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We develop a framework for dealing with smooth approximations to billiards
with corners in the two-dimensional setting. Let a polygonal trajectory in a
billiard start and end up at the same billiard’s corner point. We prove that
smooth Hamiltonian flows which limit to this billiard have a nearby periodic
orbit if and only if the polygon angles at the corner are ‘‘acceptable.’’ The cri-
terion for a corner polygon to be acceptable depends on the smooth potential
behavior at the corners, which is expressed in terms of a scattering function. We
define such an asymptotic scattering function and prove the existence of it,
explain how can it be calculated and predict some of its properties. In particu-
lar, we show that it is non-monotone for some potentials in some phase space
regions. We prove that when the smooth system has a limiting periodic orbit it
is hyperbolic provided the scattering function is not extremal there. We then
prove that if the scattering function is extremal, the smooth system has elliptic
periodic orbits limiting to the corner polygon, and, furthermore, that the return
map near these periodic orbits is conjugate to a small perturbation of the Hénon
map and therefore has elliptic islands. We find from the scaling that the island
size is typically algebraic in the smoothing parameter and exponentially small in
the number of reflections of the polygon orbit.

KEY WORDS: Hamiltonian systems; chaos; steep potentials; stability islands;
Bolzmann Hypothesis.

1. INTRODUCTION

Modelling Hamiltonians with steep potentials as singular, billiard-like
systems, has proved to be a useful concept in a variety of applications (cold
atoms motion, (9) molecular dynamics, (5, 8) fundamentals of statistical phy-
sics, (15, 16, 19) semiclassical approximations of particles motion (18) and others).



It is natural to ask what are the conditions under which such an approxi-
mation is justified (i.e., the limit is regular), and to develop tools for
analyzing new dynamical effects which appear when the approximation
fails, see ref. 12.

The simplest setting at which these issues arise is represented by two
dimensional billiard domains, i.e., when one studies the behavior of smooth
two degrees of freedom Hamiltonian systems:

H=1
2 (p2

x+p2
y)+V(x, y; e), (1.1)

which limit, as e Q 0, to a singular Hamiltonian with a potential which
vanishes in the interior of the billiard domain D and is strictly positive
(possibly infinite) on its boundaries. In ref. 20 we proved that under some
natural conditions (they are satisfied by the potentials we encountered in
the physics literature) the motion under the smooth Hamiltonian will
smoothly limit, as e Q 0, to the motion of the singular billiard system as
long as one considers a finite number of regular reflections (reflections
which are bounded away from the corners and from being tangent to the
boundary). This result implies, in particular, that regular non-parabolic
periodic orbits of the billiard are preserved and their stability type is
unchanged. Thus, if the billiard is dispersing (i.e., the billiard’s boundary is
composed of dispersing arcs intersecting at a non-zero angle), many
unstable periodic orbits co-exist in the smooth Hamiltonian flow. However,
under the same conditions, the phase space structure of the billiard flow
and of its smooth Hamiltonian approximation may be of completely dif-
ferent character; we proved in ref. 20 that in an arbitrarily fine smooth
approximation of any dispersing billiard, stability islands may be born
from periodic trajectories which are tangent to the billiards boundary at
some point. Furthermore, we conjectured that billiards with tangent
periodic orbits are dense among dispersing billiards, and hence that the
birth of stability islands in smooth approximations of dispersing billiards
for arbitrarily small e is a typical phenomenon. Indeed, the billiards
hyperbolicity implies (1, 10) that any dispersing billiard has many nearly
tangent hyperbolic periodic orbits (of large period). Therefore, making
them actually tangent to the boundary by slightly changing the shape of the
boundary arc near an appropriately chosen point seems to be easy.

The appearance of elliptic islands in smooth Hamiltonians with steep
repelling potentials may be counter-intuitive physically, yet it is not
surprising from a mathematical point of view. Indeed, the billiard is a sin-
gular dynamical system, and the uniform hyperbolic structure of the dis-
persing billiard cannot survive a smoothening (softening) of the billiard;
a neighborhood of the singularities is exactly the place where the elliptic
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islands emerge. Analogous results for the standard map were obtained in
ref. 4. The possible appearance of elliptic islands in smooth approximations
to two-dimensional billiards was suggested by numerical experiments in
ref. 8. Their appearance in axially symmetric finite range potentials was
analyzed in refs. 2 and 3. In ref. 20, the geometric mechanism for the crea-
tion of elliptic islands by tangent orbits (periodic and homoclinic) was
suggested. In ref. 14 this lead to a precise analysis, which included a sharp
estimate on the island size (typically algebraic in the smoothing parameter e)
and scaling for arbitrary scattering billiard geometry and for physically
relevant potentials.

There is another way for a hyperbolic billiard orbit to be destroyed by
a singularity, namely when it falls into a corner of the billiard. The study of
the effect of the corners on the behavior of the smooth Hamiltonians is the
subject of the present paper.

In part, our work was inspired by recent experiments with soft
billiards reported in ref. 9. We discuss this in a greater detail in Section 8;
note only that these experiments and their numerical simulation in ref. 9
suggest that islands associated with corner polygons may be rather large.

We begin with a precise formulation of the work and with statements
of the main results in a non-technical way.

2. FORMULATION AND MAIN RESULTS

2.1. Billiard-Like Potentials

Consider the 2-degrees-of-freedom Hamiltonian system defined by
(1.1):

ẍ=−
“V(x, y; e)

“x
, ÿ=−

“V(x, y; e)
“y

, (2.1)

where V(x, y; e) is a smooth (C r+1) function of (x, y) and e. Consider the
level set H=h. Let D be a region in the (x, y)-plane with a piece-wise
smooth boundary composed of N smooth arcs S1,..., SN. The points where
two neighboring boundary arcs are joined are called the corner points. We
assume that at all the corners the arcs meet at a non-zero angle less than p.
Let V(x, y; e) limit to the billiard potential associated with D:

lim
e Q +0

V(x, y; e)=˛0 at (x, y) ¥ D,
c > h at (x, y) ¥ “D,

(2.2)

where c may be infinite.

Soft Billiards with Corners 767



We assume that the singular behavior of the potential stems from its
growth rate near the boundary alone, and not from its spatial structure,
namely we assume that there exists a smooth pattern function Q(x, y; e)
which has identical level sets to V(x, y; e) near each of the open arcs
S1,..., SN (excluding the corners) yet admits regular behavior (i.e., it has a
finite smooth limit in a neighborhood of each of the open arcs Si) in the
limit e Q 0. Then, for each i=1,..., N, there exists a barrier function
Wi(Q; e) such that:

V(x, y; e)=Wi(Q(x, y; e); e) (2.3)

near each segment Si. We also assume that the boundary arcs Si are level
lines {Q(x, y; 0)=0}, and we assume that for small Q

NQ ] 0. (2.4)

Let the functions Q be positive inside D, and assume that for small values
of Q the derivative W −(Q) is bounded away from zero, uniformly for all
small e. Since W must decrease as Q increases across zero (see (2.2)), it
follows that for small Q

W −(Q) < 0. (2.5)

This means that we stick here to the case of the so-called soft repulsion,
leaving the case of, say, Liennard–Jones potentials aside (or, equivalently,
consider sufficiently large energies, far above the threshold energy for the
existence of trapped orbits). Then, as it follows from (2.2), in any fixed
energy level {H=h < c, h ] 0} the system under consideration degenerates
into the billiard in D as e Q +0.

Indeed, since the potential asymptotically vanishes inside D, on a finite
distance from the boundary the motion becomes inertial as e Q +0. When
approaching the boundary the value of the potential sharply increases and
the trajectory must be reflected. Furthermore, we have constructed our
potential in such a way that its gradient (‘‘the reaction force’’) is, asymp-
totically, normal to the boundary, which implies the standard reflection law
(‘‘the angle of incidence equals the angle of reflection’’). Such kind of
representation, in terms of pattern and barrier functions, was proposed for
smooth billiard-approximating potentials in ref. 20. More precisely:

Definition 1. A family of C r+1 potentials V(x, y; e) is called a
billiard-like potential family if:

768 Turaev and Rom-Kedar



• There exists a domain D such that (2.2) is satisfied.

• There exist families of pattern functions Qi(x, y; e) and of barrier
functions Wi(Q; e) such that in an open neighborhood of the boundary of
D without the corner point the following conditions are satisfied:

– For sufficiently small e relations (2.3)–(2.5) hold.

– As e Q 0, the pattern function has a regular smooth limit in the
C r+1 topology.

– As e Q 0, for any finite, strictly positive values V1, V2, the func-
tions Qi(W; e) (defined as inverse to the barrier functions Wi(Q; e)) tend to
zero uniformly in the interval W ¥ [V1, V2] along with all their r+1 deriva-
tives.

It was established in ref. 20 that regular reflections of the billiard
trajectories are regular limits, along with all the derivatives (up to the order r)
with respect to the initial conditions, of trajectories of the Hamiltonians
with the corresponding billiard-like potentials, whereas tangent segments of
the billiard serve as limits of smooth trajectories in the C0-topology. We
will see that further conditions on the billiard-like potentials are needed so
that a reasonable limiting flow near the corner will emerge.

2.2. Main Results

Consider a billiard domain D in which there exists a polygon which
closes at a corner, and for which all other vertices correspond to regular
billiard reflections from the billiard boundary. We call such a polygon a
corner polygon, and denote it by P0, see Fig 1. Denote by h the angle
created by the billiard boundary arcs joining at the corner, and define
fin, fout as the angles created by the corner polygon with the corner bisector
(notice the different direction of fin and fout). The main question which we
address here is under which conditions on fin, fout, h and the potential the
corner polygon will become a periodic orbit of the Hamiltonian flow (2.1)
and, when it does, what is its stability. Notice that a segment connecting
two different corners is equivalent to a polygon with two corner vertices,
with fin=−fout in each one of them. Here we deal with polygons going
through one corner only.

In Section 3 we describe the billiard motion near a corner. The com-
putation shows that a billiard orbit which hits the boundary near the
corner by the angle j, exits a neighborhood of the corner after a finite
number of reflections, and the angle which the outgoing trajectory makes
with the corner bisector is close to one of two possible angles F± (j; h).
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Fig. 1. Geometry of a corner polygon. (---) is a corner polygon, D is a dispersing billiard.

The angle F+(j; h) is realized if the upper boundary is hit first, and
F− (j; h) is realized otherwise.

In Theorem 1 of Section 4 we prove that for any fin of the corner
polygon, there is an interval I such that if fout ¥ I, then for sufficiently
small e the Hamiltonian flow has a periodic orbit Pe which limits to P0 as
e Q 0 (this requires an additional tuning of the pattern function Q, see
details in Theorem 1). Moreover, [F− (fin, h), F+(fin, h)] ı I, and we
provide examples which show that strict inclusion is often possible. This
fact is surprising. In particular, it shows that contrary to the previously
studied cases (of non-singular periodic orbits and of tangent periodic
orbits) the existence of the periodic orbit which limits to a corner polygon is
not determined by the billiard geometry alone.

To describe the behavior of smooth billiard-like systems near the
corners, we introduce an additional ingredient, the scattering function. This
function captures the main features of the scattering by the potential at the
corner point. To define the scattering function, we make some natural
scaling assumption on the potential V near the corner. Let (x, y) denote
Cartesian coordinates with the x-axis being the bisector of the billiard
corner, and the origin at the corner point, see Fig. 1. We assume there
exists a scaling

(x̄, ȳ)=
1

d(e)
(x − xe, y − ye)

such that in the scaled coordinates the potential has a finite limit as e Q 0:

V(xe+dx̄, ye+dȳ; e) Q V0(x̄, ȳ).
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Let the level set V0(x̄, ȳ)=h be a hyperbola-like curve, which asymptotes
the lines ȳ= ± x̄ tan h

2+c± as x̄ Q .. This level curve bounds an open
wedge V0 [ h which extends towards x̄=+.. For the scaled system given
by the Hamiltonian

H=1
2 (p2

x+p2
y)+V0(x̄, ȳ), (2.6)

every trajectory with the energy H=h lies in this wedge.
Under some natural assumptions on V, we show that the solutions to

the scaled equations go towards x̄=+. as t Q +. and as t Q − ., and
that they always have an asymptotic incoming (jin=−limt Q − . arctan

py(t)
px(t),

|jin | [ h
2 ) and outgoing angles (jout=limt Q +. arctan

py(t)
px(t), |jout | [ h

2 ). More-
over, there is a well defined limiting scattering function jout=F(jin, g)
where g is a scattering parameter of a parallel beam entering the wedge at
x=+. with incoming angle jin.

This scattering function F carries the needed information on the
dynamics near the corner. For example, the range of F(jin, · ) is exactly
the interval I of allowed outgoing angles. So, according to Theorem 1,
a billiard corner polygon with the ingoing angle fin and the outgoing angle
fout may produce a periodic orbit of the Hamiltonian flow (2.1) at small
nonzero e if and only if fout=F(fin, g) for some g. More precisely, given a
fout ¥ I there exists a set (discrete, in general) of g’s such that
fout=F(fin, g). Each of these values for which “

“g F(fin, g) ] 0 corresponds
to a limit of a family of hyperbolic periodic orbits Pe (provided the generi-
city condition of Theorem 2 is fulfilled).

If, on the contrary, fout corresponds to a maximum or minimum of
F(fin, g) as a function of g, then in a two-parameter family of Hamilto-
nians H(x, y; e, c) (c is a parameter responsible for regular changes in the
geometry of the billiard, i.e., it governs smooth changes in the pattern
function Q outside the corner points) there exists a wedge in the
(c, e)-plane, at which the Hamiltonian flow possesses an elliptic non-
linearly stable periodic orbit which limits to the corner polygon as e Q +0
(Theorem 3).

The stability of the corner-passing periodic orbits is solved here in
terms of the scattering function F which is defined only by the potential at
the corner, and it is almost independent of the geometrical properties of the
underlying billiard (the above mentioned genericity condition is the only
place where the geometry enters: this condition is always fulfilled if the
billiard is dispersive and the corner polygon is never tangent to the bound-
ary, while in the non-dispersive billiard where the boundary contains
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convex components this condition may be violated, but it may always be
achieved by a small smooth perturbation of the boundary).

Unfortunately, there seems to be no explicit formulas which would
relate the scattering function to the potential V0. We prove analytically
(Lemma 1) that F(j, g) is a smooth function, and that as g Q ± . it
approaches the billiard scattering angles F± (j; h). F can be shown to be
non-monotone in quite natural examples (Section 5.3.1). How to determine
analytically the actual form of F and its critical values is, probably, an
unsolvable question in the general case. Indeed, it is known (11) that in the
case V0(x̄, ȳ)=e ȳ − kx̄+e−ȳ − kx̄ (here k=tan h

2, so k ¥ (0, 1)) the system given
by (2.6) has no other analytic integrals which are polynomial in momenta
for k ] 1 and k ] 1/`3 (i.e., when the corner angle h differs from p/2 and
2p/3). The non-existence of meromorphic integrals for this system is
proven in ref. 22 (based on the method of ref. 23) for k ] 4/(m(m − 1))2,
m ¥ Z. While we conclude that F cannot be expected to be explicitly
written, it is straightforward to recover it numerically.

Finally, there is one case in which we can prove the creation of elliptic
islands by using only asymptotic information about the scattering func-
tion. This occurs when a billiard corner polygon bifurcates into a regular
periodic orbit of the billiard: a billiard periodic orbit may detach from
the corner point under a small perturbation of the boundary if and
only if fout=F± (fin, h). In terms of the scattering function F this case
corresponds to g= ± . and it is not covered by the above mentioned
Theorems 2 and 3. The behavior of the corner-passing periodic orbits of
the Hamiltonian flow (2.1) at non-zero e has in this case a more profound
relation with the billiard geometry. We analyze this problem and supply
sufficient conditions for the creation of elliptic orbits in the Hamiltonian
flow in Theorem 4.

3. BILLIARD MOTION NEAR CORNERS

Consider the billiard motion in an open angle (angle created by two
rays). The usual representation of the billiard mapping by which the posi-
tion and incidence angle serve as phase space variables is clearly ill-defined
at the corner. Hence, we first introduce convenient variables. Let (x, y) be
Cartesian coordinates with the origin at the corner and with the x-axis
along the bisector of the corner’s angle h, directed into the billiard domain.
Recall that we assume h < p. Let

k=tan
h

2
.
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Fig. 2. Billiard motion near an open angle. · · · copies of the angle h, — billiard trajectory
in the extended space and the resulting motion restricted to one angle.

Consider the billiard motion in the open angle {|y| [ kx, x \ 0}. Take
a point (x0, y0) within the angle and consider the billiard trajectory
which starts at this point with the momenta (px=−`2h cos jin, py=
`2h sin jin); we keep this choice of the directionality of jin throughout the
paper because it proves to be convenient when working with dispersive
billiards (see the corollary to Theorem 4). The following facts are well-
known. The reader may easily recover their proofs by means of the follow-
ing procedure: each time the billiard trajectory hits the boundary, let it not
make a reflection but enter a copy of the angle obtained by the reflection of
the angle, as a whole, with respect to this boundary. As a result, one gets a
number of consecutive copies of the angle, intersected by a straight-line
(instead of the polygonal trajectory in the single angle). The analysis of this
picture is straightforward, see Fig. 2. Consider first the dependence of the
outgoing direction on the initial conditions:

1. If |py | [ kpx (i.e., p − h
2 < |jin | [ p), then the orbit never hits the

boundary—it goes to infinity keeping the values of momenta constant.

2. If − arctan y0
x0

< jin < p − h
2, then the orbit hits the upper boundary

first, makes n+=]
p − jin

h − 1
2 [ reflections (we use the notation ]z[ for the

least integer which is not less than z), and then goes to infinity with the
final values of momenta (px=`2h cos jout, py=`2h sin jout) where the
outgoing angle is defined as jout=F+(jin)=(−1)n+ (p − jin − n+h).

3. If − p+h
2 < jin < − arctan

y0

x0
, then the orbit hits the lower bound-

ary first, makes n− =]p+jin
h − 1

2 [ reflections, and goes then to infinity with
the outgoing angle jout=F− (jin)=(−1)n− (−jin − p+n− h).
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Summarizing, any orbit which does not enter the corner point (i.e.,
with jin ] − arctan y0

x0
) goes out towards x=+. after only a finite number

(n± ) of reflections, and this number is bounded uniformly for all (x0, y0, jin)
and h provided h is bounded away from zero. The final outgoing direction,
called the exiting direction, is a uniquely defined function of (x0, y0, jin):

F± (jin)=3p − jin p − h
2 < |jin | [ p

(−1)n± (−jin ± p + n± h) − p+h
2 < jin < p − h

2 ,
(3.1)

n± =6 p + jin

h
−

1
2
5. (3.2)

Let us pay a special attention to the range of ingoing angles |jin | < h
2

which corresponds to the orbits coming from infinity. Denote

Nh=5p

h
6 , Xh=

p

h
−5p

h
6 , (3.3)

and notice that

n+(j)=3Nh+1 for − h
2 < j < jc

+

Nh for jc
+ < j < h

2

n− (j)=3Nh for − h
2 < j < jc

−

Nh+1 for jc
− < j < h

2

(3.4)

where

jc
± = ± (Xh − 1

2) h.

Hence, depending on the numerical properties of p
h , four different types of

corner angles emerge, corresponding to even/odd Nh (indeed, sign(F+(jin) −
F− (jin))=(−1)Nh) and positive/negative values of (1

2 − Xh) (indeed,
sign(jc

+ − jc
− )=sign(Xh − 1

2)). The corresponding angles F± (jin) are
shown in Fig. 3. We have thus established a complete understanding of the
dependence of the exiting direction on initial conditions.

Now, fix a cross-section x=R > 0. The orbit whose all reflection
points lie in the region x < R will intersect the cross-section exactly in two
points: y=yin and y=yout. If yin < − R tan jin, then the lower boundary is
hit first, and the upper boundary is hit first otherwise. It can be shown that

774 Turaev and Rom-Kedar



Fig. 3. Reflections from an open angle. Horizontal axis is jin, (—) is F+(jin), (---) is
F− (jin). jc

± are denoted by the dotted line and separate the different regions of jin as listed in
Table I.

the value of yout is given by the following formula (in particular, yout is
piece-wise linear in yin):

y ±
out=yin

cos jin

cos jout
(−1)n± +1+R 1 tan jout+(−1)n± +1 tan jin

cos jin

cos jout

2 .

(3.5)

Notice also that the distance from the orbit to the corner remains bounded
from below by K `R2+y2

in where the factor K > 0 is bounded away from
zero provided jin+arctan

yin

R is bounded away from zero.
Now we examine the action of the map (yin, jin) W (yout, jout) on a

parallel beam. On the cross-section x=R, this corresponds to the straight-
line segment {jin=const, |yin | [ R}. Notice that for |jin | < h

2 the sign of the
slope of y ±

out(yin; jin) (sign of
“y ±

out
“yin

) has the same sign as the slope of F± (jin)
(the signs of jin, jout are chosen to preserve this property). The corre-
sponding graphs of the curves (yout(y, jin), jout(y, jin)) are shown in
Table I and in Fig. 3, where arrows indicate the direction of increasing y
(the y-axis is horizontal and the j-axis is vertical). The curves (yout(y, jin),
jout(y, jin)) are discontinuous, and, depending on the value of jin (and the
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Table I

Nh Even Nh Odd

I. jin < jc
+ |

Q

P

I. jin < jc
+

Q

|
P

Xh < 1/2 II. jc
+ < jin < jc

−

P

|
P

II. jc
+ < jin < jc

−

Q

|
Q

III. jc
− < jin

P

|
Q

III. jc
− < jin |

P

Q

I. jin < jc
− |

Q

P

I. jin < jc
−

Q

|
P

Xh < 1/2 II. jc
− < jin < jc

+
Q

|
Q

II. jc
− < jin < jc

+
P

|
P

III. jc
+ < jin

P

|
Q

III. jc
+ < jin |

P

Q

numerical properties of p/h), they either fold onto themselves or create a
step as shown.

By now, we have defined the corner map T0
cor: (yin, jin) W (yout, jout)

for the billiard in the open angle. Analogously, one can define the corner
map near the corner point of any billiard, with a curvilinear boundary. We
just take R sufficiently small, then for the orbits which hit the boundary at
x < R the effect of curvature will be only a small (of order x) additional
rotation of the vector of momenta plus a small (o(x)) displacement in
(x, y) at each reflection. Since the number of reflections is finite, it follows
that near the corner the orbits of a curvilinear and the corresponding linear
billiards remain close, provided jin and jout are bounded away from ± h

2.
Therefore, for small R, the map T0

cor is defined for the curvilinear billiard as
well, and the relation between (yin, jin) and jout will be O(R)-close to that
given by (3.1), while yout will be o(R) close to that given by (3.5) (at least
for orbits which are nonparallel to the boundary). The effect of the curva-
ture on the corner polygon for small deviations of (yin, jin) in the small R
limit may be explicitly calculated. Let o± denote the curvature on the
upper and lower boundaries of the corner. We choose the sign of o in such
a way that o > 0 for the concave boundary arcs (when looked from within
the billiard domain). Then, it may be shown that

lim
R Q 0

DT0
cor
RDj

Dy
S=(−1)n± +1 R1 2 cos fin C

o(−1)j+1

cos aj

0
cos fin

cos fout

S RDj

Dy
S (3.6)
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where

aj=
p

2
−

h

2
− jh − fin. (3.7)

For the dispersive curvilinear billiard, when o > 0 for all boundary arcs, the
image of the parallel beam is always divergent, (17, 21) i.e., every continuous
piece of the curve (yout(yin), jout(yin)) must be a graph of a strictly
increasing function of jout vs. yout. At the same time, as we explained
above, this curve must be close to that we obtain in the straight-linear case
as shown schematically for one case (Nh even, jin > jc

± ) in Fig. 4.
Consider a Hamiltonian flow which gives a sufficiently good approx-

imation to the billiard flow away from a small neighborhood of the corner.
Then, {x=R} serves as a cross-section for the Hamiltonian flow as well,
and the corresponding Poincaré map T e

cor is close to the billiard corner map
T0

cor away from a small neighborhood of the discontinuity line jin=
−arctan yin

R . The image of the horizontal line (the parallel beam) by the
Poincaré map is a continuous line which approximates the image of the
same line by the map T0

cor. Examining Table I and the corresponding
figures like 4, we see that in the dispersing case the image of this line is non-
monotone in yin in many cases (when X < 0.5 for all entering angles and
when X > 0.5, when jin ¨ [jc

+, jc
− ]).

This non-monotonicity suggests that the assumption in Theorem 3 of
the occurrence of the extrema in the scattering function is natural.
Furthermore, the non-monotonicity implies that the map T e

cor creates a
horseshoe-like shape. More precisely, we always have an interval of values

Fig. 4. Reflection of a parallel beam from a corner. (---) reflection from an open angle
corner; (—) reflection from a corner created by dispersing arcs arrow indicates the direction of
increase of yin.
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of jin where the map T e
cor creates a fold in the parallel beam: for each

jin in this interval there exists yg(jin) (and the corresponding jg(jin)=
j e

out(jin, yg(jin)) such that
“j

e
out

“y |(jin, y*(jin))=0. If the underlying billiard is
dispersive, then by transitivity one can expect that the orbit exiting the
corner with j= jg(jin) will return back close to j=jin after a number of
regular reflections. Using the cone-preservation property (see refs. 17, 21,
and 20) of the billiard flow for dispersive billiards, one can show that the
fold in the image of the parallel beam is preserved after any number of
regular reflections. For sufficiently small e the same must be true for the
smooth flow defined by the corresponding billiard-like potentials. Hence,
we can expect a Smale horseshoe here and, in particular, the birth of ellip-
tic periodic orbits like in Theorem 3. Exact formulation of some of these
ideas (for the case in which the corner polygon satisfies fout=F± (fin), so
no ergodicity arguments are needed) is given in Theorem 4.

4. EXISTENCE OF A PERIODIC ORBIT NEAR A BILLIARD CORNER

POLYGON

Consider a billiard-like Hamiltonian system (2.1) which degenerates at
e=0 into a billiard in a domain D. Take some corner point and let P0 be a
corner polygon: a polygon which leaves the corner with some outgoing
angle fout, makes a finite number of regular billiard reflections and then
closes at the corner, entering it with the ingoing angle fin.

Let us choose some small R and consider the cross-section x=R. The
orbit P0 intersects it at two points: yout=R tan fout and yin=−R tan fin.
The billiard flow in the region x > R defines an external billiard map T0

ext

which acts on the phase plane corresponding to the initial conditions on the
cross-section and maps a small neighborhood of the point (yout, fout) into a
small neighborhood of the point (yin, fin), as shown in Fig. 5. Since we
assume that P0 is a non-tangent orbit, this map is locally smooth, and,
moreover, it depends smoothly on the shape of the billiard domain.

Include the billiard domain D in a two-parameter family of domains Dmn,
by including the pattern function Q(x, y, e) in a smooth two-parameter
family of functions Q(x, y, e; m, n); the boundary of Dmn is given by zero
level lines of Q(x, y, 0; m, n) (see for example Fig. 5). Assume that all the
functions Q( · ; m, n) coincide in a small neighborhood of the corners, while
outside the small neighborhood of the corners the dependence on m and n is
generic so that

“T0
ext(yout, fout)

“(m, n)
] 0. (4.1)
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Fig. 5. Definition of external and corner maps.

This condition is insensitive to the precise choice of the small R (i.e., to the
precise position of the cross-section). The corresponding families of poten-
tials V( · , e; m, n) thus constructed will be called embedding billiard-like
families for V(x, y; e).

Definition 2. A corner orbit produces a periodic orbit if any family
of embedding billiard-like potentials V( · , e; m, n), has a continuous (in e)
family of potentials V( · , e, m(e), n(e)) such that for all small e > 0 the cor-
responding flow has a periodic orbit Pe such that Pe Q P0 as e Q +0.

Definition 3. A corner point is non-sticky if there exists a small
neighborhood of it such that for all small e > 0, any trajectory of the
Hamiltonian system which enters this neighborhood exits it in a finite time.

A sufficient condition for the corner to be non-sticky is that
V −

x(x, y; e) < 0 for all small x (recall that we put the origin at the corner).

Theorem 1. Consider a billiard-like Hamiltonian system (2.1) with
non-sticky corners. Then, for every fin there exists an interval I(fin) such
that a corner orbit produces a periodic orbit if and only if fout ¥ I(fin).
Furthermore, [F−(−1)Nh (fin), F+(−1)Nh (fin)] ı I(fin).

Proof. Consider the two small cross-sections to the corner orbit in
the phase space, S ±, lying in the {x=R} section. S+ intersects the out-
going segment of the orbit and S− intersects the ingoing one. The phase
space is parametrized by the position (x, y) of the point and its momenta,
and fixing the energy level H=h the values of the ingoing (outgoing)
momenta are uniquely restored from the angle j of S− (respectively, S+)
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which defines the direction of motion: px |S ± = ± `2(h − V(x, y)) cos j, py |S ±

=`2(h − V(x, y)) sin j. Compute the return map from S− to itself near
(j=fin, y=−R tan fin) in two steps. First construct the corner map

T e
cor: S−

Q S+

(j, y) Q (jcor=F(j, y; e), ycor=G(j, y; e)).

Since the corner is non-sticky, every trajectory starting with x=R towards
the corner must return to the cross-section after a finite time. Therefore,
the map T e

cor is well defined and C r for e > 0.
Take any j(e) Q fin and any y(e) such that F(j(e), y(e); e) has a limit

as e Q +0. Denote the set of all such limiting points by J(fin, R). By con-
tinuity of F it follows that J(fin, R) is a closed interval.

We now prove that F− (fin) and F+(fin) belong to J(jin, R) for any R.
Indeed, let (j(e), y(e))=(fin, −R tan fin+y0), where y0 is non-zero and
small (independent of e). Then, as it was explained in the previous section,
the billiard trajectory starting with these initial conditions will stay away
(at a distance of order |y0 | at least) from the corner. The number of its
reflections before returning to the cross-section will be finite and all the
reflections will be non-tangent (i.e., at non-zero angles). Hence, according
to ref. 20, the corresponding trajectory of the Hamiltonian flow tends, as
e Q +0, to the billiard trajectory. Therefore, the corresponding value of
jcor must be close to Fsign(y0)(fin) (see (3.2)), and jcor will indeed approach
Fsign(y0)(fin) as y0 Q 0. By continuity, all intermediate values between
F− (fin) and F+(fin) lie in J(fin, R) as well.

Define I(fin)=40 < R < R0
J(fin, R). As we proved above, [F− (fin),

F+(fin)] ı I(fin). Furthermore, by construction of J(fin, R), if there exists
a family of Hamiltonians with trajectories which limit to the corner orbit,
then the corner orbit must satisfy fout ¥ I(fin).

Now construct the map T e
ext: S+

Q S− by the Hamiltonian flow near
the external part of the corner orbit (i.e., the part which lies outside a
neighborhood of the corner). According to ref. 20, since all the reflections
are non-tangent, the map T e

ext is C r-smooth and close, in the C r-topology,
to the corresponding billiard map T0

ext. Therefore the map T e
ext may be

written in the form (recall that fin, fout, yin, yout are determined by the
corner orbit and are fixed):

T e
ext: R

j̄

ȳ
S=Te

ext(fout, yout)+(Te
ext)

− (fout, yout) ·Rjcor − fout

ycor − yout

S+ · · · (4.2)

where the dots stand for the quadratic and higher order terms in (jcor − fout,
ycor − yout). Recall that we consider a two-parameter family of billiard
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domains, and since T e
ext(fout, yout) is close to T0

ext(fout, yout), the genericity
assumption (4.1) allows to assume that the parameters (m, n) are chosen in
such a way that

T e
ext(fout, yout)=R fin+n

yin+m
S .

Now, composing the external map T e
ext and the corner map T e

cor we
obtain the following fixed point equation for the composed map:

Rj

y
S=T e

ext p T e
cor
Rj

y
S

=(T e
ext)

− (fout, yout) ·RF(j, y; e) − fout

G(j, y; e) − yout

S+R fin+n

yin+m
S+ · · ·

Choosing any (j, y) ¥ S− the above equation defines n, m for which
these values correspond to a fixed point, namely to a periodic orbit of the
Hamiltonian flow. If fout ¥ I(fin), we may choose the coordinates of the
fixed point (j(e), y(e)) such that j(e) Q fin and F(j(e), y(e); e) Q fout.
This would give n(e) Q 0. Since y=O(R), choosing R=R(e) tending to
zero sufficiently slowly so that the above representation for the composed
Poincaré map T e

ext p T e
cor remains valid, we also ensure m(e) Q 0. By con-

struction, the periodic orbit which corresponds to such chosen values of
(j(e), y(e)) limits to the corner orbit as e Q +0, hence the corner orbit
indeed produces a periodic orbit. L

Notice that there are examples where the inclusion [F−(−1)Nh (fin),
F+(−1)Nh (fin)] … I(j) is strict, see Section 5.3.1.

5. LOCAL ANALYSIS NEAR CORNERS

Theorem 1 demonstrates that periodic orbits which are close to a
billiard corner orbit are expected to appear in the smooth approximation to
billiards if the incoming and outgoing directions at the corner are within
some range. To obtain more precise information on the existence and sta-
bility of these periodic orbits in a given potential family the motion near
the corners must be analyzed.

5.1. The Corner Scaling Assumption

To understand the smooth motion near the corners, and in particular
the nature of the corner mapping T e

cor, we need to understand the structure
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of our Hamiltonian system at the corner point. To this aim we rescale the
equations of motion. The conditions on the potential by which this scaling
simplifies the equations are summarized in the following Corner Scaling
condition. Take a small d and let

x=dx̄+xe, y=dȳ+ye, px=`h px, py=`h py, t=
d

`h
t̄, (5.1)

and

Ve(x̄, ȳ; h)=
1
h

V(dx+xe, dȳ+ye; e)

The scaled Hamiltonian H̄=1
h H is

H̄=1
2 (p̄2

x+p̄2
y)+Ve(x̄, ȳ; h), (5.2)

and we consider the level set H̄=1 which in the configuration space corre-
sponds to the region Ve(x̄, ȳ, h) [ 1.3 Away from the corners this region is

3 Hereafter we will not show the explicit dependence of Ve(x̄, ȳ, h) on h. In some cases one
may choose a rescaling so that Ve is independent of h. Otherwise, the analysis and results
apply to the range of h values for which the assumptions on Ve hold.

bounded by a level set of the pattern functions Qe(dx̄+xe, dȳ+ye).
Take some sufficiently small R > 0 and consider the region

Ce={(x, y) | x < R, V(x, y; e) [ h}.

Part of our assumptions on V is that in the scaled coordinates this region
limits, as x̄ Q +., e Q +0, to a wedge with a limiting angle h, as in the
billiard geometry. Namely, in the scaled coordinates the region Ce is
written as

C̄e={(x̄, ȳ) | x̄ < (R − xe)/d, Ve(x̄, ȳ) [ 1}. (5.3)

Define

C̄= lim
e0 Q +0

3
e < e0

C̄e.

Condition 1. Assume there exists a function V0(x̄, ȳ) defined in the
region C̄ such that for some functions d(e), xe, ye tending to zero as e Q 0
the scaled potential Ve(x̄, ȳ) tends to V0 as e Q 0, uniformly along with all
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derivatives on any compact subset of C̄. Furthermore, assume that for suf-
ficiently large x̄ the potential Ve(x̄, ȳ) is of the form (recall that k=tan h

2 ):

Ve(x̄, ȳ)=W+(kx̄ − ȳ, e)+W− (kx̄+ȳ, e)+We(x̄, ȳ) (5.4)

where We(x̄, ȳ) Q 0 as x̄ Q ., and W± (r) Q 0 as r Q ., uniformly and
along with all derivatives (see (5.5)) for all sufficiently small e \ 0.
Furthermore, W −

± (r) < 0, and there exist a > 0 and K > 0 such that

|“n
xm, yn − mVe(x̄, ȳ)| [ K(|kx̄+ȳ|−(n+a)+|kx̄ − ȳ|−(n+a)) (5.5)

(here m=0,..., n and n=0,..., r+1).

Notice that the scaled system is well defined and smooth at e=0. It is
also seen that under this assumption the boundary of the region C̄ (it corre-
sponds to V0=1) is given, as x Q +., by two curves which approach
asymptotically the lines ȳ=kx̄ − c+ and ȳ=−kx̄+c− where c± =W−1

± (1)
at e=0.

Let us take some sufficiently large positive M and cut the wedge C̄ by
the line {x̄=M}. We assume that V0 is a scattering potential which means
that any orbit starting at x̄ [ M inside C̄ with the energy H̄=1 leaves the
region x̄ [ M in a finite time.

We show below that if M is sufficiently large, then the above assump-
tion guarantees that every trajectory starting in C̄ with H̄=1 tends to
x̄=+. as t Q ± ., i.e., the scaled system at e=0 is indeed a scattering
system. The non-stickiness of the corner point (see Theorem 1) also follows
from this assumption. A sufficient condition is, of course, “

“x̄ V0 > 0 every-
where in C̄.

Note that the corner scaling is different from the near tangency scaling
that was used in ref. 14, so these two scaling assumptions should be verified
independently for near-tangent and near-corner trajectories respectively.

For example, take V=;n
i=1 W(Qi), where the level sets of neighbor-

ing arcs (Qi(x, y; e)=0) intersect at non-zero angles (near the boundaries
and away from the corners, we may write any billiard-like potential in this
form). Then (5.5) is satisfied if W(Q)=O(Q−a) for some a > 0. While the
work here applies to many natural physical potentials—e.g., W=eQ−a and
W=e−Qb/e, it excludes the case W=e |ln Q| which was allowed in refs. 14
and 20 for the near-tangent orbits.

5.2. Dynamics in the Scaled Equations of Motion

We first establish the asymptotic properties of the scaled Hamiltonian
flow (5.2), establishing the existence of a scattering function which asymptotes
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to the billiard scattering functions F± (jin; h) in the appropriate limit. We
then compute the corner map T e

cor for the non-scaled system (2.1).
In this and in the next subsection, we drop all the bars from the
scaled variables. We start with the analysis of the behavior of the scaled
Hamiltonian flow (5.2) at large x.

Proposition 1. Consider a family of billiard-like potentials satisfy-
ing the corner scaling assumption with a scattering scaled potential V0. For
any initial condition (x(0), y(0), px(0), py(0)) of the scaled equations with
(x(0), y(0)) ¥ C̄ and the scaled energy H=1, we have x(t) Q . as t Q ± .,
e Q +0 and the asymptotic incoming and outgoing angles:

tan jin=−
py(−.)
px(−.)

tan jout=
py(+.)
px(+.)

are well defined and depend continuously on initial conditions.

Proof. Here we only outline the main ideas, see appendix for the
complete proof. For some large enough M, according to the scattering
assumption, any trajectory of the scaled system starting at x [ M will leave
this region in a finite time (we made this assumption at e=0 and, with M
fixed, it holds true for all small e due to the continuity in e). Since the time
of exit from the region {x [ M} is finite, the coordinates and momenta at
the moment of exit depend continuously on the initial conditions and e. So,
it remains to prove the proposition for large enough initial values of x and
positive initial values of px (this corresponds to the limit t Q +., the limit
t Q − . is considered in an analogous way). To this aim, the wedge region
C̄ is divided to its bulk and to boundary layers of thickness L which reside
along the corner rays, and start at x > M. In Lemma 6 (see appendix) it is
proved that outside of these boundary layers the momenta are preserved
to order O(L−a/2). Hence, once we have proven (Lemmas 7 and 8) that
the distance L(t) to the boundaries of C̄ tends to infinity as t Q +.,
we immediately obtain that the momenta must indeed stabilize in this
limit. L

Note that an analogous statement can be found in refs. 6 and 7; in
essence, our scaled potential V0 is, at sufficiently large x, a small perturba-
tion of the potential W+(kx − y)+W− (kx+y), and the latter is a potential
of the kinds considered in ref. 7.

The following lemma proves the smoothness of the asymptotic angles.
Note that a close result was obtained in ref. 13 for a smaller class of
potentials yet for any number of degrees of freedom and by a method
which looks completely different from ours.
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Lemma 1. jin (resp. jout) depends smoothly on the initial condi-
tions provided |jin | < h

2 (resp. |jout | < h
2).

Proof. See the appendix. There, we construct integral equations for
the trajectories with large x values. The solution of these equations is a
fixed point of a certain operator over the space of trajectories with nearly
constant momenta, and we prove that this operator is a contraction. L

The existence of an asymptotic angle implies that the Hamiltonian
trajectory moves finally in a wedge which is close to its asymptotic angle,
but it does not necessarily approach a straight line. Hence, a more precise
definition of the trajectory asymptotic is needed, as well as a precise defini-
tion of the asymptotic vertical shift gout:

Lemma 2. There exists a function F(x, j)=x(tan j+o(1)) such
that the trajectory of (x(0), y(0), px(0), py(0)) ¥ C̄e is of the following
asymptotic form as e Q 0 and t Q .:

y(t)=F(x(t), jout)+gout+ · · · (5.6)

where jout is the asymptotic outgoing angle of the trajectory and the dots
stand for terms which go to zero in this limit. Similarly, as e Q 0 and
t Q − .,

y(t)=F(x(t), −jin)+gin+ · · · . (5.7)

Furthermore, at e=0, (jin, gin) defines the trajectory (x(t), y(t)) uniquely.

Proof. See appendix. There, using the integral equations obtained in
the proof of Lemma 1, we examine the derivative of x(t), y(t), the coordi-
nates of a trajectory with an asymptotic angle jout, with respect to y(t0)
(where x(t0) is fixed and large). Defining F(x̄(t), j̄out)= ȳ(t) for one such
trajectory (x̄(t), ȳ(t)), we establish that for y(t0) close to ȳ(t0) the differ-
ence y(t) −F(x(t), j̄out) has a finite limit as t Q +., defined to be gout.
Finally, we prove that “gout

“y(t0) is close to 1 and in particular it is bounded away
from zero. It follows that given jout, the value of gout defines the orbit
uniquely at e=0. L

Eq. (5.6) states that all the orbits with a given value of jout (recall that
here |jout | < h

2 ) have the same asymptotic behavior as t Q +. up to
bounded terms. The constant parameter gout distinguishes between different
trajectories with the same values of jout. By the closeness of the trajectories
to the billiard trajectories limx Q +. F(x, jout)/x=tan jout. One can show
that F is linear with respect to x, provided we take a > 1 in (5.5), but we
do not need to assume this.
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5.3. The Scattering Function

It follows from Proposition 1 and Lemma 2 that for sufficiently small
e the trajectories of the system define a map

(jin, gin) W (jout, gout).

At e=0 the values of jin, out and gin, out are taken at t= ± ., i.e., they define
the asymptotic behavior of the orbit. At small e > 0 we define jout as
arctan py(t1)

px(t1) and gout as y(t1) −F(x(t1), jout) where t1 is the moment when
the orbit exits the region C̄e (i.e., x(t1)=(R − xe)/d—recall that we are
working here in the scaled variables). The values of jin and gin are defined
analogously as—arctan py(t− 1)

px(t− 1) and y(t−1) −F(x(t−1), −jin) at the moment
(t−1) the orbit enters C̄e. We will be particularly interested in the depen-
dence of jout on gin at a given jin ] ± h

2. Denote

jout=F e(jin, gin), gout=Y e(jin, gin). (5.8)

Summarizing, we have proved so far:

Lemma 3. The functions F, Y are continuous in their arguments
and e, and they are C r-smooth with respect to (j, g) when jin, jout ] ± h

2 .

We will call F e=0 the scattering function. It seems hardly possible to
find an explicit expression for the scattering function in terms of the
potential V0. However, we can obtain some qualitative information about
it. In particular, we prove the following result which shows that the billiard
scattering functions F− (jin; h), F+(jin; h) supply asymptotic information
regarding F0.

Lemma 4. For any jin ¥ (− h
2 , h

2):

lim
gin Q − .

F0(jin, gin)=F− (jin; h) (5.9)

lim
gin Q .

F0(jin, gin)=F+(jin; h). (5.10)

Proof. Fixing e, and hence a cross-section x=Re, we may take |g e
in |

sufficiently large and guarantee that |jin+arctan ye
in

Re
| > const > 0 (inde-

pendent of e). Then, according to Lemma 8 (see appendix), the value of
j e

out is indeed close to one of the billiards exit directions, i.e., to F+(jin) if
the upper boundary is approached first (this corresponds to gin ’ +.) or
to F− otherwise. Taking the limit e Q 0, corresponding to t Q − ., and
using Lemma 3 proves the result. L
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The continuity of the scattering function and the above result regard-
ing its limiting values imply:

Corollary 1. For any jin ¥ (− h
2 , h

2) the range R(jin) of the scattering
function F0(jin, gin) includes the interval [F− (−1)Nh (jin ; h), F(−1)Nh (jin ; h)]:

[F− (−1)Nh (jin; h), F(−1)Nh (jin; h)] ı R(jin) ı 5−
h

2
,

h

2
6. (5.11)

5.3.1. The Range of the Scattering Function—An Example

It is important to note that the left inclusion in 5.11 can be strict, i.e.,
the range R(jin) can be larger than the interval between the limit values F± ,
because the function F0(jin, gin) need not be monotone (at least for some
potentials). Indeed, consider for example a potential which is symmetric
with respect to reflection along the x-axis, e.g.:

V0(x, y)=
1

(kx − y)a
+

1
(kx+y)a

.

Take h=p/n and jin=0. Then, F+=F− =0 (see (3.1)). Hence, to show
that the range of the function F0 at jin=0 is not {0} it is enough to show
that it is not a constant, for example that “F

0

“g |(0, g) ] 0 at some g. Take g=0,
which corresponds to considering the trajectory which enters the corner
along the bi-sector. Then, since ṗy=0, the corresponding orbit of (5.2) is
given by the equation:

y=0,
1
2

ẋ2+V0(x, 0)=
1
2

ẋ2+
2

(kx)a
=1.

If F0(0, g) were a constant, then “

“g F0(0, 0)=0, namely solutions with
nearby initial conditions with zero vertical momentum would end up with
zero vertical momentum. We check that this is impossible for some values
of a and k. Consider the equations for Y(t)=“y

“g. Since “
2V0(x, y)
“x “y |y=0=0 we

get:

Ÿ+
“

2V0(x, y)
“y2

:
y=0

Y=0,

i.e., the condition “

“g F0(0, 0)=0 is equivalent to the existence of a non-
trivial solution (as Y(0) % 1 ] 0) to the following linear problem:

Ÿ+
a(a+1)

(kx(t))a+2 Y=0, Ẏ(+.)=Ẏ(−.)=0 (5.12)
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where x(t)=x(−t) solves, for t \ 0:

dx
dt

==2 −
4

(kx)a
, x(0)=

2
1
a

k
.

It is easy to see that every such solution must be bounded and either even
or odd. One may, however, check (we did it only numerically) that for

k=tan p
6 and a=2 (for which x(t)=

`(2+2t2k2)

k
) both the even and odd

fundamental solutions to the Y equations are unbounded. This demon-
strates that F0(jin, g) is non-constant at jin=0, h=p

3 near g=0, henceR(jin)
] {0}=[F+(0; p

3), F− (0; p
3)].

More generally we conjecture:

Conjecture 1. The spectrum of the values of a for which (5.12) has
a localized solution is discrete.

Provided this conjecture is true, for almost every a the function
F0(jin, g) has extrema at jin=0, h=p

n) and hence, for every close jin and h.
It is unclear yet how general this property is.

5.4. The Corner Map

Let us now proceed to the study of the behavior of the original system
(2.1) near a corner. So, we return to the non-scaled coordinates (x, y).
Take a cross-section x=R for some small R > 0. By Proposition 1, every
orbit which enters the region x [ R will eventually leave it crossing the
cross-section again, hence, the corner return map:

T e
cor: S−

Q S+

(yin, jin) W (y e
out, j e

out)

is well defined. Here y is the coordinate of the point of intersection with the
cross-section and j defines the direction of the velocity at the cross-section
as in Fig. 1. This is exactly the corner map that was defined in Theorem 1.

Let us make R a function of e which tends to zero so slow that all the
previous results, which we obtain for fixed R, are still valid. We will also
assume that the scaling constants d, xe, ye from (5.1) tend to zero faster
than R(e). The following lemma is the main result of this section:

Lemma 5. When |jin | < h
2 , the corner map can be written as

y e
out=R(tan j e

out+yg
e (jout))+dY e(jin, gin), j e

out=F e(jin, gin) (5.13)
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where

gin=
y e

in+R(tan jin − yg
e (−jin))

d
(5.14)

where yg
e (j) is a smooth function of j which tends to zero as e Q 0 along

with all its derivatives.

Proof. This follows from the construction of the scattering function
(see (5.8)) and the asymptotic behavior of the solutions in the scaled coor-
dinates (see Lemma 2 and formula (5.1)):

y e
out=ye+dF 1R − xe

d
, jout

2+dgout

=ye+(R − xe) tan jout+dgout+o(R − xe)

=R tan jout+dgout+o(R).

By denoting the o(R)-term here as Ryg
e we obtain

y e
out=R(tan jout+yg

e (jout))+dgout. (5.15)

Now formula (5.13) follows immediately from (5.8). Relation (5.14) follows
from (5.15) by the reversibility of the system (recall that the problem is
invariant with respect to the transformation t Y − t, jin Y − jout. L

Recall that in Theorem 1 we have shown that if a polygon within a
billiard is a limit of some trajectory of (2.1), and if it enters a corner and
leaves it with the angles fin and fout, then fout ¥ I(fin). It follows from the
above lemma that I(fin)=R(fin), the range of the scattering function F0.

6. HAMILTONIAN FLOWS NEAR CORNER POLYGONS

After understanding the properties of the corner map T e
cor (from S− to

S+) we are in a position to combine it with the external return map T e
ext

(from S+ to S−) and establish when corner polygons correspond to a limit
of periodic orbits of the Hamiltonian flow. It turns out that one require-
ment is the following non-degeneracy condition:

Definition 4. A corner polygon of the billiard is said to be non-
degenerate if fout ¥ R(fin) and infinitesimally small changes in fout change
the return position of the trajectory so that the corner is missed.
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The external return map T e
ext is defined by the trajectories on the cross-

section {(x, y, j) | x=R > 0} near the corner, and it maps a small neigh-
borhood of (j, y)=(fout, yout=R tan fout) to a small neighborhood of
(fin, yin=−R tan fin) (see Theorem 1 for more details). As above, we will
take R tending sufficiently slowly to zero as e Q +0. Since the corner
polygon has a finite number of regular reflections at x > R, the corre-
sponding external return map by the billiard flow, T0

ext, is smooth, and the
Hamiltonian return map, T e

ext, limits to it in the C r topology. (20) In particu-
lar, defining B e to be the derivative matrix of the external return map,
B e=(Te

ext)
−(fout, yout), we conclude that B e has a finite limit B0 as e Q +0.

By definition, a corner polygon is non-degenerate if and only if B0
21 ] 0.

Theorem 2. Consider a family V(x, y; e) of billiard-like potentials
limiting to a billiard in D and satisfying the scattering assumption and the
corner scaling assumption. Assume D has a non-degenerate corner polygon
with ingoing and outgoing angles (fin, fout). Then, for sufficiently small e,
for every g such that fout=F0(fin, g) and “

“g F0(fin, g) ] 0, the Hamiltonian
family has a hyperbolic periodic orbit which, as e Q 0, limits to the billiard
corner polygon.

Proof. Let us consider the combined map of the external and corner
return maps to x=R in the vicinity of this orbit:

T e
ext p T e

cor:

R j̄

ȳ
S=T e

ext
R F e(j, g)

R(tan F e(j, g)+yg
e (F e(j, g))+dY e(j, g)

S

=B e R F e(j, g) − fout

R(tan F e(j, g)+yg
e (F e(j, g))+dY e(j, g) − R tan fout

S

+R fin+m(e)
R tan fin+n(e)

S+ · · · (6.1)

where m(e), n(e) are the Hamiltonian corrections to the billiard external
return map (hence, by ref. 20, their limit is 0 as e Q 0). The dots stand for
quadratic and higher order corrections to the linearized external return
map, and

g=
y+R(tan j − yg

e (−j))
d

.
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Plugging this expression in the fixed point equation of (6.1) and taking the
limit e Q 0 (with R Q 0 slowly with e) we obtain:

Rj

0
S=RB11(F0(j, g) − fout)+fin

B21(F0(j, g) − fout)
S+ · · · , (6.2)

where the dots stand for terms quadratic (or of higher order) in
(F0(j, g) − fout).

This system has a solution (gg, fin) where gg solves fout=F0(gg; fin)
(notice that the terms denoted by dots in (6.2) vanish at this point).
Furthermore, the Jacobian of the system is given by:

B21
“

“g
F0(fin, gg)

which, by our assumptions, is nonzero. Hence, by the implicit function
theorem the fixed point equations have a nearby solution in (j, g) which
implies that the Hamiltonian flow has the corresponding periodic orbit.

To find the fixed point stability, we calculate the trace of the linearized
mapping. In the limit of small e, the trace is given by 1

d B21
“

“g F0(gg; fin)
+o(1

d). As e, d Q 0, the absolute value of the trace is certainly larger than 2
(the Jacobian of the return map at a periodic orbit equals to 1 by symplec-
ticity), which shows that the periodic orbit we have found is hyperbolic.

L

In Theorem 1 we proved that if the corner polygon is acceptable
(fout ¥ R(fin)), then there exists a special perturbation of the given billiard-
like potential family which attains a periodic orbit which limits to the
corner polygon as e Q 0. Theorem 2 demonstrates that analyzing the
behavior near the corners pays—if the corner polygon is non-degenerate
and the scattering function at the corresponding g value has no extremum,
then the results of Theorem 1 are correct without the need of any pertur-
bation (and the periodic orbit is hyperbolic).

Now we want to analyze the birth of elliptic periodic orbits from the
corner polygons. By Theorem 2 this could happen only when a specific
relation between fin and fout exists: given fin, the value of fout has to be a
local extremum of the scattering function. Existence of such a corner
polygon is a codimension-1 phenomenon, so if we want to obtain a robust
picture, it is necessary to consider here at least a one-parameter family of
billiard tables.

This means that we must introduce an additional parameter, c, in the
potential V. At e=0 the potential is singular, so we need to define exactly
to which class our one-parameter perturbations belong.
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Definition 5. A family of billiard-like potentials V(x, y; e, c) is
called a tame perturbation of the billiard-like potential V(x, y; e, 0) if the
barrier functions W do not depend on c, the pattern functions Q, defined in
some neighborhood of the open boundary arcs without the corners, are
C r-smooth with respect to c and the scaled potentials Ve depend
C r-smoothly on c as well.

Definition 6. The tame family of billiard-like potentials V(x, y; e, c)
is called non-degenerate at a corner polygon if:

m −(c) 1B0
11

“

“j
F0(fin, gg, c) − 12− n −(c) B0

21

“

“j
F0(fin, gg, c)

− B0
21

“

“c
F0(fin, gg, c)|c=0 ] 0 (6.3)

where n(c) and m(c) represent the shifts in the angle and y coordinates of
the external return map T0

ext(c) (see (4.2) at e=0), F0 is the scattering
function of V0(x, y; c), and gg is such that fout=F0(fin, gg, 0).

Theorem 3. Consider a family of billiard-like potentials V(x, y; e)
limiting to a billiard in a domain D and satisfying the scattering assump-
tion and the corner scaling assumption with a scaling parameter d(e).
Assume D attains a non-degenerate corner polygon with ingoing and
outgoing angles (fin, fout). Let V(x, y; e, c) be a one-parameter tame
perturbation of V(x, y; e), satisfying the non-degeneracy assumption.
Then, for every gg such that fout=F0(fin, gg) is a strict extremum (i.e.,
“

“g F0(fin, gg)=0, and “
2

“g
2 F0(fin, gg) ] 0) there exists a wedge of width d2(e)

in the (e, c) parameter plane in which the Hamiltonian flow defined by the
potential V(x, y; e, c) has elliptic islands of size O(d2), where the islands
limit to the billiard corner polygon as e Q 0.

Proof. Construct the return map as in Theorem 2 (see (6.1)), with
the shifts n and m depending on c now; by construction n(e, c)=0,
m(e, c)=0 at (e, c)=(0, 0). Taking the limit as e Q 0, the fixed point
equation of the previous theorem becomes:

Rj

0
S=RB11(F0(j, g, c) − fout)+fin+n(0, c)

B21(F0(j, g, c) − fout)+m(0, c)
S+ · · · .

At g=gg this system has a solution m=n=0, j=fin. Therefore, this
system has a solution (j(g), c(g)) for every g % gg provided the Jacobian
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with respect to variations of j, c does not vanish. This Jacobian is given
by:

m −(c) 1B11
“

“j
F0(fin, gg, c) − 12− n −(c) B21

“

“j
F0(fin, gg, c)

− B0
21

“

“c
F0(fin, gg, c)

which by our assumption is non-zero at c=0. Hence, for every g close to
gg there exists c for which the map has a fixed point with the given value
of g. The trace of the linearized map at this point is given by

1
d(e) B21

“

“g F0(fin, g, c)+o(1
d), which by our assumptions changes sign across

g % gg (recall that B21 ] 0 because the corner polygon is non-degenerate).
Thus, for sufficiently small e, there exists an interval of g (hence, c) values
for which the trace varies in the interval (−2, 2), and these values of trace
of c correspond to elliptic (linearly stable) periodic orbit.

To prove the existence of islands the linear information is insuffi-
cient—we need to show that the coefficients of some of the nonlinear terms
in the local return map do not vanish. We prove this by transforming the
return map, by a series of symplectic transformations, to a map which is
close to the conservative Hénon map. Then, we complete the proof by
establishing that for small e a small change in the bifurcation parameter c

causes the Hénon map bifurcation parameter to vary across a large interval
which includes the interval for which the Hénon map has an island of sta-
bility.

Rewrite the explicit return map which may be computed as in (6.1)
symbolically as:

R j −

dg −

S=Rp(j, g, e, c)
q(j, g, e, c)

S=R p̃(j, g, e, c)+ñ(c)
q̃(j, g, e, c)+m̃(c)

S (6.4)

where ñ=n+B11(F0(fin, gg, c) − fout), m̃=m+B21(F0(fin, gg, c) − fout).
Let ḡ solve the equation:

“

“g
q(fin, ḡ, e, c)=0.

Since e=c=0, g=gg, j=fin solves this equation, and since
“

2

“g
2 q(fin, gg, 0, 0)=B21

“
2

“g
2 F0(gg, fin, 0) ] 0, solution to this equation exists

for all small e and c. Now, consider the return map in the shifted coordi-
nates:

j̃=j − fin, g̃=g − ḡ
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which may be written in the following form:

R j̃ −

dg̃ −

S=R p(fin, ḡ, e, c) − fin+p1(j̃, g̃, e, c) j̃+p2(g̃, e, c) g̃

q(fin, ḡ, e, c) − dḡ+q1(j̃, g̃, e, c) j̃+q2(g̃, e, c) g̃2
S (6.5)

Symplecticity implies (recall that the equations were multiplied by d in (6.4),
and the symplectic density here is finite since px is bounded away from
zero):

:p1(j̃, g̃, e, c)+p1j̃(j̃, g̃, e, c) j̃ p2(g̃, e, c)+p1g̃(j̃, g̃, e, c) j̃+p2g̃(g̃, e, c) g̃

q1(j̃, g̃, e, c)+q1j̃(j̃, g̃, e, c) j̃ q1g̃(j̃, g̃, e, c) j̃+q2g̃(g̃, e, c) g̃2+2g̃q2(g̃, e, c)
:=O(d).

Taking j̃=0 we obtain:

p2(g̃, e, c) q1(0, g̃, e, c)=O(d, |g̃|) (6.6)

Notice that

q1 — q1(0, 0, 0, 0)=B21
“

“j
F0(fin, gg, 0)

By symplecticity of the corner map, its Jacobian is non-zero at any point.
Hence, “

“j F0(fin, gg, 0) ] 0 (recall that “

“g F0(fin, gg, 0)=0). Thus, (6.6)
implies p2(g̃, e, c)=O(d, |g̃|). Now, let us rescale these shifted coordinates:

d2ĵ=j̃, dĝ=g̃.

Plugging in (6.5) and dividing by d2 gives:

R ĵ −

ĝ −

S=Rm1+p1ĵ+p̂2 ĝ+p̂3 ĝ2+ · · ·
m2+q1ĵ+q2 ĝ2+ · · ·

S (6.7)

where

p1 — p1(0, 0, 0, 0)=B11
“

“j
F0(fin, gg, 0)

q2 — q2(0, 0, 0)=B21
“

2

“g2 F0(fin, gg, 0)

m1=
p(fin, ḡ, e, c) − fin

d2

m2=
q(fin, ḡ, e, c) − dḡ

d2

(6.8)
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and the terms denoted by dots tend to zero as e Q 0. As we scaled the
symplectic density, this map is symplectic, moreover:

:p1 p̂2+2p̂3 ĝ

q1 2q2 ĝ
:=1

hence

p̂2q1=−1, 2q2 p1=2p̂3q1.

With a slight abuse of notation, letting

j=q1q2ĵ − p1q2 ĝ − q1q2m1+p1q2m2 −
p1

2

g=−q2 ĝ −
p1

2

and plugging these expressions in (6.7) we obtain a perturbation of the
Hénon map (the dots here stand for the terms which tend to zero as e Q 0):

Rj −

g −

S=R g+ · · ·
a − j − g2+ · · ·

S (6.9)

with the bifurcation parameter:

a(c, e)=q2(−q1m1+(p1 − 1) m2) − p1+
p2

1

4
. (6.10)

From (6.8) and (6.4):

m1(e, c)=
ñ(c)
d2 +

p̃(fin, ḡ, e, c) − fin

d2

m2(e, c)=
m̃(c)
d2 +

q̃(fin, ḡ, e, c) − dḡ

d2 .

It can be shown, using the expansion of ḡ near gg that the second terms of
the mis are of lower order in d and that “m1

“c |(0, 0) % ñ Œ(0)
d

2 , and “m2
“c |(0, 0) %

m̃ Œ(0)

d
2 .

Clearly m̃(0)=ñ(0)=0. Hence, by taking d2=o(c), a(c, e) can be made to
run through an arbitrary large interval [ − A, B] as e Q 0 provided
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“

“c (d2a) ] 0. Using (6.8), (6.10) and the assumption of the non-degeneracy
of the corner polygon (i.e., B21 ] 0) we obtain that this condition reduces to
(6.3). Summarizing, we have shown that for sufficiently small e the return
map is conjugate to a map which is close to the Hénon map, hence, it has
elliptic islands on open interval of c values, as the Hénon map does. From
the rescaling it is clear that the width of those intervals in c is O(d2) as is
the width and height of these islands in the original phase space coordi-
nates. L

It follows that if the billiard is dispersing and the billiard map has a
Lyapunov exponent l, then if the corner polygon has n+1 edges, the
bifurcation coefficient a in the resulting coefficient in the Hénon map is
proportional to l2n (since p1, q1, 2 3 |Bij |=O( ln)), and the transformation
to the Hénon map includes scaling of (j, y) by factors proportional to
(l2n, ln) respectively. Hence the size of the islands, in both parameter space
and phase space, decreases exponentially with the number of reflections, as
expected.

7. GEOMETRICALLY CREATED ELLIPTIC ORBITS

We have seen (see Section 3, Table I) that in many cases the billiard
corner map takes a parallel ray and bends it non-monotonically. Hence, it
appears natural to establish that in the smooth system this bending creates
islands. One can foresee two logical possibilities here. The first one is that
this bending creates extrema in the scattering function—the birth of elliptic
islands in this case was analyzed in the previous section. The second possi-
bility is that the scattering function is monotone. In this case the bending of

Fig. 6. The Hamiltonian action on a parallel ray with non-monotonic behavior.
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the parallel beam (hence–elliptic orbits) should occur in the region where
the behavior of the system near the corner matches the billiard limit, i.e., at
large values of g. The values g= ± . correspond to fout=F± (fin), and
this is the case which we consider in Theorem 4 below (we formulate it only
for the case fout=F+(fin); the case fout=F− (fin) is treated in a symmetric
way).

Theorem 4. Consider a nondegenerate corner polygon with fout=
F+(fin). Assume that the scattering function is monotone at large positive
g, and let s=sign( “

“g F0(fin, g)) at large g. If

(−1)n++1 1B11+2B21 cos fin C
n+

j=1

o
(−1)j+1

cos aj
+B22

cos fin

cos fout

2 sign(B21) s < 2
(7.1)

where n+ and aj are given by (3.2) and (3.7), and o± is the curvature on
the upper/lower arcs of the corner, then, for sufficiently small e an elliptic
periodic orbit is produced by this billiard corner polygon.

Proof. Consider a tame embedding family of billiard potentials
V( · ; e, m, n). Below, we prove that for any such family there exists an
interval of g values, (g e

− , g e
+) with g e

± Q . as e Q 0, for which the trace of
the linearized return map to S− is in (−2, 2). Now, by Lemma 4, at all g

sufficiently large the value of jout will be close to F+(fin). Therefore, from
the proof of Theorem 1, it is seen that we may always find m(e), n(e) so that
the Hamiltonian flow with the billiard potential V( · ; e, m(e), n(e)) will have
a periodic orbit with gin ¥ (g e

− , g e
+), namely an elliptic periodic orbit is

produced.
Now we prove that there is an interval (g e

− , g e
+) with g e

± Q . as e Q 0,
on which the trace is in (−2, 2). Fixing gin and letting e Q +0, the trace of
the derivative of the Poincaré map computed for this trajectory will be
given, as in Theorem 2 by 1

d B12
“

“g F(fin, gin)+o(1
d), so it will be close to plus

or minus infinity depending on the sign of B12s. On the other hand, if we
allow gin to tend to infinity sufficiently fast, our periodic orbit will be close
to the corresponding billiard orbit and the Poincaré map of the Hamilto-
nian flow will be close to the Poincaré map of the billiard flow along with
its derivatives (here we use again the fact that jout will be close to F+(fin)).
Therefore, at such gin the trace of the derivative of the Poincaré map will be
close to that we have for the billiard map. So, in the limit e Q +0 the trace
equals to (see (3.6)):
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T=trace R (−1)n++1 1B11 B12

B21 B22

S R1 2 cos fin C
o(−1)j+1

cos aj

0
cos fin

cos fout

SS
=(−1)n++1 1B11+2B21 cos fin C

o(−1)j+1

cos aj
+B22

cos fin

cos fout

2 .

Due to continuous dependence on the initial conditions, to ensure the exis-
tence of elliptic orbits, we need to show that the interval spanned by these
two limiting trace values intersects the interval (−2, 2), and this amounts to
the condition 7.1. The g values for which this intersection occurs are
(g e

− , g e
+). To see that these values are arbitrarily large as e Q 0, notice again

that for any fixed g, the trace 1
d B12

“

“g F(fin, gin)+o(1
d) is arbitrarily large in

magnitude. L

Corollary 2. Consider a dispersing billiard-like family, with a non-
degenerate corner polygon satisfying fout=F+(fin). If F0(fin, g) is mono-
tone, then, for sufficiently small e an elliptic periodic orbit is produced by
the billiard corner polygon if (p

h − [p
h] − 1

2) h=jc
+ < fin < p

2 .

Proof. Notice that for dispersing billiards all the elements of the
matrix B have the same sign (see, e.g., ref. 20; our choice of the orientation
of fin, out is, of course, important here), and that the absolute value of the
trace (T) of the linearized motion about any periodic orbit in a dispersive
billiard is larger than 2. Hence, the inequality 7.1 is satisfied iff s=
sign( “

“g F0(g, fin))=(−1)n+. Furthermore, when the scattering function is
monotone (in fact, it is sufficient to assume it is monotone for g > g0,
where g0 is, for example, the largest solution of F0(g0, fin)=F+(fin)+F− (fin)

2 ),
the sign of its derivative coincides with the sign of (F+(fin) − F− (fin)), i.e.,
it is defined by the billiard geometry alone. Now, it may be checked that
sign(F+(fin) − F− (fin))=(−1)Nh. Since n+(fin)=Nh when jc

+ < fin < h
2 , see

3.4, the corollary is proved. L

See the table of Section 3 and Figs. 4 and 6 for the geometrical inter-
pretation of the above condition—it basically shows that when a shoulder
is created because the direction of the jump is opposite to the monotonicity
implied by the billiard dispersiveness an elliptic orbit is created.

8. SUMMARY AND CONCLUSIONS

We have developed a framework for dealing with smooth approxi-
mations to billiards with corners in the two-dimensional setting. Given
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a billiard with a corner polygon, we proved that the smooth Hamiltonian
flow can have a nearby periodic orbit if and only if the corner polygon
angles at the corner are acceptable. The criteria for a corner polygon to be
acceptable depends both on the geometry at the corner and on the smooth
potential behavior at the corners (which determines the scattering func-
tion). We proved the existence of an asymptotic scattering function,
explained how it can be calculated numerically and predicted some of its
properties, yet we were not able to calculate it explicitly (this seems to be
impossible in the general case due to the expected non integrability of the
limiting Hamiltonian at the corner). We constructed a fixed point equation
which defines the periodic orbit of the smooth system, and proved that the
periodic orbit of the smooth system is hyperbolic provided the billiard
polygon orbit is acceptable and non-degenerate and the scattering function
is not extremal there. We then proved that if the scattering function is
extremal, an elliptic periodic orbit arises, and, furthermore, that the return
map near this periodic orbit is conjugate to a map close to the Hénon map
and therefore has elliptic islands. We have found from the scaling that the
island size is typically algebraic in the smoothing parameter and exponen-
tial in the number of reflections of the polygon orbit. Finally, we have
proved that some corner polygons always produce elliptic orbits, indepen-
dent of the details of the billiard potential.

We have analyzed the limiting behavior for a given, fixed corner (fixed
h value). Recall that the nature of the billiard flow at the corner is highly
sensitive to the numerical properties of h, with bifurcation points at hN=p

N

and hg
N= p

N+1
2
. The influence of these bifurcations on the limiting Hamiltonian

flow is yet to be studied—it may produce nontrivial dynamics (e.g., the
analysis of Section 5.3.1), which is especially relevant for small angles.

Now, consider a one parameter family of dispersing billiards Dc. One
would like to characterize the appearance of islands for sufficiently small e

as a function of c. It is clear that for sufficiently small e the only mecha-
nism for creating islands is the behavior of the smooth system near singular
orbits of the billiard, namely near tangent orbits and near orbits which
enter a corner. Generically, if no special symmetries are imposed, D0 has
many near-tangent periodic orbits, but no tangent ones. We conjecture that
for generic families, a small deformation of D0 to Dc, can make a near-
tangent periodic orbit of period n to a tangent one for some c of order l−n,
where n ± 1. This implies that for sufficiently small e, very small (size
dtan(e) l−n) islands will appear in the Hamiltonian approximation to Dc. On
the other hand, we expect D0 to have many corner polygons, and in par-
ticular corner polygons with only one edge—a minimizing cord (a segment
emanating from one of the corners which has a straight angle reflection
from the boundary). Generically, these corner polygons will have the angles
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fin and fout in general position, i.e., fout will not be an extremum of the
scattering function for the given fin. So, according to our results above
(Theorem 2) only a saddle periodic orbit can be born from any such
polygon at sufficiently small e. However, due to the transitivity, we can
expect sufficiently long corner orbits for which fout will be close to the
extremum of the scattering function. Hence, some small islands can be
obtained from these orbits after c is tuned appropriately.

Note that in applications where one needs to tailor a billiard table
with some given properties the idea of small perturbation of the billiard
boundary is, in fact, irrelevant, so one can consider large changes in c as
well. Then, producing low period tangent orbits or minimizing cords with
any given values of (fin, fout) is very easy. In this way one can produce
elliptic islands of a visible size in families of billiard-like potentials with
mixing limiting billiard.

Indeed, our idea that billiard’s singular orbits produce elliptic islands
has been recently corroborated by experimental observations of the motion
of low density cold atoms by Kaplan et al. (9) In their experiment a laser
beam rotates fast, drawing a prescribed billiard region which entraps a
small number (around 105) of sufficiently slow moving atoms. One of the
ideas of ref. 9 is that opening holes in different locations of the billiard
boundary (one in each experiment) and measuring the escape rate from
them, enables one to determine whether the dynamics of the system is per-
fectly chaotic, or the phase space has a mixed structure, including islands of
stability. Indeed, in a chaotic system one expects an exponential decay rate
independently on the position of the hole. On the other hand, in the case of
a mixed phase space, the decay rate can be algebraical, unless the hole is
positioned in such a way that the stability island is removed—then the
exponential decay rate should again be expected. Exactly this type of
behavior was demonstrated in ref. 9 in the measurements of the escape
rates of the cold atoms from a tilted Bunimovich stadium. Moreover, the
significant acceleration of the escape rate happens in these experiments
exactly when the hole erases the shortest singular orbit from the billiard.
Thus, despite this billiard, by itself, is known to be chaotic, the dynamics of
real particles in these experiments is visibly influenced by the stability
islands which appear near billiard’s singular orbits (as a result of softening
due to a non-zero width of the laser beam).

APPENDIX A

Here we include the proofs of Proposition 1, Lemma 1, and Lemma 2.
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A.1. Proof of Proposition 1

Recall Proposition 1. Consider a family of billiard-like potentials
satisfying the corner scaling assumption with a scattering scaled potential V0.
For any initial condition (x(0), y(0), px(0), py(0)) of the scaled equations
with (x(0), y(0)) ¥ C̄ and the scaled energy H=1, we have x(t) Q . as
t Q ± ., e Q +0 and the asymptotic incoming and outgoing angles:

tan jin=−
py(−.)
px(−.)

tan jout=
py(+.)
px(+.)

are well defined and depend continuously on initial conditions.

Proof. Notice that by the scattering assumption every trajectory
must come to the region of sufficiently large values of the (scaled) coordi-
nate x as t Q ± .. Hence, we focus on the analysis of the behavior of the
scaled Hamiltonian flow (5.2) at large x. First, we prove that for the orbits
in C̄e, staying at a large distance from the boundaries of C̄e, the momenta
are essentially preserved:

Lemma 6. Consider a billiard-like potential family satisfying the
corner scaling assumption. For large L, for any orbit such that kx(s) −
|y(s)| > L for all s ¥ [0, y] we have

||p(y) − p(0)||=O(L−a/2).

Fig. 7. Geometry of the boundary layers.
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Proof. Assume, first, that kpx(0) − |py(0)| is bounded away from
zero:

|kpx(0) − |py(0)|| > A(k+2) L−a/2

where A is some sufficiently large constant and a reflects the assumed decay
rate of NVe (see (5.5)). Let ||p(s) − p(0)|| [ AL−a/2 at s ¥ [0, t] for some t. It
follows, in particular, that |kpx(s) − |py(s)|| \ AL−a/2 for all s ¥ [0, t]. There
are two possibilities here. First, if kpx(s) − |py(s)| \ AL−a/2, then the dis-
tance to both boundaries grows at least linearly (with the velocity not less
than AL−a/2), so we have the following estimate

||NVe(x(s), y(s))|| [ 2K(L+AL−a/2s)−(1+a).

By (5.2)

p(t)=p(0) − F
t

0
NVe(x(s), y(s)) ds. (A.1)

This gives us ||p(t) − p(0)|| [ 2K
aA L−a/2. Choosing A > `

2K
a , it follows that

||p(t) − p(0)|| < AL−a/2 (with strict inequality). Thus, the inequality domain
may be extended for all t, which proves the lemma.

The second possibility is kpx(s) − |py(s)| [ − AL−a/2. In this case, the
distance to one of the boundaries increases and the distance to the other
one decreases. Say, if kpx(s) − py(s) [ − AL−a/2, then the distance to the
upper boundary decreases with velocity of at least AL−a/2 and the distance
to the lower boundary increases (linearly in time, as well). We have the
following estimate

||NVe(x(s), y(s))|| [ K((L+AL−a/2s)−(1+a)+(L+AL−a/2(t − s))−(1+a)

which, by (A.1), again gives us ||p(t) − p(0)|| < AL−a/2 with the margin of
safety.

In the remaining case, where kpx − |py | is, initially, O(L−a/2)-close to
zero, if it eventually would deviate from zero to the distance A(k+2) L−a/2,
then the above arguments show that the further change in p cannot exceed
AL−a/2. Thus, |kpx − |py || cannot deviate from zero to more than
A(2k+3) L−a/2 in this case, i.e., the direction of momentum is preserved
with the accuracy O(L−a/2). Since the potential is of order L−a in the region
under consideration, the value of kinetic energy, and hence the absolute
value of the momentum, is preserved with the accuracy O(L−a). Thus, both
components of the momentum are preserved in this case with the accuracy
O(L−a/2), as required. L
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This lemma does not mean that the trajectories staying far from the
boundary are uniformly close to straight lines (see Fig. 7). It rather says
that the trajectory (x(t), y(t)) is confined within a narrow wedge around
the ray (x=x(0)+px(0) t, y=y(0)+py(0) t)t \ 0. It follows, in particular,
that a trajectory which enters the region kx − |y| \ L with the values
(px, py) of momenta such that kpx > |py |+O(L−a/2) will stay in this region
forever and its distance to the boundary will grow without bound. The
latter implies, by the above lemma, that the difference between the values
of momenta at some time t0 and at a larger time t1 tends to zero as
t0 Q +., no matter how large t1 is. Hence, p(t) has a limit as t Q +..
Note that the convergence to the limit is locally uniform. The rate of con-
vergence is determined by the speed with which the distance to the bound-
ary grows, and the latter is proportional to the momentum, so for nearby
trajectories the rate of convergence is approximately the same. Therefore,
the limiting value p(+.) depends indeed continuously on the initial condi-
tions in this particular case.

The behavior on a finite distance from the boundary is easily under-
stood at large x. Indeed, by the corner scaling assumption, at large x and
small e the system on a finite distance to the upper (or lower) boundary
becomes close to the integrable one. Near the upper boundary the inte-
grable limit is defined by the Hamiltonian

H=1
2 (p2

|| +p2
+ )+W+(kx − y). (A.2)

where p||=
1

`1+k2
(px+kpy), p+ = 1

`1+k2
(kpx − py), and, near the lower

boundary by the Hamiltonian:

H=1
2 (p2

|| +p2
+ )+W− (kx+y). (A.3)

where p||=
1

`1+k2
(px − kpy), p+ = 1

`1+k2
(kpx+py). In both cases p|| is the

constant of motion for the limit system. The behavior of p+ is quite simple
as well: it just grows monotonically, so the distance to the boundary (i.e.,
(kx − y) in the case of upper boundary and (kx+y) in the case of lower
boundary) either grows all the time without bound or it decreases, first, to
its minimal value where p+ =0 and then starts to increase. Note that for
fixed values of H and p|| the absolute value of p+ is uniquely defined (via
(A.2) or (A.3)) by the distance to the boundary.

Let L be a fixed finite constant and let M be sufficiently large. Define
upper and lower boundary layers as {b++kx − y [ L, x \ M} and { − b− +
kx+y [ L, x \ M}. In the limit M Q +., e Q 0 the system in the bound-
ary layers limits to the integrable systems ((A.2) or (A.3)), hence the
following result holds
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Lemma 7. For any fixed L, sufficiently large M and sufficiently
small e, any orbit of system (5.2) starting within one of the boundary layers
with the energy H=1 must leave it in a finite time, bounded from above
by some yexit(L) which is independent of the initial conditions. During the
time spent within the boundary layer, the parallel momentum p|| is approx-
imately preserved (i.e., it is preserved with the accuracy increased as
M Q +., e Q 0, uniformly with respect to the initial conditions inside the
boundary layer), and the normal momentum grows monotonically. If the
orbit does not enter or exit the boundary layer from the x=M boundary,
then p+ (exit) % − p+ (entrance). Moreover, if such an orbit penetrates the
boundary layer to the distance r, then 1

2 p2
+ (entrance) N W± (r) − W± (L).

Proof. Just note that the same kind of behavior is shown by the limit
integrable systems (A.2) or (A.3) (the approximate identities become exact,
of course), and the orbits of the system (5.2) in the boundary layers are
close to the orbits of (A.2) or (A.3) for any finite time, uniformly with
respect to the initial conditions, provided M is large and e is small. L

Notice that while the momenta obey, asymptotically, the billiard
reflection laws, the actual Hamiltonian trajectory upon exiting the bound-
ary layer may have a nonzero, yet finite (of order yexit(L) · p||) shift in the
coordinates (x, y) in the direction parallel to the boundary.

Combining the results of the two lemmas above, we may now charac-
terize the behavior of all trajectories of (5.2) at large x. As explained in
Section 3, for almost all initial conditions, a billiard trajectory starting in a
corner domain with px(0) \ 0 hits the boundaries finitely many times and
then exits the corner region with some exit direction. We now show that the
Hamiltonian trajectory at large x has the same property:

Lemma 8. Consider the scaled system (5.2), satisfying the corner
scaling assumption. Let x(0), L be sufficiently large, e sufficiently small,
and let (x(0), y(0), px(0), py(0)) ¥ C̄e, such that py(0)

px(0) ] y(0)
x(0) or px(0) \ 0.

Then, after a finite time the orbit does not visit the boundary layers, and
the values of the momenta become O(L−a/2)-close to the billiard exit direc-
tion.

Proof. Consider a fan of billiard trajectories in the corner region C̄e

(see 5.3) with the initial conditions (x(0), y(0), px(0)+u, py(0)+v) where
(u, v) are small (of order L−a/2). The billiard trajectories all have a finite
number of reflections, all of them occur at x values larger than Kx(0), for
some constant K depending on |

py(0)

px(0) − y(0)
x(0)|. Furthermore, after a finite time y,

independent on the value of x(0), the momenta of the billiard trajectories
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will be close to the exit direction. From the two previous lemmas, it follows
that the corresponding Hamiltonian trajectory stays (for any given finite
interval of time, provided x(0) was taken sufficiently large) on a finite dis-
tance in configuration space and a small distance in momenta space to this
set of the billiard trajectories. Hence, if the exit direction is not parallel to
either one of the two boundaries (see Fig. 8), it follows that for sufficiently
large L the momenta of the billiard trajectories at time y are non-parallel to
the boundaries as well (i.e., kpx(y) − |py(y)| ] 0), and the same is true for
the momentum of the Hamiltonian trajectory. It follows then (by Lemma 6)
that the momentum of the Hamiltonian trajectory is approximately con-
served for all t \ y, i.e., the Hamiltonian trajectory remains close, in the
above sense, to the fan of billiard trajectories for all time, proving the
lemma for this case.

Now consider the case for which the exit direction is parallel to one of
the boundaries, as in Fig. 9. Then, for (u, v)=(0, 0), the billiard trajectory
satisfies for all t > y, kpx(t) − |py(t)|=0. In this case, we have that the
Hamiltonian trajectory is close to the fan of billiard trajectories for t [ y,
and kpx(y) − |py(y)|=O(L−a/2). With no loss of generality, consider the
case where kpx+py=O(L−a/2), namely the Hamiltonian orbit is almost
parallel to the lower boundary at t=y. By Lemma 6, this estimate holds as
long as the orbit stays outside of the boundary layers. So, its distance to

Fig. 8. A trajectory which is not parallel to the boundary and does not aim to the corner
follows closely a ray of billiard trajectories.
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the upper boundary will steadily grow, but the orbit may, in principle,
enter the lower boundary layer. Let us prove that the estimate

kpx+py=O(L−a/2) (A.4)

will hold true for all times in this case as well.
Indeed, fix some L − > L such that

W− (L) ± (L −)−a, (A.5)

and notice that by (5.5)

W− (L) ± W− (L −).

If the orbit enters the lower boundary layer of size L, it must leave it, and
then the larger boundary layer, of size L −, after the time yexit(L −), due to
Lemma 7. During this time, the parallel component of the momentum is
approximately conserved and the perpendicular component of the momen-
tum is bounded by O(L−a/2) so we still have (A.4). To prove the lemma it
remains to prove that after the orbit left the size L − boundary layer, it can
never enter the smaller, size L, boundary layer once again; we will have
then (A.4) for all times, due to Lemma 6.

Fig. 9. A trajectory which is parallel to the boundary cannot re-enter L, as shown, without
hitting the upper boundary first (the dotted line).
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First note that (A.4) holds, by Lemma 6, as long as the orbit stays
outside the size L boundary layers. Therefore, the orbit cannot come close
to the upper boundary until it visits the lower boundary layer of size L at
least one more time. Now, if upon exiting the size L − lower boundary layer
the orbit returns to it and then reaches the size L lower boundary layer
within, then (A.5) and Lemma 7 imply that 1

2 p2
+ (L’entrance) \ W− (L) −

W− (L −) ± (L −)−a. By Lemma 6, this means that the same was true all the
time the orbit stayed outside the size L − boundary layers. Continuing the
orbit in the backward time we see that it came from the upper boundary
layer of size L −, i.e., it was there before entering the lower boundary layer
of size L. The contradiction proves the claim. L

We see that for any outgoing orbit starting at sufficiently large x the
distance to the boundary must tend to infinity. By Lemma 6, this implies
that for every such orbit momenta must have a finite limit at e=0. More-
over, it follows from our proof that the distance to the boundary tends to
infinity locally uniformly with respect to initial conditions and e. Hence,
the limit value, as e Q +0 and t Q +., depends on the initial conditions
continuously. By reversibility, the same is valid as t Q − .. It remains to
recall that by our scattering assumption all the trajectories must come to
the region of sufficiently large x both as t Q +. and t Q − .. Now,
applying the previous arguments, we have the proposition. L

A.2. Proof of Lemma 1

Recall Lemma 1. jin (resp. jout) depends smoothly on the initial
conditions provided |jin | < h

2 (resp. |jout | < h
2 ).

Proof. We will prove this claim for jout (the behavior of jin is
studied absolutely analogously). By proposition 1, any trajectory will
achieve, at some time t0, some sufficiently large value of x and momenta
values which are close to the limiting ones. Moreover, the values of the
momenta will be almost preserved at all times larger than t0. In particular,
we have px(t) > 0 and |py(t)| < kpx(t) for t \ t0. It follows then that the
distance to both boundaries grows with a non-zero velocity at t \ t0.
Hence, by taking a larger value of t0, if necessary, we may achieve that
both the values kx(t0) ± y(t0) are sufficiently large. The values of x(t0),
y(t0), p(t0) depend smoothly, of course, on the initial conditions. So we
may assume that our orbit starts at t=t0 with the initial values x(t0), y(t0),
p(t0) and we will prove that jout depends smoothly on these initial data.

Let us define the following boundary value problem. Given a time
interval [t0, t1], fix x(t0), y(t0) ¥ C̄ with sufficiently large x(t0) and with
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p(t1)=(px(t1), py(t1)) such that |py(t1)| < kpx(t1). We will prove that these
data define the trajectory uniquely, for any t1 \ t0 such that (x(t), y(t)) lie
in the region C̄e (where the scaled system is defined) at all t ¥ [t0, t1]; this
includes the case t1=. at e=0.

Indeed, rewrite Eq. (5.2) in the following form:

x(t)=x(t0)+F
t

t0

px(s) ds, px(t)=px(t1)+F
t1

t

“Ve(x(s), y(s))
“x

ds,

y(t)=y(t0)+F
t

t0

py(s) ds, py(t)=py(t1)+F
t1

t

“Ve(x(s), y(s))
“y

ds.

(A.6)

Define an operator S: p(t) W p̂(t):

x(t)=x(t0)+F
t

t0

px(s) ds, y(t)=y(t0)+F
t

t0

py(s) ds,

p̂(t)=p(t1)+F
t1

t
NVe(x(s), y(s)) ds.

(A.7)

This operator acts on the space Ud of continuous functions p(t) defined at
t ¥ [t0, t1] and such that ||p(t) − p(t1)|| [ d for some small d.

Claim 1. If |py(t1)| < kpx(t1), then at sufficiently large x(t0) the
operator S takes the space Ud into itself, and it is smooth and contracting
on Ud, uniformly for all t0 [ t1 [ +..

Proof. If p ¥ Ud, then for sufficiently small d we have kẋ ± ẏ bounded
away from zero for all t ¥ [t0, t1]. Hence we may use (5.5) to estimate the
integrals in the momentum equations of (A.7):

:F t1

t
NVe(x(s), y(s)) ds : < K F

t1

t0

(|(kx(s)+y(s))−(1+a)|

+|(kx(s) − y(s))−(1+a)|) ds=O(kx(t0) ± y(t0))−a

i.e., they can be made arbitrarily small if kx(t0) ± y(t0) were taken large
enough. This ensures that p̂ ¥ Ud (with the same d), as required. To prove
the contraction one may see from the equations obtained by the differen-
tiation of (A.7) that the norm of the derivative of S (with respect to the
functions (px, py) ¥ Ud) is small. Indeed, while the derivatives of
(x(s), y(s)) with respect to p, denoted below by X(s), Y(s), grow linearly in
time, the n-th derivatives of V decay as t−n − a (here again we use that even
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under small deviations (x(s), y(s)) are bounded away from the boundary,
so kx(s) ± y(s) grow with non-zero velocity as s Q +.). Hence, the terms

: F
t1

t

“
2

“x2 Ve(x(s), y(s)) X(s) ds : , :F t1

t

“
2

“y2 Ve(x(s), y(s)) Y(s) ds : ,

: F
t1

t

“
2

“x “y
Ve(x(s), y(s)) X(s) ds : , :F t1

t

“
2

“x“y
Ve(x(s), y(s)) Y(s) ds :

are small, which proves the contraction. The boundedness of the higher-
order derivatives of S is guaranteed by assumption (5.5) at the higher
values of n. L

By the Banach principle of contraction mappings, the operator S
has a unique fixed point (x(t), y(t), p(t))t ¥ [t0, t1] and it depends on x(t0),
y(t0), p(t1) smoothly. In fact, the above estimates show that the derivative
of S can be made as small in norm as we need, provided kx(t0) ± y(t0) are
large enough (it decays as O(kx(t0) ± y(t0))−a)). Hence, the derivative “p(t)

“p(t1)

is close to identity.
By construction, this fixed point is a solution of (A.6), i.e., it gives a

trajectory of (5.2). The corresponding value of p(t0) is defined uniquely by
x(t0), y(t0) and p(t1), moreover it depends on this data smoothly for any
t0, t1, including t1=.. Since |“p(t0)

“p(t1) | ] 0, it follows that the exiting value of
the vector of momenta p(t1) depends, in turn, smoothly on x(t0), y(t0) and
p(t0).

Denote by t1(e) the exit time of the trajectory from the region C̄e,
where the scaled system is defined, so that x(t1)=(R − xe)/d. Since
ẋ(t1)=px(t1) ] 0, it follows that t1 is defined from this condition uniquely
and depends continuously on e and smoothly on the initial conditions,
where, at e=0 we define t1=+.. In any case we have finally that p(t1(e))
depends smoothly on initial conditions and continuously on e. L

A.3. Proof of Lemma 2

Recall Lemma 2. There exists a function F(x, j)=x(tan j+o(1))
such that the trajectory of (x(0), y(0), px(0), py(0)) ¥ C̄e is of the following
asymptotic form as e Q 0 and t Q .:

y(t)=F(x(t), jout)+gout+ · · ·
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where jout is the asymptotic outgoing angle of the trajectory and the dots
stand for terms which go to zero in this limit. Similarly, as e Q 0 and
t Q − .,

y(t)=F(x(t), −jin)+gin+ · · · .

Furthermore, at e=0, (jin, gin) defines the trajectory (x(t), y(t)) uniquely.

Proof. By proposition 1 the asymptotic values of the velocity are
well-defined. However, to obtain the asymptotic formulas for the behavior
of the coordinates (x, y) as t Q ± . we need more information about the
derivatives of the solution of (A.7). Let us prove that for a fixed value of
jout the derivative (X, Y, Px, Py) —

“(x, y, px, py)
“(x(t0), y(t0)) is bounded for all times,

moreover it has a finite limit as t Q +., e Q +0. Indeed, the solution of
(A.7), as a fixed point of a contracting operator, can be found as the limit
of successive approximations computed as follows: substitute the mth
approximation in the right-hand side of (A.7) and the result will be the
(m+1)th approximation. The approximations converge with all the deri-
vatives with respect to (x(t0), y(t0), px(t1), py(t1)). We will show now that
the boundedness and the convergence to a limit of (X, Y, Px, Py) hold for
all successive approximations uniformly, and hence this remains true for
the trajectory defined by (A.7) (as it is the limit of the successive approxi-
mations).

By differentiation of (A.7) we get:

(Xm+1(t), Ym+1(t))=R1 0

0 1
S+F

t

t0

(Px(s), Py(s)) ds,

Px(t)=F
t1

t

1“
2Ve(x(s), y(s))

“x2 Xm(s)+
“

2Ve(x(s), y(s))
“x “y

Ym(s)2 ds

Py(t)=F
t1

t

1“
2Ve(x(s), y(s))

“x“y
Xm(s)+

“
2Ve(x(s), y(s))

“y2 Ym(s)2 ds

Using the decay rate of the potential and its derivatives (5.5), and the
fact that the distance from the trajectory to the boundaries grows with a
non-zero velocity, we immediately obtain that if (Xm, Ym) are bounded,
then (Px(t), Py(t))=O(t−a). Hence, the integral term in the first equation
here is small (at large t0) and convergent as t Q +., which proves the
claim.

Note that we have also shown that when we start with sufficiently
large values of x(t0), the matrix (X, Y) — (X1 X2

Y1 Y2
) is close to identity and Px,

Py are close to zero. It is also true (and it can be checked in the same
manner) that all the derivatives of the solution of (A.7) which include at
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least one differentiation with respect to (x(t0), y(t0)) have finite limits as
t Q +..

For each j̄out, fix a trajectory q̄(t)=(x̄(t), ȳ(t), p̄x(t), p̄y(t)) with
an asymptotic exit angle j̄out. Define the function F(x, j̄out) as ȳ(t)=
F(x̄(t), j̄out). Consider another trajectory q(t) which has the same asymp-
totic exit angle j̄out. Let x(t0)=x̄(t0), where px(t0) > 0, x(t0) is sufficiently
large,andy(t0)=ȳ(t0)+Dy0 whereDy0 ] 0.Then,y(t)=ȳ(t)+>Dy0

0 Y2(t) dy0

and x(t)=x̄(t)+>Dy0
0 X2(t) dy0. It follows that

y(t) −F(x(t), j̄out)=F(x̄(t), j̄out)+F
Dy0

0
Y2 dy0

−F 1 x̄(t)+F
Dy0

0
X2 dy0, j̄out

2 .

Since X2, Y2 are bounded and have a finite limit as t Q +., and, by con-
struction “F

“x =py/px, it follows that y(t) −F(x(t), j̄out) has indeed a finite
limit, defined to be gout as stated in the lemma.

In other words, all the orbits with a given value of jout (recall that here
|jout | < h

2 ) have the same asymptotic behavior as t Q +. up to bounded
terms. Namely, as t Q +.,

y(t)=F(x(t), jout)+gout+ · · · (A.8)

where the dots stand for the terms which tend to zero as t Q +.. The
constant parameter gout distinguishes between different trajectories with the
same values of jout.

If we fix jout and some sufficiently large initial value x(t0), then by
differentiating (A.8) with respect to the initial value y(t0) we obtain

“gout

“y(t0)
=

“y(t)
“y(t0)

−
“F

“x
“x(t)
“y(t0)

+ · · · .

As we mentioned, the quantities Y2(t, t0) — “y(t)
“y(t0), X2(t, t0) — “x(t)

“y(t0) have a
finite limit as t Q +., and “F

“x (x(t), jout) — p̄y(t)/p̄x(t) has a finite limit as
well. Moreover, Y2 is close to 1 and X2 is close to zero at all t \ t0, provided
t0 is large. Hence, the derivative “gout

“y(t0) is close to 1 as well, i.e., it is bounded
away from zero. It follows that given jout, the value of gout defines the
orbit uniquely at e=0. The case t Q − . is treated absolutely analogously.
In fact, formula (5.7) follows from (5.6) by reversibility of the system:
the problem is symmetric with respect to the transformation t Y − t,
jout Y − jin. L
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