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Big islands in dispersing billiard-like potentials
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Abstract

We derive a rigorous estimate of the size of islands (in both phase space and parameter space) appearing in smooth
Hamiltonian approximations of scattering billiards. The derivation includes the construction of a local return map near
singular periodic orbits for an arbitrary scattering billiard and for the general smooth billiard potentialsumtvessality
classes for the local behavior are found. Moreover, for all scattering geometries and for many types of natural potentials which
limit to the billiard flow as a parameter— 0, islands opolynomialsize ine appear. This suggests that the loss of ergodicity
via the introduction of the physically relevant effect of smoothening of the potential in modeling, for example, scattering
molecules, may be of physically noticeable effect. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

When an integrable Hamiltonian system is perturbed, non-integrable motion appears [1]. What happens when a
highly chaotic Hamiltonian system is perturbed? In particular, consider an ergodic mixing flow — can a perturbation
ruin these properties? Clearly, for uniformly hyperbolic systems the answer is negative, e.g., for geodesic flows on
the surfaces of negative curvature [2]. The other basic example for hyperbolic behavior in the Hamiltonian setting
is the class of scattering billiards [3]; Billiard motion corresponds to a point particle traveling with a constant
speed in a region, undergoing elastic collisions at the region’s boundary. When the boundary is concave, causing
neighboring trajectories to diverge upon reflection, the billiard is called scattering. Due to the divergence instability
the scattering billiards are ergodic and mixing systems [3-5]. Thus, these have been suggested [3] as a first step
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models for substantiating the basic assumption of statistical mechanics — the ergodic hypothesis of Boltzmann (see
especially the discussion and references in [4,6]).

The scattering billiard corresponds to a non-smooth dynamical system which may formally be thought of as
a Hamiltonian motion in a singular potential. However, classical molecules move in smooth (though very steep)
potentials. Therefore, itis natural to consider the effect of smoothening of the potential on scattering billiards, and in
particular its effect on the ergodic properties. In [7] we proved that smooth scattering billiard-like potentials may give
rise to islands, ruining ergodicity (see also [8] for related results concerning the ‘finite range potentials’ problem).
Thus, we demonstrated that proving Boltzmann hypothesis for the hard sphere model is a priori insufficient for
proving the achievement of thermodynamical equilibrium for a gas.

Islands appearing in highly chaotic regimes were observed in numerous numerical simulations [9,10]. While
many of these simulations were carried for the standard map, only recently it has been shown that kbitlhege
a dense set of parameter values for which elliptic islands exist [11]. It is tempting to assume that the numerically
observed chaotic sea is a nonuniformly hyperbolic set of positive measure; however, no results in this direction have
appeared to the best of our knowledge.

What is clearly known and has, thus, attracted much attention [9,12—16] is that the appearance of islands in large
‘chaotic sea’ is of vast significance; First, itimplies that the tail of the correlation function has finite range oscillations
for initial conditions falling in the island. Moreover, around the islands there may be a ‘stickiness’ region, which
influences the temporal correlation function of initial conditions from the ‘chaotic sea’. It is suspected that this
stickiness may cause power-law instead of exponential decay of correlations even when the initial conditions lie in
the chaotic sea.

Islands may be useful; When living in a chaotic sea, the islands correspond to stable dynamics in a highly noisy
environment. This observation may be used in the context of control of chaos (see focus issue in [16]), where it
is desirable to switch quickly from highly ordered to highly chaotic behavior. Our construction enables to locate
islands in both phase space and parameter space of the smooth billiard-like flow, allowing for a control of such
switching.

In all applications the size of the islands and their periodicity matters; these define the space and time scales
on which the transition from chaotic to periodic motion is observable. For example, consider the time correlation
function

C(T:; x(0) = T'L)moo%/ J&x@) fx@+T))dr. 1)

This function will essentially bé/-periodic forx(0) € Iy wherely denotes an island of periad. Thus, clearly,
the difference between the chaotic sea and island behavior will not be seen before time af erdemonstrating
the crucial dependence on the periodicity of the islands. Averaging Eq. (1) egives the correlation function
for a general ensemble of initial conditions — clearly the contribution of the time correlation function associated
with the island is proportional to its area.
Here, we consider a two degrees of freedom Hamiltonian flow associated with

p? P
H="2+—=+V(x, yv€), 2)

2 2
where, ag — 0, the billiard-like potentiaV (x, y; y, €) vanishes in the interior of the scattering billiard domain
D,, and is of finite height on its boundary (see the next section for exact condition dime parametes controls
the steepness of the potential whergasontrols the billiard geometry. We assume thay at O the billiard has
asimple singular periodic orbi- namely, a periodic orbit which is tangent to the billiard boundary at exactly one
reflection point. In [7] we proved that in such a setting a linearly stable periodic orbit appears in Eq.2) far
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Here, we find thator typical potentialsV there exist elliptic islands around these periodic orbits and that their size
depends omr as a power-law — see Theorem 1 and the following discussion.

A natural question that arises here is how prevalent are billiards with simple singular periodic orbits? We argued
in [7] that a most natural conjecture would be that the singular periodic orbits may be obtained by an arbitrarily
small deformation of the boundary of any dispersing billiard. We also supported this conjecture by some simple
numerical simulations. Our results, thus, mean that elliptic islands may appear at a smoothening of any dispersing
billiard potential, no matter what the specific geometry of the billiard is. Due to presumed exponential decay of
correlation in the dispersing billiards [17], one may expect that the typical period of the elliptic islands for the
smoothened billiard-like potential is of order

~2tne

where is the Lyapunov exponent of the (hon-smoothened) billiard. Thus, even for extremely steep potentials (very
smalle) the period of elliptic islands seems to be not so large. In other wilrdglifferences between the statistical
behavior of an idealized (billiard) model and its more realistic smooth approximations may become visible on a
reasonable time scale.

The proof of Theorem 1 includes the construction of the local return map near the periodic singular orbit, see Eq.
(12). This map divides the smooth dispersing billiard-like potentials into universality classes, supplying for each
class a computational tool for estimating the size and location of elliptic islands (see Section 5).

The paper is ordered as follows; in Section 2 we formulate the main results of our paper, in Section 3 we construct
the local return map near a singular periodic orbit (the proofs are in Appendices A and B), in Section 4 we compute
the Birkhoff normal form for the local return map and prove that the first Birkhoff coefficient is not identically zero.

In Section 5 we discuss the geometrical interpretation of the universality classes which emerge from the local return
map and give more details regarding the visibility and typical period of the islands we have found.

2. Main result

Consider a plane scattering (or dispersing) bitliara billiard in a domairD ¢ R? which is a complement to
a union of a finite number of strictly convex regions. The boundanp afonsists of a finite number of smooth
(C™*1, r > 2) curvesSy, So, ... joined at the corner points. The angles between the boundang;aatshe corner
points are non-zero and the curvatureSpfs bounded away from zero along the arcs.

The billiard defines a dynamical system (the billiard floyy: inertial motion of a pointwise particle inside
and elastic reflections at the boundary — the angle of reflection equals the angle of incidence. We consider a billiard
which possesses (simple) singulaperiodic orbit.

A basic tool in our analysis is the construction of a regularized billiard to a billiard with a singular periodic orbit.
Its construction naturally leads to a new definition of stability or multipliers of the singular orbit. We observe that
these multipliers play an essential role in determining the dynamics near the singular periodic orbit. Thus, we define
(see Fig. 1):

Definition. Consider the billiard flow irD which has a singular periodic orldit The domainD, is a regularization

of D with respecttd. if L is aregular periodic orbitaP; , namelyD, differs fromD by alocal smooth deformation

of D near the tangencies éfand the support of the deformation is bounded away from any regular reflection point
of L.

Definition. Consider the billiard flow irD which has a singular periodic orhit The singular multipliers of. are
the multipliers ofL in a regularization oD with respect td..
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L
Fig. 1. Domain regularization— - — - — - — - is a regularizing deformation @b w.r.t. L.
y<0 y>0

Fig. 2. Domain deformation withr.

Notice that while a singular billiard has many regularizing billiards, the singular multipliers of a singular periodic
orbit are uniquely defined (because they depend only on the position of the regular reflection points and on the
curvature of the boundary there).

2.1. Smooth billiard potentials

Consider a smooth Hamiltonian approximation of the given billiard. Namely, consider a two parameter family
e, Of C" Hamiltonian flows associated with

p2 P
H:%—i—?}—i—V(x,y;y,e). 3)

We begin with recalling the formulation and the sufficient conditions introduced in [7] which ensure that the
Hamiltonian flow of Eq. (3) approximates the billiard flow as— 0 (for a fixedy). Furthermore, below we
describe the required generic dependencg .on

The potentialV (x, y; y, €) tends to zero inside a regiah, ase — 0 (along with all derivatives, uniformly in
any compact subregion @, ) and it tends to infinity outsid®,,, whereD, _g = D.

Thus, varyingy corresponds to changing the shape of the limiting billiard (see Fig. 2) whereas the parameter
governs the rate at which the Hamiltonian flow approximates the billiard fla@,in

To have the proper reflection law in the limit, it is necessary that the gradient of the potential stays normal to the
boundary of the billiard as — 0. We formalize this requirement as follows:

In a neighborhood ofd D\ C) (C is the set of corner pointshere exists a pattern functiof(x, y; y, ¢) whose
level lines coincide with the level lines Bfin a small neighborhood of the boundary arcs without the corners and
which has (along with all derivatives) a finite limit as— O such that aty = 0 the boundary of the billiard is
composed of level lines @f(x, y; 0, 0):

0(x,y:0,0)|x,yes; = const (4)

Here, we further assume that these level lines depend smoothly ©hus, aty # 0 they define a deformed
billiard regionD,, so that the original billiard is now embedded in the one-parameter family of scattering billiards.
This is done to unfold the appearance of the singular (tangent) periodic orbit in the original billiard flow. Indeed,
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Fig. 3. The form of the barrier function near the boundary.

if the dependence ab,, ony is in general position (satisfies Eq. (29)), as for example in Fig. 2, then the tangent
periodic orbit disappears, say,jat< 0 and there is no other periodic orbit in its small neighborhood, whereas at
the opposite sign of two periodic orbits are born, one passing near the former point of tangency without hitting
the boundary and the other has a regular reflection close to that point (see [7] for more details).

The existence of the pattern function implies that for each boundaty trere exists barrier functionW; (Q, €)
such that near the boundary (in a small neighborhpdf S; without the corners)

Vx,y;€,y) = Wi(Q(x,y; v, €),€). %)

We assume th&¥ V does not vanish in a finite neighborhood of the boundary arcs, thus:

VOlx,yen; #0 (6)
and
d
@Wi(Q,S) # 0. @)

Note that the barrier function does not depend explicithf:ony) andy. It describes the growth of the potential
across the boundary arcs and we consider it as afore-hand given and unchanged (though we allowd@ér$mall
perturbations of the functio® which describes the geometry of the billiard). We consider a large class of possible
barrier functions; however, some restrictions are imposed.

First, the barrier functioi¥; must, asx — 0, tend to zero at eacf) that lies to the inner side & and it must
tend to infinity on the outer side (Fig. 3). Now note that by Eq. (7) the valug ofay be considered as a function
of W (ande) near the boundary arc. At smalla finite change iV corresponds to a small changegn Therefore,
the following condition makes sense:

Ase — 40, for any finite strictly positive valued/; and Vs, the functionQ (W; ¢) tends to zero uniformly on
the intervalVy, < W < V5 along with all (» + 1) derivatives.

Potentials of the above structure (e.g., having the form of Fig. 3 near the boundary) will bescadieth billiard
potentials For example, the following barrier functions give rise to such potentials:

€
Qot
Itisprovedin[7]that,as — 0O, the Hamiltonian flows (3) with smooth billiard potentialsonverge to the billiard

flow in D,,, for any finiter. Namely, these convergg” smoothly to the billiard flow outside any neighborhood of
singular orbits and’® converge near tangent trajectories.

. @A-09Ye, e 2 ¢Ing®,  eln.../InQl, a«>0. @8)
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2.2. The scaling assumption, asymptotic normal form and elliptic islands

In this paper we impose an additional restriction on the class of smooth billiard potentials which is satisfied by all
typical examples (e.g., Eqg. (8)), as demonstrated in Section 2.3. Assume that the barrier fuki¢tiars satisfy
the followingscaling assumptionsith respect to rescaling @ = §Q + g to Q:

[S] Forsomes =8¢, H) > 0,8 = B(e, H) andv(e, H) such that — 0,8 — 0,v/H — O0ase — 0,the
function

WEQ+B,e) —v
H§%/?

We(Q) = )
converges as — 0to aC’t1 functionW(Q), either forQ > 0or for all real Q. The convergence &’ t1-uniform
on any closed finite interval of values @ffrom the domain of definitiofFurthermore, the integral
+oo d
W.(q) —=

Va

converges uniformlyfor all sufficiently smalk.

In this definitionH is the value of energy, see remarks after Theorem 1.

The scaling assumption arises naturally when one requires that the local equations of motion near the tangency
will be independent of the small parameteaind the energy (see Appendix B, in particular the derivation of Eq.
(B.11)). We do not have a clear understanding of a ‘physical sense’ of the scaling parametetdt is, however,
clear that the scaling assumption would not be satisfied with an arbitrary choice of them. Only,tifosefor
which the scaling assumption is satisfied are good for our purposes. In the examples below, this requirement defines
8, B, v (and the limiting functiory as well)uniquely

The convergence of the integral (10) allows one to consider a function

(10)

F(v) Wt d L[ o) 22
V) = — v X X = ——= .
o 0 2), " Vo
This function arises from integrating the local rescaled equations of motion near the tangency (see Appendix B).
It is defined either ok or on R (i.e., on the domain of definition d¥p) and it isC”-smooth. Indeed, rewrite

(11)

! 7/ 2 1[Fe. / dQ
F(v):—/W(v—i—x)dx—— Wo(Q) ——.
o ° 2)ps1 O VO -0
The smoothness of both the summands is evident.
We take a convention (see Egs. (6) and (7)) that the pattern fungtimtreases across the billiard boundary
when moving inwards, therefor®/’ is negative sd@ is a positive function.
The following theorem is the main result of the paper:

Theorem 1. Consider a scattering billiard which has a simple singular periodic aribnsider a two parameter
family of C", r > 5, smooth Hamiltonian flows, (¢, y) of the forn{3) with a smooth billiard potentialapprox-
imating the billiard flow age, y) — 0. Assume that the barrier function near the point of tangency satisfies the
scaling assumption [S] for sondée, H) and that the associated functiéhis such that the range of values Bf(v)
includesR ™. Finally, assume thap) dependence on is in general positior{i.e., Eq. (29) holds.

Then for smalle, in the (y, €) plane there exists a wedd& 8(e, H) < y < Ct8(e, H) (with some constant
C¥*) such that for the parameter values in this wedge the energy level there exist elliptic islands of width
proportional tos (e, H).
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Proof. The proof occupies Sections 3 and 4. Roughly speaking, we first show (Proposition 1) that the dynamics
of the Hamiltonian flow in an @&)-neighborhood of the tangent periodic trajectory is described,-as0, by the
two-dimensional map

i=v, D=¢ <v+%F(v)) —(E—-2T —u. (12)
It is the limit of the two-dimensional return map of the Hamiltonian flow to a local cross-section near the tangent
trajectory, written in some rescaled coordinatess the billiard’s curvature at the tangency and the quantities
anda (|| > 2,a > 0) are defined by the billiard flow a = 0, y = 0; In fact, £ is just the sum of the singular
multipliers of L; T is the rescaled parameter

We call Eq. (12}he asymptotic normal forwf the local Poincaré map near the tangent trajectory. In Proposition
(31), we show that the map (12) has an elliptic island of finite size (in the rescaladtmbles: andv) for a finite
range of values of". Returning to the original, non-scaled variables givesstiseze island which appears in the
wedge as stated. |

Few remarks are now in order; first, the theorem implies that given a billiard with a simple singular periodic orbit
there exist one parameter family of Hamiltonian flokyse, y (¢)) which r-converge to the billiard flow and for
which elliptic islands of sizé (¢, H) exist for alle < €.

Second, the size of the island depends, of course, on the choice of the coordinates — we choose the most natural
coordinates so the theorem applies directly to the islands size as observed in the phase space coordinates (3). To be
specific, given the singular periodic orldif we choose the origin as the point of tangency, and thgis parallel to
L at that point. A local Poincaré map in a neighborhood g defined by taking = const, and the coordinates on
the cross-section are the variableandy’ = p,/p. (herep, ~ V'H, hence, when larg#l values are considered
this additional factor arises).

Thirdly, the billiard flow is clearly independent &f, hence, using assumption [S] it is possible to obtain local
return map which is independent &f. It follows that for the Hamiltonian flow islands appear for Alivalues (and
their size depends ol via §(e, H) and+/H as explained above). For greater genericity, we also allow the chosen
value of H to depend or.

Finally, the scaling assumption [S] is satisfied by all potentials listed in Eg. (8). Moreover, given a barrier function
W, in many cases, the scaling constérand the functionF' involved in the above estimate of the size of elliptic
islands are fairly easy to compute. Before embarking into the details of the proof, we demonstrate the above statement
for typical examples of the list (8).

2.3. Islands size for specific potentials

Consider the barrier function
€
o«
It satisfies assumption [S] provided

W(Q.¢e) =

€ )l/(a+3/2)

5(e, H) = (—

i , v=0, B=0, (13)

for which

Wo(0) = —
0 = = .
QO(
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Integration of Eq. (11) gives in this case

VET@+1/2) 1

= T wrz

The functionF satisfies the condition of the theorem so for such potentials the size of elliptic islands is given by
s of Eq. (13), namely it is polynomial in/ H. Note that the size of islands is larger (asymptotically) for latger
(though the limitw — oo cannot be taken in Eq. (13)).

Choosing

W(Q, €) = exp(—Q/¢€)
will satisfy the scaling assumption, provided

s =e, v=0, B=—eIn@%?H), (14)
for which

Wo(Q) = exp(—0)
and

JT

F() = 76_1).

Thus, in this case the elliptic islands are of sizéndependent asymptotically of the value Bf(in the (v, y')
coordinates).
An example which has been used by many authors [18,19] is:

W(Q,€) = (L— 0)Ye.
It is obviously equivalent to

W(Q, €) = exp(—Q“/e)
which is analogous to the previous examples3* H — 0, one may assume

1/ 1o

5= (—InE¥ZHEyte ,_0 g= (—e In(83/2H)) . (15)

o
Here again
Wo(Q) = exp(—0)

and

VT

Fw) = 76

Thus, the islands size is again polynomiakirThe critical exponent off o e =%/ arises from the analysis —
if H grows faster — different asymptotics applies. Also, notice the different behavierfot versusy < 1, again
we see that steeper decay of the potential gives rise to larger islands.
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Fig. 4. Auxiliary regular local map near tangency-
Hamiltonian flow.

. Is a trajectory of the auxiliary

Finally, for
W(Q,€) =¢€[InQ|*

take

ae\23 (2] ae\ 2@ DR «
5=(E) (é\mgg) . v=¢lln§, B=0, (16)

for which

Wo(0) =—InQ
and

T

3. The Poincaré map near a tangent periodic orbit

Here, we formulate and prove Proposition 1 describing the local return map near a simple singular periodic orbit.
Consider the two parameter family of Hamiltonian systems (3) with smooth billiard potentials obeying the scaling
assumption [S] (by whicli, 8, W(Q) are determined), which-converge to the embedding family of the billiard
flow with the simple singular periodic orhit as above.

Choose the coordinatés, y) such that the origin is at the point of tangency and.tkexis is tangent to the
boundary —i.e., itis parallel to the tangent piece of the singular trajeétodn a fixed energy levell take a small
two-dimensional cross sectidh = {x = —c} to this piece ofL, wherec is some fixed small positive number (see
Fig. 4). For greater genericity, we assume thatay depend om andy and it tends to some small positive value
ase,y — 0.

The variabley andy’ = p,/p. serve as the coordinates &n given fixedy’, the value ofp, is found from the
energy constrain becausé! /dp, = p.(1+ y'?) does not vanish ol due to the choice of the coordinate frame.

Proposition 1. There is a region on the cross-secti@non the energy levell where the local return mag, of
the smooth Hamiltonian flow may be reduglkd an affine transformatioty, y’) — (u, v) which has a finite limit
(with non-zero Jacobigrase — 0, to the form

ﬁ:v_l_

_ 4. 17)
U=$<U+%5F<v6 ))—(E_Z)U}/_M-’_
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where the functiorF is defined by Eq. (11§ (e, H) is the scaling constant from Eq. (%) is the curvature of the
billiard at the tangency point gt = 0, the quantities, £ andv,, have afinite limitag — Owhere|¢| > 2, a > 0,
andv, vanishes ay = 0, ¢ = 0. The map(17)is defined af| (u, v)|| < K8 (v must be strictly positive when the
domain of definition of” is R™) whereK may be taken arbitrarily large providedis small enoughThe dots in
Eq. (17) stand for smooth functions ¢f /8, v/8) which along with all derivativesare o(§) ase — 0.

Proof. Similar to [7], we construct the return mdh from two artificial mapsBe(” and B®, both defined as the

maps of the cross-sectidn to itself. In Sections 3.1 and 3.2 we describe these constructions (the details of the
corresponding proofs are deferred to Appendices A and B) and in Section 3.3 we prove that their composition may
be transformed to Eq. (17). O

3.1. The regular map

The regular marBér) : ¥ — X is constructed in Appendix A by ignoring the passage near the tangent point
at the origin. Namely, we locally modify the functiap near the point of tangency so that the billiard’s boundary
Q(x, y;y,0) = 0is moved outward, see Fig 3. Giverr athe modifiedQ is changed at most fdr| < ¢, near
Q = 0. Forthisregularized billiard, the periodic orlisurvives and becomes non-singular. We consider an auxiliary
Hamiltonian flow which corresponds to the modified functi@rin Egs. (3) and (5). The regular mdﬁ” is the
Poincaré map for the auxiliary Hamiltonian flow. Since the auxiliary Hamiltonian flow is still generated by a smooth
billiard potential, itr-converges [7] to the corresponding regularized billiard flow. In particul&¥,itonverges to
the regularized billiard flow near the now non-singular periodic dtbft'hus,Be(r) is aC”-diffeomorphism which,
ase — 0, approaches a finite limit, namely, the Poincaré rﬁgﬁ of the regularized billiard flow neak. Thus,

using the hyperbolic structure of the regularized billiard rﬁ’ﬁ we prove in Appendix A the following:

Lemma 1. The mapB!” : ¥ — ¥ is given by

Be(r)<y/>:<yy,e>+<bll b12><y/_yy,e >+ (18)
y Dy.e b1 b2 )\ Y — py.e

where(yy ., py.c) are the coordinates of the hyperbolic fixed pointBﬁf) corresponding to the periodic orbit
at (¢ = 0, y = 0) and the dots stand for nonlinear termghen y, ., p,  have a finite limit ag — 0 with

y0,0 = po,o = 0, and the linearization matril8 = {b;;(y, €)} satisfies the following
e The sign of all the coefficients; is identical

signb;; = signB. (19)
o Moreover
sSign(b12 — cb11) = sign(bz2 — cb21) = signB. (20)

e The determinant 0B is 1.
e The magnitude of the trace 8fis larger than 2

3.2. The singular map

In Appendix B the singular pame(s) : ¥ — X is constructed; define the cross-sectbh= {x = ¢}. Recall
that the auxiliary Hamiltonian flow coincides with the original flow outside the simeighborhood of the point
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Fig. 5. Singular local map near tangency- - — - — - — - is the regularization ob w.r.t. L and. .. is a trajectory of the singular local map.

of tangency. Now, defin@é“) as the composition of the ma® — X’ by the orbits of the original Hamiltonian
flow and, then, the map’ — X defined by the backward orbits of the auxiliary Hamiltonian flow, see Fig. 5. By
construction, the local Poincaré map is the superposition

B. = B") o BY. 21
€ €

The singular part is computed locally, using the scaling property. More precisely, in the appendix we prove the
following:

Lemma 2. The mam?és) . ¥ — X isgiven by
y+cy +0(3)

3 ) + 0(3)

1)
)_’=y0(€)+y—cﬁF(
(22)
1)
5 = / —F
y =poe)+y + NG
wherey’ = p,/p,, F is defined by Eq(11),and yo, po — 0 ase — 0; the quantityx is half the curvature at
the point of tangencyThe formula(22) is valid for ||(y/8, y'/8)|| < K whereK may be taken arbitrarily large
providede is small enoughalso, if F is defined only oiR™, the allowed values of andy’ are such thaty +cy’) /8
is strictly positive The symbob(§) denotes functions dfy /8, y’/8) which, along with all derivatives with respect
to (y/8, y'/8), decay to zero faster thaie) ase — O.

(y + ¢y’ +0(8)

5 >+0(8),

3.3. The local return map

It follows from our construction (Lemmas 1 and 2) that the composition of the singular flow and the regularized
billiard gives the desired return map (see Eq. (21)).

Now, superposition oB" (see Eq. (18)) ana® (see Eq. (22)) gives the following formula for the Poincaré
map B:

Y\ _ (Vre Y= Yyeto —c\ 8 (y+cy +0(d)
(i’>_(py,e)+8 (y’—py,e+po>+8 (1>«/FF< 8 o 23)

where

b11 b1 )
B = .
( bo1 b2
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Let us make the affine transformation

v=y+cy, u=(1,c)8_1<y/_yy’e)—i—(l,c)(yy’é_y()); (24)
Y — Dy, Py,e — PO

recall that deB = 1, hence

_ b2 —blz)
B l= .
< —bo1 b1

It is easy to see that this change of coordinates brings the map (23) to the form (17), where
&E=trB, (25)

_ T
4 W (26)
and

(b11 + b21c — Dyo + (b12 + b22c — ¢) po

Vy = Yy.e T CPye — £_2 27)
Moreover,a > 0 by Eq. (20) andé| > 2 by Eq. (25) (see Lemma 1).
Finally, the determinant of the transformation is given by:
8 ’
= W) g oBe, )T = £a, (28)
a(y, ¥
hence it clearly has a finite, non-vanishing limiteas> 0, completing the proof of Proposition 1. ]

3.4. Non-degenerate dependenceon

Here, we establish that under the assumptions of Proposition 1, and if additionally, the dependence of the smooth
billiard potential ony is in general position, then, of Eq. (17) can be replaced by

Indeed, consider the billiard floe = 0); then from Eq. (27, = 2(y,,—0 + cpy,c—0) Where the point
M, = (yy0, pyo) is the hyperbolic fixed point of the regular map which corresponds to the regularized billiard.
Notice that on the cross-sectidh : {x = —c} the straight linev = y + ¢y’ = 0 is tangent to theingularity
line (the curve of initial conditions corresponding to tangent trajectories). Moreover, the Mpibélongs to the
singularity line by assumption, and by definitidfy = (0, 0). Thus,ug = 0. We make the followingon-degeneracy
assumption

The fixed poini/,, of the regular map?é’) crosses the singularity line with non-zero velocityyagaries.

Sincev measures the distance from the singularity line, it is equivalent to

ad
D 4o, (29)
ay
Thusy may be rescaled so that
vy, =y. (30)

Notice that the non-degeneracy assumption is formulated in terms of the billiard flow solely; thus, it describes
how the boundary of the billiard depends pnlt is a condition of general position: if it is not satisfied, it may be
easily achieved by a small smooth perturbation of the funafién, y; y, 0): the position of the singularity line is
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determined only by the local behavior 6f near the point of tangency whereas the position of the auxiliary fixed
point M is determined only by the local behavior @fat the points of regular collision df with the boundary.

The non-degeneracy condition is simple and natural when the dependeni®lonalized near the tangent point
(e.g., when artificially embedding the singular billiard in a family of billiards as in regularization); in this case the
periodic orbit of the auxiliary billiard does not move avaries. This means tha; = 0. Since the coordinates on
¥ are defined so that the orbit starting(at= 0, y’ = 0) is tangent to the boundary, it follows thaég, /9y # 0
provided the boundary near the point of tangency moveg \asies, with non-zero velocity in the normal direction
(e.g., see Fig 4).

4. Islands

To complete the proof of Theorem 1, we now establish that the Poincaré map found in Proposition 1 attains
elliptic islands as stated in the Theorem. Let us consider the following rescaling of Eq. (17):
=2  v=Y r=2 (31)

1) 1) 1)

In the new variables the map (17) has the map (12) as a limit-as 0. Since @1) intervals in the rescaled
variables correspond to(®) intervals in the original variables, it follows that once we show that for a finite range
of values ofl" the map (12) has an elliptic island of a finite size, we are done. The idea is to use KAM-theory in
order to establish the existence of the island around an elliptic periodic point, like in [8,20,21] and in many other
papers.

Thus, Theorem 1 reduces to the following statement.

Proposition 2. Assume the range of values©f(v) includesR~. Then for any|£| > 2 anda > 0 there exists an
interval of values of" for which the mag§12) has an elliptic fixed point with non-zero first coefficient in the Birkhoff
normal form.

Proof. Fixed points of Eq. (12) are:
ug=vy, I‘f(vf)zvf—l—%F(vf) (32)

which defined" ¢ (vy) for all v in the domain of definition of” (e.g.,R™). The fixed points are linearly stable if
and only if:

2 a _, 2
Uf€13={Uf|—(1+a)<ﬁF(Uf)<—<1—E>}- (33)

NamelyIs is a union of open intervals of stability iy, which is non-empty if, for example, the rangef(v)
includesR™ as required, leading to intervals o_f the corresponding/alues.
On I, the eigenvalues of the fixed point aré¢where

cosw = % (1+ %F/@ﬂ) . (34)
SinceF’ takes all negative values, there exists at least one interval of linear stability/§romwhich the value of
o runs from O torz.

To prove the lemma we need to show that at least forignfrom the given interval the first coefficient of the
Birkhoff normal form at the elliptic fixed point is non-zero (according to Moser theorem this will prove that at the
corresponding value df and for all closd™, there exists an elliptic island surrounding the fixed point).
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The sought Birkhoff coefficient equals to

B 1 ta ., . 2 (1 + 4 cosw)
B =g sitn (NEF )+ <2fF ( )) 1- cosw)(1+2t:osw)>' (33)

Indeed, the linear transformatian= €< (v — vy) — (u —uy) brings the map (12) to the following form near the
fixed point:

tmdor - £y S oy iE ) o
U TR Weside T TR Y agside

where the dots stand for higher order terms.
An arbitrary two-dimensional conservative map near an elliptic fixed point is written as

(z—29%+--- (36)

7= eia)Z + eiw (CYZZ — 2u*z7* + nZ*Z) + eiw,BZZZ* 4o (37)
where
ReB = aa™ — nn* (38)

(which is necessary to have the Jacobian equal to one) and the dots stand for the rest of cubic and higher order

terms. In the case of map (36)
EaF”(vf)

= 8\/_Sln2w (39)
and
_ SGF///(Uf)
p= 16[ 16k sirw” (40)

If w # 27/3, a simplectic transformation of the form

g0y gog* ei“’n 1/2)nn* 1/2)aa*
’ 2 * *2 2_x%
=z — - : -2 - + - . + — +--- (41
L= [eZ'w—e'wZ 1—e'wZZ efz'w—e'wZ } [1— cosd 1-— COSw]Z < (41)

eliminates all quadratic terms in Eq. (37) and brings it to the form (dropping

=692 +ie“B2 + ... (42)
whereB is the first Birkhoff coefficient :
e G e
Plugging Eq. (39) and (40) in Eq. (43) gives Eg. (35).

=Img +

(43)

If  # 27/3, w # 7/2, all the other cubic terms in Eq. (42) are non-resonant, hence, they can be eliminated by

the further normalizing transformation. Then, in the simplectic polar coordinateg/re? the map becomes
F=r+o(r?, 0=0+w+ Br+o(). (44)

Whené!|,—o = B # 0, the KAM-theory is applied to this map at smalwhich gives the existence of the sought
elliptic island.

2 At 8 = 0 this expression coincides with that found in [20].
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Now, note that the quantit$(v) given by Eq. (35) cannot be identically zero on the interval of valuesyof
under consideration. Indeed if for exampté(v r) never vanishes, theBi(v r) tends to infinity when approaching
the bifurcation poinb y = v which corresponds to cas= 1. One can check that evenm”(vf) vanishes but

the zero is of finite order, then stilt(v ) is not identically zero neary = vf Indeed, in this case, for some finite
n > 1landd # 0,

F'(vp)=F'(vf) +dwy —vp)" +
F'(vp)=nd(wy —vp)" T4+

F"(p)=n(n—Ddws —vp)" 2+, (45)
then, from Eq. (34)
_ da& 1in
cosw = 1+ 2«/;(vf ve)" + (46)
hence, from Eq. (35)
da§ 8 1\n—2
(vy) 16ﬁsin3wn ( 3n> (vf —vy) # (47)

This proves the lemma for the case where the functiois analytic (as in all our examples). In this case, it
follows that B may vanish only at isolated points in the interval of stability.

Without the assumption of the analyticity,Bf(v ) were identically zero on the interval under consideration, we
would have by Eq. (35)

ZETFW( )+ (TFN( )>2 1- éistof(ii&;)co&o) - (48)
or, in view of Eq. (34),
d?cosw  [dcosw)? (1 + 4 cosw)
va% < dv; > (1— cosw)(1+ 2cosw) (49)
This equation is easily integrated; on the interval ®as[—1/2, 1] we get
d;:s:m = cv/(1— cosw)3(1 + 2 cosw), (50)

wherec is some constant which cannot be zero becausev eosst run all the interval under considerationas
varies. At coso close to 1 we have

d
00 (1~ cosw)®3. (51)

dvy
This means thab never approaches zero at finitg which contradicts the initial assumption (that the range of
F’ includes all negative values, see Eq. (34)). O

As an example, consider numerical simulations of the map (12Wf@@) = ¢/Q which confirm the existence
of O(1) islands; the map (12) becomes:

<)

=

1
Ev— (E—2T —ut il (52)

4\/_1)3/2

v
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bhamhorse bhamborse

08
08 12

Fig. 6. Rescaled local map near singular periodic orbit. Orbits of Eq. (82) = ¢/Q, & = 4,7 /4a//k = 1) ()T = 2.6, (b)I" = 2.8, (c)
r=3.

Taking & = 4, (m/4)(a//x) = 1 makesls = (1,3%* ~ 1.5518 and thus an interval of stability foF e
((5/3)3%4 ~ 2.586, 3.), Fig. 6 confirms the existence of elliptic island for= 2.6, 2.8. In fact it is seen that even
for I' = 3. the stability island still exists.

5. Discussion

Our main result, Theorem 1, together with assumption [S], supplies a computational tool for estimating the size
of elliptic islands for specific potentials. For natural Hamiltonians which appear in physical setting, the estimated
size of the islands is polynomial in wheree is the small parameter which controls the steepness of the potential
near the core. Moreover, the dependence of the islands size on the energy has also been explicitly computed (see
Sections 2.2 and 2.3) and is also typically polynomial.

Furthermore, we introduced the notion of singular multipliers for tangent periodic orbits of billiard. These
measure the impact of the singular periodic orbit. In our setting these multipliers play a central role in the dynamics
as explained next. We believe billiards with singular periodic orbits are dense among scattering billiards, hence that
the concept of singular multipliers may be useful in other investigations of billiard problems.
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While proving the rigorous estimates for the islands size, we have constructed the following local map near
singular periodic orbits (12):

|

=
sv+%F(v>—u+(s—2>r. 53)

This map defines universality classes — large classes of different billiard geometries and different potentials give
rise to exactly the same local map. The Jacobian of the transformation to this thapga /562 and the unfolding
parametel” = v, /8, see Egs. (25), (26) and (28). NéwandF (-) are the rescaling parameter and rescaling function
which depend only on the rate at which the smooth billiard potential approaches a billiard — they are independent
of the billiard geometry (see Section 2.3 for example8,df). Converselyk, &, a are parameters which depend
only on the billiard flow (the geometryk: is the local curvature near the tangent periodic orbit (local parameter).

& is the sum of the singular multipliers measuring the instability of the singular periodic orbit (global parameter,
independent of the local structure near tangency). The parameteasures, roughly, how the regular flow rotates
the singularity line — the larger thethe closer the image of the singularity line to its normal. The larget tte

closer this image is to the unstable eigenvector of the regularized billiard return map, thus f@r, Bagyguantity

a measures the alignment between this eigenvector and the normal to the singularity line.

Summarizing, the coefficient of the nonlinear term in Eq. (17) is giver{lpy/«x)éa which shows how the
curvature, the singular multipliers and the global billiard geometry effects (respectively) scale together to create a
significant nonlinear term.

<
I

5.1. Are the islands observable?

The disappearance of two hyperbolic periodic orbits via a simple singular periodic orbit is a codimension one
bifurcation as follows from Section 3.1 of [7]. This implies, in particular, that such a bifurcation persists in one
parameter families of scattering billiards. In [7], we conjectured that billiards with simple singular periodic orbits
are dense among the scattering billiards; if true, the above observation implies that any one parameter family of
scattering billiards must undergo such a bifurcation along a dense set of values of the parafitetar by Theorem
1, islands exist in &(¢) wedge emanating from each sugh

Clearly the width of the wedge in parameter space and the size of the island depend on itsVpéridded,
examine the map (12). It depends on the two paramétenrsd&a/./x. For periodic orbits of long period, one
expects large singular multipliers hence laggé A is the Lyapunov exponent of the billiard map, we expect that
for largeN

E=A+ % ~ eXp(NAL). (54)

On the other hand, as discussed above, in this limit the parametsymptotes a constant positive value. It
follows (see Egs. (32) and (33)) that the stability intervajinalues is proportional t8/& = S(e)exp(—NAL).
Finally, recall that the transformation to Eq. (12) involved a Jacobians?)a, thus, it follows that order one areas
in Eq. (12) correspond to ordéfexp(—N i, ) areas in the physical variablés, y').

We see that the period of the singular periodic orbit plays a crucial role in the islands’ size estimates as well.
Consider a valug'* for which no singular periodic orbits exist. Considereaball in phase space around a point
lying on the singularity line. Using the exponential stretching rates of the billiard, one can argue that in this ball there
exists a periodic point of perio = —21Ine/Ar, whereir denotes the exponential growth rate of lines under the
billiard flow. Now, assuming that size perturbations of the billiard geometry (i.e. ihmay be made so that the
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periodic orbit of periodV does not hit the corner points (this is another formulation of the density assumption), we
obtain that there is a singular periodic orbit of period of orleor ay value which is-close toy*. Summarizing,
provided our density conjecture is correct, inahall around(y, €) = (y*, 0), for any value ofy* there exist a
polynomial (in€) size set of parameter values for which polynomial size islands of peripte@exist. So, the
islands are observable.
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Appendix A. The regular map B

Here, we prove Lemma 1 regarding the form of the regular auxiliary map. Thes’é‘ibp ¥ — X isconstructed
by ignoring the passage near the tangent point at the origin, by locally moving the boundary outward as shown in
Fig. 4. For the obtained auxiliary billiard the singular periodic ofbiiecomes regular. Therefore [7], the nBéS)
which is the Poincaré map for the auxiliary Hamiltonian flovCtsclose to the Poincaré ma!rf)” Y — X for
the auxiliary billiard flow.
SinceL is now regular and the auxiliary billiard is still scattering, the fixed p&ne 0, y' = 0) of B(()’) aty =0
is hyperbolic. Thus, for smajl ande it persists. Denoting the fixed point &, . = (yy.¢, py,e), let us write the
Taylor expansion foBé’) atM, .:

Be(r)<y/>:<)’y,e>+<bll blZ)()’/—yy,e >+ (A.l)
y Dy.e ba1 b22 ) \ Y — py.e
where the dots stand for nonlinear terms. Now, we establish some inequalities on the coefficients of the linearization
matrix B = {b;;(y, €)} which will be used in constructing the asymptotic normal form.

The linearization matril8 = {b;; (y, €)}, depends continuously on the parametersg. At0, itis the linearization
matrix of the Poincaré map for the billiard flow, therefore it must fit the specific hyperbolic structure of the scattering
billiard. Thus, it is known [22,23] that the tangent to the unstable manifold of the fixed pbligs in the unstable
cone d - dy’ > 0 and the tangent to the stable manifold lies in the stable cpndyl < 0. Moreover, the unstable
cone is mapped inside itself by the linearized map, and the stable cone is mapped inside itself by the inverse to the
linearized map. It follows that all thi; are of same sign, which proves Eq. (19).

In fact, the invariance of the stable and unstable cones of this particular form holds for the map from any cross-
section to any other (near each of the cross-sections-thés must be parallel to the piece of the orbit which is cut
by the given cross-section). It is geometrically evident for the scattering billiard that upon each regular reflection
with the boundary the orientation is changed on the unstable (as well as on the stable) manifold: after the reflection
the positive part of the unstable cone is mapped into the negative one and vice versa. Since tlig;sigbesmines
whether the linearized map preserves orientation on the unstable manifdldohot, it follows that

signB = (-1)V (A.2)

whereN is the number of regular collisions éfwith the boundary.
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> ty >
X

Fig. 7. Details of singular local map construction. is the forward singular trajectory of the singular local map, leading to Eq. (B-4)-- —-—-
is the auxiliary free backward motion, leading to Eq. (B.5).

-c —XE/K J:{B/K

At y = 0 the fixed pointM on the cross-sectioB : {x = —c} is (y = 0, y’ = 0). Infinitesimal incrementsy
and dy’ which satisfy & + cdy” = 0, correspond to a family of rays which focugat= 0, y = 0). Itis the point of
tangency of. to the boundary of the original billiard. For the auxiliary billiard, the boundary is pushed outward near
this point. Thus, in the auxiliary billiard, the family of rays pass the focusing point without reflection and becomes
divergent. This means that after the first regular reflection the image of the vdgter —cdy’, dy’) must belong
to the unstable cone. Moreover, it is geometrically evident that it belongs to the same (positive or negative) part of
the unstable cone as the image of the ve@tior= 0, dy’) for the same ¢'. This means that (see another proof in

[7)
sign(b1z2 — cb11) = sign(ba2 — cb21) = signB, (A3)

namely Eqg. (20) holds.
The mapB") is a measure-preserving diffeomorphism, so

b11b22 — b12bo1 = 1.
Finally, the trace of the matrif;;} is the sum of the multipliers of the hyperbolic fixed point, therefore,

|b11 + b2o| > 2. (A.4)

Appendix B. The singular map B

Here, we prove Lemma 2 regarding the form of the singular map. To construct the singular map, one composes
the local forward motion under the full nearly singular flow (see Eq. (B.4)) and the backward motion under the
auxiliary Hamiltonian, which amounts to a constant speed motion (see Eq. (B.5)), see Fig. 7. Below, we start with
a short set-up of the coordinate system and establish that once Eq. (B.4) is proved we are done. To prove Eq. (B.4),
we first integrate the local equations of motion in a boundary layer which is close to the tangency (derkyéa by
Fig. 7). Using rescaling and the rescaling assumption which are valig,iwe obtain simple equations that can be
integrated by quadratures (see Eq. (B.13)). We then prove that outside of this boundary layer the motion is essentially
free (constant speed motion, see Egs. (B.15) and (B.16) i@tlepology. This is a non-trivial statement, which
is proved by integrating the local equations of motion with the scaled levelyet{ an independent variable. The
composition of the boundary layer motion and the outer free motion produces Eq. (B.4).
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The equations of motion near the boundary are found from Eq. (3):

X = Px> px = _W/(Q)Qx,
) . B.1
Y = Dy, Py = _W/(Q)Q}“ ( )
Let B(e, H) be defined by the scaling assumption [S]. It is convenient to move the origin onto the level

O(x,y;v,€) = B(e, H), to the point where the-axis is tangent to this level (such a point is unique for all
smalle andy because the curvature of the boundary never vanishes). Hence:

Qx|(0,0;y,e) = 0, Qy|(0,0;y,e) =1 (B-Z)

It follows that
Q =B +y+k(y, e)x*+ Oxy, y*, x°) (B.3)

where the curvature factaris strictly positive.

The move of the origin leads to a small shift of the cross-seclioand of the position of the origin on the
cross-section; this, obviously, does not affect Proposition 1.

Let us prove that the map frol : {x = —c} to &’ : {x = ¢} by the forward flow is written as

§ Yin + ¢y'in + 0(8)
Yout = ¥in + ¢(¥'in + You) + 0(8), Yoyt = Yin + NG < 5

> +0(9), (B.4)

where ‘in’ refers tox and ‘out’ refers tox’; the functionF is defined by Eg. (11) andg(§) has the same sense as
in Lemma 2.
The mapB®) is the composition of Eq. (B.4) and the backward motion f®tto  with the auxiliary Hamiltonian
flow. In the auxiliary Hamiltonian flow the billiard’s boundary is pushed outside on a finite distance, so the potential
asymptotically vanishes everywhere betwdgrmandX. Therefore, the auxiliary Hamiltonian flow is hefé-close
to the motion with a constant speedeas> 0. Thus, the backward map is written as

Jin = y0(€) + yout — 2cygut + 0(8), Vin = po(€) + your + 0(8). (B.5)

(This is just the Taylor expansion ne@but, Yoy = 0: Since(Yout, your) = O(8) in Lemma 1, the nonlinearities
areo(§) in the sense defined there.) The composition of Egs. (B.4) and (B.5) gives Eq. (22). Thus, to prove the
lemma, it is sufficient to prove the formula (B.4).

Notice thatt = p, > 0 near the tangent trajectory, thus one may.xsas the new independent variable. Fixing
the energy implies:

2(H —W(Q, ) = p2(1+y?) (B.6)

and Eq. (B.1) are rewritten as

dy _py d?y , Oy(x, y) — Ox(x, y)(dy/dx) dy)?

-~ B D % 1 — B.7

& pl dx? (Q.¢) 2(H —W(Q, €)) T\ & B.7)
Let us rescale the variables, taking into account the smallnessaindy’:

y =87, x = V8%, dy _ sp. (B.8)

dx
From Eq. (B.3) it follows that

0 = B +8( +xi% + O(V9)). (B.9)
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Let us denote
=~ (-8

0=—5—=7 + k5% 4 O(W8). (B.10)
Now, the scaling assumption [S] is designed so that Eq. (B.7) becomes, in the rescaled variables,

53

g fﬁ/ o (B.11)
P =—3W(Q)G(X,y, p;€)

where’ in the left-hand side denotes the differentiation with respegét the functionG is
S oesy < os 2.2
G = Q(VB%,55) — 80 (v6%,85)p 1+ 8%p (8.12)

1—(8/(1—v/H)VoW(Q) 1—v/H'

For each fixedx, y, p), ase — 0, this system has the following limit (we use Egs. (B.2) and (B.10)) and that
v/H — 0 by the scaling assumption):

=0, p'=-IWiG +«F?. (B.13)

Thus, the solution of Eq. (B.11) approaches the solution of Eqg. (B.18)-as0, on any bounded interval of
x. It follows that there exists som& (¢) which tends to infinity so slowly that the solution of Eq. (B.11) still
approaches (along with all derivatives with respect to the initial conditions) the solution of Eq. (B€13} & on
the unbounded interval € [-CX, CX] for any fixedC, providedj and p stay bounded (whei is defined on
R™T only, y should also stay positive and separated from zero).
Take a cross-sectioBs = {Q = B + X2} = {Q = X2}, see Fig. 7. By the assumption af(¢), the system
(B.11) insideX;s is well approximated by the system (B.13). The latter is easily integrated so one can see that the
flow inside £5 defines the mapyin.s, pin.s) = Jouts, Pouts) from any finite size neighborhood &f= —X//x
to a neighborhood of = X/./k, which is written as

- - 1 -
Youts = Yin,s + 0(1), Pout.s = Pin,s + ﬁF()’in,a) +o(1). (B.14)

Comparison of Eq. (B.14) with Eq. (B.4) shows that to prove the lemma it is sufficient to verify that the flow
outsideXs is essentially a constant speed motion. Namely, we will prove that for nedatteeflow fromX to X
in the region of finitej and p defines the map

3 1 . 1,
Ving = 5 0in +cyip +08). ping = 5 0in + o), (B.15)
and for positiver the flow fromZ; to ' in the region of finitey and p defines the map

Yout = 5(&0ut8 + cpouts) + 0(6), yé)ut = 8pouts + 0(8). (B-16)

These two formulas are absolutely symmetric, therefore, we prove only Eq. (B.15). It is convenient to start on the
cross-sectioltg : {Q(x, y) = Q(—c, 0)} rather than orE : {x = —c}. For any orbit which starts withi, andy;
of order Q§) the distance\x between the intersections with these two cross-section&ist@b. The flow nea
is close to the constant speed motion, being on a finite distance on the billiard boundary. Thus, the transition from
¥ to X adds onlyo(8) terms toy’, andy’Ax is added to the value of. Correspondingly, the map — %; has
the form (B.15) if and only if the maZy — X; is written as follows (we also use the rescaled variableX g

Fin.s = Jin — V/8%inpin + 0(2), Pin,s = pin +0o(1). (B.17)

Let us prove this formula.
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It follows from Eqg. (B.3)) that ifc is not large, then for alt € [—c, ¢]
10:] = Clx| — O(y) = CV5IE| + O) (B.18)

for some positive constaidt. Hence

10'| = Clx| + O(V) (B.19)
where
o=%_1, s 83) + V50, (V8%, 8)p. (B.20)
i~ s
Recall, that we consider the region of large
X2=01<0< szw, (B.21)

for finite  and p. In this regions is large hence separated from zero@o+ 0. Thus,Q may be taken as a new
independent variable and the equations of motion (B.11) are rewritten as follows:
dy p dp 1 o =
—= =Vi=, = =-—=WI(QGE7J p;e. B.22
0 o a6~ 20 0 Y, p (B.22)

The variablet is now a function ofQ andy. For fixed O

% NG
5o _@Qy (B.23)
(see Egs. (B.8) and (B.10)). It follows from Eq. (B.18) that the rafiy O, (v/5%, 87) is bounded along with all
derivatives with respect td andy. Hence,dx/dy is bounded, along with all derivatives with respecttan the
region under consideration.
As it is seen from Eq. (B.20), all the derivatives @f with respect tar andj are bounded. So, it follows now
that all the derivatives of)’ with respect toy at fixed Q are bounded too. Moreover (see Egs. (B.19) and (B.10)),

& < const 1 k=0 (B.24)
— = = s —, =0,...,r. .
ayk 0’ \/5
When evaluating the solutiof#(Q), p(Q)) of Eq. (B.22) we are assuming, a prioriy, that it is bounded along
with all derivatives with respect to the initial conditio(%,, pin). Namely, we assume that

1G(0), p(Q)llcr <Y (B.25)

whereY is some sufficiently large constant; we denoté¢ a&-- the maximum of the absolute values of the quantity
itself and of all its derivatives with respect t§in, pin). Note that we do not evaluate the derivatives with respect
to Q.

This assumption is valid at the starting mome@t £ Q», see Eq. (B.21)) so it is, obviously, valid on some
interval of values). Below we show, in particular, that when the estimate (B.25) is satisfied on some inte@al of
it is in fact satisfied with the margin of safety; i.e., the actual bound oCthrorm of the solution is independent
of the initially assumed valu&; see Eq. (B.27). This will justify the a priori assumption for the whole interval

0 €[04, 02].
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Rewrite the system (B.22)) as

o 04 0 d
y(Q)=yin+~/§pian2 §+~/5 QZ(P_Pin)R \/—qﬁ,

whereRr = \/E/Q’. The functionsk and G are uniformly bounded along with all derivatives with respect to
(Jin» pin)- The boundedness follows from Eq. (B.24), from the a prioriy assumed boundedngsdfp (see
Eqg. (B.25)) and from the boundedness@f, 0, anddx/dy. Note also that ag grows, the functior¥, which
enters the expression (B.12) for the functi@nmay, in principle, grow unbounded. However, since the integral

- 1 0 -, dg
p©@=pn—5[ roWip T ©26)

of We//\/g is bounded by assumption [S], the functitin is at most linear with respect tg 0. Now, since

0 = 0(1/5) by definition (see Eq. (B.10)), it follows that the produés W. is uniformly bounded, so the factor
(1= (8/(1— v/H))v/$W.(0))"tin G is bounded indeed.

Integration of Eq. (B.26) gives (we use théb [ j—% = 0O(y/80) is bounded sinc@ is O(1/3) by definition):

- . L 5 02 -, dq
F(0Q) = Fin + V8 pin(¥ — Fin) + O(D) - manHp(q) — pinllcrs p(Q) = pin+0Q1) - /Q We(q)‘ ﬁ’

(B.27)

where Q1) denotes functions bounded, along with all derivatives with respeéttopin).

By the scaling assumption [S], the integ@ovffe’(q) dg/./q converges uniformly. Now, sinc@1, Q2 — oo
ase — 0, it follows that the integral in the right-hand side of the second equation of (B.27) tends to zero. Thus,
though the estimates for the(D-factors in Eq. (B.27) may depend on the a priori assumed b&uiod y and p,
their contribution is canceled by the factor which can be taken arbitrarily smal-a<. This justifies the a priori
assumption (B.25).

PuttingQ = Q1 in Eq. (B.27) gives the magy — Xs. Sincelx(Q1)| < CX andX (¢) is assumed to grow
sufficiently slow, the term/s pin% (Q1) in the first equation of (B.27) is(1). Thus, we are in a complete agreement
with Eq. (B.17). The lemma is proven. O
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