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Universal properties of chaotic transport in the presence of diffusion
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The combined, finite time effects of molecular diffusion and chaotic advection on a finite
distribution of scalar are studied in the context of time periodic, recirculating flows with variable
stirring frequency. Comparison of two disparate frequencies with identical advective fluxes
indicates that diffusive effects are enhanced for slower oscillations. By examining the geometry of
the chaotic advection in both high and low frequency limits, the flux function and the width of the
stochastic zone are found to have a universal frequency dependence for a broad class of flows.
Furthermore, such systems possess an adiabatic transport mechanism which results in the
establishment of a ‘‘Lagrangian steady state,’’ where only the asymptotically invariant core remains
after a single advective cycle. At higher frequencies, transport due to chaotic advection is confined
to exchange along the perimeter of the recirculating region. The effects of molecular diffusion on
the total transport are different in these two cases and it is argued and demonstrated numerically that
increasing the diffusion coefficient~in some prescribed range! leads to a dramatic increase in the
transport only for low frequency stirring. The frequency dependence of the total, long time transport
of a limited amount of scalar is more involved since faster stirring leads to smaller invariant core
sizes. © 1999 American Institute of Physics.@S1070-6631~99!04308-1#
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I. INTRODUCTION
The study of the transport of passive scalars by a gi

flow field appears in technological, geophysical, and en
ronmental applications and has attracted much attention f
diverse academic communities.1–4 We investigate the com
bined effects of chaotic advection and molecular diffusion
the finite time transport of a fixed initial distribution of sc
lar. We seek and find universal properties of the freque
dependence of such transport in a broad class of time p
odic flows. The universality appears by examining chan
in the invariant manifold geometry5,6 in the well understood
limits of slow, adiabatic flows7–9 and fast oscillating
flows.10,11 Such knowledge determines how, in general,
transport properties of the advection diffusion equationmust
change as the flow frequency changes.

The transport of scalars is an inherently complex pr
lem; solutions depend intrinsically on the specific spatial a
temporal variation of the~typically! nonlinear velocity field
and on the nature of the initial value distribution. Moreov
solutions exhibit different behavior on different time scale
Throughout the large body of literature, two distinct a
proaches to this problem can be identified.

Direct studies of the advection diffusion equation ha
been successfully conducted in the limit of long time a
large scales, for which an effective diffusion equation for t
averaged, large scale concentration field may
constructed,12–16 see the extended review by Majda a
Kramer.17 This effective diffusion equation has, in general
nonisotropic diffusivity tensor and it has been establish
2041070-6631/99/11(8)/2044/14/$15.00
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that the existence of underlying, unbounded Lagrangian
jectories in some directions produces a singular depende
of the effective diffusion tensor on the Pe´clet number in that
direction.13,14,16This mechanism is valid and intimately con
nected with the Lagrangian phase space structure when
flow is time periodic or when it belongs to a certain family
three-dimensional vector fields.15,18 For special flows~e.g.,
spatially linear velocity fields17 and shear flows17,19! explicit
solutions to the advection diffusion equation may be co
structed which clearly demonstrate nontrivial transitions
the diffusive, large scale, long time limit as well as nontriv
dependence of the enhanced diffusivity on the flow para
eters. In particular, when these spatially-simple flow fie
have periodic time dependence the enhanced diffusivity m
decay with the flow’s temporal frequency in some cases,
may have nonmonotonic dependence on the frequenc
other cases.17,19 A crucial component in this analysis is th
ability to solve, by quadratures, the nondiffusive particle m
tion under the flow. Asymptotic solutions of the advectio
diffusion equation for relatively simple but nonlinear rec
culating flows are highly nontrivial even for steady veloci
fields.20–22

The second line of approach, commonly called ‘‘chao
advection,’’ has concentrated mainly on the nondiffusi
transport of passive scalars in spatially nonlinear flows w
relatively simple time dependence. The recognition that
variant manifolds organize Lagrangian particle motion
time periodic flows5 has led not only to new understandin
of a variety of flow visualizations but also to a precise ge
4 © 1999 American Institute of Physics
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2045Phys. Fluids, Vol. 11, No. 8, August 1999 Universal properties of chaotic transport
metric template for computing particle flux and transpo
This realization is one of the backbones of our current wo
Recent studies have demonstrated that analogous Lagra
‘‘manifolds’’ organize particle motions in finite time, aper
odic flows, provided a dominant hyperbolic structure exi
for a prescribed time.23 Furthermore, several studies inclu
ing non-conservative effects such as diffusion, weakly-ac
scalars, and chemical reactions have demonstrated tha
invariant manifolds continue to provide a geometric templ
which organizes the evolution of these fields.4,24–28

Typically, analytic approaches to chaotic advection b
gin by considering a velocity field of the form

u5u0~x,y!1Au1~x,y,vt !

in one of two limits. The small perturbation regimeA!1
with arbitrary ~yet not too small! frequency is studied using
the Melnikov integral technique to compute the flux. Alte
nately, the limit of smallv may be studied for arbitraryA
using adiabatic theory.9,29 In the majority of problems, the
flux dependence on the parameters is found analytic
while transport quantities~e.g., pair separation, accumulativ
flux, or stochastic zone size5,30–32! are determined numeri
cally for fixed sets of parameters.33–35 Here we show that
such results compromise part of a universal dependenc
the flux and the size of the chaotic zone on the frequenc
the velocity field.

A crucial component in our analysis and arguments i
thorough understanding of the transport process in the
idly oscillating10,11,36and adiabatic7,9 limits, and our under-
standing of transient transport and its dependence on sec
ary intersections.6 While our ideas are developed in th
context of a time-periodicopen flow, the results generalize t
the more complex reality of both open and closed flows w
certain aperiodic time dependence. In particular, as
present results concern transport on finite time scales, fl
possessing transient hyperbolic structures modified by t
dependence with some dominant frequency should prod
similar behavior.

To demonstrate our claims, we construct a spec
model—the stirrers flow—which, as explained below, is
good toy model for understanding transport in more com
cated~realistic! fluid flows. Furthermore, this model is ex
perimentally realizable, corresponds to a Navier–Stokes
lution and is simple to understand from both a flu
dynamical and dynamical systems point of view. The stirr
flow corresponds to a fixed vortex couplet in a steady stre
The couplet is modulated by two far field couplets who
circulation varies periodically in time. This is an example
an open, time periodicflow. Similar geometry appears in
variety of applications and has been considered previous
a dynamical system context.5,24,37It has been suggested th
transport by a couplet is of prime importance in general fl
flows as couplets advecting with their own induced veloc
act to transport fluid particles over large distances.20,35,38Fur-
thermore, the flow’s dependence on the free-stream velo
provides a two dimensional analogue to the flow induced
an axis-symmetric vortex ring;39,40 the change in the stream
line geometry which occurs when the core-area of the vo
Downloaded 11 Jul 2007 to 132.77.4.43. Redistribution subject to AIP l
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ring becomes smaller than some critical value is analogou
increasing the free-stream velocity beyond its critical valu

The effect of molecular diffusivity on chaotic advectio
has been studied in a few works. It was noted early on t
even vanishingly small diffusion coefficients have a sign
cant effect on the transport as chaotic flows create fine s
tions in the scalar field on exponentially fast time scales.41,42

This influence is distinct from the regular diffusion proces
chaotic advection in the presence of diffusion leads first
mixing of large scales, then to the creation of small scales
the concentration field and only then to diffusive smoothin4

The dependence of these effects on the Pe´clet number has
been studied in both open and closed flows.43–45

The paper is ordered as follows: in Sec. II we descr
the general assumptions and then describe the stirrers fl
In Sec. III we examine the frequency dependence of
transport properties. We establish two new results in t
context; first, we define the flux function~which is propor-
tional to the magnitude of the maximum of the Melniko
function in the near integrable case!, and prove, under som
quite general conditions, that it is continuous in the fr
quency, it is linear in the frequency for small frequencie
and it decays exponentially for large frequencies. Therefo
it attains an extremal value for some finite frequency. S
ond, we prove that in the adiabatic limit the conservat
stirring process is essentially complete after one period of
flow. In Sec. IV we argue that diffusion is enhanced by t
geometric structure of the slow chaotic advection and t
the total transport is greater in this case. We predict the~fi-
nite! time scale on which this phenomena will be observ
and demonstrate this numerically. The paper concludes w
a discussion and summary in Sec. V.

II. GENERAL FORMULATION AND MODEL

A. General assumptions and equations of motion

Consider an initial scalar distribution concentrated in t
recirculation area associated with a vortex structure and
note by c(x,y,t) this concentration field. The nondimen
sional advection diffusion equation,

ct1u.¹c5
1

Pe
Dc ~1!

describes the evolution of the passive fieldc carried by a
~given! velocity fieldu which scales withU. The scalar dif-
fuses with a diffusion coefficientD. The nondimensiona
parameter Pe5UL/D is the Pe´clet number which measure
the relative strength of advection and diffusion on a char
teristic length scaleL.Péclet numbers for the transport o
temperature range fromO(10628) in large scale, geophysica
flows to O(10223) for typical laboratory experiments o
chaotic advection.

At infinite Péclet number~no molecular diffusion!, a
steady flow results in a simple asymptotic distribution of t
concentration field. In particular, if one chooses isolines
the initial concentration field to coincide with the strea
lines of the flow (c(x,y,0)5 c̄(c(x,y))), then obviously the
concentration field and its integral are stationary. If the v
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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2046 Phys. Fluids, Vol. 11, No. 8, August 1999 V. Rom-Kedar and A. C. Poje
locity field is time periodic, one expects that a mixing zo
will be created near the curves~separatrices! which separate
circulating from noncirculating fluid in the steady problem
The pollutant in the mixing zone is eventually carried aw
~to infinity in open flows! while an invariant core region
remains for all times. In the presence of molecular diffusi
the concentration, even within the core region, decrease
time.

Here we examine how this process depends on the
quency of the time dependent velocity field. Consider a tw
dimensional fluid flowu5(u,v) which is time periodic. The
motion of Lagrangian particles is governed by the Ham
tonian dynamical system,

ẋ5u5u0~x,y!1Au1~x,y,vt !5
]c

]y
, ~2a!

ẏ5v5v0~x,y!1Av1~x,y,vt !52
]c

]x
, ~2b!

where the Hamiltonian is given by the corresponding stre
function c5c01Ac1 , and we assume that the time depe
dent part of the velocity field has a zero mean (^c1&T[0).
We further assume that the steady flow has a finite numbe
hyperbolic stagnation points with recirculation regionsRi

bounded by a homoclinic loop. For example, the recircu
tion regime may be associated with an isolated vortex
the existence of a few of these recirculation regimes, or o
mean uniform flow at infinity, necessarily creates hyperbo
dividers between dynamically different regions of the flow

We assume that the time-dependent flow is typical
that it breaks the homoclinic/heteroclinic connections a
leads to chaotic particle motion~this may be verified, for
small A values using a Melnikov calculation46!. From an
Eulerian view-point, for fixedu0, increasingA increases the
fluctuating kinetic energy and thus the ‘‘perturbation’’ Pe´clet
number. Therefore, in order to concentrate attention on
frequency dependence of the resulting transport, wefix A and
vary v. Furthermore, to compare efficiencies of different fr
quencies we consider the transport occurring on a fixed t
interval,not at a given Poincare´ map iterate. We note that a
equally reasonable Eulerian criteria for comparing transp
at different frequencies would be to fix the power input
the fluctuating component thus keepingA/v, and not simply
A constant. Results using the first criteria can be easily
terpreted in terms of the second. We note that from a
grangian, dynamical system point of view, the depende
on A is in fact nontrivial and some of the transport propert
may be nonmonotonic.6,33

The magnitude of the time dependent part of the veloc
field, A, is thus fixed~for the stirrers model, all figures ar
for A51). Indeed, the majority of our results apply for fini
A values. Motivation and some analytical estimates util
the smallA limit, as specified in the text. We do requireA
,Amax to insure that the hyperbolic structures and at le
one of the manifolds primary intersection points exist a
depend continuously onv for all v values~an upper limit on
Amax may be explicitly found23!.
Downloaded 11 Jul 2007 to 132.77.4.43. Redistribution subject to AIP l
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B. The Stirrers model

To fix the discussion, we consider the flow past a rec
culation region created by a vortex pair with fixed positi
~stirrers of circulation strengthG6) perturbed by time peri-
odic flow field induced by two additional pairs of stirre
placed symmetrically at some distance from the princi
vortex pair~see Fig. 1!. The total flow can be written as

c~x,y,t !52Vy1c2~x,y,0,1!1Ag~vt !~c2~x,y,l x ,l y!

2c2~x,y,2 l x ,l y!!, ~3!

whereg(vt;u)5sin(vt1u) ~or, more generally, any 2p pe-
riodic function! and c2(x,y,xv ,yv) is the stream function
induced by a pair of stirrers with opposite circulations l
cated atx5xv , y56yv ,

c2~x,y,xv ,yv!52
1

2
log

~x2xv!21~y2yv!2

~x2xv!21~y1yv!2
. ~4!

WhenA50 andV50.5 this stream function represents
solution to the unforced Navier–Stokes equations. ForV
Þ0.5 orAÞ0 this represents a solution to a forced Navie
Stokes equation, where the force function is applied at
stirrers locations and physically corresponds to counterac
the drag induced by viscous boundary conditions there.
note that the flow, for allA values, is symmetric to reflec
tions about thex-axis. This simplifies but is not crucial to th
analysis. The equations are nondimensionalized so that

x5 x̄/d, y5 ȳ/d, dt5
G

2pd2
t̄ ,

c5
2pc̄

G
, A5

2pd2GL

G
, v5

2pd2

G
v̄,

V5
2pd

G
V̄, l x5Lx /d, l y5Ly /d,

where the initial strong stirrers are located atx̄50,ȳ56d
with circulation strengthG and the weak stirrers atx
5Lx ,y56Ly with circulation strengthGL . The stirring fre-
quency isv̄ and the far field flow is (u,v)5(2V̄,0).

For A50 we obtain an open flow with a recirculatio
region centered near each stirrer. For 0,V,2 there are two
stagnation points on thex-axis and the two recirculation re
gions have two components of boundary, one of which is

FIG. 1. Schematic plot of the stirrers flow showing stirrer location.
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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segment of thex-axis connecting these stagnation points. F
V,0 or V.2 the stagnation points are on they axis, and the
recirculation regions are bounded by a single boundary c
ponent, see Fig. 2.

For 0,V,2 the flow structure is similar to that of a fre
pair of point vortices in their co-moving frame and to th
polynomial type flow studied by Ghoshet al.24 The follow-
ing considerations lead us to choose the slightly differ
model. First, the time dependent velocity field is of the fo
Ac15Ac1(x,y,vt), namely changing the frequency do
not change the amplitude of the time dependent compon
Using free point vortices, as in the OVP model,5 causes the
vortices to oscillate with frequencyv, introducing additional

FIG. 2. Stirrer Pair flow. Steady flows (A50) with ~a! V521,0, ~b! 0
,V,2(V50.5), and~c! V53.2.
Downloaded 11 Jul 2007 to 132.77.4.43. Redistribution subject to AIP l
r

-

t

nt.

v dependence in the amplitude of the time-varying com
nent of the velocity field. While for such a situation the fr
quency dependence can be specifically analyzed by using
same tools developed here, the conclusions regarding the
quency dependence will be specific to this model. Seco
the flow is experimentally realizable. Finally, by varying th
free stream velocity,V, one can examine the role of gros
topological changes on transport properties. Similar to
logical dependence on parameters exists when conside
the flow field near axisymmetric vortex rings.

Leaving theV-dependence study to future work, we fi

V50.5, ~5!

corresponding to the velocity of a pair of free point vortice
It then follows that forA50 the stagnation points are locate
at

xs5A2

V
215A3 ~6!

and the heteroclinic stream line which connects these po
~the c50 streamline! intersects they-axis atym such that

V52
1

2ym
log

~ym21!2

~ym11!2
. ~7!

For V50.5, this givesym'2.1. The velocity at (0,y) is
given by

v~y!5
dx

dt U
(0,y)

5
2

12y2
2V, ~8!

which, for V50.5,y5ym is about21. TakingV51 implies
v(ym)'22.6, whereasV51.9 producesv(ym)'26.2. It
follows that for such parameter values order one frequen
correspond to effectively adiabatic forcing. In what follow
we assume time is normalized so thatfor the unperturbed
flow uv(ym)u'1. We conclude that the study of th
V-dependence must include additional rescaling of the tim

III. CHAOTIC DEPLETION OF CORE WITH NO
DIFFUSION

A. Universal form of the flux function

For AÞ0 the streamlines are time dependent, hence t
instantaneous structure does not reveal much of the dyn
ics ~except in the special limit of adiabatic flows, as di
cussed below!. The hyperbolic fixed points become hype
bolic periodic orbits and their stable and unstable manifo
are the dominant structures which govern the transport p
erties of the flow. The location of these one-dimensio
manifolds vary periodically in time. Since the stable and u
stable manifolds are invariant, intersections must occur al
an orbit asymptotic to the fixed points in both positive a
negative times, namely a heteroclinic orbit. Since the Po
carémap~the mapping which takes an initial condition to i
image after one period of the flow! is orientation preserving
at least two such orbits must exist. Poincare´ sections of the
manifold structure are shown in Fig. 3.

The manifolds define a regionR, from which a turnstile
flux mechanism5,31,57exists. LetE denote the entraining an
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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2048 Phys. Fluids, Vol. 11, No. 8, August 1999 V. Rom-Kedar and A. C. Poje
D the detraining lobes; these are the areas enclosed by
segments of the stable and unstable manifolds which con
two adjacent primary intersection orbits. If more than tw
primary homoclinic orbits exist we callE the collection of
entraining lobes andD the collection of detraining lobes. Fo
simplicity of presentation we assume, unless specified ot
wise, that exactly two primary homoclinic orbits exist. Th
segments of the stable and unstable manifolds connecting
hyperbolic points to each of these primary intersection po
define the regionRmax

v ,Rmin
v , where

E5Rmax
v 2Rmin

v ,

FIG. 3. Stable and unstable manifolds of the Stirrers flow.V50.5,A51 ~a!
v50.28, ~b! v51.45, ~c! v5p. The invariant core regions, enclosed b
largest KAM torus and main resonances, are shaded.
Downloaded 11 Jul 2007 to 132.77.4.43. Redistribution subject to AIP l
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andF denotes the Poincare´ map ~similar definitions may be
constructed for the 2n primary homoclinic orbits case!. In-
compressibility of the flow implies the areas of the lob
must be equal. As seen in Fig. 3 the lobe geometry, fo
fixed A value, changes dramatically with the frequencyv.
This frequency dependence and its universal features are
subject of this section.

We establish here two new results which are univers
holding for any time periodic, Hamiltonian flow~2! satisfy-
ing the following conditions:

~A1! For all v values the flow~2! has a hyperbolic periodic
orbit with intersecting stable and unstable manifol
~or a homoclinic loop as in our model!.

~A2! There exists a primary homoclinic orbitp0(v) defining
Rmin

v , which depends continuously onv and m(Rmin
v )

.c.0.
~A3! Time is scaled so that outside of a finite neighborho

of the hyperbolic periodic orbit the velocity along th
separatrices isO(1).

Assumptions~A1!–~A3! are clearly satisfied in the nea
integrable limit whenc5c0(x,y)1O(A),A!1 and may be
verified to hold for finiteA,Amax values. For the stirrers
modelAmax.1.

Before stating the first result, we introduce some no
tion associated with the behavior in the low frequency, ad
batic limit. In this limit, it is useful to define the ‘‘frozen’’
system,7

dx

dt
5

]c~x,y,t!

]y
, ~9a!

dy

dt
52

]c~x,y,t!

]x
~9b!

wheret is a fixed parameter. It follows from~A1!, ~A3! and
adiabatic theory that the frozen system has, for allt
P@0,2p# a recirculation regionR(t) of areaRt . This area
may oscillate, with local minima and maximaRmax,min

i ,
i 51, . . . ,n, corresponding to 2n primary intersection points
of the manifolds which appear for sufficiently smallv
values.47 Invariant manifold theory for the adiabatic lim
47,48 implies that these regions arev-close to the correspond
ing regionsRmin

i ,v ,Rmax
i ,v bounded by segments of the stab

and unstable manifolds.
In Fig. 4 we plot the frozen separatrices and the sta

and unstable manifolds at different Poincare´ sections for the
stirrers flow. It is seen that the convergence of these m
folds to the frozen separatrices is highly nonuniform. In fa
for our model, the frozen separatrices at the Poincare´ section
t0 and t01p/v have exactly the same area~by symmetry!.
Plotting the adiabatic Melnikov function~i.e., the area en-
closed by the frozen separatrices! one concludes that ther
must be at least two incoming and outgoing lobes per cy
(n52 in ~10!!, and that all four lobes have identical areas~so
effectively a two-lobe turnstile mechanism appears ev
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Separatrices and frozen separatrices definingRmax andRmin for v50.28 shown at the four Poincare´ sections, 0,p/2v,p/v,3p/2v. The frozen-time,
adiabatic separatrices are indicated by lighter, thicker lines.
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half a cycle!. On the other hand the areasRmax
v ,Rmin

v are
realized, for finite v and sufficiently smallA ~e.g., v
50.28,A51) at the Poincare´ sectionst050,p/v, respec-
tively. We conclude that for the stirrers modelv50.28 is
still not sufficiently small to capture this adiabatic behavi
Nonetheless, as will be apparent later on, our analysi
mainly concerned with finite stirring frequencies and t
above finding is noted just to reconcile the contradictory f
tures of the adiabatic and Melnikov analysis.

We can now state our first result.
Universal flux function theorem: Consider the family

of Hamiltonian flows (2) satisfying the assumptions (A
(A2), and (A3). Consider the flux function f(v)
5m(E(v))/(2p/v), where E denotes the union of all in
coming lobes per cycle. Then,

(1) The flux is a continuous function ofv.

(2) The flux is linear inv for small v values,

f ~v!5Cv1o~v!5
1

2p (
i 51

n

~Rmax
i 2Rmin

i !v1o~v!.

~10!

(3) The flux function has at least one maximum.

(4) The flux decays exponentially for largev values.
Downloaded 11 Jul 2007 to 132.77.4.43. Redistribution subject to AIP l
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Proof: The first, second, and fourth claims imply th
third one. The flux is a continuous function ofv. Indeed, by
assumption~A2! and area preservation there exists at le
one pair of transverse~or tangent of odd order! primary ho-
moclinic orbits hence the flux is well defined for allv val-
ues; it is just the area enclosed between the correspon
segments of the stable and unstable manifolds, which v
smoothly withv. Abrupt changes in the flux may occur on
through homoclinic bifurcations of primary homoclinic o
bits. However, while such bifurcations may cause an abr
change in the area of an individual lobe~e.g., by splitting a
lobe to two components! the total flux changes continuously

The fourth claim follows directly from Neishstadt,10

where it is shown that fast oscillations may be averaged
exponential order. In this case the separatrix splitting, a
hence the flux, are at most exponentially small.

The second claim is a direct consequence of the fact
the lobe area is equal to the area swept by the fro
separatrices,49

m~E!5(
i 51

n

Rmax
i ,v 2Rmin

i ,v 5(
i 51

n

Rmax
i 2Rmin

i 1o~1!. ~11!

The first equality follows from the lobe definition and th
latter follows from the closeness of the stable and unsta
manifolds to the frozen manifolds in the adiabatic limit.48
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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2050 Phys. Fluids, Vol. 11, No. 8, August 1999 V. Rom-Kedar and A. C. Poje
This result has been proven using the analytical expres
~in integral form! for both sides of the equations, and
particular the relation with the integral of the adiaba
Melnikov function has been established.29,47

Q.E.D.

Summarizing, a universal frequency dependence of
flux function exists, by which the flux grows linearly fo
small v ~provided the adiabatic limit is generic so th
( i 50

n Rmax
i 2Rmin

i .0), decays exponentially at infinity an
thus has at least one maximum at an intermediatev value.
Now, by definition, the lobe area is proportional to the fl
divided byv. Furthermore, thewidth of the stochastic zon
is simply given, forv values bounded away from zero an
for sufficiently smallm(E), by the flux multiplied byv as
explained next.

More precisely, Tretchev11 has proved thatW, the width
of the mixing zone~in the open flow case we interpret this
the distance measured in terms ofc, between the last KAM
tori and the separatrices! is given asymptotically~in m(E))
by W5O(d/ log(l)), whered is the maximal width of the
turnstile lobe which is proportional tof (v) and l is the
eigenvalue of the fixed point in the Poincare´ map. For small
A/v valuesl'expa2p/v, wherea is the positive eigen-
value of the hyperbolic fixed point of~2! at A50, and the
above statement follows. Hence, the graphs of Fig. 5
universal—other models will have exactly the sam
asymptotic behavior for small and largev’s and at most will
have a larger number of maxima in the figures.Moreover,
the maxima locations of the flux move to the left for the lo
area and to the right for the stochastic zone width.

For finite v values, the above results imply that for an
n>n0 one can findva(n),vb(n) such thatvb5nva and
f (va(n))5 f (vb(n)). It follows trivially that the lobe areas
are related bym(E(va(n)))5nm(E(vb(n))) since equal
amounts of fluid are transported by both the fast and s
flow in a given amount of time. As long as the lobe areas
sufficiently small and the Flouqet multipliers are not strong
dependent on frequency, the stochastic zone associated
the ‘‘slow,’’ va flow is n timessmaller than that associate
with the ‘‘fast,’’ vb flow. This finding contradicts the ‘‘folk-
lore’’ that adiabatic chaos is always ‘‘stronger’’~i.e., pro-
duces a larger mixing region! than high frequency chaos
This folklore is justified only in the obvious case when o
fixes, sayva and then letsvb→`. Then, the flux associate
with vb is much smaller than that associated withva and the
usual picture follows.

In the near integrable case it is possible to calculate
flux function analytically. Denoting the Melnikov functio
by M (t), it follows that5

m~E!5AE
$tuM (t)>0%

M ~ t !dt1O~A2!. ~12!

Generally, the Melnikov function is of the formM (t)
5 f̂ (v)g(vt;v), where f̂ (v) measures its amplitude an
g(•;v) represents its oscillatory nature. If, for some range
v values,g(vt;v)'ĝ(vt), then
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m~E!'A
u f̂ ~v!u

v E
$tuĝ(t)>0%

ĝ~t!dt5
u f̂ ~v!u

v
G ~13!

and the flux function is simplyf (v)5u f̂ (v)uG/2p, namely
proportional to the amplitude of the Melnikov integral.

B. Flux, lobe area, and stochastic zone width for the
Stirrers model

The Melnikov method described above may be used
estimate the flux functionf (v) for the stirrers flow. In this
case, it is easy to verify that for finitev values the Melnikov

FIG. 5. Lobes area, flux, and stochastic zone estimate for the stirrer m
~a! m(E(v)), ~b! f (v), ~c! 7.8v f (v). indicating the universal behavio
predicted in Sec. III A. The limiting adiabatic predictions are shown by
dashed lines.
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function is of the formM (t)5 f̂ (v)sin(vt), hence there are
exactly two primary homoclinic points per cycle and for su
ficiently smallA the flux is given by Melnikov function am

plitude f̂ (v) over p (G52 in ~13!!.

In Fig. 5 we plot the graph of the lobe area (2f̂ (v)/v)),

the flux function (f̂ (v)/p), and the width of the stochasti

zone (c f̂(v)v/p,c57.8) calculated by using the regula
Melnikov function for the stirrers flow. The constantc is
taken so that the width of the stochastic zone atv51.45 will
be close to the numerically observed one. In fact, a ro
estimate ofc was obtained as follows: Tretchev11 proved that
for a map with symmetric figure eight separatrix the width
the stochastic layer is (4p/k0)d/ logl, wherek0'0.97 (k0 is
the standard map50 critical parameter value beyond which n
KAM tori survive!, d denotes the lobe width andl the ei-
genvalue of the hyperbolic fixed point from which the sep
ratrices emanate. We are measuring half the width of
stochastic layer~only the interior!, and the lobe width is

given byd'A f̂(v)5p f (v). Computingl numerically for
the stirrers flow withA51, we find that logl'2.6/v for v
>0.25 ~with surprisingly good accuracy!. Combining all
these we get the width '(2p2/0.97•2.6)f (v)v
57.8f (v)v, which agrees quite well with the numerical r
sults. We note that choosing Tretchev constant 4p/k0 ,
which was originally computed for a symmetric figure eig
separatrices is not clearly justified for our heteroclinic geo
etry ~thus our initial cautious statement thatc is really cho-
sen to fit the numerical result at onev value!.

The universal features of the theorem are clearly s
~see also all previous publications in which the Melnik
function was calculated, e.g., Refs. 5,24!. We notice that the
derivation of the Melnikov function includes a regular pe
turbation expansion in the parameterA, holding all other
parameters fixed. In particular, it is well known that the e
pansion fails in the asymptotic regimes of small and la
v ’s, where special techniques for measuring separatrix s
ting must be employed. Hence, Fig. 5 is formally valid on
for small A values~though see next paragraph! and for v
values which are bounded and are bounded away from z
The figure demonstrates that the predicted maximum ind
exist.

Using the perturbative Melnikov function for the stirre
model shown in Fig. 5, equal flux is obtained at frequenc
v50.3,1.5. ForA51, equal flux values were found numer
cally for frequenciesv50.28 and 1.45. Figure 3 indicate
that the lobes associated withv50.28 are indeed about fiv
times larger than those associated withv51.45. The width
of the stochastic zone forv50.28 is about five times smalle
than that forv51.45.

The adiabatic Melnikov function calculation which su
plies the near-adiabatic limit is indicated by a dashed line
Fig. 5. Calculating the functionR(t), which measures the
area of the frozen separatrices, we find it has two oscillati
of magnitude 0.55. It follows that for smallv ’s m(E)
'1.1, that f (v)' (1.1/2p) v and, since the length of th
frozen separatrix is approximately 4, the width of the s
chastic layer is approximately 0.55/4'0.126. We emphasize
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that these are rough estimates which demonstrate that
matching of the small amplitude Melnikov analysis and t
adiabatic theory is nontrivial.Note that for the stirrers flow
the adiabatic limit does not give a maximal mixing zone.

C. The adiabatic Lagrangian steady state

The strong restrictions imposed by adiabaticity imply
distinct lobe geometry in the low frequency limit and thus
strong effect on the nature of the advective transport.

Lagrangian steady state Theorem:Consider the family
(2) which fulfills the structural assumption (A1)–(A3). Then,
in the adiabatic (smallv) limit, almost all the fluid entrained
via the entering lobes E is detrained by the lobes D dur
the next iterate of the Poincare´ map. Namely,

m~EùD !

m~E!
→1 as v→0. ~14!

Proof: Consider first the case of only two turnstile lobes. F
vanishingly small frequencies,Rmin

v →Rmin and Rmax
v

→Rmax. Moreover, in this limit there exist a KAM torus
which defines an invariant core areaRcore. Clearly
m(Rcore)<m(Rmin). Since the adiabatic theory applies
most orbits~those which do not cross the separatrices! in
Rmin it follows that51

m~Rmin!2m~Rcore!5d~v!, where

d~v!→0 as v→0, ~15!

and one expectsd(v)5O(v2u logvu2).
By definition, the regionsRcore,D,(E2DùE) are dis-

joint sets and are all contained inRmax
v . Thus,

m~Rmax
v !>m~Rcore!1m~D !1m~E2~DùE!!. ~16!

Using the above inequality, area preservation and~11!, ~15!,
it follows that

m~E2DùE!<m~Rmin
v !2m~Rcore!5d~v!1o~1!, ~17!

and the theorem is proved. A similar proof applies for
general number of turnstile lobes. Labeling the turns
lobes so thatRmin

v 5miniR
i,v5Rmin

1,v , adiabatic theory implies
that Rmin,max

i,v →Rmin,max
i ,i51, . . . ,n and that~15! is valid for

the minimal separatrix Rmin
1,v . With E5ø i 51

n Ei ,D
5ø i 51

n Di andRi 1n5Ri),

m~Rmax
n,v !5m~Rmin

1,v !1m~Dn!

>m~Rcore!1m~E2Eù~D2Dn!!1m~Dn

2~DnùE!!. ~18!

This expression is exact even when the flow is closed~i.e.,
when EiùFkEjÞB for some j ,k with j . i or k.0). Ex-
panding the above relations and using~15! we obtain~17!.

Q.E.D.
The implications of~17! are clearly seen in the stirrer

model for the low frequency,v50.28 case. Figure 4 show
the significant overlap between the entraining lobeE and the
detrainingD lobe. In accordance with the theorem, the d
gree of intersection is significantly larger for the lower fr
quency,v50.28 case than it is forv51.45.
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. Lagrangian steady state.~a! Total amount of
pollutant left in original region and~b! total amount of
pollutant leaving the original region.
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The theorem implies that a ‘‘Lagrangian steady state’
established in this adiabatic limit. For initial scalar conce
trations confined to regionRmax ~respectivelyRmin), the ad-
vective transport is essentially complete after one~respec-
tively zero! iterates of the Poincare´ map. Making use of area
conservation, it is easy to establish5 that for open flows all
the outer fluid which enters the regionRmin

v must eventually
leave this region. Thus, for allv,

m~E!5 (
n50

`

m~FnEùD !. ~19!

SettingRn5m(Fn(Rmin)ùRmin),

Rn5Rn212m~E!1(
j 50

n

m~F jEùD !. ~20!
Downloaded 11 Jul 2007 to 132.77.4.43. Redistribution subject to AIP l
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The adiabatic steady state implies that, in the limitv→0, the
first term in the sum approachesm(E) andRn remains con-
stant!

The implications of the above analysis for the stirre
flow are shown in Fig. 6. Initially, particles are distribute
inside the regionRmax,min

v defined by the previously com
puted stable and unstable manifolds of the flow. The ti
evolution of the area averaged concentration,C(t;v), is es-
timated by counting the number of particles remaini
within Rmax,min

v at time t. Plotted in Figs. 6~a! and 6~b! is a
measure of the amount of scalar which remains in~resp.
advected out of! the initial region for both the slow and fas
iso-flux frequencies. For finite but small stirring frequencie
the near adiabatic lobe geometry implies that the bulk of
transport takes place during the first period~the initial Poin-
care iterate!, betweent50 and t52p/v'22. After this
time, a near steady state is established with significantly
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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transport occurring during the following oscillations~for the
Rmin case the strong oscillations per period are an artifac
the spatial motion of the invariant core region!. The time
dependence of the transport rate is significantly different
the faster stirring frequency. Here the transport rate, w
slowing slightly with increasing iterates, is appreciab
throughout the time interval of the calculation which enco
passes approximately 20 fast periods.

Initially

m~Rmin
va !,m~Rmax

vb !,m~Rmax
va ! ~21!

~which is generally true forA sufficiently small!. The choice
of iso-flux frequencies implies that the total transport in t
two cases is equal at the end of one slow period as see
the figure. Eventually, the graphs ofCmin(va) andCmax(vb)
cross since the invariant core area ofva is larger than that of
vb .

To summarize, distinct differences in the manifold g
ometry associated with two disparate frequencies of eq
flux lead to distinct differences in the time dependence of
advective transport of a finite region of scalar. At the low
stirring frequency the transport is essentially complete aft
single period of the flow. At the higher frequency, the dep
tion process occurs over a large number of cycles. The
of the invariant core region decreases with increasing
quency implying that, in the long time limit, the total amou
of scalar transported is larger for higher iso-flux frequenc

IV. DIFFUSION EFFECTS

Differences in the slow and fast manifold geometry ha
an even more marked effect on scalar transport when d
sive processes are included. In the presence of diffusion
geometry of the low frequency advection process, i.e.,~14!,
provides an efficient means to ‘‘cool’’ or mix the core regio
of the scalar field. During each advection cycle, a supply
fresh ~essentially zero concentration! fluid is transported
from far upstream to the region of highest scalar concen
tion. In this manner, large concentration gradients are m
tained within the core region and diffusion is enhanced.
contrast, iterates of the high frequency case lead to the
ation of a zone of finite concentration fluid surrounding t
core region. For finite diffusivities, this advective geome
leads to the exchange of ‘‘gray’’~finite scalar concentration!
fluid into and out of the recirculating region as seen in Fig
Therefore, increase in the diffusion coefficient leads to
more pronounced difference in the total transport for
slow chaos case. It follows, for some initial time period d
pending on both the geometry and the diffusivity, that t
total transport of marked fluid out of the recirculation regi
is larger for slower stirring frequencies. Eventually, t
smaller invariant core size of the higher frequency flow lea
to lower values of the area averaged concentration. Be
we demonstrate numerically the existence of this slo
chaotic-diffusive transport mechanism.

First, note that these effects are significant on time sc
at which the slow period, 2p/va , and the diffusive time
scale associated with a particle transversing the lobe,Tlobe
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are comparable. By assumption~A3!, the lobe length is of
order 2p/v, and therefore the lobe width scales asd
'm(E)/(2p/v)' f (v). It follows that

Tlobe5
f 2~v!

D
, ~22!

where we use hereafter, with a slight abuse of notation,D for
the nondimensionalized diffusion coefficient (D51/Pe).
Note that in the near-integrable cased'A f̂(v) supplies a
more precise factor in the above scaling. The significance
this lobe time scale to diffusive chaotic advection was fi
noted by Beigieet al.52 Other time scales associated wi
chaotic motion and diffusion were suggested,53,54 nonethe-
less, for these finite time results onlyTlobe seems to play a
role. This scaling implies that iso-flux frequencies (va ,vb

such thatf (va)5 f (va)) have the sameadvection-diffusion
time scales.

The above scaling can be used to define a critical va
of the diffusivity for a given stirring frequency of the flow
Given anva the slow-chaotic-diffusive transport takes pla
on time scales of order 2p/va , hence, it follows from~22!
that

Dc5
f 2~va!va

2p
. ~23!

For the stirrers model, a frequency ofva50.28 gives a value
of Dc'2•1023. For timesO(2p/v), diffusivities smaller
than Dc results in essentially nondiffusive behavior
C(t;v). ForD'Dc a strong interplay between diffusion an
the chaotic advection takes place and forD@Dc the trans-
port is diffusion dominated.

A. Numerical solution

We solve the advection diffusion Eq.~2.1! for the stir-
rers velocity field using the multidirectional, positive defini
finite difference algorithm~MPDATA! first proposed by
Smolarkiewicz.55 The scheme provides a conservative, s
ond order accurate, and positive definite solution to the
vection equation.

The diffusive terms are calculated using a standard
crete Laplacian at an interpolated time step. The comp
scheme is second order accurate in both time and sp
Analysis and details of the implementation of MPDATA a
available in Smolarkiewicz and Margolin.56

A rectangular computational domain,23,x,3 and 0
,y,2.5, is used with grid spacingDx50.025. Experiments
using two and four times this number of grid points did n
effect the area averaged results. The open, downstr
boundary condition atx5xmin was treated by neglecting th
diffusive term at these points. Aty50, symmetry was used

Several numerical issues present themselves. First,
gularities in the velocity field at the stirrer locations are de
with by both staggering the computational grid to avoid the
locations and by adding a small regularization to singu
velocity. The chaotic velocity given by~3!,~4! implies the
presence of increasingly fine spatial structure in the sc
solution. Without diffusive smoothing, the scalar field
eventually stretched and distorted on scales below that of
icense or copyright, see http://pof.aip.org/pof/copyright.jsp



2054 Phys. Fluids, Vol. 11, No. 8, August 1999 V. Rom-Kedar and A. C. Poje
FIG. 7. Transport from recirculation zone in the presence of diffusion.C(t0)2C(t) for ~a! D51024, ~b! D55•1024, ~c! D51023, and~d! D51022.
tio
he
th
de

id
he
iffu
n
o

y

iva
or

ble

i
fo

e-
the

sly
tes
not
-
b-

m

n

ing

of

ity,
he

or
are
possible grid resolution. We have implemented the advec
algorithm on a B-Grid, i.e., velocity nodes located at t
corners of a computational scalar cell. As such, while
advection algorithm is numerically stable and second or
accurate for all values of the diffusivity~includingD50, i.e.,
infinite Pe! spatial interpolation of the solution between gr
cells imparts a small degree of numerical diffusivity to t
scheme. There is a discretization dependent, minimum d
sivity value in the computations where the numerical a
physical diffusivities are commensurate. For the cases c
sidered here (Dx50.025) this value is approximatel
0.00005 which is below the range of interest.

B. Numerical experiments

In order to insure the advective fluxes are indeed equ
lent for the two stirring frequencies, the initial conditions f
the scalar field were chosen as in Sec. III C,

c~x,y,t50!5H 1 if $x,y%PR

0 otherwise,
~24!

where the regions of initial non-zero scalar,R, are given by
Rmax,min

v as defined by principal intersections of the sta
and unstable manifolds. Choosingv5va ,vb as before, in-
sures that the advective scalar flux, as referenced by the
tial area of nonzero concentration, is exactly the same
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both frequency values. Any difference in total transport b
tween the two frequency cases, at least initially, is due to
presence of diffusive processes.

The areas of the initial regions so chosen are obviou
v dependent. To demonstrate that different transport ra
stem from frequency dependent geometric effects and
simply different diffusion rates for different size initial con
centration distributions, we consider three initial value pro
lems, R5Rmax

v , R5Rmin
v with v5va , and R5Rmax

v with
v5vb . By ~21! the area of the latter region is bounded fro
above and from below byRmax,min

va , respectively. Further-
more, the nondiffusive Lagrangian calculations~Fig. 6! show
that aftert'22 the ordering of the pollutant concentratio
becomesCmax

vb ,Cmin
va ,Cmax

va . Trends which hold for both
these latter regions imply trends due to differences in stirr
frequency and not initial area size.

Plotted in Fig. 7 are time traces of the total amount
scalar removed from the initial region,C(t0)2C(t), where

C~ t !5E
R
c~x,y,t !dxdy.

The results are shown for several values of the diffusiv
both flow frequencies and the three initial conditions. T
spatial distributions of the scalar field forRmax

va ,vb are shown
for times at the end of one and two slow cycles in Fig. 8. F
small diffusivities and small times, the transport results
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 8. Concentration field at timet522 for ~a! va , ~b! vb , and att545 for ~c! va , ~d! vb .
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identical to those given in Fig. 6, for larger diffusivitie
~longer times! there are appreciable differences. Thecross
over timefor theRmax

va ,vb curves increases with increasingD,
indicating that diffusive effects are not only more pr
nounced in the low stirring frequency case but that the
ometry of the ‘‘Lagrangian steady state’’ established in t
advective regimeenhancesdiffusive transport.

Figure 9 shows the time trace of the difference betwe
the total scalar concentrations for two different diffusion c
efficients,

~CD8~ t;v!2CD~ t;v!!

CD8~ t;v!
,

whereD851024. In all cases, the effects of increased diff
sivity are most dramatic for the lower frequency flow. T
graphs for diffusivitiesD55•1024 and 1023 near the criti-
cal diffusion coefficient, clearly demonstrate the claim th
diffusion preferentially augments the total transport for low
stirring frequencies. Even though Lagrangian iso-flux f
quencies were taken,independentof the original region size
~i.e., for bothRmax

va and Rmin
va ), the amount of pollutant re

maining in the original region decreases dramatically withD
for the slower advection. Furthermore, the ordering of
curves does not correspond to the ordering of the curve
Fig. 6~a!, demonstrating that the governing effect is un
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lated to the core size. For diffusivities much larger thanDc ,
differences between the frequencies exist but are not as
matic.

V. DISCUSSION

We have shown that there are two universal features
the transport through a homoclinic region. First, that the fl
function is nonmonotonic in frequency—it has at least o
hump. Second, that in the adiabatic limit the mixing region
essentially covered by the turnstile lobes hence a steady
of a nondiffusive pollutant field is readily achieved. Com
mon wisdom in the chaotic advection community is th
adiabatic chaos is a more efficient mixer of fluid parcels th
the chaos that results from high frequency oscillations. T
is certainly true if the flux and the stochastic zone of t
lower frequency are much larger than that of the higher f
quency. However, our results show that this paradigm sho
be taken with a degree of caution. First, the universal n
monotonicity leads naturally to comparing two frequenc
with equal flux. For such iso-flux frequencies, the lower fr
quency flow has larger lobes while thehigher frequency
leads to a larger stochastic zone. Therefore, for finite sized
initial distributions of scalar there are time scales on wh
the slow chaos leads to increased transport whereas for la
time scales the total scalar transport is larger for the
chaos.
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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We note that these features hold for both open a
closed flows and for near-integrable and nonintegrable flo
~as long as an invariant circulation region exists!. When mo-
lecular diffusivity is included in an open flow model, w
argued that the smaller frequency dynamics give rise to
efficient transport mechanism of pollutant out of the co
area and estimated the range of diffusion coefficient
which this mechanism will be effective for a given~finite!
time. This has been confirmed numerically for the spec
model we have suggested. This result depends on the
flow geometry since we assume that the incoming lo
carry clean, zero-concentration fluid. Since these are fi

FIG. 9. Diffusive contribution to total transport for varying diffusivity an
stirring frequency.D850.0001 throughout.~a! D55•1024, ~b! D51023,
~c! D51022.
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time results, they clearly hold for moderate times in clos
flows where the recirculation regions are widely separated
the domains are large.

Many questions remain for future study:

~a! How does the total transport depend on the amplitu
of the oscillating term? In this case, the notion of ef
ciency, perhaps in terms of power input, needs to
properly defined.

~b! Similar geometric arguments hold in the truly clos
flows however the implications there may be differe
In particular since high frequency stirring leads
longer interfaces at a given time, homogenization in
presence of diffusion may be achieved faster for fas
stirring.

~c! Here diffusivity effects were examined using a comb
nation of physical and scaling arguments supported
numerical simulations. In Lingevitch and Bernoff,20 an
analytic estimate of the diffusive transport in a simila
but time independent flow is given. The analysis co
siders the motion near the separatrices as a boun
layer problem whose solution ultimately provides
simple boundary condition for the across streaml
diffusion in the core region. It is quite possible that
similar approach may be derived for the chaotic syst
considered here where the boundary layer width is n
much larger and determined by the size of the stoch
tic zone.

~d! The graphs presented for the transport from the c
region in this paper correspond to specific initial da
pollutant that is concentrated exactly in the regio
Rmax,min defined by the Lagrangian geometry. In spir
similar result are obtained for different initial valu
problems where the initial distribution includes most
the core area. Differences arise when smaller ini
regions are considered. Here, we expect very differ
behavior for singular velocity fields~such as arising
from the point vortices! and nonsingular ones. Indee
when the regularized velocity field has slow time d
pendence, the level curves of the core streamli
strongly deform in different time sections. This corr
sponds to strong deformation of the adiabatic KA
curves. On the other hand, the KAM curves associa
with fast oscillations deform very little in a single pe
riod. When the velocity field is singular, such deform
tions do not occur. We expect, and have confirm
numerically in a kinematic model, that such behav
leads to very different results in the presence of dif
sion.

~e! The gap between adiabatic theory and finite freque
behavior has been found to be significant and an
equate Melnikov-type analysis is still needed to ma
these regimes.

~f! Many questions arise regarding our specific model. W
would like to understand how the bifurcations inV,
asymmetries and smoothing of the velocity field infl
ence the transport. Such specific questions are e
cially interesting as this model can be thought of as
simplified version of the flow near a vortex ring.
icense or copyright, see http://pof.aip.org/pof/copyright.jsp
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