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Abstract
The existence of lower-dimensional resonant bifurcating tori of parabolic,
hyperbolic and elliptic normal stability types is proved to be generic and
persistent in a class of n degrees of freedom (DOF) integrable Hamiltonian
systems with n � 3. Parabolic resonance (PR) (respectively, hyperbolic
or elliptic resonance) is created when a small Hamiltonian perturbation is
added to an integrable Hamiltonian system possessing a resonant torus of
the corresponding normal stability. It is numerically demonstrated that PRs
cause intricate behaviour and large instabilities. The role of lower-dimensional
bifurcating resonant tori in creation of instability mechanisms is illustrated
using phenomenological models of near integrable Hamiltonian systems with
3, 4 and 5 DOF. Critical n values for which the system first persistently possesses
mechanisms for large instabilities of a certain type are found. Initial numerical
studies of the rate and time of development of the most significant instabilities
are presented.

Mathematics Subject Classification: 37J35, 70H14, 37J20, 37J40, 70H08

1. Introduction

The study of instabilities in near-integrable n degrees of freedom (DOF) Hamiltonian systems
possesses great challenges, especially for the case n > 2 [2, 27]. Following Arnold [1], the
problem which has attracted most attention (yet see [11,28]) has been the study of instabilities
for a generic initial condition in a generic, near-integrable system, namely the difficult question
of the possible appearance of instabilities in a priori stable systems (i.e. instabilities in the
action variables along an orbit with initial conditions near a resonant n-torus). A typical
model for studying this question is n slightly coupled nonlinear oscillators, studied at a typical
point, namely away from the oscillator’s equilibria. This study naturally leads to the study
of the behaviour near resonances, which then naturally leads to the study of a priori unstable

2 Current address: Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK (Anna Litvak-Hinenzon).
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systems [1,20,25]. A typical model for the latter is the study of s pendulums coupled to (n−s)

nonlinear oscillators. Here, to obtain new results, one studies the influence of the pendulum
separatrices on instabilities in the actions direction, namely, one studies specific regions in
phase space (see [12, 20, 27, 33, 43, 3, 4, 5, 13, 45] and references therein). The motivation for
studying such specific systems and regions is two folded: first, in all applications we are aware
of, there exist some unstable motion which may be locally modelled in the above manner;
second, the behaviour near resonant tori (in a priori stable systems) may be modelled in
this way. Hence, understanding these instabilities may lead to a better understanding of the
Arnold diffusion instability mechanism which is relevant for most initial conditions in any
non-degenerate system.

The main focus of this paper are the instabilities in near integrable Hamiltonian systems
which possess, in their integrable part, resonant parabolic lower-dimensional tori3 as part of
some bifurcation scenario. We call such mechanisms parabolic resonance (PR) (see below
and appendix A for more precise definitions). A typical model here is a system with a nearly
conserved angular momentum, so that at least 2 DOF of the integrable Hamiltonian are non-
separable. As in the a priori unstable systems, we concentrate on specific regions in phase
space; here, the instability zones are associated with parabolic resonant tori (which are part of
a bifurcation scenario). Numerically, we find that in these regions the actions exhibit strong
instabilities (even for small perturbations the bifurcation actions cover the allowed region of
motion in observable timescales).

While integrable separable systems (like n uncoupled pendulums) possess generically
either hyperbolic or elliptic lower-dimensional tori, general non-separable systems (like a
rotating pendulum and n − 1 pendulums/oscillators) possess parabolic tori in a persistent way
(see appendix A). The lower-dimensional tori undergo generic Hamiltonian bifurcations as
the actions are varied: hyperbolic and elliptic tori coincide leading to the birth of a normally
parabolic torus in a saddle-centre bifurcation (or, in the symmetric case, a pitchfork bifurcation)
(see [7, 8, 10, 9, 22–24, 34–36] and references therein). Furthermore, for sufficiently large n

(n � 3), some of the action values for which the parabolic bifurcation is realized correspond
to resonant tori, namely to parabolic resonant tori. For 2 DOF systems it was proved that the
appearance of such tori is a co-dimension one phenomenon [40], hence that it is expected to
appear in many applications (e.g. [38, 41, 42]). In [31, 32] the dynamics of 3 DOF systems
attaining PRs was studied, whereas in [30] we study the structure of the energy surfaces of
systems attaining PR, and of their corresponding resonance web. Here, we investigate the
dynamics in higher dimensions, where unperturbed degenerate parabolic resonant tori appear
persistently and induce various kinds of instabilities (see also [29]).

This paper is ordered as follows: in section 2 we derive the conditions on the integrable
part of the Hamiltonian function for which parabolic tori exist. In section 3 we illustrate several
mechanisms of instability by introducing models of 4 and 5 DOF near integrable Hamiltonian
systems. Finally, in section 4 conclusions and discussion are presented. In appendix 4
we prove persistence and genericity theorems for lower-dimensional resonant tori. In the
second appendix, we identify critical dimensions for which certain mechanisms for instabilities
become persistent.

2. Formulation

Consider an integrable n DOF Hamiltonian system, H0(p, q); (p, q) ∈ M ⊆ R
n × R

n,
with n independent integrals of motion: H0 = F1, F2, . . . , Fn ∈ C∞(M), pairwise in

3 A lower-dimensional torus is an invariant torus with a smaller number of inner frequencies than the number of DOF
in the system.



Resonant tori and instabilities in Hamiltonian systems 1151

involution: {Fi, Fj } = 0; i, j = 1, . . . , n, where M ⊆ R
2n is a differentiable symplectic

manifold, with the standard symplectic structure, and dim M = 2n. Assume that n � 3 and
that the Hamiltonian level sets, Mg = {(p, q) ∈ M, Fi = gi ; i = 1, . . . , n}, are closed. By the
Liouville–Arnold theorem (see [2,24]), the connected compact components of the Hamiltonian
level sets, Mg , on which all of the dFi are (pointwise) linearly independent, are diffeomorphic
to n-tori and hence a transformation to action-angle coordinates (H0 = H0(I )) near such level
sets is non-singular. Consider a neighbourhood of a possibly singular level set Mg . By the
Liouville–Arnold theorem (see [37]), on each such connected and closed Hamiltonian level
set there is some neighbourhood D, in which the Hamiltonian H0(p, q) may be transformed
to the form:

H0(x, y, I ), (x, y, θ, I ) ∈ U ⊆ R
s × R

s × T
n−s × R

n−s , (2.1)

which does not depend on the angles, θ , of the (n − s)-tori. The symplectic structure of the
new integrable Hamiltonian (2.1) is

∑s
j=1 dxj ∧ dyj +

∑n−s
i=1 dθi ∧ dIi , where (θ, I ) are the

action-angle variables (s = 0 corresponds to the usual n-tori discussed above). The motion
on the (n − s)-dimensional family (parametrized by the actions I ) of (n − s)-tori is described
by the equations:

İi = 0, θ̇i = ωi(x, y, I ).

The geometrical structure of the new Hamiltonian, H0(x, y, I ), is such that for any fixed I

an (n−s)-torus is attached to every point of the (x, y)-plane (space, for s > 1). The (x, y)-plane
(space) is called the normal plane (space) [2,39] of the (n − s)-tori, and defines their stability
type (in the normal direction to the family of tori, see more precise description in [6]). Invariant
lower-dimensional tori, of dimension n − l, generically exist for each 1 � l � n − 1; indeed,
for any given s consider an m-resonant value of I . Then, for each such I , there exists an
m-dimensional family (corresponding to different initial angles) of (n−s−m)-dimensional tori.
All these tori belong to the higher (n − s)-dimensional resonant torus associated with I . The
existence of such lower-dimensional tori is restricted to the (n − s − m)-dimensional resonant
surface of I values. The lower-dimensional invariant tori we consider here are of different
nature—they correspond to the isolated fixed point(s) of the s-dimensional normal space;
hence, they appear on an (n − s)-dimensional manifold of I values (such a generalized fixed
point corresponds to a manifold on which each dFi , for i = 1, . . . , s, is linearly dependent on
dI1, . . . , dIn−s). Locally, one may choose the (x, y, I ) coordinate system so that for these tori,

∇(x,y)H0(x, y, I )|pf
= 0, pf = (xf , yf , If ). (2.2)

The invariant (n−s)-tori have an (n−s)-dimensional vector of inner frequencies, θ̇ = ω(pf ).
The normal stability type of such families of (n − s)-tori is determined by the characteris-
tic eigenvalues (respectively, Floquet multipliers for the corresponding Poincaré map) of the
linearization of the system about the tori; generically, these tori are either normally elliptic4,
normally hyperbolic5, or, if s > 1, they may be of hyperbolic-elliptic normal stability type. If
the torus has at least one pair of zero characteristic eigenvalues in the direction of the normal
(x, y) space, it is said to be normally parabolic. In addition, the normal frequencies6 [2, 39],
�, of the (n− s)-tori are defined as the (non-negative) imaginary parts of the purely imaginary

4 If all the characteristic eigenvalues of an invariant lower-dimensional torus (with respect to its normal (x, y) space)
are purely imaginary (and do not vanish), it is said to be normally elliptic.
5 If all the characteristic eigenvalues of an invariant lower-dimensional torus (with respect to its normal (x, y) space)
have a non-zero real part, it is said to be normally hyperbolic.
6 In some references, these are called characteristic frequencies.
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characteristic eigenvalues7. For more details on the above, see [2, 10, 6, 14–20, 22, 24, 39] and
references therein.

Locally, in the (x, y, I ) coordinate system, the existence of a normally parabolic invariant
torus is equivalent to the existence of an i = i0, i0 ∈ {i = 1, . . . , s}, for which

det

(
∂2H0

∂2(xi0 , yi0)

∣∣∣∣
pf

)
= 0. (2.3)

where pf satisfies (2.2). Denote by pfp solutions satisfying both (2.2) and (2.3). Since we
are interested in the generic case in which the parabolic torus is attained as a part of a simple
bifurcation scenario, we formulate the following transversality condition:∥∥∥∥∥ ∂

∂I1
det

(
∂2H0

∂2(xi0 , yi0)

)∣∣∣∣
pf

∥∥∥∥∥ + · · · +

∥∥∥∥∥ ∂

∂In−s

det

(
∂2H0

∂2(xi0 , yi0)

)∣∣∣∣
pf

∥∥∥∥∥ �= 0. (2.4)

Families of Hamiltonians which have a family of invariant (n − s)-tori, and satisfy
conditions (2.2), (2.3) and (2.4), undergo a bifurcation at pfp (we call the classes of such
smooth Hamiltonians Ps , see appendix A for a more precise definition). It is clear that since
we require 2s + 1 local conditions ((2.2) and (2.3)) on the Hamiltonian function, which has
n + s variables, one can expect that if n � s + 1, these conditions will be satisfied on an
(n − s − 1)-dimensional submanifolds of {(x, y, I )} ⊆ R

n+s by an open set of Hamiltonians
in a persistent way. Indeed, see appendix A for genericity and persistence results.

In [22] Hanßmann proved a KAM result regarding parabolic tori in a quasi-periodic saddle-
centre bifurcation, by which Diophantine parabolic tori (and the whole associated Diophantine
saddle-centre bifurcation scenario) survive small Hamiltonian perturbations that break the
integrability. Indeed, numerically, we observe that small Hamiltonian perturbations of such
integrable Hamiltonians (attaining a parabolic torus) do not appear to induce instabilities in
the action directions near a non-resonant parabolic torus. In the next section we demonstrate
that this observation changes (dramatically) if the parabolic lower-dimensional invariant
torus is m-resonant (and locally degenerate). The m-resonance condition is simply that the
(n − s)-dimensional inner frequencies vector ω(pfp) = ∇IH0(x, y, I )|pfp

satisfies additional
m constraints:

〈qi, ω(pfp)〉 = 0, i = 1, . . . , m, (2.5)

for m linearly independent integer vectors qi ∈ Z
n−s\{0}. Denote the parabolic tori satisfying

these resonance conditions (2.5) by pfpr ; the behaviour of perturbed orbits, starting near
an m-resonant parabolic torus pfpr , is called parabolic m-resonance (m-PR). Degeneracy
conditions on a resonant parabolic torus correspond to vanishing of some additional derivatives
of H0(x, y, I ) at pfpr ; we call the behaviour of perturbed orbits, starting near such degenerate
resonant parabolic tori (with secondary tangency), tangent m-PR (m-TPR), or if infinitely
many such derivatives vanish—flat PR8 (see next section and appendix B for examples and
details). It follows that if n � s + m + 1, in the space of integrable Hamiltonians, there
exists an open set of Hamiltonians with normally parabolic m-resonant invariant (n − s)-
tori, pfpr . In fact, for these Hamiltonians, there exists an (n − s − m − 1)-dimensional
submanifold in the (x, y, I ) space along which parabolic m-resonant invariant (n − s)-tori,
pfpr , live. In the first appendix we formulate this statement more precisely and prove it. In the

7 In some references (e.g. [10]), the normal frequencies are defined as the positive imaginary parts of all the
characteristic eigenvalues.
8 In the literature, the terms ‘j -flat’, ‘infinitely flat’ or ‘∞-flat’ are sometimes used in cases of similar nature, i.e. to
indicate a certain tangency of j th, or infinite, order, but in a different context (see, for example, [10] and references
therein).
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second appendix we examine the possible appearance of degeneracies and formulate theorems
regarding the minimal dimensions needed for such degeneracies to appear persistently. The
above considerations and the theorems proved in the appendices imply that the appearance of
normally parabolic resonant tori is expected to be common and robust in integrable n DOF
Hamiltonian systems with n > 2 (e.g. they are certainly more common than the appearance
of fixed points which require 2n local conditions)9. Similarly, such considerations prove that
certain degeneracies appear persistently if n > 3 (isoenergetic and degenerate resonances) and
others (isoenergetic PRs) if n > 4.

Next we examine numerically the consequences of the existence of such degenerate
parabolic resonant tori.

3. Phenomenological examples

Using normal form techniques, 4 and 5 DOF integrable Hamiltonian systems attaining PRs
(the origin satisfies conditions (2.2), (2.3), (2.4) and (2.5)) are constructed, and typical
parameter values are set. Then, the initial conditions for which degeneracies appear (tangent
PRs, iso-energetic families of resonant hyperbolic tori and iso-energetic families of resonant
parabolic tori) are sought, and numerical solutions of nearby initial conditions of the perturbed
system are recorded.

We stress that the only conditions put into the models are the local conditions (2.2)–(2.5).
The fact that other degeneracies appear in our models is in accordance to the theorems proved
in appendix B, which state that such phenomena are expected to robustly appear in 4 and 5
DOF systems.

3.1. Degenerate and iso-energetic resonances in a 4 DOF model

The simplest model of a 4 DOF integrable Hamiltonian, which attains a parabolic resonant
torus of dimension 3 (s = 1 in (2.2)) and is symmetric with respect to the x- and y-axes, is

H0(x, y, I1, I2, I3; α1, α2, α3, α4, α5, α6) = y2

2
− x2

2
I1 +

x4

4
+

(
α1 +

1

2

)
I 2

1

2
+

I 2
2

2
+

I 2
3

2

+α2I2I3 + α3I1I2 + α4I1I3 + α5
I 2

1

2
I3 + α6I3 + α7

I 3
1

3
. (3.1)

The real parameters, αi; i = 1, . . . , 7, are inserted for generality and compatibility with the
3 DOF phenomenological model which was studied in [31, 29, 32] (see equation (3.23)).

We show below that for any fixed non-zero value of the external parameters there exists
an energy surface on which an infinitesimal family of 1-resonant elliptic tori, emanating from
a 1-resonant parabolic torus in the direction of I1, resides. The corresponding perturbed
system exhibits tangent parabolic 1-resonance (1-TPR). The existence of this 1-TPR instability
mechanism for such generically constructed systems is in accordance with the following
theorem 1 and corollary 1, which are proved in appendix B.

Theorem 1. Let m � 1, n = m + 3. Smooth integrable n DOF Hamiltonian systems
which possess, in the direction of one of the actions, an infinitesimal family of elliptic and/or
hyperbolic resonant (n − 1)-tori, containing a parabolic m-resonant (n − 1)-torus, ptpr , on
some energy surface H0(x, y, I ) = htpr (defined by the point ptpr ), are C1-persistent in the
space of smooth integrable n DOF Hamiltonian systems, for each m � 1.

Corollary 1. Let n � 4, 1 � m � n − 3. The existence of an m-TPR is C1-persistent in the
space of smooth near integrable n DOF Hamiltonian systems, for each n � 4.

9 Adding a parameter allows one to observe some of the phenomena associated with PR even for n = 2 (see [40]).
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An example of a 1-TPR orbit may be seen in figure 1. All figures presented in this section
are calculated for the fixed set of parameters: α1 = 1.05, α2 = 1, α3 = 2, α4 = 1, α5 = 1,
α6 = √

2. This set of parameters is chosen to avoid other resonances, and/or additional non-
generic degeneracies in the system. The role of the parameter α7 is discussed below. Roughly,
it serves to distinguish between 1-TPR (α7 �= 0, see figure 1) and flat 1-PR (α7 = 0, hence all
higher order terms of θ̇1(I ) in I1 vanish, see figure 2 and discussion below).

The integrable Hamiltonian (3.1) is perturbed by

εH1(x, y, θ1, I1, θ2, I2, θ3, I3; ε, k) = ε1

(
1 − x2

2

)
cos(kθ1) + ε2 cos(kθ2) + ε3 cos(kθ3).

(3.2)

Setting α4 = α5 = α6 = α7 = ε3 ≡ 0 in the integrable Hamiltonian (3.1) and in
the perturbation (3.2), recovers the 3 DOF Hamiltonian (3.23). In all the figures we fix:
ε1 = ε2 = ε3 ≡ ε = 0.001 and k = 3. The corresponding 4 DOF Hamiltonian system is

ẋ = y,

ẏ = xI1 − x3 + ε1x cos(kθ1),

θ̇1 = −x2

2
+

(
α1 +

1

2

)
I1 + α3I2 + α4I3 + α5I1I3 + α7I

2
1 ,

İ1 = ε1k

(
1 − x2

2

)
sin(kθ1),

θ̇2 = I2 + α2I3 + α3I1,

İ2 = ε2k sin(kθ2),

θ̇3 = I3 + α2I2 + α4I1 + α5
I 2

1

2
+ α6,

İ3 = ε3k sin(kθ3).

(3.3)

0 2 4 6
 θ1

I 1

4 DOF.: 1-TPR

 0.5 0 0.5
x

  –0.06

 –0.04

 –0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

I 1

 –0.06

 –0.04

 –0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 1. Tangential parabolic 1-resonance in a 4 DOF system. Initial conditions and parameters:
(x, y, I1, I2, I3) = (0.2, 0., 0., 0.525, −1.05); θi = 1.57, i = 1, 2, 3; H0 ≈ −1.3467, α1 = 1.05,
α2 = 1, α3 = 2, α4 = 1, α5 = 1, α6 = √

2, α7 = 1; k = 3; ε = εi = 1e − 3, i = 1, 2, 3;
t = 1000.
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θ1 x

 –0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

I 1

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
I 1

–1.2  –1  –0.8 –0.6 –0.4  –0.2 0 0.2 0.4 0.6 0.80 1 2 3 4 5 6

Figure 2. Flat parabolic 1-resonance in a 4 DOF system. Initial conditions and parameters:
(x, y, I1, I2, I3) = (0.1454, 0., 0., 0.525, −1.05), θi = 1.57, i = 1, 2, 3; H0 ≈ −1.3467;
α1 = 1.05; α2 = 1, α3 = 2, α4 = 1, α5 = 1, α6 = √

2, α7 = 0; k = 3; ε = εi = 1e − 3,
i = 1, 2, 3; t = 5000.

The integrable Hamiltonian (3.1) fulfils the fixed point conditions (2.2) on N0
f := {p0

f =
(x, y, I1, I2, I3) : (x, y) = (0, 0), I1, I2, I3 ∈ R}, and on N±

f := {p±
f = (x, y, I1, I2, I3) :

(x, y) = (±√
I1, 0), I1 � 0, I2, I3 ∈ R}. Denote: Nf = N0

f ∪ N±
f . The normal stability of

the 3-torus p0
f may be elliptic (I1 < 0), hyperbolic (I1 > 0) or parabolic (I1 = 0). The family

of 3-tori p±
f consists of two families of elliptic tori which meet at a parabolic 3-torus p0

fp at
I1fp

= 0. Indeed, the parabolicity condition (4.4) for this system is

0 = det

(
0 −I1 + 3x2

1 0

) ∣∣∣∣∣
(0,0,I1p,I2p,I3p)

= I1fp
; (3.4)

hence it is fulfilled for I1fp
= 0, for any values of I2 and I3, i.e. it is fulfilled for the

system (3.1) on the two-dimensional submanifold, PNf = {pfp = (x, y, I1, I2, I3) =
(0, 0, 0, I2, I3); I2, I3 ∈ R} ⊂ Nf . Choosing the unit vector q1 = e3

1 = (1, 0, 0), the
resonance condition (2.5), with m = 1, is fulfilled for the system (3.1) on the submanifold
{pf r = (x, y, I1, I2, I3) = (±√

I1, 0, I1 � 0, I2, I3)} ⊂ Nf , iff

0 = θ̇1

∣∣
(±√

I1r ,0,I1r ,I2r ,I3r )
= ∂H0

∂I1

∣∣∣∣
(±√

I1r ,0,I1r ,I2r ,I3r )

= α1I1r + α3I2r + α4I3r + α5I1r I3r + α7I
2
1r . (3.5)

Solutions to (3.5) define the resonance surface Rq1
Nf . Condition (3.5) is met on a parabolic

3-torus from PNf , iff I1f r
= I1fp

= 0. Hence, PNf intersects Rq1
Nf along the

one-dimensional submanifold PR1 = {pfpr = (x, y, I1, I2, I3) = (0, 0, 0, I2fpr
(I3), I3)},

where

I2fpr
(I3) = −α4I3

α3
. (3.6)
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By (3.5), since

∂H0

∂I1

∣∣∣∣
Nf

= dH0

dI1

∣∣∣∣
Nf

,

each of the energy surfaces (a one-dimensional family), containing a 1-resonant parabolic
3-torus, pfpr ∈ PR1, is tangent to Nf at pfpr along I1 (the resonant direction). One of these
energy surfaces has a second-order tangency to Nf along the I1 direction, if at some point,
ptpr = (x, y, I1, I2, I3) = (0, 0, 0, I2tpr

(I3tpr
), I3tpr

):

0 = d

dI1

(
∂H0(±

√
I1, 0, I1, I2, I3)

∂I1

)∣∣∣∣
ptpr

= (α1 + α5I3 + 2α7I1)|ptpr
= α1 + α5I3tpr

, (3.7)

which implies

I3tpr
= −α1

α5
. (3.8)

Substituting (3.8) into (3.6) yields

ptpr = (x, y, I1, I2, I3) =
(

0, 0, 0,
α1α4

α3α5
, −α1

α5

)
, (3.9)

for any fixed pre-chosen set of non-zero parameters, αi; i = 1, . . . , 7. The point (3.9) defines
the energy level H0(x, y, I1, I2, I3) = H0(ptpr ) = htpr on which resides an infinitesimal
family of elliptic 1-resonant tori emanating from the 1-resonant parabolic torus, ptpr .

In figure 1 an example of a perturbed orbit exhibiting 1-TPR (starting near the point (3.9))
is shown. In the left plot we project the eight-dimensional orbit on the (θ1, I1) plane, and in
the right plot on the (x, I1) plane. The orbit performs fast travel through the successive elliptic
resonance zones and reaches the top of the perturbed energy surface (in the I1 direction) in
quite a short time (see discussion in section 3.3), then goes back down to the PR zone, reaches
the bottom of the energy surface and starts to go up again. The displacements in the action I1

are of size �I1 ≈ 0.2, namely of two orders of magnitude larger than ε (see also the upper
plot of figure 7 in section 3.3). We now show that 0.2 = O(ε1/3) is the maximal possible
displacement of I1 on this energy surface as long as I2 and I3 stay near their initial values, as
is the case here.

The transversality condition which ensures that the existence of the second-order tangency
at (3.7) is persistent (while higher-order tangencies are not) is

d2

dI 2
1

(
∂H0(±

√
I1, 0, I1, I2, I3)

∂I1

)∣∣∣∣
ptpr

= 2α7 �= 0. (3.10)

Namely, the term α7(I
3
1 /3) in (3.1) ensures that condition (3.10) is fulfilled for nearby sets of

non-zero parameters. More importantly here, the existence of higher-order terms in I1 with
positive coefficients ensures that the energy surfaces are bounded in the positive I1 direction;
the bounds of the energy surfaces (if exist) in I1 correspond to the elliptic equilibria of the
(x, y) system (see [2,29,32]), namely they may be calculated from the Hamiltonian equation by
substituting (x, y) = (xell, yell) into the Hamiltonian function. For the system (3.3), (x, y) =
(0, 0) is an elliptic fixed point of the (x, y) plane for I1 < 0, for all ε values. Hence, the lower
bound in I1 of the perturbed energy surfaces, when exists, is obtained from solving the equation

α7
I 3

1

3
+

(
α1 +

1

2
+ α5I3

)
I 2

1

2
+ (α3I2 + α4I3) I1 +

I 2
2

2
+

I 2
3

2
+α2I2I3 + α6I3 + O (ε1, ε2, ε3) − h = 0, (3.11)
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with respect to I1. Similarly, the upper bound in I1 of the perturbed energy surfaces, when
exists, is obtained by substituting (x, y) = (±√

I1 + O(ε), O(ε)) and solving the equation

α7
I 3

1

3
+ (α1 + α5I3)

I 2
1

2
+ (α3I2 + α4I3)I1 +

I 2
2

2
+

I 2
3

2
+ α2I2I3 + α6I3 + O(ε1, ε2, ε3) − h = 0,

(3.12)

with respect to I1. Consider first the unperturbed case, ε = εi = 0 (i = 1, 2, 3), at ptpr

(equation (3.9)), α1 + α5I3 = 0. Hence, this branch of equilibrium manifold has a second-
order tangency to the energy surface with the energy value htpr , along the I1 axis, corresponding
to a 1-TPR in the perturbed system. Furthermore, near α1 + α5I3 = 0, positive α7 (or the coef-
ficients of higher-order terms in I1) is a necessary condition for getting an upper finite bound
on I1. For α7 = 0 (as higher-order terms in I1 are not considered in (3.1)), this branch of
equilibrium manifold is parallel to the I1 axis to all orders, corresponding to a flat parabolic
1-resonance (flat 1-PR). We claim that the instability in the I1 direction near these degenerate
PRs is maximal; namely, the only barrier for it is the extent of the energy surface in the PR
neighbourhood. Indeed, solving equation (3.12) for I1 with the parameters, initial actions and
energy values as in figure 1, and with ε = εi = 0 (i = 1, 2, 3), one obtains the upper bound
in I1 of the unperturbed energy surface as I

H0
1up ≈ 0.1. The difference in the upper bounds in

I1 of the unperturbed and perturbed energy surfaces with ε1 = ε2 = ε3 ≡ ε �= 0 is of order
O(ε1/3), i.e. IH

1up = I
H0
1up + O(ε1/3) ≈ 0.1 + O(ε1/3). Hence, as long as the actions I2 and I3 do

not vary much, as is the case here, the perturbed orbit in figure 1 indeed reaches the boundaries
in I1 of the perturbed energy surface.

Generally, α7 = 0 corresponds to a third-order tangency in the I1 direction (2-flat-TPR,
see appendix B) (a co-dimension one phenomenon for 4 DOF integrable systems). Since we
did not include higher-order terms in (3.1), here this situation corresponds to a flat PR. This
flatness implies that the frequency θ̇1(±

√
I1, 0, I1, α1α4/α3α5, −α1/α5) vanishes identically

for all non-negative values of I1; the unperturbed energy surface which contains the point ptpr

(equation (3.9)) is unbounded in the positive direction of I1 (see equation (3.12)). Perturbed
orbits corresponding to this flat 1-PR may exhibit order one instabilities (see figure 2). Compare
this figure with figure 1: in both figures the orbit is seen to exhibit fast travels along the
successive elliptic resonances, repeatedly passing through the PR zone. The orbit in figure
1 exhibits displacements of size �I1 ≈ 0.2 even after a much longer run time than shown
(t � 5000). The orbit in figure 2 reaches displacements of size �I1 ≈ 0.5 at t ≈ 1000,
occasionally gets trapped in a specific resonance zone, and then, after a longer time (t = 5000)
it reaches I1 values which are of order O(1) (see also figures 7 and 6 in section 3.3). To control
our simulations, we ensure that the value of the Hamiltonian is preserved at least up to the
12th digit after the decimal point.

These simulations demonstrate the critical role of the extent of the energy surfaces in
the action directions, and the connection between this simple geometrical phenomena and the
dynamical phenomena of resonances—fast growing extent of the allowed range of actions
in the energy surface corresponds to near-flatness in that direction, which corresponds to an
infinitesimal family of bifurcating resonant tori.

In [40, 29, 31, 32] qualitatively similar behaviour of perturbed orbits near a flat 1-PR was
observed for 2 and 3 DOF systems. We emphasize that in 2 DOF 1-TPR is of co-dimension
two, in 3 DOF systems it is of co-dimension one, and only for systems with 4 or more DOF it
becomes of co-dimension zero (its existence is persistent). It is worth noting that in [40, 31, 32]
simulations of flat (equivalent to looking at ptpr with α7 = 0) and near-flat (equivalent to
looking near ptpr with α7 = 0, i.e. taking α7 � 1) orbits were presented, and no TPR orbits
were shown.
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The example presented here illustrates the fact that n = 4 is the first value of n for which
integrable n DOF Hamiltonians persistently possess an infinitesimal family of resonant tori,
containing a parabolic resonant torus on the same energy surface. In [29] and here, it is the
first demonstration that TPR is a strong enough mechanism for inducing instability.

In addition, n = 4 is also the first value of n for which the existence of a one-dimensional
family of hyperbolic (elliptic) 1-resonant tori on the same unperturbed energy surface becomes
generic. This possible mechanism for instabilities occurs for the integrable Hamiltonian (3.1)
when the three-dimensional submanifold, HNf := {(x, y, I1, I2, I3) : (x, y) = (0, 0),

I1 > 0, I2, I3 ∈ R} ⊂ Nf , corresponding to normally hyperbolic 3-tori, intersects transversely
the two-dimensional submanifold, R1Nf ⊂ Nf , which corresponds to 1-resonant 3-tori, on a
certain four-dimensional energy surface, defined by the equation

H0(x, y, I1, I2, I3) − hhr = 0,

along a one-dimensional curve of hyperbolic 1-resonant 3-tori. For q1 = e3
1 = (1, 0, 0), the

submanifold R1Nf is defined by the equation

0 = θ̇1

∣∣
(0,0,I1r ,I2r ,I3r )

= ∂H0

∂I1

∣∣∣∣
(0,0,I1r ,I2r ,I3r )

=
(

α1 +
1

2

)
I1r + α3I2r + α4I3r + α5I1r I3r + α7I

2
1r , (3.13)

which may be solved for I2 as a function of the remaining actions:

I2r (I1, I3) = − (α1 + 1/2)I1 + α4I3 + α5I1I3 + α7I
2
1

α3
, (3.14)

where for I1 > 0, I2r (I1, I3) corresponds to a two-dimensional family of hyperbolic
resonant tori. The intersection of this two-dimensional family with a certain energy
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Figure 3. Perturbation of an iso-energetic one-dimensional family of hyperbolic 1-resonant tori
in a 4 DOF system: 1-family of 1-HR. Initial conditions and parameters: (x, y, I1, I2, I3) =
(0.0015, 0., 2., −8.318 29, 4.512 19); θi = 1.57, i = 1, 2, 3; H0 ≈ 1.4999; α1 = 1.05, α2 = 1,
α3 = 2, α4 = 1, α5 = 1, α6 = √

2, α7 = 0; k = 3; ε = εi = 1e − 3, i = 1, 2, 3; t = 1000.
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surface, corresponding to some energy value hhr = H0(0, 0, I1hr
, I2hr

(I1hr
, I3hr

), I3hr
), along a

one-dimensional curve, is defined by the equation

H0(0, 0, I1, I2r (I1, I3), I3) − hhr = 0, (3.15)

which may be solved for I3 = I3hr
(I1), for I1 > 0. For example, to plot figure 3 we

choose the energy value H0 = hhr ≈ 1.4999, and I1 = 2 as the initial value for I1.
In this figure we present projections on the planes (θ1, I1) (left) and (x, I1) (right) of an
eight-dimensional perturbed orbit travelling near a family of hyperbolic 1-resonant tori of
system (3.1) (through a family of 1-HR in the perturbed system (3.3)). Notice that the structure
of the orbit in these planes is very different from that of the 1-TPR and flat 1-PR cases (compare
figure 3 with figures 1 and 2), and that the instabilities in I1 seems to be smaller: in contrast to
the 1-TPR case, this 1-HR orbit did not reach the boundaries of the perturbed energy surface
during the time of integration (up to t = 10 000), and the maximal displacement in I1 is
approximately of size �I1 ≈ 0.06 (see also figure 7 in section 3.3).

The occurrence of the iso-energetic one-dimensional family of 1-HR in system (3.3) is in
accordance with corollary 5 (see appendix B).

3.2. Iso-energetic PRs in a 5 DOF model

For n � 5 DOF systems, a one-dimensional family of 1-resonant parabolic 4-tori appears
persistently on the same energy surface. Indeed, consider

H0(x, y, I ; α) = y2

2
− x2

2
(I1 + βI2) +

x4

4
+

(
α1 +

1

2

)
I 2

1

2
+

I 2
2

2
+

I 2
3

2
+

I 2
4

2
+α2I2I3 + α3I1I2 + α4I1I3 + α5I3I4 + α6I1I4 + α7I2I4 + α8I4, (3.16)

where the parameters, αi; i = 1, . . . , 8, β, are real, and are fixed to generic values. The
introduction of the new parameter β, which appears in the mixed term (x2/2)(I1 +βI2) (namely
was set to zero in (3.1)), is explained below. We use the perturbation

εH1(x, y, θ, I ; ε, k) = ε

[(
1 − x2

2

)
cos(kθ1) + cos(kθ2) + cos(kθ3) + cos(kθ4)

]
. (3.17)

The corresponding 5 DOF Hamiltonian system of the Hamiltonian equations (3.16) and
(3.17) is

ẋ = y,

ẏ = x(I1 + βI2) − x3 + εx cos(kθ1),

θ̇1 = −x2

2
+

(
α1 +

1

2

)
I1 + α3I2 + α4I3 + α6I4,

İ1 = εk

(
1 − x2

2

)
sin(kθ1),

θ̇2 = −β
x2

2
+ I2 + α2I3 + α3I1 + α7I4,

İ2 = εk sin(kθ2),

θ̇3 = I3 + α2I2 + α4I1 + α5I4,

İ3 = εk sin(kθ3),

θ̇4 = I4 + α5I3 + α6I1 + α7I2 + α8,

İ4 = εk sin(kθ4).

(3.18)

By construction, the 5 DOF integrable Hamiltonian (3.16) fulfils conditions (2.2) for equilibria
in the (x, y) plane at (x, y) = (0, 0), for any values of the actions, I , and at (x, y) =
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(±√
I1 + βI2, 0), for I1 � −βI2, and any I2, I3, I4 ∈ R. The system (3.16) fulfils the

parabolicity condition (2.3) for I1p(I2, I3, I4) = I1p(I2) = −βI2 (for any values of the actions:
I2, I3, I4). Hence, for the system (3.16), the three-dimensional submanifold corresponding
to invariant parabolic 4-tori is PNf = {(x, y, I1, I2, I3, I4) : (x, y) = (0, 0), I1 = −β

I2; I2, I3, I4 ∈ R}. Choosing the unit vector q1 = e4
1 = (1, 0, 0, 0), the resonance

condition (2.5) is fulfilled for the system (3.16) on PNf , iff

0 = θ̇1

∣∣
(0,0,−βI2r ,I2r ,I3r ,I4r )

= ∂H0

∂I1

∣∣∣∣
(0,0,−βI2r ,I2r ,I3r ,I4r )

=
(

−β

(
α1 +

1

2

)
+ α3

)
I2r + α4I3r + α6I4r , (3.19)

for any fixed set of parameters, αi (i = 1, . . . , 8), β. Condition (3.19) is met on a
two-dimensional submanifold, PR1, defined by the equation

I3pr
(I2, I4) = − (−β(α1 + 1/2) + α3)I2 + α6I4

α4
. (3.20)

Fixing an energy value, hpr , imposes one extra condition on the remaining actions:

H0(0, 0, I1p(I2), I2, I3pr
(I2, I4), I4) − hpr = 0, (3.21)

which may be solved for I4, obtaining an iso-energetic one-dimensional family of parabolic
1-resonant 4-tori on the curve

HPR1 = {(x, y, I1, I2, I3, I4) = (0, 0, −βI2, I2, I3pr
(I2, I4pr

(I2)), I4pr
(I2)); I2 ∈ R}.

(3.22)

Now the role of the parameter β becomes clear: for β = 0, this iso-energetic one-dimensional
family of resonant tori has no component in the I1 direction, the direction in which the resonance
occurs. It suggests that excursions associated with this resonance will lead to instabilities along
this family only for non-zero β, which explains the choice of our mixed term. Indeed, when one
sets β = 0, no new dynamical phenomena were numerically detected. This observation falls
into a more general framework which distinguishes between different types of PR according to
the relation between the actions which govern the bifurcating tori and the resonance directions.
While the persistence theorems apply equally well to all cases, the corresponding perturbed
orbits exhibit significantly different behaviours as demonstrated in [29,32] for the two possible
types of 1-PR in 3 DOF systems.

In figure 4 we present a perturbed orbit of the system (3.18), starting near a 1-resonant
parabolic 4-torus of the unperturbed system, which is a part of a family of 1-resonant parabolic
tori (1-family 1-PR), all belonging to the same unperturbed energy surface, hpr = −0.9626.
In the left plot of this figure, the projection of the ten-dimensional orbit on the (θ1, I1) plane
is presented, and the projection of the orbit on the (x, I1) plane is seen on the right. The
remaining (non-resonant) actions stay near their initial values (performing infinitesimally small
oscillations) for all integration times (up to t = 10 000). The structure of the orbit in figure 4
somewhat resembles the structure of the orbit of the 4 DOF system (3.3) exhibiting a 1-family
1-HR, seen in figure 3. The (perturbed) 1-family 1-PR orbit in figure 4 exhibits instabilities
only in the direction of the resonant action, I1, with displacements of size �I1 ≈ 0.08, while the
value of I2 suffers a small drift with much weaker oscillation. Hence, the equation I1 +βI2 = 0,
which corresponds to parabolic stability type of the tori, does not hold during the whole run
time of the orbit. However, the orbit in figure 4 repeatedly passes through PR zones, with a
small drift along the parabolic family axis (I1 + βI2 = 0), and bifurcates to nearby elliptic and
hyperbolic stability type behaviour. This scenario is further illustrated in figure 5. In this figure
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Figure 4. Perturbation of an iso-energetic one-dimensional family of parabolic 1-resonant tori
in a 5 DOF system: 1-family of 1-PR. Initial conditions and parameters: (x, y, I1, I2, I3, I4) =
(0.0002, 0., 0.8, −0.8, 0.4665, −0.999), θi = 1.57, i = 1, . . . , 4; H0 ≈ −0.9626; β = 1;
α1 = 1.05, α2 = 1, α3 = 2, α4 = 3.8, α5 = √

3, α6 = √
2, α7 = 1.5, α8 = √

2; k = 3;
ε = 1e − 3; t = 1000.
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Figure 5. 1-family of 1-PR. The curves (· · · · · ·): (I1(t) − I1(0)); (- - - -): (I2(t) − I2(0)) and
(——): (I1(t) + I2(t)) are plotted as functions of the time, t . Initial conditions and parameters: as
in figure 4.

we plot I1(t) − I1(0) (dotted curve exhibiting large oscillations), I2(t) − I2(0) (dashed curve
exhibiting small oscillations) and I1(t) + βI2(t) (solid curve) as functions of the time, t . In
this figure, only the area near zero, which is covered by the curve I2(t)− I2(0), corresponds to
parabolic stability type. Below this region the actions correspond to elliptic stability type, and
above it to hyperbolic stability type. See section 3.3 for further discussion, and comparison
between all the mechanisms for instabilities proposed here.
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When the initial values of I1 and I2 are zero, different behaviour of nearby perturbed
orbits is observed in simulations: either one of the two orbit structures which are described for
the case of isolated 1-PR in [29, 32] is observed, depending on the initial values of the other
actions.

The persistent appearance of these 1-family 1-PR behaviours are supported by corollary 6
(see appendix B).

3.3. Instabilities rate

In sections 3.1 and 3.2 we demonstrate that the different instability mechanisms may result in
qualitative different orbit structures (compare figures 1–4). Here we present some quantifiers
for the resulting differences in the instability rates, which we define as the maximal observed
displacement in the resonant action(s) over a certain time interval:

�I (T , ε) = max
j ; 0<t�T

|Ij (t) − Ij (0)|;

we compare these displacements for the different mechanisms described above, for a given
fixed values of ε and T : ε = 0.001 and T = 1000 (or 5000). An exhaustive study of the
dependence of these displacements and the averaged velocities by which they are reached as a
function of ε and T for the different types of mechanism is certainly needed, yet it is beyond
the scope of this work.

In figure 6 we present I1(t) for the degenerate case of flat 1-PR, where for fixed values of
I2 and I3 (at which the flat 1-PR occurs) the energy surface is unbounded in the I1 direction
and large (�I (5000, 0.001) ≈ 1.4), fast (t < 5000, namely, probably not exponentially small
in ε) instabilities occur. In all the other cases presented here (figure 7) for any fixed values of
I2 and I3 the energy surfaces are bounded in I1 and such large instabilities are prohibited as
long as I2 and I3 remain close to their initial values.

In figure 7 we present the curves I1(t)− I1(0) for time intervals t ∈ [0, 1000] (in fact, the
same instabilities are observed up to t = 10 000). The upper plot of this figure corresponds
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t

Figure 6. Flat 1-PR in a 4 DOF system. The curve I1(t) − I1(0) is plotted as a function of the
time t . Initial conditions and parameters as in figure 2.
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Figure 7. Upper plot: 1-TPR (see figure 1), middle plot: 1-family of 1-PR (see figure 4), lower
plot: 1-family of 1-HR (see figure 3).

to the instabilities which are developed for the 4 DOF system (3.3) as a result of a 1-TPR:
�I (1000, 0.001) ≈ 0.2; in the middle plot the instabilities which develop as a result of an iso-
energetic 1-family of 1-PR in the 5 DOF system (3.18) are presented: �I (1000, 0.001) ≈ 0.08;
in the lower plot the instabilities resulting from an iso-energetic 1-family of 1-HR in the 4 DOF
system 23 are shown: �I (1000, 0.001) ≈ 0.06. Though relatively ordered, the mechanism of
TPR exhibits the largest and the fastest instabilities. Moreover, in this case the displacements
in I1 are maximal; the orbit travels between the lowest and the uppermost values of I1 on the
energy surface at the given I2 and I3 values, on time intervals of order O(100). In the other
cases such displacements do not occur even on longer time intervals. We suggest that in the
1-TPR case when instabilities in I1 develop and the orbit bifurcates to elliptic stability type,
it goes through successive elliptic resonance zones (as the first frequency in this case does
not depend on the largest term in I1), resulting in long runs on which İ1 has one sign. In
the other two cases the orbit visits near elliptic or hyperbolic tori (of the unperturbed system)
which are only near resonance (as in these cases the first frequency does depend on all the
terms in I1) and İ1 oscillates near zero. Moreover, the fact that the tangency point corresponds
to a resonant parabolic torus is crucial, as a parabolic torus admits a bifurcation point near
which resonant tori of other stability types reside. The numerical evidence presented here and
in [40, 29, 31, 32] indicates that the successive changes in the orbit through different stability
types result in larger instabilities even if the zones it visits are only near resonant.

The above statement is further supported when comparing 2-PR (which corresponds to a
parabolic torus of fixed points in the integrable system) versus 2-HR (which corresponds to
a hyperbolic torus of fixed points in the integrable system) in the 3 DOF system (3.23) (see
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[29, 32]):

H(x, y, θ1, I1, θ2, I2; α1, α2, α3, ε, k) = H0(x, y, I1, I2) + εH1(x, y, θ1, I1, θ2, I2)

= y2

2
− x2

2
I1 +

x4

4
+

(
α1 +

1

2

)
I 2

1

2
+

I 2
2

2
+ α2I2 + α3I1I2

+ε1

(
1 − x2

2

)
cos(kθ1) + ε2 cos(kθ2). (3.23)

Figure 8 demonstrates that the instabilities developed in both actions are greater for the PR than
for the hyperbolic resonance; the maximal displacements observed for the resonant actions,
I1 and I2, in the plotted time interval (t = 1000) are: �I1 ≈ 0.25 and �I2 ≈ 0.3 for 2-PR
(figures 8 (left) and 9). �I1 ≈ 0.07 and �I2 ≈ 0.08 for 2-HR (figures 8-(right) and 10). Hence,
�I (1000, 0.001) ≈ 0.3 for 2-PR, and �I (1000, 0.001) ≈ 0.08 for 2-HR. The different orbit
structures for both cases are presented in figures 9 and 10, respectively. The orbit corresponding
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Figure 8. 2-PR versus 2-HR in the 3 DOF system (3.23). Initial conditions and parameters for
the 2-PR: (x, y, I1, I2) = (0.02, 0., 0., 0.); (α1 = 1.05, α2 = 0., α3 = 2.); θ1 = θ2 = 1.57;
H0 ≈ 4e − 4; k = 3; ε1 = ε2 = 0.001 (see figure 9). Initial conditions and parameters for
the 2-HR: (x, y, I1, I2) = (0.02, 0., 1., −2.); (α1 = 1.5, α2 = 1., α3 = 1.); θ1 = θ2 = 1.57;
H0 ≈ −1.0196; k = 3; ε1 = ε2 = 0.001 (see figure 10).

to 2-PR slides through bifurcations as the actions change in time, while the orbit corresponding
to 2-HR does not, and its behaviour corresponds to a hyperbolic stability type behaviour for
the whole time of its run.

In 3 DOF systems, 2-PR is a co-dimension one phenomenon; its existence becomes
persistent (without dependence on external parameters) for n � 4 DOF systems. In higher-
dimensional systems the orbit structure and the rate of instability of the resonant actions near
such double resonances appear to be similar. We present here the 3 DOF orbits (figures 8, 9
and 10), as n = 3 is the first value of n for which such 2-resonances exist (2-HR persistently
without dependence on external parameters, and 2-PR persistently as a co-dimension one
phenomenon; these statements are formulated and proved in section A.1 of appendix A).
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Figure 9. 2-PR in a 3 DOF system. Initial conditions and parameters: (x, y, I1, I2) =
(0.02, 0., 0., 0.); (α1 = 1.05, α2 = 0., α3 = 2.); θ1 = θ2 = 1.57; H0 ≈ 4e − 4;
k = 3; ε1 = ε2 = 0.001; t = 1000.
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Figure 10. 2-HR in a 3 DOF system. Initial conditions and parameters: (x, y, I1, I2) =
(0.02, 0., 1., −2.); (α1 = 1.5, α2 = 1., α3 = 1.); θ1 = θ2 = 1.57; H0 ≈ −1.0196;
k = 3; ε1 = ε2 = 0.001; t = 1000.

4. Conclusion and discussion

Parabolic resonant tori always correspond to junctions of strong (low-order) resonances in
the unperturbed system. Hence, PRs always correspond to cross-resonance diffusion in
action variables. Up till now special examples, exhibiting only hyperbolic behaviour, were
constructed to study cross-resonance diffusion, as people believed that hyperbolic resonances
result in the strongest possible instabilities. Here and in [40, 29, 31, 32], we present numerical
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evidence demonstrating that the existence of parabolic resonant tori in the unperturbed system
does not interfere with the creation of instabilities and may even induce stronger (larger and
faster) instabilities than the instabilities exhibited near hyperbolic resonant tori. Clearly these
are only preliminary indications and a thorough numerical and analytical studies are needed to
quantify such statements. Parabolic tori are a priori resonant and are a part of some bifurcation
scenario, where near them tori of other stability types reside. We propose these reasons for
the observation that PRs result in strong instabilities. Moreover, we prove that the existence
of PRs is persistent in the space of near integrable n DOF Hamiltonians for each n � 3. PRs
are expected to appear in systems with non-separable integrable skeleton. Such are typical,
for example, to unperturbed systems which preserve angular momentum, yet are a-typical to
systems which are composed of n slightly coupled oscillators. We suggest that since most
higher-dimensional studies have concentrated on studying the latter models, the phenomena
of PR and its higher-order degeneracies have not received its proper exposure.

We propose here several mechanisms for instabilities, which are persistent without
dependence on external parameters in systems with n � 4 DOF; hence n = 4 is a critical
n value. In particular, we demonstrate that 1-TPR is a unique mechanism which results in fast
strong instabilities (the orbit reaches the boundaries of its energy surface in I1 on relatively
short timescales), and it persistently exists for n � 4 DOF systems. Orbits of near integrable
3, 4 and 5 DOF systems exhibiting PRs are numerically observed to exhibit complicated
behaviour, which includes successive slides through bifurcations (similar to the ones observed
in dynamical bifurcations, e.g. see [26]) with large variations in those actions which are involved
in both the bifurcation and the resonance.

It is numerically demonstrated that orbits exhibiting 2-PR display relatively strong and
fast instabilities in the direction of both resonant actions. In n � 4 DOF systems, this
phenomenon is persistent and non-degenerate—it may occur on energy surfaces for which
the KAM iso-energetically non-degeneracy condition does not fail anywhere.

In all Hamiltonian systems with n > 2 DOF, including those studied here, most initial
conditions reside near a priori stable maximal tori. For such orbits the usual difficult questions
regarding Arnold diffusion arise (for all the discussions regarding Arnold diffusion we assume
the perturbed Hamiltonian to be analytic). Nonetheless, it is obvious that if there is any
nontrivial structure to the unperturbed energy surface (e.g. see [29, 30]), specific regions in
phase space may be subject to much faster instabilities than the exponentially slow Arnold
diffusion. In all applications we are aware of, such non-trivial structures exist. The whiskers
of families of a priori unstable tori supply one mechanism of instability in such systems. We
demonstrated that the existence of parabolic resonant tori supplies another mechanism for fast
phase space instabilities.

Finally, to some speculations. As for the a priori unstable situation, one may want
to try and relate such mechanisms to the generic resonance web structure which appears
near a generic point in phase space. Arnold diffusion mechanism relies on the creation of
whiskered non-resonant (n − 1)-tori (whiskers) by the perturbation, which in turn create
the transition chains. However, only sufficiently non-resonant whiskers are preserved under
small Hamiltonian perturbations, and in generic systems gaps are created. What structures
correspond to the boundaries of the gaps? Since on one side of the gap boundary the tori
are hyperbolic and on the other they are not (perhaps they disintegrate to smaller tori with
different normal stabilities), it is quite possible that the boundary of the gaps is precisely given
by families of parabolic tori, dense set of which is resonant. Furthermore, one expects that in
the gaps the lower-dimensional tori will undergo generic bifurcations. For example, since the
existence of action values for which parabolic 1-resonant (n − 2)-tori are created is generic in
the class P2, and is persistent for smooth integrable n � 4 DOF Hamiltonians (see appendix A),
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we expect such parabolic resonant (n − 2)-tori to exist in the gaps. The implications of such
a scenario are vast. We have demonstrated numerically that orbits starting in the vicinity
of parabolic resonant tori develop complicated behaviour and relatively fast instabilities. It
follows that if the various mechanisms of instability associated with PR exist in the gaps and
on their boundaries, they supply a much faster mechanism for transport than the instability
through the whiskers. For example, recent works, such as [12, 20, 43] (see also references
therein), showed that in a priori unstable systems, ‘diffusion’ in action variables exists in the
gaps between the non-resonant whiskers (diffusion across resonances). In such systems, the
relative instability rate in the gaps appears to be system dependent; in some examples it is
faster than the instability rate along the non-resonant whiskers chain, while in other examples
it is slower [12,20]; in [43] a transition chain of both non-resonant and resonant hyperbolic tori
was constructed, and it was suggested there that the development of instabilities (diffusion) in
the action variables is independent of KAM tori. These recent findings are not in contradiction
(and may even be in accordance) to our suggestion that parabolic resonant tori may play an
important role in traversing the gaps. However, this requires further investigation.

Appendix A. Genericity of lower-dimensional resonant tori

Consider smooth n DOF integrable Hamiltonian systems, with n � 3, which are already
transformed to the form H0(x, y, I ) (2.1) in some vicinity of one of their closed and connected
level sets, Mg (as in the Liouville–Arnold theorem). We define below the class Ps of such
systems as systems in which there exists a lower-dimensional torus which undergoes a change
of stability as the actions are varied (namely truly coupled higher-dimensional systems). Then,
we prove that among such systems those exhibiting PRs are generic.

Definition 1. Let H0(x, y, I ) be an n DOF integrable Hamiltonian, which is obtained from
some general smooth n DOF integrable Hamiltonian by a non-singular transformation near
some level set. The Hamiltonian is said to belong to the class Ps if s � 1 is the minimal integer
for which the following conditions are satisfied:

(a) H0(x, y, I ) possesses at least one isolated equilibria in its 2s -dimensional (x, y) normal
space of the (n − s)-tori, parameterized by the actions I , where x = (x1, . . . , xs),
y = (y1, . . . , ys) ∈ R

s . Namely, at this equilibrium point pf :

∇(x,y)H0(x, y, I )|pf
= 0, pf = (xf , yf , If ). (4.1)

(b) There exists an i = i0 ∈ {1, . . . , s}, for which

det

(
∂2H0

∂2(xi0 , yi0)

∣∣∣∣
pf

)
= 0. (4.2)

(c) At the point pf , H0(x, y, I ) fulfils the following transversality condition, (4.3), for
i = i0 ∈ {1, . . . , s}, for which condition (4.2) holds:∥∥∥∥∥ ∂

∂I1
det

(
∂2H0

∂2(xi0 , yi0)

)∣∣∣∣
pf

∥∥∥∥∥ + · · · +

∥∥∥∥∥ ∂

∂In−s

det

(
∂2H0

∂2(xi0 , yi0)

)∣∣∣∣
pf

∥∥∥∥∥ �= 0. (4.3)

Indeed, systems which belong to the class Ps , attain an invariant (n − s)-torus which
undergoes a bifurcation. Generic integrable Hamiltonian systems which do not belong to this
class, may possess families of invariant (n − s)-tori (isolated in their normal (x, y) space) of
only one stability type: either elliptic or hyperbolic (or, if s > 1, partially hyperbolic).



1168 A Litvak-Hinenzon and V Rom-Kedar

Appendix A.1. Maximal lower-dimensional tori

The maximal lower-dimensional tori are the (n − 1)-tori of the integrable n DOF Hamiltonian
system. For this case s = 1, and the (x, y) normal space is a two-dimensional plane.

Theorem 2. Let n, m ∈ N, where n � 3; 1 � m � n − 2, and 1 � r � ∞. Smooth
integrable n DOF Hamiltonian systems which possess an (n − 2 − m)-dimensional family
of normally parabolic, m-resonant, (n − 1)-tori, form a C1-open set in the space of smooth
integrable n DOF Hamiltonian systems, for each n � 3. Hence, the existence of such families
is C1-persistent in each such space. Each such normally parabolic (n − 1)-torus generically
consists of an m-dimensional family of non-resonant (n − 1 − m)-tori.

Proof. To prove theorem 2 we first prove the following proposition.

Proposition 1. Let n, m ∈ N, where n � 3; 1 � m � n − 2, and 1 � r � ∞. Smooth
integrable n DOF Hamiltonian systems which possess an (n − 2 − m)-dimensional family of
normally parabolic, m-resonant (n − 1)-tori form a C1-open, Cr -dense set in the class P1,
hence are C1-generic in this class.

Remark 1. By a zero-dimensional family we mean an isolated invariant torus, or a discrete
set of isolated invariant tori.

Proof of proposition. Let H0(x, y, I ) be any integrable n � 3 DOF Hamiltonian from
class P1. Denote by N (here N = R

n+1) the (n + 1)-dimensional smooth manifold, on which
the x, y, I variables of the Hamiltonian function H0(x, y, I ) are defined. Each point in N

corresponds to an (n − 1)-torus in the full phase space. If an (n − 1)-torus is attached to a
fixed point of the (x, y) plane, it is an invariant (n − 1)-torus. The conditions for existence of
an equilibrium of the (x, y)-system are (4.1). Since (4.1) defines two equations on the n + 1
variables, (x, y, I ), each of the two conditions in (4.1) is generically fulfilled on a smooth
n-dimensional submanifold of N (this is a consequence of a corollary to the Sard theorem, e.g.
see [24] and references therein). By the Transversality theorem [24], the n DOF integrable
Hamiltonian systems for which these two smooth submanifolds of N are transverse form
a C1-open, Cr -dense set in the space of n DOF near integrable Hamiltonian systems (with
n � 2). By the definition of the class P1 (definition 1), these two smooth n-dimensional
submanifolds must intersect each other. Hence, they intersect each other transversely along
an (n− 1)-dimensional submanifold for a C1-open, Cr -dense set of the class P1. If more than
one fixed point exists in the (x, y)-plane, generically each such equilibrium corresponds to one
branch of solutions {(xf , yf , If )}, each defining a smooth (n − 1)-dimensional submanifold
of N . For a generic integrable Hamiltonian system, the set of such {(xf , yf , If )} branches of
isolated equilibria in the (x, y)-plane is countable. Let us denote these smooth submanifolds
by Ni

f , i = 1, 2, . . . , or in short, Nf (when appropriate, with some abuse of notation, we will
refer to Nf as the union of all the smooth submanifolds Ni

f ) . Each such isolated equilibria in
the (x, y)-plane corresponds to a family of invariant (n−1)-tori, parametrized by the actions I ,
in the 2n-dimensional phase space.

Since condition (4.1) and all conditions hereafter are imposed on the Hamiltonian function
and its partial derivatives, and not on the jets of the vector field, the standard transversality
theorems may be invoked to obtain genericity results in the class P1. In particular, in this
formulation the symplectic structure plays no role.
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The generic normal stability type of the invariant (n−1)-tori is either hyperbolic or elliptic,
and for some action values such a torus may be parabolic. The condition for a fixed point from
Nf to be parabolic is

det

(
∂2H0

∂2(x, y)

∣∣∣∣
(xp,yp,Ip)

)
= 0. (4.4)

The variables which fulfil the (instantaneous) parabolicity condition, (4.4), generically span
an n-dimensional submanifold P ⊂ N . For each i = 1, 2, . . . , by the Transversality theorem,
the n DOF integrable Hamiltonian systems for which P is transverse to Nf in N form a
C1-open Cr -dense set in the class P1, for each fixed n � 2. By the assumptions on the
class P1, P must intersect at least one of the submanifolds Nf , at least in one point. However,
if P and Nf intersect, they intersect transversely on a C1-open, Cr -dense set of Hamiltonians
from the class P1. The definition of a transverse intersection (e.g. see [24]) implies that if
P � Nf and P ∩Nf �= ∅, then P must intersect Nf transversely along an (n−2)-dimensional
submanifold of N . Let us denote this (n − 2)-dimensional submanifold by PNf . Note that
PNf corresponds to an (n − 2)-dimensional family of parabolic (n − 1)-tori. It follows
that n DOF integrable Hamiltonian systems which possess an (n − 2)-dimensional family of
invariant normally parabolic (n − 1)-tori form a C1-open Cr -dense set in the class P1, for
each fixed n � 2. Moreover, taking intersections over all 2 � n ∈ N, yields, by the Baire
theorem, that n DOF integrable Hamiltonian systems possessing an (n−2)-dimensional family
of normally parabolic (n− 1)-tori form a Cr -dense, C1-Gδ (dense) set in the class P1. Hence,
the existence of normally parabolic (n − 1)-tori is C1-generic in this class.

The inner frequencies, ωi(xf , yf , If ); i = 1, . . . , n − 1, of a resonant invariant
(n − 1)-torus, (xf , yf , If ) ∈ Nf , are rationally dependent; there exists a vector of integers,
qj ∈ Z

n−1\{0}, such that

〈qj , ω(xf , yf , Ir )〉 = 0, (xf , yf , Ir ) ∈ Nf . (4.5)

Equation (4.5) is generically satisfied on an (n − 2)-dimensional submanifold of Nf , the
resonant submanifold Rqj

Nf . This follows from transversality and the fact that the rational
numbers form a dense set in the space of real numbers. Consider the intersection of m such
resonant submanifolds: taking m independent vectors of integers, qj , j = 1, . . . , m, the
corresponding m resonant (n − 2)-dimensional submanifolds of Nf must all intersect (as all
resonant surfaces pass through the origin of the frequency space, and the inner frequencies
depend smoothly on the actions in a neighbourhood of the (n − 1)-tori). Hence, by the
Transversality theorem, they intersect transversely on an (n−1−m)-dimensional submanifold
of Nf for a C1-open, Cr -dense set of integrable Hamiltonians from the class P1. Let us denote
this (n − 1 − m)-dimensional submanifold by RmNf . i.e.

RmNf = Rq1
Nf ∩ · · · ∩ Rqm

Nf , 1 � m � n − 2.

RmNf consists of m-resonant (n − 1)-tori, which are generically hyperbolic or elliptic. Note
that if m = n − 1, then Rn−1Nf is a discrete set of points, each corresponding to an
(n − 1)-resonant (n − 1)-torus of fixed points, which is generically hyperbolic or elliptic, and
resides on a certain energy surface, which is determined by the point (xf , yf , Ir ) ∈ Rn−1Nf .

By the Transversality theorem, for each fixed n � 3, and for 1 � m � n−2, those n DOF
integrable Hamiltonians for which the (n−1−m)-dimensional surface RmNf of resonant tori is
transverse to the (n−2)-dimensional surface PNf of parabolic tori form a C1-open, Cr -dense
set in the class P1. However, as PNf corresponds to a smooth (n − 2)-dimensional family of
parabolic tori in Nf , it contains a dense set of m-resonant parabolic tori, hence it intersects
RmNf at least in one point. Therefore, by transversality, it must intersect RmNf along an
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(n − 2 − m)-dimensional submanifold of Nf . Hence, the systems for which this intersection
is transverse form a C1-open, Cr -dense set in the class P1. Let us denote this (n − 2 − m)-
dimensional submanifold by PRm, where PRm ⊂ RmNf ⊂ Nf . Taking intersections over
all n � 3, by the Baire theorem, those n DOF integrable Hamiltonian systems for which
PRm is transverse form a Cr -dense, C1-Gδ (dense) set in the class P1. Hence, they are C1-
generic in P1. �

As transverse intersections is a C1-open condition, and the condition (4.3) is a
transversality condition, it follows that systems from the class P1 for which the (n − 2 − m)-
dimensional manifold, PRm, of normally parabolic, m-resonant, (n − 1)-tori is transverse
form a C1-open set in the space of n DOF integrable Hamiltonian systems for each n � 3,
1 � m � n − 2. The assertion that each such normally parabolic m-resonant (n − 1)-torus
consists of an m-dimensional family of non-resonant, (n−1−m)-tori follows from Arnold [2].
Hence, we have established theorem 2. �

Consider a small Hamiltonian perturbation of H0(x, y, I ), εH1(x, y, θ, I ; ε), with ε small;
this perturbation may be considered as the higher-order terms of the original Hamiltonian.
The effect of such a perturbation clearly depends on the structure of the integrable flow,
as numerically demonstrated in section 3. We define m-PR in the following way (see also
[40, 32, 29]).

Definition 2. m-PR occurs when a small Hamiltonian perturbation εH1(x, y, θ, I ; ε) is
applied to an integrable n DOF Hamiltonian system possessing an m-resonant lower-
dimensional normally parabolic torus.

A m-PR occurs for a set of initial conditions of the perturbed system in the vicinity of
the previously existing normally parabolic resonant torus of the integrable system. A near
integrable Hamiltonian system is said to belong to the class Ps if its integrable part is of this
class. Hence, considering smooth n DOF near integrable Hamiltonian systems of the form

H(x, y, θ, I ; ε) = H0(x, y, I ) + εH1(x, y, θ, I ; ε), (4.6)

where εH1(x, y, θ, I ; ε) is a bounded Hamiltonian perturbation of the integrable Hamiltonian
H0(x, y, I ), we have the following corollary.

Corollary 2. Let n, m ∈ N, where n � 3; 1 � m � n − 2, and 1 � r � ∞. Smooth near
integrable n DOF Hamiltonian systems of the form (4.6), exhibiting m-PR, form a C1-open,
Cr -dense set in the class P1, and a C1-open set in the space of smooth near integrable n DOF
Hamiltonian systems, for each fixed n � 3. Hence, the existence of a m-PR is C1-generic in
the class P1 and is C1-persistent in the space of smooth near integrable n DOF Hamiltonians,
for each n � 3.

Hereafter, by generic we mean C1-generic, and by persistent we mean C1-persistent.
In fact, we have established above the following theorem.

Theorem 3. Let 3 � n ∈ N and 1 � r � ∞.

(a) Let 1 � m � n − 2. Smooth integrable n DOF Hamiltonian systems which possess
(n − 1 − m)-dimensional families of both normally hyperbolic and normally elliptic
(bifurcating), m-resonant, (n − 1)-tori, form a C1-open, Cr -dense set in the class P1,
hence generic in this class. Such systems are persistent in the space of smooth integrable
n DOF Hamiltonian systems for each n � 3.

(b) Let m = n−1. Smooth integrable n DOF Hamiltonian systems which possess a normally
hyperbolic (respectively, normally elliptic), (n−1)-resonant, (n−1)-torus of fixed points,
form a C1-open, Cr -dense set in the class P1, hence generic in this class. Such systems
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are persistent in the space of smooth integrable n DOF Hamiltonian systems for each
n � 3.

For 1 � m � n − 2, each such normally hyperbolic (respectively, elliptic) (n − 1)-torus
consists of an m-dimensional family of (n − 1 − m)-tori, where generically these are
non-resonant.

We define hyperbolic (elliptic) m-resonance in the same manner as m-PR (see [40, 21] for
the 2 DOF case).

Definition 3. Hyperbolic (elliptic) m-resonance occurs when a small Hamiltonian
perturbation of the form εH1(x, y, θ, I ; ε) is applied to an integrable n DOF Hamiltonian
system possessing an m-resonant lower-dimensional normally hyperbolic (elliptic) torus.

Hence, considering smooth near integrable n DOF Hamiltonian systems of the form (4.6),
with a bounded perturbation, we have the following corollary.

Corollary 3. Let 3 � n ∈ N and 1 � r � ∞.

(a) Let 1 � m � n − 2. Smooth near integrable n DOF Hamiltonian systems of the form
(4.6), exhibiting both hyperbolic and elliptic m-resonance, form a C1-open, Cr -dense set
in the class P1, hence generic in this class. Such systems are persistent in the space of
smooth near integrable n DOF Hamiltonian systems for each n � 3.

(b) Let m = n−1. Smooth near integrable n DOF Hamiltonian systems exhibiting hyperbolic
(respectively, elliptic) (n − 1)-resonance, form a C1-open, Cr -dense set in the class P1,
hence generic in this class. Such systems are persistent in the space of smooth near
integrable n DOF Hamiltonian systems for each n � 3.

The elliptic m-resonance occurs for a set of initial conditions of the perturbed system which
are in the vicinity of the previously existing normally elliptic resonant torus. The hyperbolic
m-resonance occurs for a set of initial conditions of the perturbed system which are in the
vicinity of the previously existing normally hyperbolic resonant torus and its intersecting stable
and unstable manifolds. The spatial extent of these manifolds in these higher-dimensional
systems is the subject of current research (see, for example, [20, 43] and references therein).

Theorem 2, proposition 1, corollary 2 and the first part of theorem 3 and of corollary 3
apply only for the case n � 3, while the second part of theorem 3 and of corollary 3 apply for
the case n = 2 as well.

In theorems 2, 3, proposition 1 and corollaries 2, 3, we prove that the existence of resonant
tori of the above prescribed properties are generic and persistent—the actions of the unperturbed
(n− 1)-tori serve as internal parameters. Next we prove that the existence of (n− 1)-resonant
normally parabolic (n − 1)-tori of fixed points is a co-dimension one phenomenon, namely it
requires one additional external parameter.

Consider one parameter families of integrable n DOF Hamiltonian systems with
Hamiltonians of the form: H0(x, y, I ; µ), where µ ∈ R and all the assumptions stated in
sections 1 and 2, regarding smoothness, manifolds and constants of motion, remain the same.
The class P∗

s is defined in this case (correspondingly to definition 1) as the class of one
parameter families of integrable n DOF Hamiltonians of the form H0(x, y, I ; µ), satisfying
the conditions of definition 1 with s = 1, where the transversality condition in this case is∥∥∥∥∥ ∂

∂µ
det

(
∂2H0

∂2(x, y)

)∣∣∣∣
pf

∥∥∥∥∥ +

∥∥∥∥∥ ∂

∂I1
det

(
∂2H0

∂2(x, y)

)∣∣∣∣
pf

∥∥∥∥∥
+ · · · +

∥∥∥∥∥ ∂

∂In−1
det

(
∂2H0

∂2(x, y)

)∣∣∣∣
pf

∥∥∥∥∥ �= 0. (4.7)
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Denote by N ⊆ R
n+2 the (n + 2)-dimensional submanifold of M , spanned by the x, y, I, µ

variables and parameter of the Hamiltonian. Then, Nf is an n-dimensional submanifold, P is
an (n + 1)-dimensional submanifold and PNf is an (n − 1)-dimensional submanifold. The
resonance submanifolds, Rqj

Nf , are each of dimension (n − 1), and the submanifold RmNf ,
which corresponds to transverse intersections of m-independent resonance conditions in Nf ,
is (n − m)-dimensional. The submanifold PRn−2, which corresponds to normally parabolic
(n − 2)-resonant (n − 1)-tori, is one-dimensional. Denote by qn−1 an (n − 1)-dimensional
vector of integers which is linearly independent of the (n−2)-independent (n−1)-dimensional
vectors of integers used to construct PRn−2.

Remark 2. By symplectic change of coordinates, the set of (n − 1)-independent (n − 1)-
dimensional vectors of integers, q1, . . . , qn−1, may be chosen as a set of (n − 1) unit vectors
(i.e. qj = en−1

j ). Then each independent resonance condition of the form (4.5) corresponds to
vanishing of the jth frequency of the (n − 1)-torus.

The resonance condition (4.5) for qn−1 is generically met on an (n − 1)-dimensional
submanifold, Rqn−1

Nf ⊂ Nf . Using the same reasoning as above, the two submanifolds of
Nf , PRn−2 (a one-dimensional curve) and Rqn−1

Nf (a co-dimension one submanifold of Nf ),
intersect transversely in a C1-open, Cr -dense set of the class P∗

s , and for a C1-open set of one
parameter families of integrable n DOF Hamiltonian systems, for each n � 3. This transverse
intersection occurs on a set of isolated points, each corresponding to a normally parabolic
(n − 1)-resonant (n − 1)-torus of fixed points. Hence, we have established the following
theorem.

Theorem 4. Let 3 � n ∈ N, µ ∈ R and 1 � r � ∞. The existence of one parameter
families of smooth integrable n DOF Hamiltonian systems which possess a normally parabolic
(n − 1)-resonant (n − 1)-torus of fixed points is generic in the class P∗

s , and persistent in the
space of smooth integrable n DOF Hamiltonian systems depending on one parameter, for
each n � 3.

Consider smooth near integrable systems of the form

H(x, y, θ, I ; ε, µ) = H0(x, y, I ; µ) + εH1(x, y, θ, I ; ε, µ), (4.8)

where the Hamiltonian perturbation εH1(x, y, θ, I ; ε, µ) is bounded. A near integrable system
of the form (4.8) is said to be of class P∗

s if its integrable part is of this class. Then, we have
the following corollary.

Corollary 4. Let 3 � n ∈ N, µ ∈ R and 1 � r � ∞. The existence of smooth near
integrable n DOF Hamiltonian systems of the form (4.8), exhibiting parabolic (n − 1)-
resonance, is generic in the class P∗

s , and persistent in the space of n DOF smooth near
integrable Hamiltonian systems depending on one parameter, for each n � 3.

Theorem 4 and corollary 4 apply for the case n = 2 as well.

Remark 3. In the theorems and corollaries above the actions (or constants of motion), I , of
the integrable Hamiltonian serve as internal parameters, and govern the stability type of the
lower-dimensional invariant tori. Hence, (4.7) is a necessary condition for a given integrable
Hamiltonian system of the form H0(x, y, I ; µ) to possess a normally parabolic resonant torus.
Generally, systems which conserve angular momentum satisfy (4.7) yet separable Hamiltonian
systems (e.g. systems of the form H0 = H0xy(x, y) +

∑
Hi(Ii; µ)) do not, see [40] for details

(there only the 2 DOF case is discussed, but the same ideas apply to the higher-dimensional
cases).
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Appendix A.2. The general case of lower-dimensional tori: s > 1

When 2 � s � n − 2, an invariant (n − s)-torus of an integrable n DOF system is still
considered normally parabolic if (at least) one pair of its normal frequencies vanishes. When
s > 1, an invariant (n − s)-torus, with one vanishing normal frequency, has additional s − 1
pairs of characteristic eigenvalues which may correspond to several possible stability types
(elliptic, generically real hyperbolic, complex hyperbolic or parabolic). Analogous statements
to theorems and corollaries 2–4, may be formulated, e.g. the following one.

Theorem 5. Let n, s, m ∈ N, where n � 4, 2 � s � n−2, 1 � m � n−s−1, and 1 � r � ∞.
Smooth integrable n DOF Hamiltonian systems which possess an (n−s −m−1)-dimensional
family of normally parabolic, m-resonant, (n − s)-tori, form a C1-open, Cr -dense set in the
class Ps , and a C1-open set in the space of smooth integrable n DOF Hamiltonian systems,
for each fixed n � 3. Hence, their existence is generic in the class Ps , and persistent in the
space of smooth integrable Hamiltonian systems, for each fixed n � 3. Each such normally
parabolic (n − s)-torus consists of an m-dimensional family of (n − s − m)-tori.

For example, it follows that n = 4 appears as a critical dimension for which
n DOF integrable Hamiltonian systems first possess a 1-resonant normally parabolic 2-torus
persistently.

The behaviour of perturbed orbits near a resonant (n − s)-torus might be quite different
than the behaviour of perturbed orbits that are studied numerically in sections 3 and deserves
a separate study. Hereafter we consider the case s = 1.

Appendix B. Underlying degeneracies and critical n values

The existence of families of iso-energetic lower-dimensional resonant tori on one hand,
and degenerate PR on the other, may both induce instabilities in the perturbed system, as
demonstrated in section 3. Below we prove that the appearance of both is persistent.

Appendixc B.1. Iso-energetic resonances

The appearance of a family of resonant tori on the same energy surface is one possible source of
large instabilities in the perturbed flow, as postulated by Arnold. Families of lower-dimensional
tori appear on the boundary or singular folds of the energy surface, and are intersected by the
resonance planes in the same fashion that the energy surface is intersected by them, with
one additional co-dimension. Indeed, for a given n � 3 and 1 � m � n − 1 values, an
l-dimensional family (1 � l � n − m − 1) of m-resonant (n − 1)-tori of the same stability
type generically intersects transversely the n-dimensional energy surface

H0(x, y, I ) − h = 0, (4.9)

where h is some fixed energy value, along an (l − 1)-dimensional manifold (by the same
transversality arguments of the previous section). For l � 2 this leads to the non-trivial
observation that families of tori of specific properties (e.g. m-resonant parabolic or hyperbolic)
reside on the same energy surface. We have thus established that such a mechanism exists
persistently for sufficiently large systems.

Corollary 5. For n � 4, the existence of an (n − m − 2)-dimensional family of normally
hyperbolic or elliptic, m-resonant, (n − 1)-tori on a given energy surface is persistent for
0 � m � n − 3. For n = 3 the existence of only isolated iso-energetic 1-resonant, 2-tori is
persistent.
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Corollary 6. For n � 5, the existence of an (n − m − 3)-dimensional family of normally
parabolic, m-resonant (n− 1)-tori on a given energy surface is persistent for 0 � m � n− 4.
For n = 3, 4 the existence of only isolated iso-energetic parabolic 1-resonant, (n − 1)-tori is
persistent.

Remark 4. In the non-resonant case (m = 0), the statements in the above two corollaries
apply to n � 3 and n � 4, respectively.

The first corollary is a result from the realization that the critical dimension for having the
resonance web on the energy surface boundaries or singular folds is larger by one from the
critical dimension for having a resonance web on the energy surface itself. Similar realization
regarding the boundary of the singular fold surface (a co-dimension-three surface) implies the
second corollary.

Appendix B.2. Tangent resonances

Consider the n-dimensional space (H0, I ) on which energy surfaces are presented as the
hyper-planes H0 = h. The family of lower-dimensional invariant tori Nf is presented in this
space as a co-dimension-one smooth surface. Notice that Nf is tangent to the energy surfaces
containing lower-dimensional resonant tori, at these tori, RmNh

f (namely at the m-resonant
lower-dimensional tori with energy h) along the m-resonant directions: e.g. let us assume
that the coordinates (x, y, I ) are chosen so that θ̇j = ∂H0/∂Ij |pf r

= 0; j = 1, . . . , m (see
remark 2), where pf r ∈ RmNh

f , and PNf = {(x, y, I )|x = y = I1 = 0}. Then, since on Nf ,
dH0/dIj |pf

= ∂H0/∂Ij |pf
(by (2.2), and assuming that Nf may be expressed as a graph on the

action variables), it follows that Nf is tangent to the energy surface in the directions I1, . . . , Im

at pf r . If this tangency occurs at the parabolic resonant torus ppr ∈ PRmh ⊂ RmNh
f , and if

it is of higher order, we expect stronger instability under perturbation. To leading order this
occurs along the Ij direction when the next order derivative at ppr vanishes:

d

dIj

(
∂H0(xf (If r ), yf (If r ), If r; µf r)

∂Ij

)∣∣∣∣
(xpr ,ypr ,Ipr ;µpr )

= 0, for some j ∈ {1, . . . , m},

(4.10)

where {(xf (If r ), yf (If r ), If r; µf r)} ⊂ RmNf denotes the resonant family of tori belonging
to a smooth branch Ni

f of Nf which contains the point ppr (corresponding to a parabolic
m-resonant (n − 1)-torus). In this case an infinitesimal family of m-resonant tori (elliptic
or/and hyperbolic) emanating from the parabolic torus belongs to the same energy surface. We
thus define the following definition.

Definition 4. A m-TPR, in the direction of the action Ij (for some j = 1, . . . , m), occurs when
a small Hamiltonian perturbation of the form εH1(x, y, θ, I ; µ, ε) is applied to an integrable
Hamiltonian system, which possesses an energy surface on which an infinitesimal family of
resonant tori emanating from a parabolic m-resonant torus exists in the direction of Ij .

Condition (4.10) is set for C∞ functions of the form H0(x, y, I ; µ). Furthermore, the
arguments are smooth functions on each smooth branch of Nf , Ni

f . Hence, from the Sard
theorem it follows that condition (4.10) is satisfied for almost all systems in the C1-open,
Cr -dense set of n DOF integrable Hamiltonian systems from the class P∗

s , which possess an
(n − 2 − m + p)-dimensional family of parabolic m-resonant (n − 1)-tori (cf theorem 2), with
n � m + 3 − p, 1 � m � n − 1 (i.e. on an C1-open subset of systems of full Lebesgue
measure). If p = 0 and n = m + 3, each point from the discrete set of isolated points,
ptpr = (xtpr , ytpr , Itpr ) ∈ PRm, which solves equation (4.10), defines an energy surface,
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H0(x, y, I ) = htpr , on which an infinitesimal family of resonant tori, containing a parabolic
m-resonant torus, exists. Hence, by theorem 2, we have established10.

Theorem 6. Let m � 1, n = m + 3. Smooth integrable n DOF Hamiltonian systems
which possess, in the direction of one of the actions, an infinitesimal family of elliptic and/or
hyperbolic resonant (n − 1)-tori, containing a parabolic m-resonant (n − 1)-torus, ptpr , on
some energy surface H0(x, y, I ) = htpr (defined by the point ptpr), are C1-persistent in the
space of smooth integrable n DOF Hamiltonian systems, for each m � 1.

If n+p � m+4, the TPR occurs on each energy surface in an open set of energy values; the
condition H0(x, y, I ; µ)−hpr = 0 is generically satisfied on some (n+p)-dimensional energy
surface, which generically intersects transversely the (n − m − 2 + p)-dimensional manifold
PRm along an (n − m − 3 + p)-dimensional submanifold, HPRm (by the same reasoning as
given in the proofs above) for a C1-open set of integrable n DOF Hamiltonian systems. Then,
condition (4.10) is satisfied on a subset of full measure of the C1-open set of integrable n

DOF Hamiltonian systems, for which HPRm is transverse. Hence, we have established the
following theorem.

Theorem 7. Let m � 1, n � m + 4. Integrable n DOF Hamiltonian systems which possess
in the direction of one of the actions an (n − m − 4)-dimensional family of infinitesimal
families of elliptic and/or hyperbolic resonant (n−1)-tori, containing a parabolic m-resonant
(n − 1)-torus, on each energy surface belonging to an open set of energy values are
C1-persistent in the space of n DOF smooth integrable Hamiltonian systems for each n � m+4.

Theorem 8. Let n � 3, µ ∈ R
2 (respectively, µ ∈ R). The existence of two (respectively, one)

parameter families of integrable n DOF Hamiltonian systems which possess in the direction of
one of the actions, an infinitesimal family of elliptic and/or hyperbolic resonant (n − 1)-tori,
containing a parabolic (n − 1)-torus of fixed points (respectively, consisting of a family of
invariant circles), on the energy surface H0(x, y, I ; µ) = H0(xtpr , ytpr , Itpr; µtpr) = htpr , is
C1-persistent in the space of smooth integrable n DOF Hamiltonian systems, for each n � 3.

Now, consider a small Hamiltonian perturbation of the form: εH1(x, y, I ; ε, µ).

Corollary 7. Let n � 4, 1 � m � n − 3. The existence of a m-TPR is C1-persistent in the
space of smooth near integrable n DOF Hamiltonian systems, for each n � 4.

Corollary 8. Let n � 3, m ∈ {n − 1, n − 2},

p =
{

1, m = n − 2,

2, m = n − 1.

The existence of a m-TPR is C1-persistent in p parameter families of smooth near integrable
n DOF Hamiltonian systems, for each n � 3.

It follows that n = 4 is the smallest number of DOF for which the existence of 1-TPR is
persistent without assuming dependence of the system on external parameters. For n = 4 + l,
l � 1, additional l conditions guarantying tangency of order l + 2 may be imposed:

dk+1

dI k+1
j

(
∂H0(xf (If r ), yf (If r ), If r; µf r)

∂Ij

)∣∣∣∣
(xpr ,ypr ,Ipr ;µpr )

= 0,

k = 1, . . . , l, j ∈ {1, . . . , m}. (4.11)

10 Note that theorem 6 and corollary 7 are identical to theorem 1 and corollary 1 in section 3, and are stated here again
for the convenience of the reader.
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These conditions are satisfied on a C1-open set in the space of integrable 4+l DOF Hamiltonian
systems, which persistently possess a parabolic 1-resonant (3 + l)-torus. As l grows, higher-
order terms of θ̇j along some branch Ni

f vanish, causing a ‘more flat’ situation, which we
denote by ‘(l + 1)-flat’. See section 3 for description of the corresponding numerical results. If
condition (4.11) is satisfied for all positive k values (l = ∞), we say that the perturbed system
has a flat PR.

Theorem 9. Let m = 1, l � 1, n = 4 + l. Smooth integrable n DOF Hamiltonian systems
which possess, in the direction of one of the actions, an (l + 1)-flat family of elliptic and/or
hyperbolic resonant (n − 1)-tori, containing a parabolic m-resonant (n − 1)-torus, on some
energy surface, H0(x, y, I ) = hfpr , are C1-persistent in the space of smooth integrable 4 + l

DOF Hamiltonian systems, for each l � 1.

Corollary 9. Let n � 5, m = 1, l � 1. The existence of an (l + 1)-flat-TPR is C1-persistent in
the space of smooth near integrable n DOF Hamiltonian systems, with n = 4+l, for each l � 1.

Higher-order tangencies at ppr along all directions of RmNf may be similarly formulated.
However, such a situation is obviously of non-zero co-dimension for all n values.
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