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A method is developed for estimating the transport rates of phase space areas for a class of two-dimensional 
diffeomorphisms and flows. The class of diffeomorphisms we consider are defined by the topological structure of their stable 
and unstable manifolds, and hence are universal. We show how to estimate the transport rates for a class of diffeomorphisms 
found by Easton and for an extension of this class of diffeomorphisms which is found via a "perturbation" of the topology of 
the stable and unstable manifolds. This is done by introducing symbolic dynamics and transfer matrices which in turn relate 
transport phenomena in phase space to Markov processes in a precise manner. In addition to the transport rates, we use the 
transfer matrices to obtain estimates for the topological entropy, averaged stretching rates, and the elongation rate of the 
unstable manifold. The flows we consider are two-dimensional, time-periodic flows which can be reduced via a Poincar6 
section to the extended family of maps. We develop an analytical method, based on Chirikov's Whisker map, to classify a 
given flow according to the structure of its manifolds in its Poinear6 section. This allows the techniques developed here for 
maps to be directly applied to time-periodic flows. 

1. Introduction 

The study of transport phenomena is important in a variety of diverse fields, e.g. fluid flows [1-3], 
plasma flows [4], mechanics [5, 6] and chemistry [7, 8]. In many applications the transport of quantities in 
the physical space can be related to transport of area (or volume) in phase space of a diffeomorphism. 
For example, the transport rates of a passive scalar in a time-periodic fluid flow is given by the transport 
rates of area (or volume) in the Poincar6 map induced by the ODEs describing the particle motion [1-3]. 

In previous works on transport in two-dimensional phase space various statistical methods to describe 
the particles motion were used, the philosophy being that the stochastic motion which is typical to 
two-dimensional maps inhibits exact solutions to the transport equations. Subsequently, several authors 
have discovered that the flux mechanism between regions in phase space which are bounded by segments 
of stable and unstable manifolds is quite simple, and can be approximated by various methods [3, 4, 9]. 
Recently, it was shown that in a large class of two-dimensional diffeomorphisms the transport rates are 
given in terms of the distribution of specific small regions in phase space ("lobes") in time (see ref. [10], 
hereafter called RW), hence that the statistical methods developed so far assumed many more degrees of 
freedom than appropriate. These ideas were used to compute the transport rates of a passive scalar in a 
specific two-dimensional, time-periodic.fluid flow (see ref. [3], hereafter called RLW), and were 
generalized to higher dimensions [11]. The main drawback in applying the above theory was the lack of 
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an efficient method for estimating the distribution of the lobes in phase space. In this paper I develop a 
method for approximating these quantities in a family of diffeomorphisms. This family is less general 
than the one treated in RW; however, the same approach should lead to similar results for the general 
case as well as the higher-dimensional generalizations. 

The starting point of this paper is a work by Easton [12]. Easton classified a family of trellises by their 
initial developments as defined by an integer parameter l. (The development of a trellis is the figure 
formed by two finite segments, one segment of the stable manifold and one of the unstable manifold. The 
segments end points are given by the fixed point and a "simple" homoclinic point, termed a "pip". Figs. 
1-8 are drawings of the developments of various trellises.) Easton named this family of trellises "type-/ 
trellises", with l ~ 7/+. He showed that his classification is well defined in the sense that the develop- 
ments of two trellises of type 1 are homeomorphic. In this paper we associate with each class of type-l 
diffeomorphisms (diffeomorphisms which attain type-l trellises) symbolic dynamics and hence a transition 
matrix. We show that in addition to the usual consequences of this definition one gets quantitative 
estimates for the distribution of the lobes in phase space, which in turn give the desired transport rates 
and their asymptotic behavior. The estimates involved in these calculations are semi-linear approxima- 
tions to the topology of the trellises which can be improved using techniques introduced by Gaspard and 
Rice in a similar context [7]. Judd [13] has recently developed, using graph theory, a method to estimate 
the fractal dimension of a homoclinic bifurcation using similar ideas to those presented in Easton's work 
and here. His work is more general as far as the class of trellises he considers and may be used as a guide 
line for generalizing the present work to include more cases and different geometries. 

Examining more carefully the development of the stable and unstable manifolds, one concludes that a 
complete classification of the trellises requires a countable infinity of integer parameters. This reclassifi- 
cation can be thought of as a generalization of Easton's classification to type-I trellises where 1 is an 
infinite series of integers. Moreover, if one considers the trellises of a family of two-dimensional 
diffeomorphisms depending on one real-valued parameter/Z, one expects to find a measure zero and 
sparse set of parameter values for which the trellises are of type 1 (for any given series !). Specifically, the 
set of parameters for which the trellises are of type-I is of measure zero and is non-dense, hence the 
type-l trellises are not structurally stable. Nonetheless, one would hope that in the/z-neighborhood of 
the parameter values for which the trellises are of type 1 the estimates, given in this paper, of the 
transport rates, the stretching rates and the manifold length will be valid. Evidence supporting this 
assertion is one of the main results of this paper. A proof for such an assertion requires the full 
classification of the trellises in the neighborhood of a type-/ trellis, which is beyond the scope of this 
paper. Instead, we generalize Easton's trellises and obtain a series of trellises which converge topologi- 
cally to the type-l trellises. The simplest generalization of Easton's trellises is obtained by adding two 
more integer parameters to the trellis classification. We associate symbolic dynamics and transition 
matrices with this broadened class of diffeomorphism. Then, we show that indeed all the quantitative 
characteristics of this family of trellises asymptote, in an exponential rate in the two new parameters, to 
the ones of the type-/trellises. Hence, the initial development of the manifold can be used to estimate 
the transport rates and the error reduces exponentially with the level of the initial development. 
Application of the above ideas to a specific flow will be given in a subsequent paper. 

Using the transition matrices we obtain a natural relation between transport phenomena in two- 
dimensional maps and Markov's chains. We suggest a new statistical approach to the computation of the 
diffusion rate which employs the structure of the stable and unstable manifolds. 

Finally, we obtain a complete analytical method for calculating the transport rates of a family of 
two-dimensional, time-periodic flows. The trellises associated with the flows are the trellises of their 
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induced Poincar6 maps. We use Chirikov's [14] Whisker map to approximate the characteristic parame- 
ters (such as l) of these trellises as well as the first few escape rates of the Poincar6 maps. Given these 
parameters and the first few escape rates, the techniques developed above for maps can be utilized. 

This paper is organized as follows; in section 2 we describe Easton's trellises. In section 3 we construct 
the symbolic dynamics and the transition matrices associated with these trellises and derive estimates for 
the transport rates of areas in phase space under the maps associated with Easton's trellises. In section 4 
we define a broader class of trellises and in section 5 we construct their symbolic dynamics and calculate 
their escape rates. Section 6 is devoted for the estimates of the length of the manifold development for 
the various cases. In section 7 we show that if two developments agree for a long time, their escape rates 
and their topological structures are asymptotically dose. In section 8 we relate the above description of 
transport in phase space to Markov's chains. In section 9 we derive an analytical method to approximate 
the initial development of the trellis associated with two-dimensional time-periodic flows. 

2. Easton's trellises 

Easton called the figure formed by the transversal intersecting stable and unstable manifolds of a 
hyperbolic fixed point on a 2-manifold a trellis. As was noted by Poincar6 [15] 97 years ago, the trellis has 
in general an incredibly complex structure, which reflects the chaotic dynamics associated with the 
dynamical system producing the trellis. Easton was the first to realize that though in general the structure 
is complex, there are underlying rules for the development of the trellis. These rules are determined in 
general by a countable infinity of integer parameters, hence they are hard to formulate. Easton has 
constructed a family of trellises which obey the simplest possible rules, using only one integer parameter 
I. We now describe the family of type-/trellises found by Easton. Since Easton's results are the basis for 
this paper, I devote this section to describing them. 

The formation of a type-I trellis is described in a sequence of steps. Suppose p is a hyperbolic fixed 
point and denote its two branches of the stable (unstable) manifolds by W+, W_ ~ (W~_, W_U), see fig. 1. 

Definition 1.1. A point q0 in phase space is called homoclinic point if it belongs to both the stable and 
unstable manifolds of p. 

Definition 1.2. A homoclinic point q0 is called a primary intersection point (pip) if the segments of the 
stable and unstable manifolds connecting the fixed point p to q0, denoted by S[p, qo], U[p, qo] 
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) Fig. 1. The  definition of a pip. In this figure, and in figs. 2 -8  
and 15 we use the following notation: p denotes  the  fixed 
point. - - - - - -  denotes  the stable manifold of p. 
denotes  the unstable manifold of p. q0 and P0 are pip's, r is 
not a pip. 
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Fig. 2. The geometry of a type-I trellis. In this figure l = 3. 

respectively, intersect only in p and q0 (see fig. 1). The pip orbit of q0 is the set {qi}, i ~ Z, where qi is 
the ith image of q0 under the map. 

Following Easton, we make three assumptions about the manifold structure. 

W+ contains exactly two pip orbits denoted by {pi}, {qi}, i ~ Z, where Pi ~ S[qi, qi - 1]. 

(1) 

F denotes the 

Hypothesis A.  
We define the segments of W~ and W~_ with end points Pi, qi as follows (see fig. 2): 

Ji = 5 [ q i , P i ] ,  Ji' = S ( p i + l , q i ) ,  K i = U[q i ,P i+l  ], K" = U ( p i , q i  ) . 

Clearly, R n =Fn(R0) ,  where R stands for any of the segments J, K,  J', K '  and 
diffeomorphism. Moreover, W u =  ® K s o~ j + U n . . . .  u K,~, and similarly W÷ = U . . . .  n U Jn ¢. 

Hypothesis B. The sequences {K'} and {Jr_n} are sequences of arcs which accumulate along W_ u and W~_, 
respectively, for all n > 0. W1 and WY do not contain any homoclinic points, and the only homoclinic 
points contained in these arcs are the pips. 

Let  D r denote the region bounded by Jr and K" and E r the region bounded by K r and J ' .  We will call 
these regions "lobes" and we refer to the family of the E r (D r) lobes as the E (D) lobes. As was shown 
in RW, the evolution of the lobes determines the escape rates from the region bounded by S[p,  P0] and 
U[p,  po], which we denote by S, see fig. 2. For future reference we denote the region S - E  0 by S. 

Hypotheses A and B are made so as to consider the simplest possible geometry and are satisfied by a 
large family of diffeomorphisms. For example, the Poincar6 map of a particle in a cubic potential with 
time-periodic forcing will result in such a configuration. The first hypothesis is not essential and is made 
just for the convenience of notation. On the other hand the second hypothesis is crucial for simplifying 
the form of the trellis. Cases in which the second assumption is dropped are under current investigation. 
A similar approach to the one presented here should work; however, the classification process seems to 
be much harder. 

The next hypothesis classifies the trellises according to the nature of the intersection between the arcs 
Jn and Km for various n, m. Note that a trellis is defined uniquely by the intersection matrix 

M (  n , m )  =.In f') K m = Fm(  Jn_m f-) Ko)  = F ' (  M (  n - m ,O)  ) ,  (2) 
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which consists of all the homoclinic points and their ordering along the stable and unstable manifolds; 
the homoclinic points can be ordered by their distance from the fixed point along the stable or unstable 
manifolds, resulting in the stable ordering and the unstable ordering, respectively, i.e. a <u b means that 
U[p, a] c U[p, b] and similarly for <s • For example, in fig. 1 P0 <u q0 <u r <~ Pl where Pl <s q0 <s 
P0 <~ r. The term M(n,  m)  consists of a set of r(n, re)points ordered by the unstable ordering and a set 
of r(n, m)  integers, denoted by I(n,  m), which maps the unstable ordering to the stable one. It follows 
from eq. (2) that once r(n, 0) and I (n ,  0) are determined for all n, r(n, m)  and I(n,  m)  are determined 
for all n, m. Since two trellises are topologically conjugate with a homeomorphism which preserves both 
the stable and unstable orderings (weakly equivalent in Easton's terminology) iff they have the same 
matrices r and I, a complete classification of the trellises to topological conjugacy classes requires in 
general a countable infinity of integer parameters corresponding to the terms r(n, 0) and I (n ,  0). The 
third hypothesis on the trellis development is restrictive enough so that the intersection matrix is 
completely determined by one integer parameter l. In fact, this hypothesis supplies a recursion relation 
(which depends on the parameter I) for the terms of r(n, 0) and I (n ,  0). First, one assumes that E t is the 
first E lobe which intersects the D lobes, and that this intersection is the simplest possible, namely a 
two-point intersection, as shown in fig. 2 (a more complicated intersection of Et with D O is shown in fig. 
5 and is discussed in section 3). Then, one determines the higher-order intersections (larger n, m) by 
allowing only the necessary intersections to occur. The second step can be formulated in a precise 
manner using the notion of transition numbers. 

Definition 1.3. The homoclinic point q ~ K 0 n J- t (q)  has a transition number t (q)  ~ Z +. 

For example, in fig. 2 the homoclinic point r has a transition number 3. Let h n denote all the 
homoclinic points q ~ K 0 with 1 < t (q)  < n. 

Hypothesis C. There exists a positive integer l such that if a, b are two <u adjacent points of h n then 
(1) If t (a)  = t(b)  then U[a, b] is contained in D_tta). 
(2) If t(a) < t (b)  then U[a, b] NJ-tn+l) contains exactly two points whenever n - t (a)  > l and is 

empty whenever n - t(a) < l. 

Definition 1.4. A trellis which satisfies hypotheses A, B and C is called a trellis of type l. 

In fig. 2 we draw the initial development of a type-3 trellis. In general, given that E t is the first E lobe 
to intersect D 0, the terms of r(n, m)  are bounded from below by the corresponding terms of a typed 
trellis matrix rl(n , m); new homoclinic points not resulting from the intersection of E t and D O may 
appear in M(n,  m). 

Hypotheses A, B and C allow one to get a complete description of the topology of the typed trellis. 
Moreover, Easton has shown that this classification is well defined since two trellises of type l have 
homeomorphic developments; the sets U noo(Kj U K/ )  are homeomorphic for all (finite) n and similarly 
for the stable manifold development. Easton has also calculated the number of homoclinic points created 
at every step of the development. In section 3 we associate with every type-I trellis symbolic dynamics 
and a transition matrix. This formulation enables us to compute the number of homoclinic points created 
every iteration (r(n,  m)), to approximate the area ejected out every iteration and to approximate 
topological properties such as the topological entropy. 
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As Easton himself indicated, the above hypotheses restrict the class of diffeomorphism considerably. I 
would even conjecture that a family of two-dimensional diffeomorphism depending on a real parameter 
tz will generically attain a measure zero, sparse set of parameters /z for which the trellises satisfy 
hypothesis C for some integer l, hence that the type-l trellises are not structurally stable. The basis for 
this conjecture is that arbitrarily close to a parameter value/z  for which hypothesis C is satisfied there 
exists a value/d, t for which the trellis attains a homoclinic tangency, violating hypothesis C. Moreover, 
this hypothesis is violated (generically) in the semi-open interval [/zt,/~t + E) for some E > 0 and not 
necessarily small ( +  sign if b£t ~>/J , ,  - -  s i g n  if ~t </z). In this paper we will show that nevertheless the 
type-l trellises are important in applications, since 

(a) One can easily estimate important quantities such as the Escape rates, the Topological entropy 
and the manifold Length (the ETL) of a type-/trellis. 

(b) The class of type-l trellises and the methods for estimating the ETL can be broadened in a 
consistent fashion to a larger class of trellises, supplying better approximations to the topology and the 
ETL of a general trellis. 

(c) If the topology and the metric properties of a general trellis are "sufficiently close" to the one of a 
type-l trellis, its ETL can be approximated by the ETL of the type-l trellis. 

3. Symbolic dynamics for type-/ trellises 

As Easton noted, a type-1 trellis is homeomorphic to a Smale horseshoe map [16-18]. For this map, 
the construction of symbolic dynamics is well known. Moreover, the computation of the topological 
entropy, the number of periodic orbits, the number of homoclinic orbits and the escape rates is 
straightforward. We start by formalizing the relation between all these quantities, the transition matrix 
and the weighted transition matrix for the horseshoe map and then we generalize these ideas to a type-/ 
trellis. 

3.1. Type-1 trellis 

We associate with the type-1 trellis, with the initial development as drawn in fig. 3 symbolic dynamics 
as follows: Define a horizontal strip to be a topologically rectangular region for which one edge is 
contained in J0 and another is contained in J ,  for some n > 0. Identify the horizontal strips H 1 and H a 

I 

/ 

, \ 

I ~ h2  T ........ " F ' .  . . . . . . .  . \  

, . , ;  ', ', I )  ''o I 
r z |  ' , h t  , 

- ' ;  I v 
P~'-S, '~-~ ~ -~Po q-l~-S2 

Fig. 3. The geometry of a type-1 trellis- a horseshoe. 
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as the regions bounded by J2, K-l ,  J0, Kx and J1, K1, J0, K0, respectively. Denote a horizontal strip 
which is contained in H i by h i for i = 1, 2. Then it is easy to see that the following diagram describes the 
action of any map which has a type-1 trellis on horizontal strips: 

/ 7  hi 

hlNN~ /hi 
h2x,,, 

he 

(3) 

Given this diagram one can label each strip by a sequence of 1, 2 which describes the strip position under 
the map, namely hs0 ..... st ~ {1, 2} is a horizontal strip in H~k which is a component of the kth image of a 
strip in//So. We can associate a transition matrix with this labeling, which in this case is given trivially by 

1 1 1) ,4, 
Similarly, one can define vertical strips and the vertical regions Vi, i = 1, 2 and construct labeling for the 
vertical strips as before. Replacing the h's with v's in diagram (3) will result in the action of the inverse 
map on the vertical strips. Using the relation F(V~)= Hi, i = 1, 2 one can then combine the labeling of 
the vertical and horizontal strips to obtain labeling to rectangles by a two-sided series, which in the limit 
of infinite thin strips become a labeling of points in the invariant set of the map by a bi-infinite sequence 
of l's and 2's [16-18]. 

Using the transition matrix we can find easily the following topological properties of a type-1 trellis: 
(a) Number of horizontal strips in H i, i = 1, 2 after n iterations: given the vector v ° of initial number 

of strips in Hi, i = 1, 2, the number of strips after the nth iteration is given by v~: 

v " = v ° T ~ = V ° 2 n - l T l  = 2n - l l v ° ] (1 ,1 ) ,  n > 0 ,  (5) 
where Iv I denotes the sum of the components of the vector v. In other words, since there is a one-to-one 
correspondence between labeling of horizontal strips and the allowed sequences of l 's and 2's [16, 18] 
one gets that the number of strips is amplified exactly as the number of allowed sequences, which in this 
case is given by 2 ~. 

(b) Number of points in J0 n K~, r(0, n): using eq. (5), the observation that the horizontal strips h~ 
and h z interest J0 at exactly two points and that K2 contains exactly two horizontal strips h~ U h 2, we 
obtain 

r ( 0 , 1 ) = 2 ,  r ( O , n ) = ( 2 , 2 ) T ~ - 2 ( 1 , 1 ) T = 2  ", 2 < n  (6) 

and by construction we also establish that the number of strips of FnE n S is given by r(0, n ) / 2  = 2 n- ~. 
(c) The asymptotic exponential growth rate of the length Kn is given by the exponential growth rate of 

the number of horizontal strips created by En, hence is given by log 2. This quantity supplies a lower 
bound on the topological entropy, as defined by Finn and Ott [19] for area-preserving maps. We 
conjecture that this is a sharp lower bound, as is the case for dissipative maps [13] and will define the 
asymptotic exponential growth rate to be the topological entropy. The topological entropy supplies a first 
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estimate to the length of the boundary of E n, L(Kn)  --- 2"L(K0), hence to the length of the development 
of W_~, L(W~?,~). Section 6 is dedicated to the computation of sharper lower and upper bounds on 
L ( K  n) for finite n's. 

(d) Number of periodic points: since there exists a homeomorphism between the shift map on the 
bi-infinite series of l 's  and 2's and the horseshoe map [16-18] (restricted to the invariant set), the 
number of periodic orbits of period k is given by the number of allowed periodic sequences of l 's  and 
2's, which is given by tr(T k) (see for example ref. [18]) hence is given by 2 k. 

Note that in the dissipative case, when a strange attractor exists, the topological entropy can be 
defined also as the exponential growth rate of the number of periodic points of period k [20]. In general, 
it is not clear whether the amount of stretching of the manifold and the growth rate of the number of 
periodic orbits is so closely related in the area-preserving case. For the horseshoe map, it is obvious from 
(c) and (d) that they are equal. For a general type-/trellis, we will obtain results regarding the stretching 
of the manifold but not regarding the periodic orbits, hence this question remains open. 

For l > 1 we cannot construct the analogous two-sided symbol sequence which is topologically 
conjugate, together with the shift map, to the dynamics of the map on the invariant set. Instead, we 
construct a one-sided sequence, describing the future (past) of horizontal (vertical) strips. It is therefore 
important to observe that the existence of the bi-infinite sequence of symbols was used only for the 
calculation of the number of periodic orbits. All the other results depend on one side of this sequence 
only, namely the relation F ( H  i) = V/ is not used in items (a)-(c). 

3.2. Escape rate computation for the horseshoe 

We now start with some new work regarding the horseshoe map. To obtain metric properties such as 
the escape rates and the distribution of the Lyapunov exponents on K0, one can assign weights to the 
transition matrix T1 which will be determined by the metric properties of the initial development of the 
trellis. Let W 1 be the weighted transition matrix: 

s s 2 ) 
W1 ~ $3 s 4 • 

Geometrically, the terms of this matrix determine what portion of the area of the strip h i is mapped to hj 
for i, j = 1, 2. If the shape of S is rectangular (as depicted in all our figures) the si's are given by 
s i = S i /L (Ko) ,  where S i are as shown in fig. 3. We will soon replace the action of the nonlinear map on 
the horizontal strips by the action of the matrix W 1 on their areas. The approximation involved in such a 
replacement is a semi-linear one, which can be justified if the horizontal and vertical strips are of 
approximately constant width. We will use a similar approach to approximate the escape rates of the 
type-/ trellises and the broadened family of trellises defined in section 4. In all these cases one can 
improve the semi-linear approximation by considering more symbols as in the work of Gaspard and Rice 
[7] on the scattering from a classical chaotic repellor. 

The crucial observation which permits us to proceed is that the weighted transition matrix can be used 
to approximate what portion of the area of a horizontal strip remains in S. Let al denote the area of a 
strip h r The area of the strips hla, h12 is given by alW1(1, 1) and aaWl(2, 1) respectively, and in general 
the area of a strip hs0 ...... k is given by 

k 

P'(hs  o . . . . . .  k) =aso i~=lWl (S i ,  s i - 1 )  • 
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The area of all the strips produced by iterating h 1 k times is given by 

I z (Fkhj  OS)  = [ (a l ,0  ) • Wlk]. 

Therefore, the portion of h~ which escapes at the kth  iterate can be approximated by 

esck(hl)  = t z ( F k - l h  1 o S )  - i~(Fkhl  N S) = [(a 1, 0 ) .  W l k - l ( I -  1411) [ 

and a similar expression can be written for h2. Since the only mechanism for escape from S is through 
the lobe D 0, we obtain esck(h 1) = i z (Fkhl  N Do). Hence, given the areas a~ and a 2 of the horizontal 
strips of E ~ o n S  which lie in H 1 and H 2, respectively, we use the above equations to find the 
e~ = I~(E n n D 0) for n > no: 

e, = I ( a , ,  a 2 ) ( W ~  - l - n °  - w i n - n ° ) [  = I ( a l ,  a 2 ) W ~ - n ° - l (  I - W 1 ) I .  (7) 

Finding the e n for n < n o can be done numerically, or via a Whisker map approximation as derived in 
section 9. 

In RLW and RW it was shown that one can compute all the relevant transport quantities using the 
e,'s; for example, the amount of phase space area originating in .q which escapes at the nth iteration, c, ,  
and the amount of phase space area originating in S which stays in S after the nth iteration, R, ,  are 
given by 

n - 1  
C n ---/z(Fn(S) r i D 0 ) = / ~ ( D 0 )  - Y'~ ej, 

j = l  
n 

n .  = n g )  = - E c r  
j = l  

(8 )  

In RLW the en's were computed numerically. The main result of this paper is the derivation of an 
analytical method for estimating the en's for all finite n and estimating their asymptotic behavior for 
large n. Computing these quantities was the major obstacle for applying the above formulae to a variety 
of flows and maps which arise in studying transport of passive scalars in fluids, transition probabilities in 
mechanics, reaction rates in chemistry and numerous other applications. Moreover, while for the 
two-dimensional case the computational approach is feasible, it is clearly a barrier for applications in 
higher dimensions. The ideas presented here carry over to higher dimensions in the same fashion as 
presented in ref. [11], and will be discussed in a subsequent paper. 

3.3. The stretching rates 

The distribution of the averaged stretching rates, measuring the averaged amount of stretching of a 
material line during its evolution through the region S (the average is over initial conditions, see RLW 
for more details), can be calculated as follows. The segments of K 0 which escape after n iterations are 
given by the horizontal boundaries of D_n ~ S, namely D_n (~ K0, hence their length is given by the sum 
of the widths of the vertical strips: 

t ( O  n( go) ^ ^ ^ , I (9) 
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where I~1, I~ 2 are the widths of the vertical strips I,'1, V 2 of D_,I  O S and ff'l is the weighted transition 
matrix of the inverse map. The averaged stretching experienced by the segments of K 0 which escape 
after n iterations is given by 

L ( K ,  ADo) L ( K n n D  o) 
O(n) = L ( K o N D _ n  ) "~ l ( l ~ l , l ~ 2 ) ~ , l ( n _ n , ) [  , n l  ~ n  (10) 

and is bounded from above and below by 

½r(O,n) L ( K  1 ADo) 

I ( # , ,  ~'2) I, VI("-"')I 

½r(O, n) L(K~) 
< ~ ( n )  < i(ff,,V~z)l~l(,_,l)[ , n, < n .  (11) 

For example, if f f ' l ( i , J )=  1, i , j  = 1,2 and n 1 = 0, eqs. (6), (11) imply that 

log 3 + l°gL(K1ND°)n < log0(n)n < log3 + log L(K~)n 

and the length of the intervals which escape after n iterates, L(K  o n D_n ), is given by 1(2/3)". If one 
plotted 0(n)  versus x, the position along K 0, a fractal function would emerge. The maximal stretching 
rate, which involves maximization over the initial direction of the line elements is bounded from below by 
eq. (11). However, using the same argument as for the topological entropy, it seems that the stretching 
rates measured along the manifold maximize /3(n) and hence that both bounds in (11) hold for the 
maximal stretching rate. 

3.4. Type-l trellis 

The generalization to the type-/case can be viewed in two equivalent manners; one is to note that the 
type-/trellis is basically a horseshoe map with a delay, namely if one defines horizontal strips as before, 
and the regions H 1 and Ht+ 1 are chosen appropriately then one obtains the following diagram: 

7 hi 

hi,, N 
hl+l t iterates 2h 1 

(12) 

f / \ \ 

• ,jo / 

p]-, ' Tpo Fig. 4. The definition of states of a type-I trellis. In this figure 
1=3. 
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hence one can introduce 2(l - 1) fictitious states H2~,..., Ht ~ _ 1 resulting in the following diagram: 

h I / 
h ; ~  .. .  ~h~- 

hl+l hi 

\h;-, 

(13) 

Equivalently one can define the regions explicitly as follows: 
Let yj±(t), 0 < t < 1 and 1 < j  < l + 1 denote "horizontal curves" in S such that 
(i) The boundaries of the curves are given by 

y((O) ~J juJ j ' ,  y~(1) ~Jo, j > l ,  

y ; ( O )  ~ J l - j + l ,  y ; ( 1 )  ~ J - j + t ,  1 < j < l ,  

YT(O) ~Jt-j+2UJt'-j+l, YT(1) ~J-j+~,  1 < j < l ,  

YF+I(O) ~J1, y~ , (1)  ~Jo. 

(ii) yj±(t) A J_ k, 0 < t < 1 contains exactly two points if min{j, l} < k < l and is empty if0 < k < min{j, l} 
for all 1 < j < l +  1. 

A strip will be called horizontal of type h f  (hi-) if it is topologically a rectangle and two of its edges 
are given by horizontal curves of type y; ( t )  (yT(t)) and segments of Jl-j+l and J- j+t  (Jl-j+2 and 
J-j+l),  see fig. 4. 

Diagram (13) reflects the dynamics of the map on all the horizontal strips which are defined above 
where h~---h I and h7+1--ht+ 1. Similarly, one can define vertical strips of type vj ± and plot exactly the 
same diagram as in (13), replacing the h's with v's, which then reflects the action of the inverse map on 
all vertical strips. This definition of horizontal and vertical strips does not necessarily include all points in 
the region S. We choose this formulation since it leads to the simplest symbolic dynamics representation 
of the dynamics of the horizontal strips of E n n S under forward iterations (respectively, the dynamics of 
the vertical strips of D_n n S under backward iterations). The labels of the horizontal strips composing 
the set E n n S are one-sided symbol sequences of length n, and diagram (13) supplies the rules for 
obtaining the labels of the strips composing E, +1 A S from the n-symbol sequences. The disadvantage of 
this choice of symbols is that it is not obvious how to create a bi-infinite sequence of symbols which under 
the shift map will be topologically conjugate to the dynamics of the map on the invariant set. Such a 
construction is necessary for obtaining information regarding the dynamics on the invariant set such as 
the number of periodic orbits of period k ~ Z +. We note that other information, such as the area of the 
invariant set, can be inferred from the dynamics on the escaping portion, as shown in section 8. 

At this point the analogy to the type-1 case is almost straightforward. We define the transition matrix 
and the weighted transition matrix T t and W~ and compute all the topological and metric quantities 
which were defined for the type-1 case. The metric approximation involved in using I,V t instead of the 
exact map for evaluating the transport rates is basically a semi-linear one, which seems dubious at first 
sight since for 1 > 1 the nature of the trellis inside S is highly nonlinear. However, since we let the curved 
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states h i be stretched along the whole region before we again linearly approximate their partition, I 
believe the linear computation will give a good approximation to the escape rates and stretching spectra. 

The general transition matrix T/ resulting from diagram (13) is a 2l x 21 matrix of the form 

h I 

hf 
h2 

h3 

hl+l  

h 1 h f  h 2 . . .  h~ h t h t +  1 

1 0 0 .. .  0 0 1 

1 0 0 .. .  0 0 0 

1 0 0 . . .  0 0 0 

0 1 0 . . .  0 0 0 

0 0 1 .. .  0 0 0 

0 0 0 . . .  1 1 0 

one can equivalently identify the states h~ to one state h i to obtain an (l + 1) × (l + 1) nonsingular 
transition matrix T t of the form 

1 0 0 . . .  0 0 1 
1 0 0 . . .  0 0 0 
0 1 0 . . .  0 0 0 
0 0 1 . . .  0 0 0 

0 0 0 . . .  1 0 0 
0 0 0 . . .  0 2 0 

The reason for introducing the extended matrix and the states h~ initially is that they are essential for 
broadening the class of trellises as shown in the next section. 

The consequences of diagram (13) and the form of the transition matrix are as follows: 
(a) Number of horizontal strips in h i after n iterations: given the (l + D-dimensional vector v ° of 

initial number  of strips in the regions h i, the number of strips in each region after the n th  iteration is 
given by v n: 

v" = v ° ' T t  ~. (14) 

In other  words, since there is a one-to-one correspondence between labeling of horizontal strips and the 
allowed sequences of the l + 1 symbols, one gets that the number of strips is amplified exactly as the 
number of allowed sequences. 

The number of strips of E n n S of type hj is obtained by taking v i = (0 , . . . ,  0,1, 0), hence is given by 
the lth row of Tt"-1. Denoting the ith row of T l by Tl(i), and using the form of T l, we obtain 

n - 1  

Tt'(1 ) = T/n-l(1)  + T/n-l(/+ 1) = Tt(1 ) + ~ T / ( l +  1), 
j=l  

T['(l + 1) = 2Tt" - l ( l )  = 2Tt(1 - n + 2), 

T?(I  + 1) = 2Ttn-/(1),  

n > l ,  

n < l + l ,  

n > / + l ,  (15) 
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hence we obtain the following recursion relations for the (1 + 1)th row of Tt: 

T?(l + 1) = 2 T t ( l - n  + 2 ) ,  n <_l + 1, ( _1 ) 
T ? ( l + l ) = 2  T / ( 1 ) +  E T / ( I + I ) ,  n > l + l ,  (16) 

j = l  

which results in the following simple equation for the (l + 1)th row: 

TF(I+ 1) = 2 T l ( l - n  + 2), n < 1 +  1, 

Ttl+2(l + 1) = 2Tl(1 ) + TI(I + 1), 

T r ( l + l ) = T f - l ( l + l ) + T r - l - l ( l + l ) ,  n > / + 2  (17) 

and the other rows are given by 

n - 1  

TF(1 ) = T / ( 1 ) +  E T / ( I + I ) ,  n > l ,  
j=l  

T t n ( j ) = T t n - l ( j - 1 ) ,  l < j < l ,  n > l ,  (18) 

hence 

vn=TF-l(l)=T?(t+l), n > l  (19) 

and eq. (18) supplies a recursion relation for o n. 
(b) Number  of points in J0 n Kn, r(0, n): using eq. (14), the observation that the only horizontal strips 

which intersect J0 are h I and ht+l, intersecting J0 at exactly two points, and that KI+ 1 contains exactly 
two horizontal strips h 1 (d hi+l, we obtain 

r(O,n) = 0 ,  l <n < l - 1 ,  

r(O, l) = 2, 

r (O ,n )=(2 ,0 , . . . ,O ,2 )TF- t - l ( 1 , 0  . . . . .  0,1)  T, l+ l <n,  

using (15) and the form of T t we obtain 

r(O,O) = 1, 

r(O,n) = 0 ,  l <n <_l-1 

r(0,/) =2, 
r(O, n + 1) = r(0,  n) + 2r(0,  n - l ) ,  1 < n, (20) 

which agrees with Judd's [13] result and differs from Easton's by one index. 
(c) The topological entropy, defined as the exponential growth rate of L(Kn), is equal to the 

exponential growth rate of the number of strips created by E n. From eq. (19) it is given by a = 
lira n __,®n -1 logJ TF(I + 1) I . Since the roots of the characteristic polynomial of T t, pr~(A) = A t+l - A 1 - 2, 
are distinct, the topological entropy is g ivenby  the root with the largest modulus, A t. For large l the 
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moduli of the roots of Pr~ are clustered in the interval [1, At], where A t -o 1 as l - o  oo. Hence, as I 
increases the transient time before the exponential behavior of the growth rate can be detected, gets 
longer, and in the limit of infinite 1 nonexponential behavior is expected. As discussed by MacKay et al. 
[4], these are delicate points when one analyses the long-time behavior. The topological entropy provides 
a first estimate to the length of the boundary of En, hence to the length of the development of 
W u L t W  u ~ but we defer the discussion of the exact form of these estimates to section 6. ÷ ,  x , ,  + , n . ' ~  

3.5. Escape rates for the type-I trellises 

To obtain metric properties such as the escape rates and the distribution of the Lyapunov exponents 
on K0, we assign weights to the transition matrix T t which are determined by the metric properties of 
the initial development of the trellis. Let W t' and W l be the extended and regular weighted matrices. 
These matrices are determined by the four terms Wt'(1, 1), Wl'(1,21), Wt'(2l , 2 l -  2), Wi(2l, 2 l -  1) (de- 
noted hereafter  by $1,$2,$3,$4, respectively) which are associated with the amount of stretching 
experienced by segments of strips h I and ht+ 1 as shown in fig. 2. The matrices W l ,  Wt are of the form 

h~ hf 

hl  s 1 0 

h f  1 0 
h2 1 0 

Wt'= h ~ 0 1 
h 3 0 0 

ht+ 1 0 0 

h 2 . . .  h~ h i  h~+ 1 

0 . . .  0 0 s 2 

0 . . .  0 0 0 

0 . . .  0 0 0 

0 . . .  0 0 0 

1 . . .  0 0 0 

0 . . .  S 3 S 4 0 

and 

w,= 

's~ 0 0 . . .  0 0 s 2 

1 0 0 . . .  0 0 0 
0 1 0 . . .  0 0 0 
0 0 1 . . .  0 0 0 

0 0 0 . . .  1 0 0 
0 0 0 . . .  0 s 3 + s  4 0 

The assumption that the trellis satisfies hypothesis C is used to establish that the only stages at which 
area is thrown out are when h I is mapped to h 1 u ht+ 1 and the Ith image of the mapping of hi+ 1 to ht ~. 
The weighted transition matrix provides the area of the strip h~o ..... ,, since 

k 

t~( hs o ..... ~,) = a~oI-I Wl( S~,S~-l), 
t = l  

where aso is the area of the strip hs0. Hence, the area of all the strips produced by iterating h 1 k times is 
given by I(al ,0 . . . . .  0)" Wtkl. Unlike the situation in the l =  1 case, this quantity is not equal to 
i~(Fkhl n S): we have thrown away the parts of Fkh~ which are yet to escape S between the k + 1 and 
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the k + 1 iterations. There are two methods to overcome this difficulty; the first is to stretch back the 
central l -  1 components of the vector (a l ,0 , . . . ,0 )"  Wt k by 1 / ( S  3 + S 4) and the second is to add more 
intermediate states which contain the delayed escaping parts. 

Using the first method, the portion of h 1 which escapes at the kth iterate can be approximated by 

e s c k ( h l )  = / x ( F k - l h l  f'l S) - iz(Fkhl f) S )  = I ( a l , O , . . .  , 0 ) - W / k - l ( I  - W t ) D i ,  

where D is the (I + 1) x (I + 1) diagonal matrix with the diagonal (1, 1 / ( S  3 + S4) ,o . . ,  1/ (s  3 + S4), 1). 
Note that since the only mechanism for escape from S is through the lobe D 0, the relation es%(h 1) = 
tz(Fkhl n D o) holds. Hence, assuming that E t is already stretched enough for the linear approximation 
to hold, and that the area of E t n S is given by a 1, we find 

e,  = [ (a l ,0  . . . . .  0)" ( W t " - ' - ' ( I -  Wt)D)[,  n > I. (21) 

Using eq. (8) one can therefore estimate all the escape rates needed. 
To obtain the en's from a higher-order approximation where the area of the h /s  are given for j > 1 we 

need to use the second method, hence to introduce l + 1 more states, denoted by &, 0 < j  < l, which are 
basically the delayed escaping rates. These states are passive and do not influence the dynamics of the 
other states, and their introduction allows us, in addition to the computation of the escape rates, to draw 
the analog between the weighted transition matrix and the fundamental matrix of a finite Markov chain 
[21]. Moreover, the introduction of these states is es~sential for computing the escape rates in the next 
generalization of the type-/trellises to the type-{/, m, k, x} trellises. 

The intuitive definition of the states & is given below, where an exact definition, as was given for the 
h/s  is trivial and is left to the reader. In general, the state gi contains the "excess" part of hi which 
escapes after i iterations and therefore is not considered part of the h's. The state gt is the part of the 
image of hi+ 1 which escapes after 1 iterations and is given by [F(ht+ 1) -ht+l . t+-ht+l , l - ] .  The next l - 1 
states are the images of gt, namely gk = F(gk+l),  1 < k < l. The  state gl is composed from the delayed 
escaping area, F(g2)=FZ- l (g t ) ,  and the escaping part of hi: g l = [ F ( h l ) - h l ,  l - h l . t + l ] + F ( g 2 ) .  
Finally, go is the total escape rate and is given by go = gk > oFk(gl)  • The  state go is introduced to make 
the analog to the Markov chain formalism immediate, and is dropped when appropriate (e.g. when 
computing the eigenvalues of the extended matrix). 

The extended transition matrix, M, is given by: 

go . . .  gt hi"" ht+l 

M =  ( LI+I 0 ) 
R W t ' 

(22) 

where L~ is an n × n matrix of the form 

Zn 

1 0 0 . . .  0 0 0 ~ 
1 0 0 . . .  0 0 0 
0 1 0 ...  0 0 0 
0 0 1 ..,  0 0 0 
- ; : ".  ; ; • 

0 0 0 ... 1 0 0 
0 0 0 ...  0 1 0 

(23) 
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and R is given by 

R(1,2)  = 1 - s  I - $2 ,  R ( I +  1 , I +  1) = 1 - s  3 - s 4 ,  R ( i , j )  = 0  otherwise. 

Denoting by v n the (2l + 2)-dimensional vector which contains the area in each state (go . . . .  , ht+ 1) of 
E, ,  it is clear that the escape rates are given by the second component of v ", v~(2): 

e , = ( v " ° ' M " - " 0 ) ( 2 ) ,  n > n  o . 

Finding the e, for n < n o can be done numerically, or via a Whisker map approximation as derived in 
section 9. For n >> n 0, the asymptotic behavior of the e, 's depends on the nature of the eigenvalues and 
eigenvectors of the matrix M. Since the characteristic polynomial of W and M are given by 

P w ( a )  = ( a  - s l )a '  - s=(s3 + s4), 

PM(A) = P w (A ) (A  - 1)A t 

it is sufficient to examine W .  P w  has l + 1 distinct roots, hence the en's decay exponentially with the 
decay rate log(Aw). As is the case for the topological entropy, one finds that the roots moduli of P w ,  

cluster in an interval [IAwt l, IAw~l] (with IAwt I < 1) and both end points approach one asymptotically as l 
increases. Hence, the decay rate will appear to be different than exponential for longer and longer time 
as l is increased, and in the infinite l limit a nonexponential decay rate of the en's will emerge. 

Note that eq. (22) shows that the dynamics of the strips can be thought of as a Markov chain where the 
probabilities correspond to area distribution, the states go , - . . ,  gt are an absorbing chain, and the states 
h 0 . . . .  , ht+ 1 are transient states. The matrix M is in its canonical form [21] and hence one can compute 
various quantities associated with this formulation as discussed in section 8. 

3 .6 .  T h e  s t r e t c h i n g  r a t e s  f o r  t y p e - I  t r e l l i s e s  

Following the same arguments as for the horseshoe trellis we find that the length of the horizontal 
boundaries of D_n N S, namely D_n n K0, is given by the sum of the widths of the vertical strips of type 
v 1 and vt+ 1, the only vertical strips which cut through K 0. Hence, given the areas a 1 . . . . .  a t +  1 of the 
vertical strips v l , . . . ,  vt+t, we obtain 

^ 

L ( D _ ,, O K o ) = ~i'7"7-~ ( a , , . . . , a , ) . Wl~" - " ° . ( 1 , 0 , . . .  ,0,1)  T, (24) 

where 1~ t is the weighted transition matrix of the inverse map. The averaged stretching experienced by 
the segments of K o which escape after n iterations is given by 

L ( r .  n D o )  

= L(Ko ND_n ) 
(25) 
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and this quantity can be bounded from above and below as was done for the horseshoe to obtain 

½r(O,n) t (  g 1 nO0)  ½r(O,n) L (  Kd) 
L ( D _ , n K o  ) < / 3 ( n ) <  L ( D _ , n K o  ) , n l < n .  (26) 

As before, the dependence of f l(n) on position along K 0 is of fractal nature. Eq. (25) implies that the 
asymptotic behavior of fl(n) is given by 

n-~®lim log/3(n)n =log(  )t_~ ) 

where AA denotes the largest eigenvalues of the matrix A. 

4. Trellises of type {1, m, k, x} 

In this section we construct a new class of trellises. This is done for two purposes; first, to show that 
one can improve the estimates for a given trellis in a consistent fashion by adding more symbols to the 
symbolic dynamics representation of the trellis, hence achieving better estimates on the transport rates 
and manifold length, and second, to show that if the initial developments of two trellises are sufficiently 
close the above characteristics of the trellises are also close. This will support the claim that a reasonable 
approximation is already given by considering an {1, m, k, x} trellis rather than the most general trellis 
which is defined by infinitely many indices. 

4.1. The definition of  a type-{l, m, k, O} trellis 

To modify Easton's definition we keep his first two hypotheses and change the third one. Easton's 
third hypothesis implied that the "tip" of the lobe E r had to be completely contained in the lobe Dr_ l, 
and that no new "tips" could be created. We will modify the first part of the assumption but will stick to 
the second part of it. 

We present the geometrical assumptions and the meaning of the indices l, m, k, x for the extended 
family of trellises. The formal definition for the x---0 case, and the proof that two type-{/, m, k, 0) 
trellises are weakly equivalent and therefore are well defined is given in the appendix. 

The geometrical assumptions are as follows, see fig. 5: 
(1) 1 is defined to be the minimal j such that Kj n J 0 4= 0 .  We assume that K t n Jo contains four 

homoclinic points with stable and unstable orderings as depicted in fig. 5. 
(2) m > 1 is defined so that the tip of the lobe E r is contained in the lobe Dr-t-m for all r. 
(3) k > l is defined so that the tip of D- r  is contained in the lobe Ek_r+ t for all r. 
(4) There are exactly two tips for the E r, D r lobes for all r, where by "tip" we mean a two- (or three-) 

point intersection of the lobes. 
(5) x = 0 indicates the following three assumptions: 

(i) The connected part of K t n S (J - t  n S)  which contains the tip intersects D_,,, (E  k) only at the 
tip. 

(ii) All the segments of the unstable manifold encircling the tip of E t are contained in D_ m. 
(iii) None of the segments of the stable manifold encircling the tip of D_ t are contained in E k. 
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Fig. 5. The geometry  of  a type-{/, m,  k, 0} trellis. In  this figure 
l=3,  m = k = 4 .  

Fig. 6. The geomet ry  of  a type-{ /+  1, m,  k, - 1} trellis. In this 
figure l = 3 ,  m = k = 4 .  

Few notes are now in order: 
(a) The type-{/, m, k, 0} trellis asymptote topologically to the type-l trellis as m, k --+ ~. 
(b) It is more convenient to replace (5iii) by the assumption that the tip of D _  l is actually tangent to 

Ek, creating a three-point tip as shown in fig. 5, as we do in the formal definition. 
(c) Assumption (5ii) can be rephrased as follows: All the segments of the unstable manifold encircling 

the tip of El+ m a r e  contained in D 0. This version demonstrates more dearly the equivalence between 
the above assumptions and Easton's construction of type-/trellises. 

(d) Given Easton's work and the above generalization, other geometries can be handled similarly. We 
describe next a specific generalization, which is of importance since it is expected to appear in many 
applications, but as mentioned before the number of variations on the above assumptions is infinite. 

4.2. Other trellises of type ~, m, k, x} 

Other trellises of type {l, m, k, x} correspond to various variation on the fifth structural assumption. 
For example, keeping assumption (5i) and interchanging assumptions (5ii) and (5iii) will result in three 
more trellises, x---1, 2, 3, where dropping the requirement that either all or none of the encircling 
segments are contained in the corresponding lobe will introduce more indices corresponding to the next 
approximation to a "real"  trellis. For each of these structures we can modify assumption (5i) to allow 
4j + 2 ( j  ~ 7/+) intersections of the connected part of K~ n S o r / a n d  J-t  n S with D_ m and Ek, 

resulting in x ~ Z +. Of particular interest is the other extreme to the x = 0 case, where the connected 
part of K l N S almost reaches Jr, hence intersects the D_~ lobes the same way as K 0 does (though twice) 
for 1 < j  < m and misses only the last intersection (in the unstable ordering) of K0 n D_m as shown in 
fig. 6. For x = 0 the limit m, k --) ~ corresponds to approaching the type-l trellis from above where in this 
case m, k--> ~ corresponds to approaching the type-(l + 1) trellis from below, hence the notation 
{l + 1, m, k, x}, where x ~ Z -  can be introduced to label this extreme. Though the details in applying the 
following procedure for this case is different, the spirit is the same, and is left out of this paper. 
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Note that even though we allowed different developments than the ones considered by Easton, we still 
assume that a finite number of indices determine the intersection matrix M(n,m), namely that no 
unconstrained intersections are allowed to occur. If a trellis has the same initial development as a 
type-{l,m, k, 0} trellis, the above rules give a lower bound on the terms of r(n, m). 

5. Symbolic dynamics for type-{/, m, k, O} trellises 

In this section we associate with every type-{/, m, k, 0} trellis symbolic dynamics and a transition matrix. 
This formulation allows one to compute the number of homoclinic points, the number of strips and to 
approximate the area ejected out every iteration, as well as topological properties such as the topological 

entropy. 
We generalize the symbolic dynamics of the type-/case by introducing 1 + m - 1 new horizontal strips, 

denoted by fj, - m  + 2 < j  _< I, and additional k - l + 1 intermediate horizontal strips, h~+l and hi, I - 
k + 1 < j  < 0, see fig. 7. The horizontal strips are defined as follows: 

Let yje(t), 0 < t _< 1, - ( k -  l ) -  1 < j  _< l + I, denote "horizontal curves" in S such that 

(i) The boundaries of the curves are given by 

o o  

yj(0) ~ U Jk+j UJ~+j yj,(1) ~Jo, j = 1 - k + 1, 
k=0 

yj(O) '~Jl_j+lUJ' l_j ,  yy(1) ~Jo ,  - ( k - l )  + 2  <j_< 1, 

YT(0) ~ Jr-j+1, rT(1)  ~J-i+l l < j < l ,  

y~(O) eJ,_i+2OJl'j+ 1, y f ( 1 ) ~ J i + , ,  l < j < _ l ,  

y,~+,(O) ~.J, ,  yt~+,(1) ~ Jo- 

(ii) y/~(t) f'~ J -k ,  0 < t < 1 contains exactly two points if max{-  1, j} < k _< l and is empty if 0 _< k < j  - 1 
for - ( k - l ) -  1 <j <l. 

(iii) Yl~ i(t) N J -k  = 0 ,  0 < t < 1, 0 < k < l, Yt-+ 1(t) N J - l ,  0 < t < 1 contains exactly two points, and 
Yt++l(t) ~J-l ,  0 < t < 1 contains exactly two points on each of the two connected components of D_l n S. 

In addition, let zj(t), 0 < t _< 1, - r n  + 2 _<j < l denote "horizontal curves" in S such that 

(i) The boundaries of the curves are given by 

zj(O) ~J- j+ l ,  zj(1) ~ J - m - j + l ,  - m + 2 < j < l .  

(ii) z~(t)NJ_k, O<t < l  containsexactlytwopointsif -j m - l +  l <k < j m + l a n d i s e m p t y  
if - j - m  + 1 <_k< - j +  1. 

A strip will be called horizontal of type h 7 (hi-) if it is topologically a rectangle and two of its edges 
are given by horizontal curves of type yT(t) (y~-(t)) and segments of Jr-j+1 and J-i+1 (Jl-~+2 and 
J - j+ l )  for l - k + 1 < j  < l + 1, where for j < 1 we disregard the + sign on the y's and h's. It will be 
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called horizontal of type h{+ 1 (hT+ 1) if it is topologically a rectangle and two of its edges are given by 
horizontal curves of type yiF+l(t) (YT+l(t))  and segments of Ji and J0. It will be called horizontal of type 
fj if it is topologically a rectangle and two of its edges are given by horizontal curves of type z j ( t )  and 
segments of J-j+1 and J-j-re+l" 

Using the above definition we obtain the following diagram, which describes the dynamics of these 
horizontal strips under the map: 

/ / + 1  ~ i + 1  9 / + 1  

/ h o  -----* h _  1 ~ . . .  ~ h_(k_ t )+  2 - 

hi\ 
h(~.~ 'hT---~ . . .  ' h ~  , h  1 

h i - ~  . . .  ~ h 2  ~ h o 

l'-"> f l _ l  ~ . . .  -'* f_m+2"--~ h _ ( m _ l ) + l  

0 + -----~h 7 hl,~l 

h 7  

O h ~ + l  
/ 

~ h - ( k - l ) +  l ~ h - ( k - l ) +  l 

(27) 

Given this diagram and the information that E 10 S is composed from an h~- strip and an ft strip we 
construct the transition matrix, the weighted transition matrix and obtain all the quantities as before. 

Note that when m = l + 1 the horizontal strips h f  and fj-m can be identified for 2 _<j _< l, reducing 
the number of required symbols by m - 2 = l - 1, see fig. 7. 

Diagram (27) reflects the dynamics of the map on all the horizontal strips which are defined above. 
Similarly, one can define vertical strips of type vi+ and plot a diagram similar to (27), replacing the h's 

, a l l  
s 

C 

. . . , 
" 1  I I  ~ s 

I ! 
Fig. 7. The definition of tbe states of a type-{/, m, k,0l trellis. 
In this figure 1 = 3, rn = k = 4. 
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with v's,  which then reflects the action of the inverse map  on all vertical strips which are defined in a 
similar fashion. The  discussion of the relation between the dynamics of the map and the symbolic 
dynamics is as for the type-/ t rel l is .  

The general transition matrix Tt, m,k,O -- T resulting from diagram (27) is a ( 2 / +  k + m)  × ( 2 / +  k + m)  
matrix of the form 

h l - k + l . . . h l  h 2 . . . h ~ -  hT+lh~+, f - m + 2 " ' ' f t  

T =  

L k _ l +  1 0 A 0 I 

81,k_ 1 + 82,k_t+ 1 L'2t_ 2 0 0 

J 0 B 0 232,t+,n_ 1 ' 

6 1 , m a x { 1 , k . m + l }  0 0 L l + m _  1 -- 61, 1 

where the states are ordered as follows: 

(hi_k+ a, ht_k+ 2 . . . .  , h _ l ,  ho, hi ,  h2 ,  h f  . . . . .  hi-, h~-, hi- + 1, ht++ 1, f - m  + 2  . . . . .  fl} 

and the matrices are defined as follows: 
8i, j(i, ] ) =  1 and all its other  entries are zero. 
Ln is an n × n matrix as in eq. (23). 
L"  is an n × n matrix with the nonvanishing terms L ' ( i ,  i - 2) -- 1 for 2 < i _< n. 
A is an (k - l + 1) × 2 of  the form 

A = . 

B is an 2 × ( 2 / -  2) matrix of  the form 

0 . . .  0 1 1)  
B =  0 . . .  0 1 1 " 

Using the same arguments as for the type-I trellis we obtain from T the following results: 
(a) The number  of strips in state i after n iterations is given by 

v" = v °" TI n, (28) 

where v ° represents  the initial distribution of the strips between the states. The number  of strips of  
E n ~ S of type j is obtained by taking v l ( j )  = 1, j = k + l - 1, 2l + k + m and v l ( j )  = 0 otherwise, hence 
is given by the sum of the (k + l - 1)th and the last rows of T n-  1. 

(b) Using eq. (28), the observation that the horizontal strips which intersect J0 are hi, l - k + 1 _<j < 1, 
h ~  and f l ,  each of them intersecting J0 at exactly two points, and that K I contains exactly two 
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horizontal strips hfWft ,  we obtain the number of points in Jo C~ Kn, r(0, n): 

r (0 ,  n) = (0, . . .  ,0, 1,0 . . . .  ,0, 1 ) T " - 1 ( 2  . . . .  ,2 ,0  . . . . .  0,2,  2 ,0 , . . .  ,0, 2,0 . . . . .  0) 

k - l + 1  
= 2  ~ [ T " - l ( k + l - l , j ) + T " - l ( 2 1 + k + m , j ) ]  

j = l  

k + l + l  
+ ~., [ T n - l ( k + l - l , j ) + T n - l ( Z l + k + m , j ) ]  

j=k+l  

+ [ T n - l ( k + l  - 1 ,1+m + k +  1) + T n - l ( 2 1 + k + m , l + m  + k +  1) ] ) .  (29) 

(c) The topological entropy is given by 

a =  l i m n - l l o g ( I T n - l ( k + 1 - 1 ) 1  + ] T n - l ( 2 1 + k + m ) l )  
n ..-.) o o  

and the asymptotic behavior of I Tn(j)l  depends on the eigenvalues of T. 

5.1. Escape rates for the type-{l, m, k, O} trellises 

To obtain metric properties such as the escape rates and distribution of the stretching rates on K 0, we 
assign weights to the transition matrix T which will be determined by the metric properties of the initial 
development of the trellis. Then we add additional l + m + 1 passive states go . . . .  , gl+m, which are used 
to find the escape rates. Let  W be the weighted transition matrix. It is determined by seven terms 
denoted by s i, i = 1 . . . .  ,7 which are associated with the amount of stretching experienced by segments of 
h I and h~+l ± strips as shown in fig. 8. The matrix W is of the form 

W =  

s 1 "Lk_t+ 1 0 s 2 "A 0 I 
~ l , k - I  "1- 32, k - l +  1 L'21-2 0 0 l 0 C 0 s6" ~2,1+m- 1 ' 

~l,max{1,k-m+ 1} 0 0 Lt+m-1 -- ~1,1 

where C is an 2 × (2l - 2) matrix of the form 

0 . . .  0 S 4 S 3 ) 

C =  0 . . .  0 s 4 s 5 

Adding the additional l + m + 1 states gj, 0 < j  < l + m, which are defined in the same fashion as in the 
type-I case we obtain the ( 3 / +  2m + k + 1) × (31 + 2m + k + 1) extended transition matrix, M: 

go'"gl+m h l -k+l ' ' ' f l  

M =  ( Ll+ m+l O ) 
R W ' 
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/ 
/ 

/ 

PT - i 

! \ 

s. - : : - -  z . - .  \ 

t ' -~ - - -s -~  " ~T I I t T - [ ' ~  '~"~ 

I I ,  , ' x , _  I~ 

I ! ; ! J  I I 
I , ,  I , ' J j  

" ! ! 

1 , 1 0  
t " |  i ~ t 
, 'l~ I \ . / '  

s,: 

t " 0  

Fig. 8. The stretching rates of  a type-{/, m, k, 0} trellis. In this 
figure 1=3 ,  m =k=4 .  In addition to J- t ,  J-2, J-3 a part of 
J - 7  is drawn. 

where R is a (2 + m + k) x (l + m + 1) matrix which has the following non-vanishing entries: 

R ( j , 2 ) - - 1 - s ~ - s 2 ,  j - - 1 , . . . , l + k - 1 ,  

R ( k + l , l +  1) = 1 - s  3 - s  4, 

7 

R ( k + l + l , l + l ) = l -  ~ : s  i, 
i = 4  

R ( k  +l  + 1,l +rn + 1) =s 7, 

corresponding to the escaping parts of  the hj ' s  (j  < 1), of the hT÷ 1 and hi+÷1, respectively. Given this 
matrix, and following the same arguments as for the type-/trellis,  we find that the escape rates can be 
approximated by 

n - - H  0 e~ = [(al, . . . ,a3,+2m+k+t)M ] (2) ,  (30) 

where the aj's denote the area distribution of E,,o among the states. If n o = 1, the nonvanishing 
components of a are (al_~l, al+,n+l, a2l+m+k_l, a3l+2m+k_ 1) corresponding to the initial area in the 
states (gz, gt+m, hT, ft) which are denoted by (dl, d4, d2, d3) in fig. 7. Note that the behavior of the e, 's 
for large n depends on the nature of  the eigenvalues of HI, as discussed previously. In section 9 we 
compute the e, 's for various l, m, k values and discuss their asymptotic behavior as m, k are increased. 

5.2. The stretching rates for type-{l, m, k, O} trellises 

In this case the exact length of the horizontal boundaries of  D _ ,  N S, namely D _ ,  F3 Ko, is harder to 
compute. In principal it is given by the sum of the widths of the vertical strips of type vj, j < 1 of the 
strips vt~+l and the strip ut, the vertical strips which cut through K o. The width of  the t~.'s and vt+l's is 
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well approximated by taking their areas and dividing by L(Jo). The width of u 1 can be approximated by 
either the width of vl or its area divided by the length of the tip of D_ 6 however, this will be a poor 
approximation for the first few iterates, hence n o should be taken large enough, and in any case larger 
than 2l + m + k. Using these approximations one can follow the same procedure as for the type-/ 
trellises to compute the averaged stretching rates, etc. 

6. The length of the unstable manifold 

Since in many applications the length of the interface is of great importance, we devote this section to 
give various estimates for the length of the development of the unstable manifold. For example, the 
amount of product resulting from the mixing of two reacting fluids is related directly to the length of the 
interface between the two reactants, see ref. [22] and references therein. The relation between 
the stretching of a general material line and the unstable manifold was not established rigourously, 
though in RLW it was argued that in many cases the stretching of the interface will be almost the same 
as that of the unstable manifold. 

Our aim is to get as sharp estimates as possible for the finite time development of the manifold. We 
concentrate on the finite time development for two reasons: 

(1) The infinite time limit was already calculated in terms of the topological entropy (and was 
calculated for more general topology using similar ideas by Judd [13]). 

(2) In many applications, especially in mixing problems, the finite-time behavior is more important 
than the asymptotics [23]. 

As noted in the first section, the unstable manifold is given by 

W+= U K , , U K ' .  
n ~ -oo 

Hence, the length of the development of the unstable manifold is given by 

k 

Lk= E 
n = --e~ 

L (  K n )  . t  L (  K ¢) = L k _  1 .-~- L (  K k )  -~- L (  K ~ ) .  

We assume that there exists a finite and sufficiently large n o (n o > 0) for which L(Kj) and L(K/), j < no, 
can be found either numerically or via a perturbation method. 

By the assumption on the structure of the map (hypothesis B), the arcs K" are stretched only by the 
action of the fixed point, hence their length grows linearly for n > no, which from now on will be taken to 
be 1: 

L(K~)  = L(Kn~_I) " b C  1 = ( n  - -  1)c I +L(K~) .  (31) 

To approximate L (K  n) we decompose K n to its components in S and the D lobes: 

n 

L(K.) =L(K. nS) + L(K. nDj). (32) 
j=O 
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First, we will give bounds for the above quantities for the type-1 trellis for which 

L ( K  n (3 S) --- r(0,  n) L ( K 0 ) .  (33) 

To bound the second term in (32), denote c z = L ( K  1 (3 D o) and observe that 

lc2r(O,n ) < L ( K n  (3Do) < ½L(K~) r(O,n),  

l r ( O , n - j )  [c 2 + ( j -  1)Cl] < L ( K ,  ¢3Dj) < ½r (O ,n - j )  L ( K / ) ,  j > 0. (34) 

Substituting (6), (31), (33) and (34) into (32), and assuming L(K~) = L(K[) for simplicity, we obtain 

1 (R --  5 )¢1  < L ( K n )  2 " [ L ( K 0 )  + c 2 -  ~c1] - c 2 -  3 

< 2 " [ L ( K 0 )  +L(KO) - ¼c,] - L ( K ~ )  - (n - 3)c 1. 

For a general type-{/, m, k, 0} or a type-l trellis, the only modification is that eq. (33) should be replaced 
by an inequality, bounding the length of the various strips from above and below. The upper bound for 
all the strips can be taken to be L(Ko), where the lower bound is given in terms of the length of Ej, 
j = 1 . . . .  , l, denoted by the vector A: 

2v" . a  < L ( K ,  n S) < 2[v"lL(Ko),  (35) 

where the number of strips of type hi, fi is given by v". Using eqs. (19), (20), (31), (32), (34) and (35) one 
obtains bounds on L(K, )  for these trellises. For a general trellis, only the lower bound hold. As Camassa 
has pointed out, when the boundaries of Ej are nonconvex, one has to define the "length of E / ' ,  A, with 
some care. 

7. The relation between the type- /and the type-{/, m, k, 0} trellises 

For m, k sufficiently large, one expects that the quantitative characteristics of the type-{/, m, k,0} 
trellis will approach asymptotically the ones of the type-/ trellis. The formulation in terms of the 
transition matrices enables one to quantify this limit by investigating the asymptotics of matrices instead 
of maps. Using the transition matrices and the weighted transition matrices which were constructed in 
sections 3 and 5, we find: 

(i) The topological entropy of the type-{/, m, k,0} trellises, which are estimated by the largest 
eigenvalue of the transition matrix Zl, m,k, approach asymptotically that of a type-/ trellis in an 
exponential rate. Specifically, 

Ar = Ar~ + c t exp[ -bt(m + k)] I,m,k,O 

as illustrated for 1 = 2,6 and l + 1 < m ,  k < l + 15 in figs. 9a and 9b. Fitting the calculations for 
l = 1 . . . . .  10 we find that bt --- -0.251 log l + 0.0111 + 0.68 as demonstrated in fig. 9c. 

(ii) The asymptotic behavior of the escape rates depends on the parameters s i and the initial behavior 
depends on the di's as well. From the definition of the stretching rates s i and the type-{/, m, k, 0} trellis it 
follows that as m ~ oo the stretching rates s 6, s 7 should vanish and s 5 ~ s 3. Since the width of the 
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rightmost vertical strip decays exponentially with the decay rate a = log[L(Jo)/12], where l 2 denotes the 
vertical stretching rate as in fig. 8, we obtain that s 7 - - C  7 exp(-o~m).  Since the distance of the mth 
preimage of the unstable boundary of the lobe D from the fixed point is proportional to A-m, where A is 
the largest eigenvalue of the fixed point, and by considering Ft+IE and F-"+ID we obtain that 
s6 = C6 A -m. For simplicity we chose A = L(Jo)/l 2 in the following computations, though in practice these 
rates vary with the parameters of the map and should be approximated via a calculation or a Whisker 
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bt, m, a versus l, for m = l + 1 and a = 0.2. 



256 I~. Rom-Kedar / Transport rates of a class o f  2D maps and flows 

map approximation. With this choice of the si's we get 

aw,.,,k = -AW, + f (  l, m,  k, a ) ,  

where f(l ,  m, k, a) ~ 0 as rn ~ ~,  or k ~ 0o, but it is initially increasing with rn as shown in fig. 10a for 
l = 2, k = 3 and several a values. For fixed m and a we obtain that 

f (  l, m,  k, ~) = exp( at,m,~ - bt, m,,k ) 

and that the dependence of b~ . . . .  on 1 is of a power law nature: 

b/  . . . .  -~ c(m, a) I d (m 'a )  

as shown in figs. 10b and 10c. The above relations are not exact, and we do find, for example, that bt, m,, 
has a weak dependence on k. A proper analysis of these limits can be done by examining the 
characteristic polynomials of the matrices W/, m, k" This is a very messy calculation which is under current 
investigation. 

In fig. 11 we plot the escape rates for a type-5 and a type-{5,6,7,0} trellis. The transient behavior is 
typical of the escape rates as was found, for example, for the OVP flow [3]. The closer the sum of the 
columns of M to the vector 1, the larger the eigenvalue, and the transient time is determined by l, m, k 
and the relative sizes of the si's. 

(iii) Assuming that if" = W (so that the map is invariant under reversal of time and 90 ° rotation) the 
asymptotic stretching rate is given by 
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Fig. 11. The transient behavior of the escape rates. The e . ' s  
are plotted for trellises of type 5 (13) and type {5,6,7,0} ( x )  
for a = 0.2. 

Fig. 12. The dependence of the stretching rate on I. (D)  b t 
and ( × )  bl, l+l,O. 2 versus l. For l =  4, b l - b l ,  t+l,o. 2 changes 
sign, resulting in a change of the asymptotic behavior of the 
averaged stretching rate. 
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As shown in fig. 12, the decay rate in k changes its behavior with l; for small 1 (l < 4 for a = 0.2), the 
dominant decay rate is b l where for large l the dominant decay rate is the b t . . . . .  and for intermediate l 
(l---5 for a = 0.2) the behavior will not appear to be exponential since it is composed of a sum of 
comparable exponents. 

To summarize, the above relations show that for m, k sufficiently large quantitative characteristics of 
the typed trellis and the type-{/, m, k, 0} trellises are exponentially close to each other. Hence we 
conjecture that the quantitative characteristics of other trellises which are sufficiently close to the 
type-{/, m, k,0} trellises are reasonably approximated by the quantitative characteristics of the type- 
{l, rn, k, 0} trellises. Specifically, if the trellises are obtained from a one-parameter family of diffeomor- 
phisms, in a neighborhood of the type- /and the type-{/, m, k, 0} trellises the properties of these trellises 
provide a good approximation to the properties of the trellis of the map. 

8. Probabilistic approach-Markov chains 

As was pointed out in sections 3 and 5 the extended weighted transition matrix M can be viewed as 
the canonical probability matrix of a Markov process, where the analog between area distribution and 
probabilities is natural. It is important to realize that the answer to the original question we posed in this 
and the previous works - given an initial uniform distribution of particles in the region S, what portion of 
them remains in S after n iterates of the m a p - w a s  answered without the need of the probabilistic 
approach which necessarily relies on further assumptions regarding the map. However, this approach can 
be used to answer different types of questions which are concerned with the fate of a "typical" initial 
condition (or a specific ensemble) originating in one of the states or in S. 

From the form of M and the known results regarding the Markov chains, the probable fate of a 
particle placed initially in one of the states can be found easily, and the relevant results will be discussed 
shortly. To determine the fate of a particle placed in S we need to find the probability of a particle in S 
to be contained in a state s. This probability is proportional to the area associated with the state s. Since 
the states are completely covered by images of the lobe E their areas are given by 

o o  

tz(s)  = Y'. a" (s ) ,  s > 2, 
n = l  

where an(s) is the s component of the area vector of the nth image of the lobe E, and as was shown in 
sections 3 and 5 it can be approximated by a I • M n, where the nonvanishing terms of a 1 are 

a l ( l +  1) = e l ,  a l ( 2 / +  1) = / z ( E )  - e l  

for the typed trellis and 

a l ( l + l ) = d a ,  a l ( 2 l + m + k + l ) = d 2 ,  a l ( 3 l + m + k + l ) = d 3 ,  a l ( l + m + l ) = d a  

for trellis of type {1, m, k, 0}. Denoting by Q the submatrix of M which does not include the state go 
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(crossing out the first row and column of M)  and cutting off the first term in a I we obtain 

t x ( s )=a  1 ~., Q n ( s ) = a l ( I - Q ) - l ( s ) ,  s > l .  (36) 
n = l  

Since the images of E cover, at the limit of infinitely many iterations, any of the D lobes and by reversing 
time the preimages of D cover the E lobes we conclude that the parts of S which are not contained in 
any of the images of the lobe E belong to the invariant set and its area can be found by subtracting from 
/.t(S) the area of all the other  states (except go and gl). Hence the area of the invariant set can be 
estimated by 

N 

/x(Inv) = / x ( S )  - E aa(  I --  Q) -I(s), (37) 
s = 2  

where N = 2l + 2 for the type-/ trellises and N = 31 + 2m + k + 1 for the type-{/, m, k, 0} trellises. The 
probability of an initial condition in {S - Inv} to belong to the state s is given by 

p( s) = Iz( s) / [  tz( S) - tz(Inv)] .  

From the form of the matrix M we conclude that the states h i, f~ are transient states and the gi's 
belong to an absorbing chain. It is shown in Kemeny and Snell's book [21] that the following quantities 
can be found by simple matrix operations on the submatrices of M (W, R and L): 

(1) The mean and variance of the number of times a particle starting in a transient state s I will visit 
another transient state s 2. 

(2) The mean and variance of the number of iterates a particle starting in the transient state s stays in 
the transient chain (hence in S). 

(3) The probability that a process starting at the transient state s ends up in the element of the 
absorbing chain t. 

Combining the second and third results together with eq. (36) one can compute the mean and variance 
of the number of iterates a particle which started in the "stochastic layer" (S - {the invariant set}) stays 
in it. To get a better  statistical description of the motion in this layer one should exclude, in addition to 
the invariant set, the first few preimages of the lobe D, which usually create a very apparent and ordered 
structure which will skew the statistics. Technically, this is done by replacing a a with a n in eqs. (36) and 
(37) for some small n. We note that the resulting probability of escape at cycle k (for k > n) is given by 

l+m 31+2m+k 

peso(k) = Y'~ ~_, p(s)  ak - t+l ( s , t ) .  
t = l  s= l+m+l  

This should give a considerable improvement on the previously suggested probability [4] of escape given 
by the area of the lobe D divided by the area of the stochastic layer. 

Another  interesting application of the relation between the formulation of the escape rates and 
Markov chains is the construction of a diffusion equation. There  are numerous attempts to describe the 
motion o f  particles in phase space via a diffusion equation. The classical approach for deriving such an 
equation is to consider the map itself as a Markov process [5], which leads to a reasonable approxima- 
tions only ,when there are no visible island chains. When phase space is not completely ergodic, the 
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description of the motion of particles in the phase space as a diffusion process is misleading [4], since 
particles are tunneled to specific regions in phase space in a manner which does not resemble diffusive 
process. Escande [6] suggested incorporating the two approaches by a quasilinear approximation to the 
diffusion rate which is based on the lobe area. Dana et al. [24] suggested a diffusion model between 
islands of resonances. The current work suggests that the appropriate diffusion equation describes the 
diffusion between the states, where the starting and ending point are the lobes E and D, respectively, 
which can be located precisely in phase space, where the other states can only be roughly located. 

9. Transport rates for flows 

So far we have dealt with the topological structure of the trellis without any assumptions, nor 
specification, of the diffeomorphism it represents. In applications one is confronted with a map or an 
ODE and one has to determine both the type of trellis and the various parameters (such as the s i and 
the d i) from these equations. In general one needs to compute and plot the first few arcs Kn, K ' ,  Jn, J" 
to determine these parameters. This can be done quite easily for a given dynamical system but can 
become extremely time consuming if one is interested in a family of diffeomorphisms, as is the common 
case. We show that the use of the Whisker map provides a method for approximating all these quantities 
when the diffeomorphism is given by the Poincar6 map of an integrable Hamiltonian system perturbed by 
a time-periodic perturbation. Its limitation is that one gets only an approximation of these parameters 
and that it applies only to the near-integrable cases. 

Chirikov [14] introduced the Whisker map in 1979 paper to investigate the properties of the stochastic 
layer of the periodically forced pendulum and of the standard map. Lichtenberg and Lieberman [5], who 
call this map the separatrix map, have further investigated its implications on the stochastic layer. 
Escande [6] has shown that one can use this map to estimate interesting quantities such as the first 
retrapping time and the first retrapping area, and was the first to relate the results of the Whisker map to 
the transport rates in the Poincar6 map. 

The Whisker map was first constructed for the periodically forced pendulum; however, the procedure 
is quite general and can be applied to any one-degree-of-freedom Hamiltonian with homoclinic loop 
which is perturbed by a time-periodic Hamiltonian (generalizations to higher dimensions and to the 
non-Hamiltonian case are possible). Weiss and Knobloch [2] indeed used the idea of the Whisker map to 
model the transport near the separatrices of a two-dimensional flow which is periodic in space and 
contains heteroclinic connections forming a homoclinic loop. 

The approach taken by all the preceding authors of replacing the dynamics of the original ODE by the 
approximating map is far from being justified; indeed the map approximates the flow correctly for one 
iterate of the map, but the accumulating error is expected to be large since the map and the flow are 
chaotic. The arm waving argument that since both are chaotic they should produce, at least statistically, 
the same answer was not established and does not seem to be correct in general. 

We use the Whisker map only for limited number of iterations. The accumulating errors is shown to be 
bounded for these iterations hence we do not rely on the vague idea of "statistically" correct 
approximation but rather on an asymptotic expansion in the small parameter. Since in all the above 
papers the exact derivation and error estimates were not written explicitly, we start by deriving the 
Whisker map. Then we derive from it estimates to the various quantities such as the type numbers 
(1, m, k), the first few escape rates (e,) and the stretching coefficients (si) .  
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9.1. Derivation of the Whisker map 

To derive the Whisker map we assume that the per turbed Hamiltonian is of the form 

h ( q , p , t )  =ho(q ,p )  + e h l ( q , p , t  ) + • ( e 2 ) ,  h l ( q , p , t  ) = h l ( q , p , t +  T),  

where the origin is assumed to be the hyperbolic fixed point which, for e = 0, is connected to itself by a 
homoclinic orbit y(t). With no loss of generality we will assume that 3,(0)= (q0,0) and that the 
Hamiltonian is already in a form so that 

ho(q,p  ) = ~pl 2 _ _  ½q2+ higher_order terms ' p , q < < l ,  

hi(O, O, t) = O. (38) 

As shown in the derivation, it is crucial to put the Hamiltonian in this form so that h(0, 0, t) = 0 for all 
t. We assume that the stable and unstable manifolds of the origin intersect each other  transversely when 
e ~ 0, forming a trellis in the Poincar6 section 2 0 = {(q,p, t)lt = 0}. This assumption can be verified 
analytically by computing the Melnikov's function [16, 17, 25]. 

The solution to the ODEs associated with this Hamiltonian, x(t) = (q(t), p(t)), can be transformed via 
a canonical transformation to the variables (h(p(t), q(t), t), t(q(t),p(t))). The Whisker map is the return 
map for these two variables on two distinct Poincar6 sections "~h and 2t*, respectively. These sections are 
defined as follows (see fig. 13): 

2t .  = { (q , p ) Lo  = 0  and I q - q 0 l  < a e } ,  

2h = {(q,  P )  I[P = 0 and 0 _< q < ae] or [q = 0 and IPl < oe,]}, 

where a is a constant of order  1. Using the evolution equations for h and t and the canonical 
transformation between these variables and (q, p)  we can define the following two maps: 

P*:  2e* "-~ 2t*,  

(h(O, q(t*),  t*), t*(O, q(t*)))  "* (h(O, q(t* + T*), t* + T*), t* + T*), 

where T* is the return time of the Poincar6 map P*. Similarly, 

P:  2h ~ 2h, 

( h ( t ) , t )  ~ (h( t  + T ) , t  + T) ,  

where T is the return time of the Poincar6 map P,  and the implicit dependence on q, p is suppressed 
from now on. 

w 

. . . .  _ 

Fig. 13. The geometry of the Whisker map. ( - - - )  Unper- 
turbed separatrices; ( ) an orbit. 
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The Whisker map is defined in terms of these two maps to be 

I/V: (h ( t ) , t* )  --* ( h ( t +  T) , t*  + T*). 

In other words, letting t < t*, define 

h n =h( t ) ,  hn+ 1 =h( t  + T),  

"l n = t*, 7n+ 1 = t* + T*. 

This map is the exact Whisker map and it is defined in terms of the exact solutions to the perturbed 
ODEs. To obtain an explicit map one has to approximate these solutions by the unperturbed solutions. 
The jump in the energy is obtained by approximating the perturbed orbit by the unperturbed homoclinic 
orbit, shifted to match the phase "in. The return time is obtained by approximating the perturbed orbit by 
an unperturbed periodic orbit of the appropriate energy level. Performing this calculation for the energy 
jump gives 

= ftn+,dh 
hn+l -hn  Jt~ dt [ ~ / ( t - t * ) + e X l ( t ' t * ) + ~ ( E E ) ' t ] d t  

--"n-- ftn+l-t*dh- t* dt [ 2 / ( t ) ' t + t * ] d t  +eftn+'-t*d~'7[Vh'Xl(t.. , -- tn "q- in*'/n* )] dt + G(e  2) 

.~ltn÷l-t* + ¢ftn+~-t* d {Vh" [x~ "s + (x  1 -x~ 'S)] ( t  + t*)} dt + •(¢2) = h ( y ( t ) ,  t n + t n ,It.-t* "t,-t* d---[ 

= eM( t*)  + ~(ehn,ehn+l,e2) ,  (39) 

which shows that as long as h n = ~'(E) the approximation is valid. The above derivation shows that the 
condition h(0, 0, t) = 0 for all t is essential for the convergence of the above integral. 

The energy level /~ of the unperturbed orbit which spends the same amount of time near the fixed 
point as the perturbed orbit is determined by the relation 

qminlho(q~n,O)=h = qminlh<q.~,.O.t,+l)=hn+~ = q(tn + 1), (40) 

which in general implies that h--fZ(hn+l, tn+l). Using /~ to determine the unperturbed orbit Xo(t) by 
requiring that xo(tn+ 1) -- (qmt.(/~), 0) we obtain 

fq(t*+l) ( t)h )-1 
" i n + l - ' i n  = Jq(t*) ~-~ [ x ° ( t ) + e x l ( t ) ] d q  

_- fq<,.+,)+8 f q < t n + l ) - - ' _ l  - fq<t*+l) (Oh t -1 
"q<t~+0-8 + Jqft,*) :q<t~+O+8~-P] [g°(t)  + ' x l ( t ) ]  dq 

fqft~+~)+, /q<t~+0-~+/'q<',*+0 [ Oho I - l x o ( t )  dq + ~ ( ¢ )  
= 2.,q(t,+~ ) -t- Jq(t*) Jq(/~+l)+8~ ~ ] 

= T(h)  + e~(¢), (41) 
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~, l~--t * 

Fo., 
I Y..t* 

~ ' ~  identify J 
Fig. 14. The geometry of the original Whisker map. (---) 
Unperturbed separatrices; ( ) an orbit. 

where T(/~) is the period of the unperturbed orbit Xo(t). 

If one requires that h(q,O,  t n + x ) = h o ( q , O ) [ l + ~ ( e ) ]  (as is the case in the periodically forced 
pendulum) eq. (40) implies that h = h~+ 111 + ~(E)], which leads, together with eqs. (39) and (41) to the 
Whisker map: 

hn+ , = h n + eM(~'n)  + G(e2),  

• .+1  = + r ( h . + D  + (42) 

where M ( t )  is the Melnikov function [16-18, 25] and T ( h )  is the period of the unperturbed orbit with 
energy h. If h,+ 1 is positive, the particle escapes to infinity and the return time is not defined. The 
geometry for which this map was first constructed, the forced pendulum, is as depicted in fig. 14 and the 
construction of the map is similar (in this case the map is defined for all h's). 

Note that multiple application of this map will necessarily lead to accumulating errors, which must be 
taken into account. Specifically, denoting by er(h.), er(G) the accumulating errors in h and -r respectively 
after the nth iteration of the map, we obtain the following difference equation for them: 

er(hn+l) = er(h~) + eM'(~'.) er(tn) + ae 2, 

er(tn+l) = er(tn) + T ' (h~+l)er(hn+l)  + be ,  (43) 

where a and b are the coefficients of the higher-order terms neglected in the Whisker map approxima- 
tion, and are assumed to be bounded. The homogeneous error equation is exactly the linearization of the 
Whisker map, hence the homogeneous solution to the error equations grows with exponential growth 
rate, which is equal to the largest Lyapunov exponent of the Whisker map. Moreover, a sudden burst of 
the error may happen since T ' ( h )  ~ oo as h ~ 0, hence, once an orbit passes too close to the separatrix 
the approximation breaks down! (Escande [6] had addressed this problem in the adiabatic limit by 
introducing a more complicated map.) These considerations imply that the Whisker map cannot be used 
to replace the dynamics of the O D E  it approximates for all initial conditions or for many iterations. Eqs. 
(43) supply a method for testing whether an individual approximation is valid. We note that the blowup 
of the error term in % supports the "ensemble" approach which assumes randomization of the phase. 
However, the growth in er(h n) is not handled by this approach, and further investigation regarding this 
effect are needed. 
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9.2. Determination o f  the type number 

To obtain the type number of the trellis in the Poincar6 section "~0 we identify the initial conditions in 
the lobe E in terms of their h 0, hi and ~'0 values, and then impose the homoclinicity condition h 2 = 0. 
The resulting return time zl and the number of distinct solutions determine the type number l and the 
existence of finite m and k. 

The points in the lobe E are characterized by the following three conditions: 

(i) h 0 > 0, (ii) h 1 < 0, (iii) 0 < ~'0 < T, (44) 

where T is the period of the Melnikov function (and of hi). The unstable (stable) boundary of E is given 
by the points which satisfy the three conditions in (44) and h 0 =  0 (h 1 = 0). The type number is 
determined by the number of solutions ~'0 to the following set of equations: 

0 < ~ - 0 < T ,  h 0 = 0 ,  h i < 0 ,  h2---0, , r l > l T .  (45) 

In general there will be a minimal l for which the above equation has solutions, and this is exactly the 
type number l. Eqs. (45) attain typically no solutions, two or four solutions (and at the bifurcation points 
one and three solutions which indicate tangencies nearby in parameter  space). When exactly two 
solutions are found, m, k can be taken to be infinite and the trellis can be approximated by a type-I 
trellis. In the neighborhood of the bifurcation from two to four solutions m, k are finite but large, hence, 
by the previous discussion the trellis can still be approximated by the type-I trellis. Farther from the 
bifurcation point, where (45) has the four ordered solutions z~, i = 1 . . . . .  4 the trellis can be approxi- 
mated by a type-{/, m, k, 0} trellis, where m and k are still needed to be determined. Using the same 
arguments as above, vce find that m will be determined as the minimal integer for which the following 
equations attain solutions 70: 

"r 2 _< "r 0 _< "r 3, h 0 = 0  , h i < 0  , h 2 < 0  , h 3 = 0 ;  r 2 > m T .  (46) 

This set of equations typically attains an even number of solutions. The type-{/, m, k, 0} trellis corre- 
sponds to the case of exactly two solutions, and can be used in the neighborhood of this case. When more 
intersections occur one has to consider trellises of other  types. The determination of k is done in a 
similar fashion by considering the inverse map on the lobe D, and will not be presented here. 

The number of iterates of the Whisker map needed to compute l and m are 2 and 3, respectively, and 
in both eases only the energy estimate is needed for the last iterate. Using eqs. (43) we find that the 
accumulating errors depend on the magnitude of T'(h 1) and T'(h 2) (assuming the derivatives of M can 
be bounded, which is the common case). While it is reasonable to assume that h 1 is large enough for the 
errors to stay small, the value of h 2 may be too small (for example, when m is very large) leading to large 
errors. This difficulty is to be expected since the J_m'S accumulate along J0 as m ~ oo and their width 
decreases exponentially with m, hence a regular perturbation method cannot resolve the exact m. 
However, it follows from the previous section that for large m one can simply replace m by oo for all 
practical purposes. The moral from this consideration is that in any case these error estimates must be 
performed in each case to verify the validity of the approximation, and that in general one expects the 
estimates for l to be accurate and the estimates for small m to be valid (and similarly for small k). 
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9.3. Determination o f  the initial escape rates and the weights 

The idea that the Whisker map can be used to compute the escape rates was first suggested by 
Escande [6], who estimated the first retrapping portion, e~ for the forced pendulum. Weiss and Knobloch 
[2] have used the Whisker map to numerically evolve initial conditions, determining whether a particle is 
t rapped or not by the sign of h. Both have suggested to use this map to investigate the long-time 
behavior of the transport. Here  we use the Whisker map only to determine the characteristics of the first 
few iterates, taking into consideration the fast growth of the accumulating errors. 

To determine the portion of E which escapes after n iterations one has to solve the following set of 
equations: 

0 < ~'o --- T, h o = 0, 

::In 1 < n such that 

h i < 0 ,  f o r l < j < n  1, h n + l > 0 ,  ( n - 1 ) T < r n < n T .  

This set of equations can be solved analytically for n < 21 (since n I = 1 in this case) and, though 
technically more difficult, for small n - 21. We note that the error estimates become worse for larger nl, 
and even for small n 1 one should be cautious when dealing with the boundaries. Using the above 
equations one can determine the escape rates e l . . . . .  e2t+ 1, and for the type-I trellises these can be used 
to determine the stretching weights s i as follows. Let  I denote the area of the lobe E which can be 
approximated by [3] 

I = E f i l M ( t ) d t  + G ( e  2) 

and let w = I - e t. Then, from the form of the matrix M in section 3 we find that for l > 2: 

el+ 1 = (1 - s  1 - s 2 ) w ,  e l + 2 = w s l ( 1  - - S  1 - - $ 2 )  , e2/+1 = ws~(1 --s  1 - s 2 )  + ws2(1 - s  3 - - $ 4 )  , 

hence 

S 1 = e l+2 S 2 = 1 e l + l  el+~2 S 3 -~- S 4 = 1 - e 2 1 + l  - S~el+ 1 
el+ 1 ' w el+ 1 ' w s  2 

Similar considerations will supply estimates for the weights in the type-{/, m, k, 0} trellises. 

10. C o n c l u s i o n s  

In sections 2 -6  we have developed a method for estimating the escape rates, the manifold length and 
the topological entropy for the type-I and the type-{/, m, k, 0} families of diffeomorphisms. In section 7 we 
have shown that many properties of the type-{/, m, k, 0} diffeomorphisms can be approximated by the 
properties of the type-I diffeomorphisms for sufficiently large m, k. This suggests that the topological 
structure of the trellis of a diffeomorphism can serve as a skeleton for approximating these quantities. 
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The validity of the semi-linear approximation, used in sections 3 and 5 to approximate the escape rates, 
is yet to be verified; a subsequent paper will be devoted to a numerical investigation of transport in a 
specific example and the proposed methods will be tested. We note that other work [7] has concentrated 
on the improvement of the semi-linear approximation of the escape rates for nonlinear maps, hence, in 
any case, the combination of these two works gives an adequate method for estimating the escape rates 
for a large family of diffeomorphisms. 

In section 8 we have linked the formalism of the weighted transition matrices with finite Markov 
chains, computed the area associated with each state, the area of the invariant set and the escaping 
probability and suggested a different method for constructing a diffusion equation. 

In section 9 we constructed an analytical method for determining the type of trellis associated with a 
time-periodic flow. In the process, we have derived the equations for the accumulating errors associated 
with the Whisker map. We have shown that one can use this map to obtain the important parameters 
which are needed for the computation of the escape rates, namely the type number, the stretching rates 
and the initial escape rates. Hence a complete approximation scheme for the computation of the escape 
rates for periodically perturbed Hamiltonian systems (which satisfy some geometrical assumptions) was 
presented. 
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Appendix. Formal definition of the type-{/, m, k, O} trellises 

We define the type-{/, m, k, 0} trellises, described by their geometrical properties in section 4, formally. 
We then use this definition to prove that two type-{/, m, k, 0} trellises are weakly equivalent and therefore 
that they are well defined. 

Denote the following statements by (sl), (s2), (s3) and (s4): 
(sl) If a, b are two <u adjacent points of h n and t (a)  = t (b)  then U[a, b] is contained in D_t(a). 
(s2) If a, b are two <u adjacent points of h n and t (a )  < t (b)  then hn+ 1 N U(a, b)  contains exactly two 

points whenever t (a)  < n - l and is empty whenever t (a)  > n - l. 

(s3) If a, b are two <~ adjacent points of hn and t (a)  = t (b)  then h,+ 1 A U(a, b)  contains exactly two 
points when t (a)  = n - m + 1 and is empty when t (a)  > n - m + 1. 

(s4) If a , b  are two <u adjacent points of hn, t ( a ) = n - l  and t ( a ) < t ( b )  then h ~ + l ~ U ( a , b )  

contains four homoclinic points, qi, i = 1, . . . ,  4, where {ql, q2} and {q3, q4} satisfy (sl) and {q2, q3} satisfy 
(s3). If n = l + k - 1 and b <u a then q~ = q2, namely there are only three new homoclinic points created 
as depicted in fig. 5. 

Recall that all the homoclinic points in K 0 of a type-I trellis satisfy either (sl) or (s2). For the 
extension, homoclinic points will be distinguished by four neighbors instead of only two, resulting in four 
different options for their behavior. 

We define the { l , m , k , O }  trellis inductively, where the initial development is given explicitly 
for n _< k + l - 1 and inductively for larger n. Let h,  = {qo, rl . . . . .  rp, Pl} = {ro, r l , . . . ,  rp, rp+ 1} where 
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ri <u ri+ ~. Le t  a(i)  denote the first homoclinic point (with respect to the unstable ordering, as above) in 
h n with type number i, and by b(i)  the last homoclinic point in hn of type i, for all i > 0. The a(i)'s and 
b(i)'s are independent of n for all i < n. 

Hypothesis CO: 

(i) For 0 < n < l, hn = {q0,Pl}. 
(ii) For n = 1, h~ = {q0, a(l),  A ,  B,  b(l) ,  Pl}, the pairs {a(l), A} and {B, b(1)} satisfy (sl), and the pair 

A, B satisfies (s3). 
(iii) For l < n < k + l all the homoclinic points which are not contained in [A, B] satisfy either (sl) or 

(s2). If m < k, (s3) implies that two homoclinic points are created in U [ A ,  B] for n = l + m, and for 
n > l + m all points in K 0 satisfy either (sl) or (s2). 

(iv) For l + k < n, {a(n - l + 1), a(n - 1)} and {b(n - l), b(n - l + 1)} satisfy (s4), and all other points 
are determined by (sl) and (s2) or, in case they were created by (s4) or given by {A, B}, by (s3). 

More precisely, given h~(n  > l + k - 1) one can construct  hn+ 1 as follows: 
(1) If t(r i) 4: t(ri+ l) and r i ~ {a(n - l + 1), b(n - 1)} then {r i, ri+ 1} satisfy (s2). 
(2) If t (r  i) 4: t(ri+ 1) and r i ~ {a(n - I + 1), b(n - l)} then {r i, ri+ 1} satisfy (s4). 
(3) If t(r i) = t(ri+l), t(ri_ 1) 4: t(r i) and t(ri+ 1) ~ t(ri+ 2) then {r i, ri÷ 1} satisfy (sl). 
(4) If t(r i) = t(ri+ l) = t(ri+2), t(ri_ 1) 4: t(r i) and t(ri+ 3) 4: t(ri+ 2) then {ri, ri+l} satisfy (s3) and 

{ri+l, ri+ 2} satisfy (sl). 
(5) If t (r  i) = t(ri+ 1) = t(ri+ 2) = t(ri+3), then {r i, ri+ 1}, {ri+ 2, ri+ 3} satisfy (sl) and {ri+ 1, ri+ 2} satisfy (s3). 

Definition 4.1. A trellis which satisfies hypotheses A, B and CO is called a trellis of type {l, m, k,0}. 

Theorem 4.1. Two trellises of type {l, m, k,0} are weakly equivalent. 

Proof. The proof is a modification of Easton's proof that two type4 trellises are weakly equivalent. 
Let ~', ~'* be two trellises of type {l, m, k, 0}, and let z,, z* denote their developments, e.g. 

z n = W ~_ U W ~_ U U [ p , p , ]  U S [ p , p _ ~ + l ] .  

We need to prove that for all n the developments z n, z*  are homeomorphic with a homeomorphism 
which preserves the respective stable and unstable ordering. 

Lemma.  There exists a one-to-one correspondence g: H n K 0 ~ H * n  K 0 which preserves the stable 
and unstable orderings and the type numbers. 

Proof. We start by defining g ( q o ) = q ~  and g ( p l ) = p ~ .  Inductively define g by assuming that 
g: h n ~ h* has been defined and is a one-to-one correspondence which preserves the stable and unstable 
orderings. 

Let a and b denote a pair of <u adjacent points of hn with U[a, b] n h ,+  1 4: O and t ( a ) <  t(b).  By 
hypothesis CO there are three cases to consider where U[a,b]  n h ,+  1 can contain two, three or four 
homoclinic points. Since hypothesis CO gives an inductive construction of h~ + 1 from the previous h, ' s  it 
is clear that the number of homoclinic points in U[g( a), g( b )] n h*n+l is the same as in U[a, b] n h~+ 1, 
hence we can define g on these homoclinic points so that the unstable ordering is preserved. We now 
need to prove that this definition of g will also preserve the stable ordering. 
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Fig. 15. Various intersections of Fn(U[a, b]) and J_  1. For details, see proof of theorem 4.1. 

(i) Consider the case t(a) = t(b), and let a <u b. By hypothesis CO, the only nontrivial case (U[a, b] A 
hn+ 1 :~ 0 )  is when t(a) = n - m + 1. In this case there are exactly two points x <u Y in U[a, b] A hn+ t. 
Since F~(a), F"(b)~Jm-1 and F"(x), F" (y )E  J_l, and since the stable and unstable orderings are 
preserved under  the map F, we conclude that if a <s b then y <s x and if b <s a then x <s Y (see fig. 
15a). Finally, by the induction hypothesis the stable ordering of a, b is preserved under  g, hence the 
stable ordering of x, y is preserved under g. 

(ii) Consider the case t(a) < t(b). By CO there are three nontrivial subcases to consider: 
(a) U[a, b] A hn+ 1 contains two homoclinic points, labeled by x ,y  where x is <u adjacent to a. 
Since t( a ) < t( b ) we obtain that Fn( a ) <~ F~( b ) and since Fn(  x ), F~( y ) ~ J_ t we obtain that the 
stable ordering is determined and y <~ x (see fig. 15b). 
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(b) U[a, b] A hn+ 1 conta ins  t h r e e  homocl in ic  points ,  l a be l e d  by x 1, x2, x 3 o r d e r e d  by the  uns tab le  

order ing .  By CO, b <u a and  t ( b ) = t ( a ) +  1 = n - l +  1, hence  F n ( a ) ~ J ;  and F n ( b ) ~ J l _ l ,  and  

the  only poss ib le  s tab le  o rde r ing  of  the  xi's is x 2 <~ x 1 <~ x 3 as d e p i c t e d  in fig. 15c. 

(c) U[a,b]Nhn+ 1 conta ins  four  homocl in ic  points ,  l a be l e d  by x1, x2, x3, x 4 so tha t  Xx is <u 

ad jacen t  to a,  and  x / s  fol low by the  uns t ab le  o r d e r i n g  so tha t  x 4 is <u ad jacen t  to b. By CO, 

t(b) = t(a) + 1 = n - l + 1, hence  F ' ( a )  ~- J; and  Fn(b) ~ J;_ 1" T h e  only s tab le  o rde r ing  which is 

a l lowable  is given by x 2 <s x3 <~ x4 <~ x~ as shown in fig. (15d, i). Fig. 15d, ii i l lus t ra tes  the  o the r  

s i tua t ion  which  satisfies the  cond i t ions  on  the  uns tab le  o rde r ing  bu t  v iola tes  CO since U[Fnb, Fnx3] 
conta ins  two add i t i ona l  homocl in ic  po in ts  and  U[x2, x 3] does  not  necessar i ly  satisfy (s3) as 

r equ i red .  

To  summar ize ,  we have shown tha t  in all the  d i f ferent  cases  the  uns tab le  o rde r ing  of  the  new 

homocl in ic  po in t s  d e t e r m i n e d  comple t e ly  the i r  s tab le  o rder ing ,  hence  tha t  g p rese rves  bo th  the  s tab le  

and  uns t ab le  o rder ings ,  and  by its cons t ruc t ion  it also p rese rves  the  type  numbers .  

T h e  ex tens ion  of  g f rom the  set of  homocl in ic  po in ts  on  K 0 to the  set of  all homocl in ic  po in t s  and  

t hen  to the  segments  connec t ing  t h e m  follows exact ly as in E a s t o n ' s  p r o o f  for  the  type- l  case. 
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