate systemiinto the reflection point, s@x., y.) = (0, 0);
without loss of generality assum@ = 0 at the origin. By conditiorlla, the boundary
arc passing through the point of reflection @(x, y;0) = 0. Let the interior of D
correspond to positive values @ (x, y; 0). Let the x-axis be tangent to the level line
Q(x, y; &) = 0 and they-axis be inward normal to it. Thus, the partial derivativ@s and

Q, satisfy
Oxl0e =0, Oyl =1 (A.9)
By (A.1), near the boundary the equations of motion have the form,
x = px+0(1) pr = —W1(Q)Q, +0(1)
y = py+0(1) py =—-W1(Q)Q, +0(1)

where the ¢1) terms correspond to the partial derivativesmf(x, y, p., py; €) which are
assumed to be uniformly small.

(A.10)

Lemma A.1l. There existg (8, ¢) which diminishes to zero as— 0, ¢ — 0 such that

ot _gin ¢ (A.11)
and for anyr € [, o]
x(1) = x™ 4+ O(¥), y(t) = y" + O®) (A12)
pe(t) = p" + O(E). (A.13)
2(t) 2(¢im)
pYT W), y(1)): €) = pyT + WS €) + O). (A.14)

Proof. First we prove that (A.12)—(A.14) are valid for anye [¢", /" + &] for any &
(provided ¢ > o(1) terms coming fromH,). Indeed, (A.12) follows since and y are
uniformly bounded by the energy constraint. From (A.9) and (A.12) it follows that

0.(x,y;e) = 0(8), Oy(x,y;8) =14+ 0(). (A.15)

atr e [+, 1" + £]. Divide this time interval into two regionsi. where|W’(Q)| < 1 and
I. where|W'(Q)| > 1. In I, the change irp, is obviously Q&). In I, sinceQ, # 0
(see (A.15)),p, does not vanish, hengg. may be divided top, in (A.10):

dp. _ 0
dpy Qy
By (A.15), this implies that the change jm. is O(¢) times the total variation irp,. The
latter is uniformly bounded; indeeg, is a uniformly bounded smooth function of time,
the time interval under consideration is finite, and the derivativés bounded from below.
Thus, (A.13) is proved. The approximate conservation law (A.14) follows from (A.13) and
the exact conservation of enerdy.
To complete the proof, we take > /8, and prove that for sufficiently smadl (for
which (A.12)—(A.14) are satisfied), the trajectory which enters the boundary léyeat
¢t = 1™ must exit it before™ + &.

+ o(1). (A.16)
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Consider first the case of nearly tangent trajectory, Wb@?eﬁx 0. By (A.14), since
inside N; the value of W(Q) is bigger thanW™ = W ($), it follows that Ipy(@®)| =
|p‘;‘| + O(/&). Thus,|p,| stays small unless the trajectory leavés or + — " becomes
large. For positive energy level, the smallnes:i;d\ﬂ implies that|pj(“| > 0. By (A.13)
it follows that p.(r) is bounded away from zero, on the same time interval. Hence, the
trajectory is close to a straight line parallel to thexis.

We assume the curvature of the boundary arcs is non-zer@ j,e# 0. Thus, a straight
line must exit the boundary layeép| < § at a distance Q/3) from the entrance point.
Since|p, (¢)| is bounded away from zero, the time spent by the nearly tangent trajectory in
the boundary layer is?"t — /" = O(/3), i.e. it is indeed less than the chosen

Now consider the case of non-tangent trajectory, so;bgTaB, ¢) is bounded away from
zero (it is negative). Since the value Bf" = W°" = W(Q = §) vanishes as — +0, it
follows from (A.14) that the normal momentum (¢) stays bounded away from zero unless
the potentialW (Q) reaches some finite value.

Therefore, if we take some sufficiently small and consider the patv® of the
boundary layerNs which corresponds temall values of W: W(Q;e) < v, then the
value Of%Q(x,y) = px Q. + p,0, is bounded away from zero iWV® (becauseQ,
is small andp, is non-zero). Thus, the trajectory entering” must approach the inner
part N@ : W(Q;e) > v at time which is proportional to the width af® (it is 0(9)).
Moreover, if the trajectory leaved® after some time, it must have positiys, hence,
by the same arguments, it must leave the whole boundary fdyafter an additional time
of orders. It follows that r°'t — " = O(8)+the time spent infN®@. The latter, in turn,
vanishes as — 0. Indeed, sincép,| is bounded from above, this time must be bounded
by constantx ((minye W' (Q))™1) (see (A.10)). Now note that iv® the value of the
potential is bounded away from zero (and it is bounded from above by the initial value of
H) whence, according to conditidv, W/ (Q)(= Q' (W)™ 1) — oo ase — 0.

Thus, we have shown that as— 0, the total collision time is @) in the non-tangent
case. This completes the lemma. O

This lemma proves th€°-version of the theorem (indeed, cf (A.11)—(A.14) with (A.8)
and note that in our coordinate fran@®. — 0 as(x, y) — (x., y.)). Thus, it remains to
prove theC”-convergence for the non-tangent case.

As in the lemma above we divid¥; into two partsN® : W < v andN® : W > v.
There is a freedom in the choice ofand we consider the limit lign, g lim,_qlim._o.

In N@, the value ofQ is non-zero. Thus, we divide the equations of motion (A.10) to

0:

dx DPx dpx , Qx

_ = - 1 — =-W _ 1

a0 = it Oupr +0(1) 40 (Q) 0pt+ Oy +0(1)

dy Py dp, / o

Y__ o on W _wio—Er  toa A17
dQ prx + QyPy 0( ) dQ (Q) prx + Qypy O( ) ( )

dr

1
B
a0~ Ot oo, O
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or, in the integral form,

Q2 0>
x(Qz)—x(Q1)=/Q X do y(Qz)—y(Q1)=/Q Y dQ

W(Q2) 0>

Pe(Q2) — pe(Q) = —/ Py AW (Q) +/ P1dQ

WVE’?SZ) 52 (A'18)
py(Q2) — py(Q1) = —/ P>1dW(Q) +/ P dQ

W(Q1) 01

02
t(Q2) —t(Q1) = / Tdo
01

where X, Y, P;;, T denote, schematically, some functions ©f, y, p., p) which are
uniformly bounded along with all derivatives (see (A.17), the boundedness follows since
0 = Q.px + Q,p, is bounded away from zero iND).

In the region under consideration, the changé¥ins bounded by the smail and the
change inQ is bounded by the smail Thus, the integrals in the right-hand side are small.
It follows (applying, say, the successive approximation method) that-asO, v — 0, the
Poincaé map fromQ = Q; to Q = Q» which is found as the solution of (A.18), limits to
the identical map, along with all derivatives with respect to initial conditions.

Thus, only the regioV® gives a non-trivial contribution to the Poinéamap defined
by the Hamiltonian flow. It is convenient to evaluate the Poiacarap inN®? for the
cross section in the phase space defined by fixing the absolute vajuerather than the
corresponding value oV (by (A.14), it does not make a great difference).

In N@, ase — 0, the value of the potential is bounded away from zero and infinity
(v < W < H). Thus, according to conditiolVV, the value of the pattern functio@ may
be considered as a function of the value of the pote@iak Q(W; ¢) and this function is
uniformly small along with all derivatives.

In particular, W' (Q) = Q'(W)~! is bounded away from zero. Thus, we may divide the
equations of motion (A.10) tcé% py and takep, as a new time variable. We obtain

dx s Px dp. O«

ap Q'(W) 0, +0(1) i "0, +0(1). (A.19)
Here 0, and Q, are known functions of andy and the value of is uniquely determined
by the values ofc and Q (since Q, # 0). The value ofQ is considered as the function of
the potentialW and the value oW is found from the conservation of energy:

W =H—3(p+p})— H, (A.20)

Thus, equations (A.19) and (A.20) are self-consistent and define the orbit completely.
According to conditionlV, equations (A.19) have the following system as thelimit
ase — +0:

dx dp, O,
0 p 0

dpy dpy 0,
The solution of this system is th€"-limit of the solution of (A.19) (because the change
in py—i.e. the interval of integration—is finite). This, in fact, finishes the proof of the
theorem, because the solution of (A.21) gives exact billiard reflection law: by the first
equation,x is constant whence® = x" = x. and the same is true for and ¢, and
plugging (x, y) = (x™, y") in the right-hand side of the second equation gives the last
equation of (A.8). O

—low.y:0=0- (A.21)
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