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The combined, finite time effects of molecular diffusion and chaotic advection on a finite
distribution of scalar are studied in the context of time periodic, recirculating flows with variable
stirring frequency. Comparison of two disparate frequencies with identical advective fluxes
indicates that diffusive effects are enhanced for slower oscillations. By examining the geometry of
the chaotic advection in both high and low frequency limits, the flux function and the width of the
stochastic zone are found to have a universal frequency dependence for a broad class of flows.
Furthermore, such systems possess an adiabatic transport mechanism which results in the
establishment of a “Lagrangian steady state,” where only the asymptotically invariant core remains
after a single advective cycle. At higher frequencies, transport due to chaotic advection is confined
to exchange along the perimeter of the recirculating region. The effects of molecular diffusion on
the total transport are different in these two cases and it is argued and demonstrated numerically that
increasing the diffusion coefficieriin some prescribed rangé&eads to a dramatic increase in the
transport only for low frequency stirring. The frequency dependence of the total, long time transport
of a limited amount of scalar is more involved since faster stirring leads to smaller invariant core
sizes. ©1999 American Institute of Physid$$1070-663(99)04308-1

I. INTRODUCTION that the existence of underlying, unbounded Lagrangian tra-

The study of the transport of passive scalars by a givefectories in some directions produces a singular dependence
flow field appears in technological, geophysical, and enviof the effective diffusion tensor on the &et number in that
ronmental applications and has attracted much attention fromirection*1#16This mechanism is valid and intimately con-
diverse academic communitiés! We investigate the com- nected with the Lagrangian phase space structure when the
bined effects of chaotic advection and molecular diffusion orflow is time periodic or when it belongs to a certain family of
the finite time transport of a fixed initial distribution of sca- three-dimensional vector field3!® For special flows(e.qg.,
lar. We seek and find universal properties of the frequencgpatially linear velocity fields and shear flows9 explicit
dependence of such transport in a broad class of time pergolutions to the advection diffusion equation may be con-
odic flows. The universality appears by examining changestructed which clearly demonstrate nontrivial transitions to
in the invariant manifold geometty in the well understood  the diffusive, large scale, long time limit as well as nontrivial
limits of slow, adiabatic flows® and fast oscillating dependence of the enhanced diffusivity on the flow param-
flows%!* Such knowledge determines how, in general, theeters. In particular, when these spatially-simple flow fields
transport properties of the advection diffusion equatiumrst  have periodic time dependence the enhanced diffusivity may
change as the flow frequency changes. decay with the flow’s temporal frequency in some cases, yet

The transport of scalars is an inherently complex prob-may have nonmonotonic dependence on the frequency in
lem; solutions depend intrinsically on the specific spatial ancbther cased’'° A crucial component in this analysis is the
temporal variation of thétypically) nonlinear velocity field ability to solve, by quadratures, the nondiffusive particle mo-
and on the nature of the initial value distribution. Moreover,tion under the flow. Asymptotic solutions of the advection-
solutions exhibit different behavior on different time scales.diffusion equation for relatively simple but nonlinear recir-
Throughout the large body of literature, two distinct ap-culating flows are highly nontrivial even for steady velocity
proaches to this problem can be identified. fields?9-22

Direct studies of the advection diffusion equation have  The second line of approach, commonly called “chaotic
been successfully conducted in the limit of long time andadvection,” has concentrated mainly on the nondiffusive
large scales, for which an effective diffusion equation for thetransport of passive scalars in spatially nonlinear flows with
averaged, large scale concentration field may beelatively simple time dependence. The recognition that in-
constructed® % see the extended review by Majda andvariant manifolds organize Lagrangian particle motion in
Kramer!’ This effective diffusion equation has, in general, atime periodic flows has led not only to new understanding
nonisotropic diffusivity tensor and it has been establishedf a variety of flow visualizations but also to a precise geo-
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metric template for computing particle flux and transport.ring becomes smaller than some critical value is analogous to
This realization is one of the backbones of our current workincreasing the free-stream velocity beyond its critical value.
Recent studies have demonstrated that analogous Lagrangian The effect of molecular diffusivity on chaotic advection
“manifolds” organize particle motions in finite time, aperi- has been studied in a few works. It was noted early on that
odic flows, provided a dominant hyperbolic structure existseven vanishingly small diffusion coefficients have a signifi-
for a prescribed timé& Furthermore, several studies includ- cant effect on the transport as chaotic flows create fine stria-
ing non-conservative effects such as diffusion, weakly-activeions in the scalar field on exponentially fast time sc&te€.
scalars, and chemical reactions have demonstrated that tidis influence is distinct from the regular diffusion process;
invariant manifolds continue to provide a geometric templatechaotic advection in the presence of diffusion leads first to

which organizes the evolution of these fiefcf§ 2 mixing of large scales, then to the creation of small scales of
Typically, analytic approaches to chaotic advection bethe concentration field and only then to diffusive smootHing.
gin by considering a velocity field of the form The dependence of these effects on thel@®enumber has
been studied in both open and closed fl6#Wg?>
U=Ug(X,y) +Auy(X,y,wt) The paper is ordered as follows: in Sec. Il we describe

the general assumptions and then describe the stirrers flow.

in one of two limits. The small perturbation reginfe<1 In Sec. lll we examine the frequency dependence of the
with arbitrary (yet not too sma)l frequency is studied using transport properties. We establish two new results in this
the Melnikov integral technique to compute the flux. Alter- context; first, we define the flux functiofwhich is propor-
nately, the limit of smalle may be studied for arbitranp  tional to the magnitude of the maximum of the Melnikov
using adiabatic theory?® In the majority of problems, the function in the near integrable casend prove, under some
flux dependence on the parameters is found analyticallguite general conditions, that it is continuous in the fre-
while transport quantitie.g., pair separation, accumulative quency, it is linear in the frequency for small frequencies,
flux, or stochastic zone siz&°%3 are determined numeri- and it decays exponentially for large frequencies. Therefore,
cally for fixed sets of parametet$:>° Here we show that it attains an extremal value for some finite frequency. Sec-
such results compromise part of a universal dependence ohd, we prove that in the adiabatic limit the conservative
the flux and the size of the chaotic zone on the frequency o$tirring process is essentially complete after one period of the
the velocity field. flow. In Sec. IV we argue that diffusion is enhanced by the

A crucial component in our analysis and arguments is ggeometric structure of the slow chaotic advection and that
thorough understanding of the transport process in the raghe total transport is greater in this case. We predict(tihe
idly oscillating!®'3®and adiabatit® limits, and our under- nite) time scale on which this phenomena will be observed,
standing of transient transport and its dependence on seconaRd demonstrate this numerically. The paper concludes with
ary intersection§. While our ideas are developed in the a discussion and summary in Sec. V.
context of a time-periodiopen flow the results generalize to
the more complex reality of both open and closed flows with
certain aperiodic time dependence. In particular, as thé. GENERAL FORMULATION AND MODEL
present results concern transport on finite time scales, flowg General assumptions and equations of motion
possessing transient hyperbolic structures modified by time

dependence with some dominant frequency should produce Consider an initial scalar distribution concentrated in the
similar behavior. recirculation area associated with a vortex structure and de-

To demonstrate our claims, we construct a specifid’©t® by c(x,y,t) this concentration field. The nondimen-
model—the stirrers flow—which, as explained below, is aSional advection diffusion equation,
good toy model for understanding transport in more compli- 1
cated (realistig fluid flows. Furthermore, this model is ex- ci+u.Ve= ﬁaAC 1)
perimentally realizable, corresponds to a Navier—Stokes so-
lution and is simple to understand from both a fluid describes the evolution of the passive figlccarried by a
dynamical and dynamical systems point of view. The stirrerdgiven velocity fieldu which scales witiJ. The scalar dif-
flow corresponds to a fixed vortex couplet in a steady streanfuses with a diffusion coefficienb. The nondimensional
The couplet is modulated by two far field couplets whoseParameter PeUL/D is the Pelet number which measures
circulation varies periodically in time. This is an example of the relative strength of advection and diffusion on a charac-
an open, time periodidlow. Similar geometry appears in a teristic length scaled..Peclet numbers for the transport of
variety of applications and has been considered previously ifemperature range fro@(10°~®) in large scale, geophysical
a dynamical system contek?*3" It has been suggested that flows to O(10°~%) for typical laboratory experiments on
transport by a couplet is of prime importance in general fluigchaotic advection.
flows as couplets advecting with their own induced velocity At infinite Peclet number(no molecular diffusion a
act to transport fluid particles over large distant®e®*8Fur-  steady flow results in a simple asymptotic distribution of the
thermore, the flow's dependence on the free-stream Ve|ocit90ncentration field. In particular, if one chooses isolines of
pro\/ides a two dimensional ana|ogue to the flow induced b}he initial concentration fle_'d to coincide with the stream
an axis-symmetric vortex ring*° the change in the stream lines of the flow €(x,y,0)=c(#(x,y))), then obviously the
line geometry which occurs when the core-area of the vortexoncentration field and its integral are stationary. If the ve-
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locity field is time periodic, one expects that a mixing zone
will be created near the curvéseparatriceswhich separate Q‘ £ _lf:G‘ v
circulating from noncirculating fluid in the steady problem. -
The pollutant in the mixing zone is eventually carried away Ly (\ T ——
(to infinity in open flowg while an invariant core region td N
remains for all times. In the presence of molecular diffusion, Ny
the concentration, even within the core region, decreases in < o -
time.

Here we examine how this process depends on the fre- QE; @
guency of the time dependent velocity field. Consider a two-
dimensional fluid flomu= (u,v) which is time periodic. The L«

motion of Lagrangian particles is governed by the Hamil-

h : FIG. 1. Schematic plot of the stirrers flow showing stirrer location.
tonian dynamical system,

. Y B. The Stirrers model
X=U=Ug(X,y) +Au(X,y,0t)= —, 2 , . . . .
o(X:Y) Xyt ay (23 To fix the discussion, we consider the flow past a recir-
culation region created by a vortex pair with fixed position
] I (stirrers of circulation strength'..) perturbed by time peri-
y=v=vo(X,y)+Av(X,y,0t)=— X (2b)  odic flow field induced by two additional pairs of stirrers

placed symmetrically at some distance from the principle

S . vortex pair(see Fig. 1L The total flow can be written as
where the Hamiltonian is given by the corresponding stream

function /= ¢o+ Ay, and we assume that the time depen-  ¥(X,y,1) = =Vy+»(X,y,0,1) + Ag(wt) (#2(X,Y,Ix,ly)

dent part of the velocity field has a zero megw{);=0). Y1) 3)

We further assume that the steady flow has a finite number of 206Y: T haly)),

hyperbolic stagnation points with recirculation regioRs  Whereg(wt; #) = sin(wt+ 6) (or, more generally, any 2 pe-

bounded by a homoclinic loop. For example, the recirculafiodic function and #,(x,y,x,.y,) is the stream function

tion regime may be associated with an isolated vortex anéhduced by a pair of stirrers with opposite circulations lo-

the existence of a few of these recirculation regimes, or of gated ax=x,, y==*y,,

mean uniform flow at infinity, necessarily creates hyperbolic 1 (X—X.)2+ (y—y, )2

dividers between dynamically different regions of the flow. Pa(X,Y,X,,Y,)=— = lo v Y=Y _ (4
We assume that the time-dependent flow is typical in 2 7 (x=x,)%+ (y+y,)?

that it breaks the homoclinic/heteroclinic connections and WhenA=0 andV=0.5 this stream function represents a

leads to chaotic particle motiofthis may be verified, for solution to the unforced Navier—Stokes equations. Wor

sémIaII.A V"?"“es qsm? af.MtzlJmk'ov calgulaﬂé‘f). From al? #0.5 orA#0 this represents a solution to a forced Navier—
ﬂu erian VIekyv-p9|nt, or fixe do,hlncrﬁas‘!ngb\ lnl():re.as?,csiéie Stokes equation, where the force function is applied at the
uctuating kinetic energy and thus the “perturbation stirrers locations and physically corresponds to counteracting

number. Therefore, in order to concentrate attention on th?ne drag induced by viscous boundary conditions there. We
frequency dependence of the resulting transportiiw@ and 0 that the flow, for allA values, is symmetric to reflec-

vary . Furthermore, to compare efficiencies of different fre'tions about the-axis. This simplifies but is not crucial to the

quencies we consider the transport occurring on a fixed tim‘:3\na|ysis;. The equations are nondimensionalized so that
interval,not at a given Poincarmap iterate. We note that an

equally reasonable Eulerian criteria for comparing transport — — —
at different frequencies would be to fix the power input of ~ X=X/d, y=y/d, dt= —dezt:
the fluctuating component thus keepiffw, and not simply

A constant. Results using the first criteria can be easily in- 27y 2mwd?T", 2md?—
terpreted in terms of the second. We note that from a La- ¢= r =71 » o= @
grangian, dynamical system point of view, the dependence

onA is in fact nontrivial and some of the transport properties 2md—

may be nonmonotonit® V==V, L=Ldd, l,=L,/d,

The magnitude of the time dependent part of the velocity _
field, A, is thus fixed(for the stirrers model, all figures are Where the initial strong stirrers are locatedxat 0y=*d
for A=1). Indeed, the majority of our results apply for finite With circulation strengthI' and the weak stirrers ak
A values. Motivation and some analytical estimates utilize=Lx,y= %Ly with circulation strengtii’, . The stirring fre-
the smallA limit, as specified in the text. We do requife  quency isw and the far field flow is {,v)=(—V,0).
<Anax 10 insure that the hyperbolic structures and at least For A=0 we obtain an open flow with a recirculation
one of the manifolds primary intersection points exist andregion centered near each stirrer. Fer9<2 there are two
depend continuously o for all w values(an upper limiton  stagnation points on the-axis and the two recirculation re-
Anmax May be explicitly found). gions have two components of boundary, one of which is the
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o dependence in the amplitude of the time-varying compo-
nent of the velocity field. While for such a situation the fre-
quency dependence can be specifically analyzed by using the
same tools developed here, the conclusions regarding the fre-
quency dependence will be specific to this model. Second,
the flow is experimentally realizable. Finally, by varying the
free stream velocity)V, one can examine the role of gross
topological changes on transport properties. Similar topo-
logical dependence on parameters exists when considering
the flow field near axisymmetric vortex rings.

Leaving theV-dependence study to future work, we fix

V=0.5, 5

corresponding to the velocity of a pair of free point vortices.
It then follows that forA= 0 the stagnation points are located
at

(i'i)

Xs= §—1=¢§ (6)

and the heteroclinic stream line which connects these points
(the =0 streamling intersects theg-axis aty, such that
1 —1)2
V=—_-—1log M (7
2Ym (Yt 1)2
For V=0.5, this givesy,,~2.1. The velocity at (§) is
given by

)= 2 v ®
v(Y)= =7 =———V,

Yt oy 1Y

which, forV=0.5,y=y,, is about— 1. TakingV=1 implies
v(Ym)=~—2.6, whereasv=1.9 produces (y,,)~—6.2. It
follows that for such parameter values order one frequencies
correspond to effectively adiabatic forcing. In what follows
we assume time is normalized so tHat the unperturbed
flow |v(ym)|~1. We conclude that the study of the
V-dependence must include additional rescaling of the time.

lll. CHAOTIC DEPLETION OF CORE WITH NO
DIFFUSION

A. Universal form of the flux function

For A# 0 the streamlines are time dependent, hence their
instantaneous structure does not reveal much of the dynam-
ics (except in the special limit of adiabatic flows, as dis-
cussed beloyv The hyperbolic fixed points become hyper-
segment of th&-axis connecting these stagnation points. Forbolic periodic orbits and their stable and unstable manifolds
V<0 orV>2 the stagnation points are on thexis, and the are the dominant structures which govern the transport prop-
recirculation regions are bounded by a single boundary comerties of the flow. The location of these one-dimensional
ponent, see Fig. 2. manifolds vary periodically in time. Since the stable and un-

For 0<V <2 the flow structure is similar to that of a free stable manifolds are invariant, intersections must occur along
pair of point vortices in their co-moving frame and to the an orbit asymptotic to the fixed points in both positive and
polynomial type flow studied by Ghosét al?* The follow-  negative times, namely a heteroclinic orbit. Since the Poin-
ing considerations lead us to choose the slightly differentaremap(the mapping which takes an initial condition to its
model. First, the time dependent velocity field is of the formimage after one period of the flgvis orientation preserving
Ay =Ay;(X,y,0t), namely changing the frequency does at least two such orbits must exist. Poincaegtions of the
not change the amplitude of the time dependent componentanifold structure are shown in Fig. 3.

Using free point vortices, as in the OVP modelauses the The manifolds define a regidR, from which a turnstile
vortices to oscillate with frequenay, introducing additional  flux mechanism®:*”exists. LetE denote the entraining and

FIG. 2. Stirrer Pair flow. Steady flowsA&0) with (8) V=-1<0, (b) O
<V<2(V=0.5), and(c) V=3>2.
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D= R%ax_ I:_:I-R%in ’
andF denotes the Poincaraap (similar definitions may be
constructed for the 12 primary homoclinic orbits cageln-
compressibility of the flow implies the areas of the lobes
must be equal. As seen in Fig. 3 the lobe geometry, for a
fixed A value, changes dramatically with the frequeney
This frequency dependence and its universal features are the
subject of this section.

We establish here two new results which are universal;
holding for any time periodic, Hamiltonian floy2) satisfy-
ing the following conditions:

05

(A1) For all w values the flow(2) has a hyperbolic periodic
orbit with intersecting stable and unstable manifolds
(or a homoclinic loop as in our model

(A2) There exists a primary homoclinic orlgg(w) defining
Rrins Which depends continuously an and w(Rpi)
>c>0.

(A3) Time is scaled so that outside of a finite neighborhood
of the hyperbolic periodic orbit the velocity along the
separatrices i©(1).

AssumptiongAl)—(A3) are clearly satisfied in the near-
integrable limit wheny= iy(x,y) + O(A),A<1 and may be
verified to hold for finiteA<A. values. For the stirrers
model A, 1.

Before stating the first result, we introduce some nota-
tion associated with the behavior in the low frequency, adia-
batic limit. In this limit, it is useful to define the “frozen”
system’

oS5

dx  dg(x,y,T)
a (%a
dy  dp(xy,7)
dt ox (%h)

[23 4

wherer is a fixed parameter. It follows frorfAl), (A3) and
adiabatic theory that the frozen system has, for all
€[0,27] a recirculation regiorR(7) of areaR,. This area
may oscillate, with local minima and maximBy,., min

FIG. 3. Stable and unstable manifolds of the Stirrers flgw.0.5A=1 (a) i=1,... n, corresponding to & primary intersection points

0=0.28, (b) w=1.45, (c) w=m. The invariant core regions, enclosed by of the47man|fq|ds WhIC_h appear for suff|C|en_tIy s_maﬂ )
largest KAM torus and main resonances, are shaded. values:’ Invariant manifold theory for the adiabatic limit
4148 implies that these regions aseclose to the correspond-

ing regionsR% R bounded by segments of the stable

D the detraining lobes; these are the areas enclosed by tfd unstable manifolds.

segments of the stable and unstable manifolds which connect " Fig. 4 we plot the frozen separatrices and the stable
two adjacent primary intersection orbits. If more than two@nd unstable manifolds at different Poincaetions for the

primary homoclinic orbits exist we caff the collection of ~ Stirrers flow. It is seen that the convergence of these mani-
entraining lobes anB the collection of detraining lobes. For folds to the frozen separatrices is highly nonuniform. In fact,
simplicity of presentation we assume, unless specified othefor our model, the frozen separatrices at the Poinsaaion
wise, that exactly two primary homoclinic orbits exist. The to @ndto+ 7/ have exactly the same aréay symmetry.
segments of the stable and unstable manifolds connecting t2otting the adiabatic Melnikov functiofi.e., the area en-
hyperbolic points to each of these primary intersection point§losed by the frozen separatrigemne concludes that there

©~

define the regioR?,,,R%.,, where must be at least two incoming and outgoing lobes per cycle
. Y (n=2in(10)), and that all four lobes have identical aréss
E=Rmax— Rmin: effectively a two-lobe turnstile mechanism appears every
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25 T T T T T T T 25

FIG. 4. Separatrices and frozen separatrices defiRjpg and R, for o=0.28 shown at the four Poincasections, 07/2w, 7/ w,3m/2w. The frozen-time,
adiabatic separatrices are indicated by lighter, thicker lines.

half a cycld. On the other hand the are®.,,R%;, are Proof: The first, second, and fourth claims imply the
realized, for finite w and sufficiently smallA (e.g., third one. The flux is a continuous function of Indeed, by
=0.28A=1) at the Poincaresectionst,=0,7/w, respec- assumption(A2) and area preservation there exists at least
tively. We conclude that for the stirrers model=0.28 is  One pair of transversgor tangent of odd orderprimary ho-
still not sufficiently small to capture this adiabatic behavior.moclinic orbits hence the flux is well defined for all val-
Nonetheless, as will be apparent later on, our analysis ig€es; it is just the area enclosed between the corresponding
mainly concerned with finite stirring frequencies and thesegments of the stable and unstable manifolds, which vary
above finding is noted just to reconcile the contradictory feasmoothly withw. Abrupt changes in the flux may occur only
tures of the adiabatic and Melnikov analysis. through homoclinic bifurcations of primary homoclinic or-
We can now state our first result. bits. However, while such bifurcations may cause an abrupt
Universal flux function theorem: Consider the family ~change in the area of an individual lobeg., by splitting a
of Hamiltonian flows (2) satisfying the assumptions (A1),Jobe to two componentghe total flux changes continuously.

(A2), and (A3). Consider the flux function (df) The fourth claim follows directly from Neishstath,
= u(E(w))/ (27 w), where E denotes the union of all in- Where it is shown that fast oscillations may be averaged to
coming lobes per cycle. Then, exponential order. In this case the separatrix splitting, and

hence the flux, are at most exponentially small.

The second claim is a direct consequence of the fact that
the lobe area is equal to the area swept by the frozen
separatrice&’

(1) The flux is a continuous function of

(2) The flux is linear inw for small w values,

e " "
f(w)=Coto(@)=7 24 (R R0 +0(0). H(E)=3, R Rih= 3, Ria~ Rpnto(1). (11

(10)
(3) The flux function has at least one maximum. The first equality follows from the lobe definition and the
latter follows from the closeness of the stable and unstable
(4) The flux decays exponentially for largevalues. manifolds to the frozen manifolds in the adiabatic liffit.
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This result has been proven using the analytical expression
(in integral form for both sides of the equations, and in
particular the relation with the integral of the adiabatic
Melnikov function has been establish&d'’

Q.E.D.

Summarizing, a universal frequency dependence of the
flux function exists, by which the flux grows linearly for
small w (provided the adiabatic limit is generic so that
= oRmax— Rmin=>0), decays exponentially at infinity and
thus has at least one maximum at an intermediatealue.
Now, by definition, the lobe area is proportional to the flux
divided by w. Furthermore, thevidth of the stochastic zone
is simply given, forw values bounded away from zero and
for sufficiently smallu(E), by the flux multiplied byw as
explained next.

More precisely, Tretchév has proved thatV, the width
of the mixing zondin the open flow case we interpret this as
the distance measured in termsyaf between the last KAM
tori and the separatricess given asymptoticallyin w(E))
by W=0(d/log(\)), whered is the maximal width of the
turnstile lobe which is proportional té(w) and A is the
eigenvalue of the fixed point in the Poincamap. For small
Al w values\~expa2m/w, where « is the positive eigen-
value of the hyperbolic fixed point d2) at A=0, and the
above statement follows. Hence, the graphs of Fig. 5 are
universal—other models will have exactly the same
asymptotic behavior for small and larges and at most will
have a larger number of maxima in the figur&oreover,
the maxima locations of the flux move to the left for the lobe
area and to the right for the stochastic zone width

For finite w values, the above results imply that for any
n=ny one can findw,(n),wy,(n) such thatw,=nw, and
f(wa(n))="f(wy(n)). It follows trivially that the lobe areas
are related byu(E(w,(n)))=nu(E(wp(n))) since equal
amounts of fluid are transported by both the fast and slow
flow in a given amount of time. As long as the lobe areas are
sufficiently small and the Flouget multipliers are not strongly
dependent on frequency, the stochastic zone associated with
the “slow,” w, flow is n timessmallerthan that associated
with the “fast,” w, flow. This finding contradicts the “folk-
lore” that adiabatic chaos is always “stronge(i.e., pro-
duces a larger mixing regidrthan high frequency chaos. , , _
This folklore is justified only in the obvious case when OneFIG' 5. Lobes area, flux, and stochast!c zone estimate for the stirrer model.
) . @ n(E(w)), (b) f(w), (c) 7.80f(w). indicating the universal behavior
fixes, sayw, and then letso,— . Then, the flux associated pregicted in Sec. Ill A. The limiting adiabatic predictions are shown by the
with wy, is much smaller than that associated withand the  dashed lines.
usual picture follows.

In the near integrable case it is possible to calculate the

flux function analytically. Denoting the Melnikov function E) Amw)lf S(nd [f(w)| G 13
; M ~ R T)dT=—""
by M(t), it follows thaf o Jism=0 ”
and the flux function is simply(w)=|f(w)|G/27, namely
/J«(E):Af M(t)dt+O(A2). (12) proportional to the amplitude of the Melnikov integral.
{tiM(t)=0}

B. Flux, lobe area, and stochastic zone width for the
Generally, the Melnikov function is of the fornM(t)  Stirrers model

=f(w)g(wt;0), wheref(w) measures its amplitude and  The Melnikov method described above may be used to
9(-;w) represents its oscillatory nature. If, for some range ofestimate the flux functiori(w) for the stirrers flow. In this
o values,g(wt; w)~g(wt), then case, it is easy to verify that for finite values the Melnikov
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function is of the formM (t) = f(w)sin(wt), hence there are that these are rough estimates which demonstrate that the
¢ matching of the small amplitude Melnikov analysis and the
adiabatic theory is nontriviaNote that for the stirrers flow
the adiabatic limit does not give a maximal mixing zone

exactly two primary homoclinic points per cycle and for su
ficiently smallA the flux is given by Melnikov function am-

plitude f(w) over = (G=2 in (13)).
In Fig. 5 we plot the graph of the lobe areaf (2)/w)),
the flux function §(w)/), and the width of the stochastic C. The adiabatic Lagrangian steady state

zone @?(w)w/w,Cz?.S) calculated by using the regular The strong restrictions imposed by adiabaticity imply a

Melnikov function for the stirrers flow. The constaatis  distinct lobe geometry in the low frequency limit and thus a

taken so that the width of the stochastic zoneat1.45 will  strong effect on the nature of the advective transport.

be close to the numerically observed one. In fact, a rough Lagrangian steady state TheoremConsider the family

estimate ot was obtained as follows: Tretchhproved that  (2) which fulfills the structural assumption (AXA3). Then,

for a map with symmetric figure eight separatrix the width ofin the adiabatic (small) limit, almost all the fluid entrained

the stochastic layer is @/ ky)d/log\, whereky=~0.97 (kyis  via the entering lobes E is detrained by the lobes D during

the standard maP critical parameter value beyond which no the next iterate of the Poincamap. Namely,

KAM tori survive), d denotes the lobe width and the ei- w(END)

genvalue of the hyperbolic fixed point from which the sepa- ——~

ratrices emanate. We are measuring half the width of the #(E)

stochastic layeronly the interioj, and the lobe width is Proof: Consider first the case of only two turnstile lobes. For

given byd~Af(w)=7f(w). Computingx numerically for ~ vanishingly small frequencies,Ry»—Rmin and R,

the stirrers flow withA=1, we find that log.~2.6/w for ® = —Rmax- Moreover, in this limit there exist a KAM torus

=0.25 (with surprisingly good accuragy Combining all ~Which defines an invariant core areRgy.. Clearly

these we get the width ~(27%/0.97.2.6)f(0w)w  M(Rcord<u(Rmin). Since the adiabatic theory applies to

=7.8f(w)w, which agrees quite well with the numerical re- most orbits(those which do not cross the separatricies

sults. We note that choosing Tretchev constant/l,  Rmin it follows thaf*

which was or.iginally comp_uteq.for a symmetric figu.re eight /(R — u(Reord = 8(w), Where

separatrices is not clearly justified for our heteroclinic geom-

etry (thus our initial cautious statement thais really cho- d(w)—0 as w—0, (15

sen to fit the numerical result at orevalue. and one expects(w) = O(w?|log w]?).

( Th(la unl\lllersal _featuresbl_of :he th.eore:) r?rfh cltla\;la\rlly.lfeen By definition, the region®R..e,D,(E—DNE) are dis-

see also all previous publications in which the Melnikov ju; i

function was calculated, e.g., Refs. 52We notice that the Joint sets and are all contained Rira,. Thus,

derivation of the Melnikov function includes a regular per- P(Ria) = p1(Reore) + (D) + w(E—(DNE)). (16)

turbation expansion in the parametr holding all other  Using the above inequality, area preservation @i, (15),

parameters fixed. In particular, it is well known that the ex-it follows that

pansion fails in the asymptotic regimes of small and large N

's, where special techniques for measuring separatrix split4(E =D NE)<u(Ruin) = #(Reord = 8(w) +0(1), 17

ting must be employed. Hence, Fig. 5 is formally valid only and the theorem is proved. A similar proof applies for a

for small A values(though see next paragrapand forw  general number of turnstile lobes. Labeling the turnstile

values which are bounded and are bounded away from zer@bes so thaRy;,,=minR“=R%%, adiabatic theory implies

The figure demonstrates that the predicted maximum indeethat Ry, .~ Ruinmai=1, - - . n and that(15) is valid for

exist. the minimal separatrix R%. With E=U",E;,D
Using the perturbative Melnikov function for the stirrers =U_;D; andR'*"=R'),

model shown in Fig. 5, equal flux is obtained at frequencies no 1o

®0=0.3,1.5. ForA=1, equal flux values were found numeri- #(Rina) = #(Rigin) (D)

cally for frequenciesw=0.28 and 1.45. Figure 3 indicates = u(Reord + #(E—EN(D—D,))+ u(D,

that the lobes associated with=0.28 are indeed about five

times larger than those associated witk 1.45. The width —(DaNE)). (18)

of the stochastic zone fas=0.28 is about five times smaller This expression is exact even when the flow is clo§ed,

than that foro=1.45. when E;NFXE;#J for somej,k with j>i or k>0). Ex-
The adiabatic Melnikov function calculation which sup- panding the above relations and usifig) we obtain(17).

plies the near-adiabatic limit is indicated by a dashed line in Q.E.D.

Fig. 5. Calculating the functiofR(7), which measures the The implications of(17) are clearly seen in the stirrers

area of the frozen separatrices, we find it has two oscillationgnodel for the low frequencyp=0.28 case. Figure 4 shows

of magnitude 0.55. It follows that for smalb’s w(E) the significant overlap between the entraining I&and the

~1.1, thatf(w)~ (1.1/27) » and, since the length of the detrainingD lobe. In accordance with the theorem, the de-

frozen separatrix is approximately 4, the width of the sto-gree of intersection is significantly larger for the lower fre-

chastic layer is approximately 0.554D.126. We emphasize quency,o=0.28 case than it is fow=1.45.

—1 as w—0. (14
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The theorem implies that a “Lagrangian steady state” isThe adiabatic steady state implies that, in the liait: 0, the
established in this adiabatic limit. For initial scalar concen-first term in the sum approachegE) andR,, remains con-

trations confined to regioR,,,, (respectivelyR,,,), the ad-
vective transport is essentially complete after grespec-

stant!
The implications of the above analysis for the stirrers

tively zero iterates of the Poincam@ap. Making use of area flow are shown in Fig. 6. Initially, particles are distributed
conservation, it is easy to estabfisinat for open flows all
the outer fluid which enters the regidtf,;,, must eventually

leave this region. Thus, for atb,

o)

u(E>=n§0 w(F'END).

SettingR,= w(F"(Rmin) N Riin) »

n

Rn=Rnfl—u<E>+j§O w(FIEND).

(19

(20

inside the regionRy,, min defined by the previously com-
puted stable and unstable manifolds of the flow. The time
evolution of the area averaged concentratioft; ), is es-
timated by counting the number of particles remaining
within RY,, min @t timet. Plotted in Figs. @) and @b) is a
measure of the amount of scalar which remains(risp.
advected out gfthe initial region for both the slow and fast
iso-flux frequencies. For finite but small stirring frequencies,
the near adiabatic lobe geometry implies that the bulk of the
transport takes place during the first perigioe initial Poin-
care iteratg betweent=0 andt=2nw/w~22. After this

time, a near steady state is established with significantly less
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transport occurring during the following oscillatioffer the  are comparable. By assumpti¢A3), the lobe length is of
Rmin case the strong oscillations per period are an artifact obrder 2mw/w, and therefore the lobe width scales ds

the spatial motion of the invariant core regiofhe time ~u(E)/(27/w)~f(w). It follows that
dependence of the transport rate is significantly different for )
the faster stirring frequency. Here the transport rate, while :f (@)
. . . . . . . . lobe ] (22)
slowing slightly with increasing iterates, is appreciable D

throughout the time interval of the calculation which encom-
passes approximately 20 fast periods.
Initially

where we use hereafter, with a slight abuse of notafiofgr
the nondimensionalized diffusion coefficienD € 1/Pe).

Note that in the near-integrable cade-Af(w) supplies a
w(Rya)<u(Re )< u(R.2) (21)  more precise factor in the above scaling. The significance of
this lobe time scale to diffusive chaotic advection was first
noted by Beigieet al>? Other time scales associated with
chaotic motion and diffusion were suggestéd? nonethe-
|gss, for these finite time results only,,. seems to play a
role. This scaling implies that iso-flux frequencies,( oy
such thatf(w,)=f(w,)) have the samadvection-diffusion

. - . . . time scales.
To summarize, distinct differences in the manifold ge- . , .
. . . . The above scaling can be used to define a critical value
ometry associated with two disparate frequencies of equal

flux lead to distinct differences in the time dependence of th Of the diffusivity for a given stirring frequency of the flow;

advective transport of a finite region of scalar. At the lower — "< &'®a the slow-chaotic-diffusive transport takes place

stirring frequency the transport is essentially complete after %)hn ttlme scales of order@ w,, hence, it follows from(22)

single period of the flow. At the higher frequency, the deple-
tion process occurs over a large number of cycles. The size f2(w,) 0,
of the invariant core region decreases with increasing fre- Dc=——_—. (23
guency implying that, in the long time limit, the total amount
of scalar transported is larger for higher iso-flux frequenciesFor the stirrers model, a frequency ©f=0.28 gives a value
of D,~2-103. For timesO(2#/w), diffusivities smaller
than D, results in essentially nondiffusive behavior of
IV. DIFFUSION EFFECTS C(t;w). ForD~D, a strong interplay between diffusion and
the chaotic advection takes place and ¥ D, the trans-
Differences in the slow and fast manifold geometry haveport is diffusion dominated.
an even more marked effect on scalar transport when difqu Numerical solution
sive processes are included. In the presence of diffusion, the’
geometry of the low frequency advection process, {84), We solve the advection diffusion ER.1) for the stir-
provides an efficient means to “cool” or mix the core region rers velocity field using the multidirectional, positive definite
of the scalar field. During each advection cycle, a supply ofinite difference algorithm(MPDATA) first proposed by
fresh (essentially zero concentratipriluid is transported SmolarkiewicZ2® The scheme provides a conservative, sec-
from far upstream to the region of highest scalar concentraend order accurate, and positive definite solution to the ad-
tion. In this manner, large concentration gradients are mainvection equation.
tained within the core region and diffusion is enhanced. In  The diffusive terms are calculated using a standard dis-
contrast, iterates of the high frequency case lead to the crerete Laplacian at an interpolated time step. The complete
ation of a zone of finite concentration fluid surrounding thescheme is second order accurate in both time and space.
core region. For finite diffusivities, this advective geometry Analysis and details of the implementation of MPDATA are
leads to the exchange of “gray(finite scalar concentration  available in Smolarkiewicz and Margolfi.
fluid into and out of the recirculating region as seen in Fig. 8. A rectangular computational domair,3<x<3 and 0
Therefore, increase in the diffusion coefficient leads to a<y<2.5, is used with grid spacinyx=0.025. Experiments
more pronounced difference in the total transport for theusing two and four times this number of grid points did not
slow chaos case. It follows, for some initial time period de-effect the area averaged results. The open, downstream
pending on both the geometry and the diffusivity, that theboundary condition at=x,,;, was treated by neglecting the
total transport of marked fluid out of the recirculation regiondiffusive term at these points. At=0, symmetry was used.
is larger for slower stirring frequencies. Eventually, the Several numerical issues present themselves. First, sin-
smaller invariant core size of the higher frequency flow leadgyularities in the velocity field at the stirrer locations are dealt
to lower values of the area averaged concentration. Belowyith by both staggering the computational grid to avoid these
we demonstrate numerically the existence of this slowdocations and by adding a small regularization to singular
chaotic-diffusive transport mechanism. velocity. The chaotic velocity given by3),(4) implies the
First, note that these effects are significant on time scalepresence of increasingly fine spatial structure in the scalar
at which the slow period, 2/w,, and the diffusive time solution. Without diffusive smoothing, the scalar field is
scale associated with a particle transversing the lag,  eventually stretched and distorted on scales below that of any

(which is generally true foA sufficiently small. The choice
of iso-flux frequencies implies that the total transport in the
two cases is equal at the end of one slow period as seen
the figure. Eventually, the graphs 6f,,(wa) andC,.{ wp)
cross since the invariant core areawgfis larger than that of
Wy .

Downloaded 11 Jul 2007 to 132.77.4.43. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2054 Phys. Fluids, Vol. 11, No. 8, August 1999 V. Rom-Kedar and A. C. Poje
45 T 45
or e M o~ -
D =0.0001 - D = 0.0005 P
- s
35 L Vg 35 ,
\/nl Y
3 ar '~
7
= < ° L7
Gasf 7 E O2s N PR
[} /\’ [} /\/ 7
v e 14 T T
2ol o et =2 ~r e
9] v T o s T
’// =T ~y !
16F /.,/ — _\“/ 1.6 ’v/ ./,_<
n’ / “:.\ /'l
A1 "FL-' N/ 1t .’,”’L‘ -
'’
/J ——  Omega = 0.28, Rmax {»l ——  Omega =0.28, Rmax
°'5'I A Omega = 0.28, Rmin | ] o8 --=-- Omega=0.28, Rmin | T
4 -~--  Omega = 1.45, Rmax y -~~~ Omega=1.45, Rmax
VO 20 40 60 80 100 120 % 20 40 60 8'0 1(')0 120
(a) t (b) t
45 T 6
4} T
D =0.001 sp
asf N g
7.
\/J
.
3 Vi J o
~’ ' 1
) ‘,‘/ o o =
28t N e T
1 » L (s
> > T >
St 2r 7 S~
Q "~ _ ’ Q
et PR
! /"’ -
15 Mo 2
‘s - K4
L~
1 ,'//hf _ .
I ——  Omega = 0.28, Rmax ————  Omega = 0.28, Rmax
R Omega = 0.28, Rmin | ] 2 Omega = 0.28, Rmin
y -~~~ Omega = 1.45, Rmax --=-  Omega = 1.45, Rmax
VD 20 40 60 8'0 100 120 00 20 4‘0 5‘0 5‘0 1 80 120
{c) t (d) t

FIG. 7. Transport from recirculation zone in the presence of diffus@{tg) — C(t) for (8) D=10"*, (b) D=5-10"%, (c) D=10"3, and(d) D=10"2.

possible grid resolution. We have implemented the advectioboth frequency values. Any difference in total transport be-
algorithm on a B-Grid, i.e., velocity nodes located at thetween the two frequency cases, at least initially, is due to the
corners of a computational scalar cell. As such, while thegpresence of diffusive processes.

advection algorithm is numerically stable and second order The areas of the initial regions so chosen are obviously
accurate for all values of the diffusivigncludingD =0, i.e., ® dependent. To demonstrate that different transport rates
infinite Pe spatial interpolation of the solution between grid stem from frequency dependent geometric effects and not
cells imparts a small degree of numerical diffusivity to the simply different diffusion rates for different size initial con-
scheme. There is a discretization dependent, minimum diffueentration distributions, we consider three initial value prob-
sivity value in the computations where the numerical andems, R=R;,.., R=Rp, With o=w,, and R=R,,, with
physical diffusivities are commensurate. For the cases corw= w,. By (21) the area of the latter region is bounded from
sidered here Ax=0.025) this value is approximately above and from below byRr;2 .. respectively. Further-
0.00005 which is below the range of interest. more, the nondiffusive Lagrangian calculaticfég. 6) show
that aftert~22 the ordering of the pollutant concentration
becomesC,® <C’2<C"2 . Trends which hold for both
these latter regions imply trends due to differences in stirring

In order to insure the advective fluxes are indeed equivatrequency a.nd pot initial area size.
Plotted in Fig. 7 are time traces of the total amount of

lent for the two stirring frequencies, the initial conditions for o ;
the scalar field were chosen as in Sec. Il C, scalar removed from the initial regio@,(ty) — C(t), where

1 if {x,y}eR
0 otherwise,

where the regions of initial non-zero scal&, are given by  The results are shown for several values of the diffusivity,

max.min @S defined by principal intersections of the stableboth flow frequencies and the three initial conditions. The
and unstable manifolds. Choosiag= ,,w, as before, in- spatial distributions of the scalar field f&”2 “* are shown
sures that the advective scalar flux, as referenced by the infer times at the end of one and two slow cycles in Fig. 8. For

tial area of nonzero concentration, is exactly the same fosmall diffusivities and small times, the transport results are

B. Numerical experiments

c(x,y,t=0)= (24) Ct)= ch(x,y,t)dxdy.
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identical to those given in Fig. 6, for larger diffusivities lated to the core size. For diffusivities much larger thxn
(longer time$ there are appreciable differences. Téress  differences between the frequencies exist but are not as dra-

over timefor the Rzg;(“’b curves increases with increasibg matic.

indicating that diffusive effects are not only more pro-

nounced in the low stirring frequency case but that the geV. DISCUSSION

ometry_ of the_“Lagrang|an _stea_ldy state” established in this We have shown that there are two universal features of

advec_:t|ve reglm@nhance_sjlffuswe transpor_t. the transport through a homoclinic region. First, that the flux
Figure 9 shows the time trace of th‘? dlfferen_ce b_etwee unction is nonmonotonic in frequency—it has at least one

the total scalar concentrations for two different diffusion Co'hump. Second, that in the adiabatic limit the mixing region is

efficients, essentially covered by the turnstile lobes hence a steady state
co' (1 Ot of a nondiffusive pollutant field is readily achieved. Com-
(C” Lw)-C(tw)) mon wisdom in the chaotic advection community is that

adiabatic chaos is a more efficient mixer of fluid parcels than
the chaos that results from high frequency oscillations. This
whereD’=10"*. In all cases, the effects of increased diffu- js certainly true if the flux and the stochastic zone of the

sivity are most dramatic for the lower frequency flow. The |ower frequency are much larger than that of the higher fre-
graphs for diffusivitiesD=5-10"* and 10°° near the criti-  quency. However, our results show that this paradigm should
cal diffusion coefficient, clearly demonstrate the claim thatpe taken with a degree of caution. First, the universal non-
diffusion preferentially augments the total transport for lowermonotonicity leads naturally to comparing two frequencies
stirring frequencies. Even though Lagrangian iso-flux fre-with equal flux. For such iso-flux frequencies, the lower fre-

quencies were takemdependenbf the original region size quency flow has larger lobes while thegher frequency

va), the amount of pollutant re- leads to a larger stochastic zon&herefore, for finite sized

(i.e., for bothR"2 and R’2
maining in the original region decreases dramatically With initial distributions of scalar there are time scales on which
for the slower advection. Furthermore, the ordering of thethe slow chaos leads to increased transport whereas for larger

curves does not correspond to the ordering of the curves itime scales the total scalar transport is larger for the fast
Fig. 6(@), demonstrating that the governing effect is unre-chaos.

CP'(t;w)
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time results, they clearly hold for moderate times in closed
y flows where the recirculation regions are widely separated or
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We note that these features hold for both open and
closed flows and for near-integrable and nonintegrable flow%e)
(as long as an invariant circulation region exisi¥hen mo-
lecular diffusivity is included in an open flow model, we
argued that the smaller frequency dynamics give rise to an
efficient transport mechanism of pollutant out of the core )
area and estimated the range of diffusion coefficient for(
which this mechanism will be effective for a givéfinite)
time. This has been confirmed numerically for the specific
model we have suggested. This result depends on the open
flow geometry since we assume that the incoming lobes
carry clean, zero-concentration fluid. Since these are finite

Many questions remain for future study:

How does the total transport depend on the amplitude
of the oscillating term? In this case, the notion of effi-
ciency, perhaps in terms of power input, needs to be
properly defined.

Similar geometric arguments hold in the truly closed
flows however the implications there may be different.
In particular since high frequency stirring leads to
longer interfaces at a given time, homogenization in the
presence of diffusion may be achieved faster for faster
stirring.

Here diffusivity effects were examined using a combi-
nation of physical and scaling arguments supported by
numerical simulations. In Lingevitch and Bernéffan
analytic estimate of the diffusive transport in a similar,
but time independent flow is given. The analysis con-
siders the motion near the separatrices as a boundary
layer problem whose solution ultimately provides a
simple boundary condition for the across streamline
diffusion in the core region. It is quite possible that a
similar approach may be derived for the chaotic system
considered here where the boundary layer width is now
much larger and determined by the size of the stochas-
tic zone.

The graphs presented for the transport from the core
region in this paper correspond to specific initial data;
pollutant that is concentrated exactly in the regions
Rmax,min defined by the Lagrangian geometry. In spirit,
similar result are obtained for different initial value
problems where the initial distribution includes most of
the core area. Differences arise when smaller initial
regions are considered. Here, we expect very different
behavior for singular velocity field¢such as arising
from the point vorticesand nonsingular ones. Indeed,
when the regularized velocity field has slow time de-
pendence, the level curves of the core streamlines
strongly deform in different time sections. This corre-
sponds to strong deformation of the adiabatic KAM
curves. On the other hand, the KAM curves associated
with fast oscillations deform very little in a single pe-
riod. When the velocity field is singular, such deforma-
tions do not occur. We expect, and have confirmed
numerically in a kinematic model, that such behavior
leads to very different results in the presence of diffu-
sion.

The gap between adiabatic theory and finite frequency
behavior has been found to be significant and an ad-
equate Melnikov-type analysis is still needed to match
these regimes.

Many questions arise regarding our specific model. We
would like to understand how the bifurcations VA
asymmetries and smoothing of the velocity field influ-
ence the transport. Such specific questions are espe-
cially interesting as this model can be thought of as a
simplified version of the flow near a vortex ring.
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