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On Energy Surfaces and the Resonance Web∗
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Abstract. A framework for understanding the global structure of near-integrable n DOF Hamiltonian systems
is proposed. To this aim two tools are developed—the energy-momentum bifurcation diagrams and
the branched surfaces. Their use is demonstrated on a few near-integrable 3 DOF systems. For
these systems possible sources of instabilities are identified in the diagrams, and the corresponding
energy surfaces are presented in the frequency space and by the branched surfaces. The main results
of this formulation are theorems which describe the connection between changes in the topology of
the energy surfaces and the existence of resonant lower dimensional tori.
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1. Introduction. The study of the structure of energy surfaces of integrable systems and
the study of resonances and instabilities in near-integrable systems developed into vast dis-
parate research fields. The relation between the two received very little attention. Indeed, near
regular level sets of the integrable Hamiltonian, the standard Arnold-resonance web structure
appears, and the relation between the two fields reduces to the study of Arnold conjecture
regarding instabilities in phase space. Here, we demonstrate that near singular level sets of the
integrable Hamiltonian much information regarding possible instabilities of the near-integrable
case may be deduced from the structure of the energy surface and its relations with resonance
surfaces. We suggest that by adding some information to the traditional energy-momentum
diagrams [7], which we name energy-momentum bifurcation diagrams (EMBD), one achieves
a global qualitative understanding of the near-integrable dynamics. We relate the geometric
properties of the surfaces corresponding to lower dimensional tori in this diagram to both
bifurcations in the energy surface topology and the appearance of lower dimensional resonant
tori.

Recall that energy surfaces of generic integrable Hamiltonian systems are foliated almost
everywhere by n-tori,1 which may be expressed locally as a product of n circles on which the
dynamics reduces to simple rotations (the action-angle coordinates). A given compact regular
level set (the set of phase space points with given values of the constants of motion) may be
composed of several such tori. The energy surface is composed of all level sets with the same
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energy. If these iso-energy level sets have different numbers of components, then there exists
a singular level set on this energy surface which is not smoothly conjugate to a collection of
n-tori. Under quite general conditions, Lerman and Umanskii [33] show that by using the
reduction procedure [1] and Nehorošev results [42], such a connected singular level set may be
expressed locally as an n − s dimensional torus with frequencies depending on n − s actions
crossed with a fixed point and its asymptotic manifolds in the remaining s DOF subsystem
(s ≤ n). This s DOF subsystem is called the normal system and its structure generally
depends on the n− s actions. (See exact statements in the formulation section below. For a
complete treatment see [33].) The regular n-tori correspond to the case s = 0. The larger the
s the more cases and possibilities one has for the behavior in the normal directions. The larger
the n− s, the more possibilities to transfer between the different cases, namely, to encounter
bifurcations. In this context, the Lerman and Umanskii work [33] is mainly concerned with
n = s = 2, and the Lerman work [29] is mainly concerned with n = s = 3 (yet it includes
the generic bifurcation diagrams for the s = 1, 2 cases), whereas the works of Oshemkov [43],
Fomenko [16], and Bolsinov and Fomenko [4] are mainly concerned with n = 2, s = 1. Here,
we consider s = 1 and n ≥ 2, studying the implications of phase space bifurcations and
resonances as a source for instabilities in the near-integrable systems.

Our main result, Theorem 2 (section 8.2), roughly states that the existence of a nonde-
generate n − 1 dimensional torus of fixed points implies bifurcations in the topology of the
energy surface. Furthermore we prove that such a torus appears as an extrema of certain sur-
faces in the EMBD. In other words, this provides a relation among energy surface topology,
bifurcations in the EMBD, and lower dimensional resonant tori.

The local coordinate representation of the lower dimensional singular tori naturally leads
to investigation of critical points of the Hamiltonian function in the normal plane, with the
remaining n− s actions viewed as parameters [42]. Hence, as shown in [33, 29] and more re-
cently in [25], for small n−s, singularity theory may be used to classify all generic bifurcations
(or all generic bifurcations under given symmetries [25]) in the s DOF subsystem. Here we
consider, in addition to the above bifurcations, extrema in the action variables of the Hamil-
tonian function evaluated along the singularity surfaces. We relate these extrema to strong
resonances. A complete classification of all generic scenarios (of combinations of resonances
and bifurcations in the normal plane), using singularity theory, is yet to be developed.

Since the integrable system has n integrals of motion, a representation of the energy
surfaces corresponds to indicating the range of allowed motion and its character in some n
dimensional space (the innocent words “its character” hide a vast body of work dedicated to
understanding the topology of the level sets which are represented as points in this reduced
space as discussed below). Traditional spaces for such representation are the frequency domain
[27], the space of constants of motion (e.g., [2, 33, 40, 18, 17]), the energy-momentum space,
and the momentum space (e.g., [2, 1, 6, 7, 47, 10, 33, 40]). Such presentations are all equivalent
near regular level sets, where action-angle coordinates may be introduced. Furthermore, each
of these representations is inherently nonunique as one may choose any nonsingular vector
function of the conserved quantities to serve as the new set of coordinates. We propose that a
convenient representation appears in a specific combination of energy and momentum space.
Convenient here means the following.

C1. The geometric presentation supplies a concise summary of all the dynamics and geomet-
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rical features of the integrable system for all energy levels.
C2. The geometric presentation provides clear criteria for the location of special regions in

phase space which are expected to produce strong instabilities under a given form of
a perturbation.

While many presentations in the n dimensional space satisfy the first criteria, it appears
that the second one has not been explicitly addressed. Notice that the first criteria deals with
the integrable part of the Hamiltonian only. On the other hand, the second one depends on
the nature of the applied perturbation; hence the choice of the most convenient representation
of the integrable system depends on the form of the perturbation. These issues are explained
more fully in section 4, where we propose a choice of convenient coordinates. A similar
approach, in which the perturbation determines the appropriate integrable system, is taken
in the partial averaging procedure. Other related works, in which the geometry of the energy
surfaces and their intersection with the resonance web are related to the perturbed dynamics,
are those on “resonance streaming,” where it is argued that in 2 DOF integrable systems a
small angle between the intersecting resonance and energy curves (plotted in the frequency
space) enhances the effect of added noise [34, 48].

The various representations in the n dimensional spaces of the constants of motion identify
the regions of the allowed motion but do not, in general, supply information regarding the
topology of the level sets. Indeed, the classification of all the possible topologies of the level sets
of energy surfaces of integrable Hamiltonians is extremely challenging (see [2, 33, 40, 17, 1, 47])
and has been completed for the 2 DOF case only [17, 33]. Lerman and Umanskii use the n = 2
integrals of motion near fixed points to obtain local and global information regarding the level
sets of the integrable motion and to classify all possible generic homoclinic connections which
are induced by the local behavior [30, 31, 32]. We use their formulation in our treatment
of lower dimensional tori. Fomenko and coworkers suggested using graphs to represent all
topologically distinct tori which appear in the integrable dynamics [17, 18, 16, 43, 4]. Some of
these ideas have been extended to classify integrable 3 DOF dynamics such as the motion of
rigid body [17, 10, 11]. Oshemkov, Fomenko, and coworkers use the 2 DOF constructions on
given level sets of the third integral to analyze such systems [43, 17, 18], though Fomenko had
also formulated a higher dimensional generalization of his theory [17]. Dullin et al. (see, e.g.,
[10, 11, 51] and references therein) have shown that such approaches may be used to develop
schemes for computing action-angle coordinates even when the topology of the energy surfaces
is complicated and finding n topologically independent circles (n circles which are irreducible
to each other) is an a priori complicated task. Here we investigate the structure of energy
surfaces with very simple topological structure for which we are able to generalize Fomenko–
Oshemkov graphs to branched surfaces. These branched surfaces may be viewed as simple
examples of Fomenko’s higher dimensional theory.

The paper is ordered as follows: in section 2 we describe the type of the near-integrable
Hamiltonians we study, with prototype examples of 3 DOF systems which demonstrate the
appearance of nontrivial energy surfaces. In section 3 we formulate the notions of branched
surfaces, topological bifurcations of the energy surfaces, and the EMBD. In section 4 we
propose a convenient choice of momentum and explain how the choice of suitable coordinates
depends on the form of the perturbation. In section 5 we describe the structure of the energy
surfaces and the resonance web in the frequency space and in the energy momentum space
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near normally elliptic lower dimensional tori. The integrable structure in this a priori stable
case is trivial and we add essentially no new insights to the known results. It is included
here to build intuition for the next two sections. In section 6, we describe these structures
near level sets corresponding to normally hyperbolic invariant (n − 1)-tori. In section 7 we
proceed to describe these structures near normally parabolic tori. In section 8 we prove our
main theorems relating resonances and bifurcations. We conclude with a discussion section.

2. Formulation. Consider a near-integrable Hamiltonian H(q, p; ε) = H0(q, p)+εH1(q, p; ε),
ε � 1, (q, p) ∈ M ⊆ R

n × R
n, where M is a 2n dimensional smooth symplectic manifold and

H0, H1 are C∞ (smooth).2 We further assume that there exists ε0 > 0 such that H1 is
bounded3 for all real values of (q, p; ε) for ε ∈ [0, ε0]. H0 represents the completely integrable
part of the Hamiltonian (the unperturbed system) and its structure is described below. For
any ε, a perturbed orbit with energy h resides on the energy surface H0(·) = h − εH1(·; ε).
Hence, by assumption, the structure of the unperturbed energy surfaces and their resonance
webs in an O(ε)-interval of energies near h supplies global information on the allowed range
of motion of the perturbed orbits.

The integrable n DOF Hamiltonian, H0(q, p); (q, p) ∈ M ⊆ R
n × R

n, has n integrals
of motion, H0 = F1, F2, . . . , Fn ∈ C∞(M), which are functionally independent at almost
all points of M and are pairwise in involution: {Fi, Fj} = 0; i, j = 1, . . . n. Assume that
n ≥ 3 and that the Hamiltonian level sets, Mg = {(q, p) ∈ M, Fi = gi; i = 1, . . . , n},
are compact (this assumption implies, in particular, that the set F1, F2, . . . , Fn is complete;
see [33]). By the Liouville–Arnold theorem (see [42] and [2, 26]), the connected compact
components of the level sets Mg, on which all of the dFi are (pointwise) linearly independent,
are diffeomorphic to n-tori, and hence a transformation to action-angle coordinates (H0 =
H0(I)) near such level sets is nonsingular. Consider a neighborhood of a level set Mg0 which
possibly contains a singularity set at which s of the dFi’s are linearly dependent; on each
connected and closed component of such a Hamiltonian level set there is some neighborhood
D, in which the Hamiltonian H0(q, p) may be transformed by the reduction procedure to the
form (see [33], [42])

H0(x, y, I), (x, y, θ, I) ∈ U ⊆ R
s × R

s × T
n−s × R

n−s,(2.1)

which does not depend on the angles of the tori, θ. The symplectic structure of the new
integrable Hamiltonian (2.1) is

∑s
j=1 dxj ∧ dyj +

∑n−s
i=1 dθi ∧ dIi, where (x, θ, I) are the gener-

alized action-angle variables (s = 0 corresponds to the maximal dimensional tori—the n-tori
discussed above). The motion on the (n−s) dimensional family (parameterized by the actions
I) of (n− s)-tori is described by the equations

θ̇i = ωi(x, y, I), İi = 0.

The geometrical structure of the new Hamiltonian, H0(x, y, I), is such that for any fixed
I (I = (I1, . . . , In−s)) an (n− s)-torus is attached to every point of the (x, y) plane (space, for

2One may relax these requirements to the Cr case, but this is left for future studies.
3It is probably sufficient to assume that for large (q, p) H1 does not grow faster than H0, namely, that for

ε0 > 0 sufficiently small there exist constants C1, C2 ≥ 0 such that |H1(q, p; ε)| < C1 + C2 |H0(q, p)| for all
(q, p) ∈ M and ε ∈ [0, ε0], but we leave the details of this case for future work.
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s > 1). The (x, y) plane (space) is called the normal plane (space) [2, 44, 3] of the (n− s)-tori
and defines their stability type in the normal direction to the family4 of tori. Invariant lower
dimensional tori, of dimension (n− l), generically exist for each 1 ≤ l ≤ n− 1; indeed, for any
given s consider an m-resonant value of I. Then, for each such I, there exists an m dimensional
family (corresponding to different initial angles) of n− s−m dimensional tori. All these tori
belong to the higher n − s dimensional resonant torus, associated with I. The existence of
such lower dimensional tori is restricted to the n − s −m dimensional resonant surface of I
values. A different type of lower dimensional invariant tori, which are of the main interest
here, corresponds to isolated fixed point(s) of the s dimensional normal space. These appear
on an n − s dimensional manifold of I values, the singularity manifold (such a generalized
fixed point corresponds to a manifold on which each dFi for i = 1, . . . , s is linearly dependent
on dI1, . . . , dIn−s, where dI1, . . . , dIn−s are pointwise linearly independent). Locally, one may
choose the (x, y, I) coordinate system so that for these tori

∇(x,y) H0(x, y, I)|pf = 0, pf = (xf , yf , If ).(2.2)

Following the terminology of [33], the invariant tori on which (2.2) is satisfied are called here
singular tori, and the manifolds of action values on which this equation is satisfied are called
singularity manifolds. The structure of these is discussed in the next section.

Hereafter, consider the case s = 1 only. The invariant (n − 1)-tori have an (n − 1)
dimensional vector of inner frequencies, θ̇ = ω(pf ). The normal stability type of such families
of (n − 1)-tori is determined by the characteristic eigenvalues (resp., Flouqet multipliers for
the corresponding Poincaré map) of the linearization of the system about the tori; generically,
these tori are either normally elliptic5 or normally hyperbolic.6 If the torus has one pair
of zero characteristic eigenvalues in the direction of the normal (x, y) space, it is said to be
normally parabolic. In addition, the normal frequency7 [2, 44], Ω, of the (n−1)-tori is defined
as the (nonnegative) imaginary part of the purely imaginary characteristic eigenvalues.8

Locally, in the (x, y, I) coordinate system, the normal stability of the invariant torus is
determined by

det

(
∂2H0

∂2(x, y)

∣∣∣∣
pf

)
= −λ2

pf
,(2.3)

where pf satisfies (2.2). Indeed, when λp
f

is real and nonvanishing the corresponding family
of tori is said to be normally hyperbolic, when it vanishes it is called normally parabolic,
and when it is pure imaginary it is normally elliptic. For more details on the above see
[33, 2, 5, 12, 13, 14, 15, 21, 22, 23, 24, 26, 44, 3] and references therein.

4Notice that a single torus belonging to this family has neutral stability in the actions directions. The normal
stability referred to in the Hamiltonian context ignores these directions; see [5, 3] and references therein.

5If all the characteristic eigenvalues of an invariant lower dimensional torus (with respect to its normal
(x, y) space) are purely imaginary (and do not vanish), it is said to be normally elliptic.

6If all the characteristic eigenvalues of an invariant lower dimensional torus (with respect to its normal
(x, y) space) have a nonzero real part, it is said to be normally hyperbolic.

7In some references, these are called characteristic frequencies.
8In some references, e.g., [5], the normal frequencies are defined as the positive imaginary parts of the

characteristic eigenvalues.
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An example of a 3 DOF integrable Hamiltonian which is in the form (2.1), possesses fam-
ilies of invariant 2-tori of all three normal stability types (elliptic, hyperbolic, and parabolic)
at x = y = 0, and satisfies all the stated above assumptions is

Hbif (x, y, I1, I2) =
y2

2
− x2

2
I1 +

x4

4
+

(
µ1 +

1

2

)
I2
1

2
+

I2
2

2
+ α2I2 + α3I1I2,(2.4)

where α2, α3, and µ1 are fixed parameters. Notice that this Hamiltonian has a Z2 symmetry
in the (x, y) coordinates. We will comment in the text when these symmetries play a role. In
fact, the form of 3 DOF integrable Hamiltonian families in general position having a parabolic
2-tori has been derived (see [16],[33]). A complete study of their structure will be discussed
elsewhere. We may compare it to a standard model of (Z2 symmetric) a priori stable systems
with bounded energy surfaces having a family of normally elliptic 2-tori at x = y = 0,

Hst(x, y, I1, I2) =
y2

2
+

x2

2
+

1

8

(
x2 + y2

)2
+ α1I1 + α2I2 +

I2
1

2
+

I2
2

2
(2.5)

=

2∑
i=0

(
αiIi +

I2
i

2

)
, α0 = 1,

and to the corresponding (symmetric) a priori unstable system

Hust(x, y, I1, I2) =
y2

2
− x2

2
+

x4

4
+ α1I1 + α2I2 +

I2
1

2
+

I2
2

2
,(2.6)

which has a family of normally hyperbolic 2-tori at x = y = 0.
In sections 5, 6, 7, the representative models (2.5), (2.6), and (2.4) are studied in detail.

In particular, for each of these models we construct the EMBD, find the branched surfaces
which supply a representation for the energy surfaces geometry, and plot representing energy
surfaces in the frequency plane. Below we define the branched surfaces and the EMBD. Some
readers may find it helpful to read sections 5, 6, 7 first.

3. EMBD and branched surfaces. Fomenko and his coworkers have developed a sophis-
ticated representation of integrable 2 DOF systems which leads to their orbital classification.
Roughly, on each energy surface, they have suggested representing families of regular 2-tori by
edges of a graph, whereas singular surfaces at which such families coalesce or undergo a change
of orientation correspond to the vertices of the graph. The vertices corresponding to singular
level sets are labeled according to the orbital changes they represent: “type A molecules” are
vertices corresponding to normally elliptic circles, and “type B molecules” are vertices corre-
sponding to a normally hyperbolic circle and its figure eight separatrices. Starred molecules
correspond to change of orientation. To deal with higher dimensional systems, Fomenko and
Oshemkov have suggested constructing tables of the 2 DOF molecules which list how these
graphs vary as the constants of motion are changed. Other setups, closer to our construction,
were suggested by Fomenko in [17] but, to the best of our knowledge, have not been examined
or used for any specific model. Here, we explicitly construct the branched surfaces which we
view as a different type of generalization of the simplest form (molecules A and B) of the
Fomenko graphs.
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Consider an integrable n DOF Hamiltonian on a 2n dimensional symplectic manifold M
and its associated n integrals of motion H0 = F1, F2, . . . , Fn. We call the set of constants of
motion valid if they are almost everywhere functionally independent on M , are pairwise in
involution, and are complete. Denote by Ah the set of allowed values of F2, . . . , Fn on the
energy surface Eh = {(q, p)| H0(q, p) = h}, namely, Ah = {(g2, . . . gn)| M(h,g2,...gn) �= ∅} (recall
that the level set Mg is defined as Mg = {(q, p) ∈ M, Fi = gi; i = 1, . . . , n}). It follows
that Eh = ∪(g2,...gn)∈Ah

M(h,g2,...gn). Let k(g) denote the number of disconnected components

of Mg, so M(h,g2,...gn) =
⊎k(h,g2,...gn)

j=1 l
(h,g2,...gn)
j , where lgj denotes a connected component of

Mg. Fixing h, k(h, g2, . . . gn) is constant when the level sets M(h,g2,...gn) deform smoothly with
g2, . . . gn (namely, at h, g2, . . . gn the energy-momentum mapping is a trivial fiber bundle; see
[2, 47]). Recall (see section 2) that the singularity surfaces of Ah are defined as the values of
(g2, . . . gn) for which there exists a point (q, p) ∈ M(h,g2,...gn) at which s of the dFi are linearly
dependent and the rank of the n vectors dFi at the singularity is n − s. Let us denote the
union of the singularity surfaces of some given Ah by AS

h . For any finite range of (h, g) values,
by the assumption on the compactness of the level sets, k(h, g2, . . . gn) may change only across
a singular level set, and hence

AS
h ⊇ AGS

h = {(g2, . . . gn)| k(h, g2, . . . gn) is discontinuous in g2, . . . gn}.

Equality of these sets is expected in the generic case with s = 1. Nongeneric (e.g., symmetric)
coincidences, by which disconnected level sets coincide and split at the same g value, may be
similarly treated and will be ignored here (see [18] and [33] for discussion). The behavior of
k(h, g2, . . . gn) near singular level sets with s ≥ 2 will be studied elsewhere.

We remark that Smale [47, 2] has called the values at which the energy-momentum map
is not locally trivial in the differentiable sense (such as AS

h) the bifurcation set—these values
correspond to changes in the topology of the level sets. We follow here the Lerman and Uman-
skii terminology, referring to AS

h as the singularity set, and we reserve the term bifurcation
for changes in the energy surfaces structure (see Definition 3), which is the main focus of the
current work.

Define a function Sh : Eh → R
n as (recall that g1 = h)

Sh(q, p) = (δ(q, p), g2, . . . gn), where Fi(q, p) = gi, i = 1, . . . , n,

where the scalar function δ(q, p) satisfies the following:
• δ(q, p) = 0 iff k(g(q, p)) = 1;
• two points belonging to the same level set have the same δ iff they belong to a connected

component of Mg,

{(q, p), (q′, p′) ∈ Mg and δ(q, p) = δ(q′, p′)} ⇔ (q, p), (q′, p′) ∈ lgj ;

• δ(q, p) is smooth (Cr for some r ≥ 1) for all (q, p) ∈ Eh with (g2, . . . gn) ∈ Ah\AS
h , and

δ(q, p) is continuous for (g2, . . . gn) ∈ Ah.
Hence, on each level set Mg, δ(q, p) (with g = F (q, p)) attains exactly k(g) distinct values,

i.e.,

{δ(q, p)| (q, p) ∈ Mg} = {δ1(g), . . . , δk(g)(g)}
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and δi(g) �= δj(g) for i �= j. Therefore, we may define

δ(lgj ) = δ(q, p)|(q,p)∈lgj = δj(g), j = 1, . . . , k(g),

and hence

Sh(l
g
j ) = Sh(q, p)|(q,p)∈lgj = (δj(g), g2, . . . gn).

Furthermore, if lgj and lgi coalesce to a (singular) level set lg
∗

k as g → g∗, then δ(lgi,j) →
δ(lg

∗

k ). Summarizing, there is a 1-1 correspondence between the range of Sh and the connected
components of the level sets in Eh, and this correspondence depends continuously on the phase
space points even across singularities. In particular, if the level sets are compact, every point
at which Sh(q, p) is smooth corresponds to a single n-torus, and every point at which Sh(q, p)
is not smooth corresponds to a singular level set. Applying the above procedure for n = 2
leads immediately to the construction of the Fomenko graphs.

Definition 1. The branched surface of an energy surface Eh is given by the surface Sh(Eh);
namely, it is the n−1 dimensional surface embedded in R

n : F = {y| y = Sh(q, p), (q, p) ∈ Eh}.
Definition 2. Two branched surfaces are equivalent if there exists a diffeomorphism of R

n

which maps one branched surface to the other.
Notice that, by definition, two equivalent branched surfaces are topologically conjugate.

We require differentiable conjugacy so that the singular surfaces of two equivalent branched
surfaces will be topologically conjugate to each other as well.

Figure 9 demonstrates that such a construction is possible for simple systems with sin-
gularities of order 1 (namely, with s = 1). These branched surfaces generalize the simplest
molecules (A, B) of the Fomenko graphs. The application of this procedure to physical models
is under current investigation; it may lead to further development of the theory, generalizing
the other types of molecules which were constructed by Fomenko and his coworkers. Whether
this will finally lead to a complete classification of integrable higher dimensional systems, as
in the 2 DOF case, is unknown to us. First steps in this direction, in a more abstract setting,
are included in [17]. In any case, it is easy to see the following.

Corollary 1. Given an integrable Hamiltonian system, the branched surfaces constructed
from two different valid sets of constants of motion (with H0 = F1) are equivalent.

In particular, the construction of these surfaces from the EMBD, the frequency space
diagram and the constant of motion diagrams are all equivalent, as demonstrated in sections
5, 6, 7.

Nearby energy surfaces correspond usually to a smooth deformations of each other; hence
they will usually have equivalent branched surfaces. When nearby energy surfaces have dif-
ferent structures we say that the energy surface has undergone a bifurcation.

Definition 3. hc is an energy bifurcation point if the branched surfaces at hc and at hc ± ε
are not equivalent for arbitrarily small ε.

The EMBD supplies global information on the bifurcations of the energy surfaces structure
and their relation to resonances; consider an integrable Hamiltonian system H0(q, p) in a region
D ⊆ M at which a transformation to the local coordinate system H0(x, y, I) with s = 1 is
nonsingular. The energy-momentum map assigns to each point of the phase space (x, y, I) a
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point in the energy-momentum space (h = H0(x, y, I), I). The EMBD is a plot in the (h, I)
space (for (h, I) in the range of D) which includes

• the region(s) of allowed motion (the closure of all regions in which the energy-momentum
mapping is a trivial fiber bundle; see [2, 47]);

• the s = 1 singular surfaces (h, I) = (H0(pf ), If ) (see (2.2)) where the normal stability
of the corresponding singular (n− 1)-tori, defined by (2.3), is indicated;

• the strongest resonance surfaces on which the inner frequencies of the tori vanish,
ωi = 0, and the regions in which back-flow occurs (where θ̇i(x, y, I) changes sign along
the level set (h = H0(x, y, I), I) for some i = 1, . . . , n− s);

• the energies at which topological bifurcations occur and the branched surfaces in the
intervals separate by these bifurcation points.

4. The dependence of the EMBD on the form of the perturbation. The EMBD depends
on the choice of the generalized action-angle co-ordinates (x, y, I). In particular, a symplectic
transformation of the (θ, I) coordinates to other generalized action-angle coordinates (ϕ, J)
may change some geometric properties of this diagram. Furthermore, transformations of the
form (θ, I) → (ϕ = θ −	(I)t, I), which correspond to moving relative to particular tori with

frequency vectors ω = 	(I), for which Hnew(J) = H0(J)−H(J) (where 	(I) = ∂H(I)
∂I ), may

change the topology of the energy surfaces, the structure of their singularity manifolds, and
the nature of their intersections with the resonance hypersurfaces. Hence, it appears that
finding the “correct” representation is ill defined in the context of the integrable system. We
propose that the form of the perturbation resolves these issues.

The role of the form of the perturbation is apparent when one considers the procedure of
partial averaging in near-integrable Hamiltonian systems (see [2, p. 173]). First, this procedure
implies that if for a given perturbation the number of independent resonant vectors, r, is
smaller than the number of angle variables (here n− 1), then, by averaging over the n− r− 1
nonresonant directions one can obtain a system which is exponentially close to the r + 1
dimensional system depending on the n − r − 1 parameters (the averaged actions). Hence,
with no loss of generality, we assume here that the perturbation includes n − 1 independent
resonant directions. Then, it follows that for autonomous systems the transformation (θ, I) →
(ϕ = θ − 	(I)t, I) produces time-dependent Hamiltonians, and hence 	(I) must vanish
identically.9 This trivial statement implies, in particular, that given an a priori stable near-
integrable system of the form (2.5), for generic vector α, it may not be transformed to a
system with α = 0 without introducing time-dependent perturbations.

The second issue which arises is the choice of the action variables, which implicitly de-
termines which resonances are considered strong. This issue is again well understood in the
context of partial averaging [2]; the form of the anticipated perturbation determines which of
the resonant surfaces will produce the strongest response; consider the near-integrable system
expressed near a singular level set in some local generalized action-angle coordinates:

H(q, p) = H0(x, y, I) + εH1(x, y, θ, I).(4.1)

9Here we need the assumption on having n − 1 independent resonant relations. Indeed, if n ≥ 3 and
H1(x, y, I, θ) = cos(θ1 − θ2), one can immediately see that this statement is false.
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Consider the Fourier series of H1:

H1(q, p) = H1(x, y, θ, I) =
∑

|k|=|k1|+···+|kn|≥r0

hk(x, y, I) exp(i 〈k, θ〉).

Then, provided hk are monotonically decreasing (if H1 is assumed to be analytic, hk decays
exponentially for large |k|, and if H1 is assumed to be Cr, the decay rate is of order |k|−r),
the strongest resonances are given by the frequencies satisfying 〈k, ω〉 = 0 for k values which
are included in the sum (hk �= 0 near the singular level set) and satisfy |k| ≈ r0; see [2] for
an exact definition and discussion. In particular, by a change of the action angle coordinates
(θ, I) → (ϕ, J) one may arrange the terms so that the first n terms in the above sum have kj =
rje

j
n = (0, . . . , rj , . . . 0) for j = 1, . . . , n (where rj is in the jth place, and are monotonically

increasing with j). Then, the strongest resonances occur along the action variables directions.
Summarizing the above observations, we propose the following.
Definition 4. The local generalized action-angle coordinates (x, y, θ, I) of the integrable part

of a near-integrable system are called suitable if the following hold:
• The perturbed system is autonomous.
• The strongest n− s resonant terms are nonzero and are aligned, in decreasing order,

along the n− s actions. More precisely, let

H1(q, p) = H1(x, y, θ, I) =
∑
j

hkj (x, y, I) exp(i
〈
kj , θ

〉
), j ∈ N,(4.2)

with
∣∣kj∣∣ monotonically increasing with j and ‖hkj‖ monotonically decreasing with j

for equal
∣∣kj∣∣ values. Then, kj ||ejn−s (i.e., kj is parallel to ejn−s) for j = 1, . . . , n− s,

where ejn−s is the n− s dimensional unit vector with 1 at the jth entry.
Notice that the sum in (4.2) is assumed to have at least n−s terms with n−s independent

kj vectors. In general the sum has an infinite number of nonzero terms, where the kj vectors
with j > n− s are linearly dependent on (k1, . . . , kn−s).

Lemma 1. If (x, y, θ, I) and (q, p, ϕ, J) are two suitable coordinate systems for the Hamil-
tonian (4.1), then I = J and ϕ = θ + f(I).

Proof. First, we recall that by generalized action-angle coordinates we assume that near
the singular level set the unperturbed equations of motion for (I, θ) are of the form

dI

dt
= 0 = −∂H0

∂θ
,
dθ

dt
= ω(x, y, I) =

∂H0

∂I
,

and similarly for the (J, ϕ) coordinates. Let W (J, θ) denote the generating function which
transforms (xf , yf , θ, If ) to (qf , pf , ϕ, Jf ). Since both θ and ϕ are angle coordinates, it follows
that W (J, θ) is of the form W (J, θ) = JTRθ+F (J), where R is a unimodular integral matrix
(see [2, p. 173]), so that

ITf =
∂W

∂θ
= JT

f R,

ϕ =
∂W

∂Jf
= Rθ + F ′(Jf ).
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In particular, the requirement that both θ and ϕ are 2π periodic in all their arguments and
that the transformation is smooth implies that R is a constant integral matrix, independent
of Jf . Furthermore, extending the transformation to a neighborhood of the singular level
set must still preserve this property. To complete the proof, we need to show that R = Id.
Indeed, expressing the perturbed part of the Hamiltonian in the (x, y, θ, I) coordinates and
using the above transformation in (4.2), we obtain

H1(q, p, ϕ, J) =
∑
j

h̃kj (q, p, J) exp(i
〈
kj , R−1ϕ

〉
), j ∈ N,

with kj ||ejn−s for j = 1, . . . , n − s (where R−1 is a unimodular integral matrix as well).
Therefore, insisting that q, p, ϕ, J are suitable implies that for all ϕ〈

ejn−s, R
−1ϕ

〉
=

〈
ejn−s, ϕ

〉
for j = 1, . . . , n− s

and hence that R−1 = R = Id.

Conversely, one may take the usual convention by which, given an integrable Hamiltonian
in a given coordinate system, the analysis determines which form of the perturbation will
cause the largest instability in the vicinity of a given resonance junction. In particular, by
the appropriate change of coordinates of the integrable system, one obtains that the strongest
resonances possible are realized when k = ejn = (0, 0, . . . , 0, 1, 0, . . . , 0). With this view the
notion of strongest resonances is inherently coordinate-dependent.

In our presentation of the energy surfaces in the energy-momentum plots we relate changes
in the energy surface singular structures to strong resonances of lower dimensional tori and
to instabilities in the near-integrable system. To make such statements well defined, we insist
that the coordinates we use are locally suitable coordinates. On the other hand, results which
relate strong resonances to topological changes in the energy surfaces (e.g., Theorem 2) are
independent of the choice of the coordinate system.

5. A priori stable systems. To obtain a good understanding of the proposed presentation
of the EMBD we begin with the simplest and most familiar model of a priori stable systems
near the lower dimensional torus. Let us examine the presentation of the regular part of the
energy surface first in the frequency space and then in the energy-momentum space.

5.1. Energy surfaces in the frequency space (S). For the standard Hamiltonian Hst (see
(2.5)) the transformation from momentum to frequency variables is a shift (ω(I) = α+I, α =
(1, α1, α2)) and is regular everywhere, so we can write

Hst(I) = Hst(ω) =
1

2
‖ω(I)‖2 − 1

2
‖α‖2 ,(5.1)

and we obtain the standard result that in the definite case the energy surfaces appear in the
frequency space as spheres centered at ω = 0. The natural oscillations near the elliptic fixed
point x = y = 0 (where the transformation from the (x, y) coordinates to the action-angle
coordinates is singular) correspond to the circle ω0 = α0 = 1, and in this representation appear
as a regular level set of the energy surface. Here it is natural to insist on positive I0 value,
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Figure 1. A resonance web on a cap of an energy surface of an a priori stable system ( (5.1) with h = 0.5).

leading to energy surfaces in the form of “caps” with boundaries: ωh = {ω| ‖ω‖2 = 2h+‖α‖2,
ω0 ≥ α0 = 1}. The boundary ω0 = α0 corresponds to the family of lower dimensional tori
x = y = 0 on the given energy surface; see Figure 1. In the figure we also show the dense
intersection of the resonance surfaces, given by planes passing through the origin, with this
cap (see [2, 23, 34] and references therein). The planes ωi ≡ 0, i = 0, 1, 2, correspond to the
strongest resonances. Notice that the only energy surface which includes the origin is a sphere
with diminishing radius, and such an energy surface is disallowed for systems of the form (5.1)
since10 ‖α‖ �= 0.

5.2. Energy surfaces in the energy-momentum space (S). In Figure 2, we construct the
EMBD of the system (2.5) by presenting the energy surfaces in the space (H0, I1, I2), where
Hst(x, y, I) = H0. For any given energy H0 = h, the allowed region of motion is bounded
by the family of normally elliptic 2-tori (x, y, I) = (0, 0, I(h)). The corresponding singularity
surface in the EMBD is given by the paraboloid

p0
ell(h, I1, I2) =

{
(h, I1, I2)| Hst(0, 0, I) =

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
= h, h ≥ hell = 0

}
;

namely, for a given h, (I1, I2) belong to a circle of radius
√

2h + α2
1 + α2

2 which is centered
at (−α1,−α2).The singularity manifolds corresponding to normally elliptic invariant tori are
denoted by a collection of solid curves in the EMBD as demonstrated in Figure 2. To see that

10Recall that changing α corresponds to considering perturbations which are quasi-periodic functions of
time.
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Figure 2. EMBD of an a priori stable system.

motion is allowed only for I values which are interior to this paraboloid notice that from (2.5)

0 ≤ y2

2
+

x2

2
+

1

8

(
x2 + y2

)2
= h− 1

2

2∑
i=1

(Ii + αi)
2 +

α2
1 + α2

2

2
.

The energy surfaces which appear as caps in the frequency space are “flattened” here to
discs in the energy-momentum space. An example of an energy surface in the (I2, I1) plane,
corresponding to the two dimensional (2D) slice of Figure 2 at H0 = 1, is presented in Figure
3A. The thin vertical lines in the 2D sections of the EMBD indicate the region of allowed
motion. In Figure 3B we present a 2D slice in the (H0, I1) plane at I2 = 0, on which we
schematically indicate the corresponding Fomenko graph by a thick black line. The Fomenko
graph for any positive h and an interior I2 value is simply a segment: each interior point on this
segment corresponds to a single 3-torus, and each of the end points corresponds to a normally
elliptic 2-torus (“atom A” in [18]). For such a fixed I2 value the energy surface appears as
a 2-sphere in the (x, y, I1) space. The poles of this sphere are normally elliptic 2D tori, and
they correspond to the boundaries of this component of the energy surface. Equivalently, we
may think of a natural generalization of the Fomenko graphs to branched surfaces, and in this
trivial case the branched surface is simply a single disk, as shown in Figure 9A: an interior
point to the disc corresponds to a 3-torus, and a point on the disc boundary corresponds to
a 2-torus.

The strong resonances ωi = 0, i = 1, 2, correspond here to the hyperplanes Ii = −αi.
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Figure 3. 2D slices of an EMBD of an a priori stable system. A: One energy surface. B: Range of energy
values for a fixed value of I2 and a schematic Fomenko graph.

Their intersections with the singularity manifold p0
ell satisfy

·
θi =

∂H

∂Ii

∣∣∣∣
x=y=0,Ii=−αi

=
dH(p0

ell)

dIi

∣∣∣∣
x=y=0,Ii=−αi

= 0.

Namely, it corresponds to a fold in the singularity manifold p0
ell. Here the relation between

total derivatives with respect to Ii along p0
ell and the corresponding partial derivatives of H

is trivial. Notice that the same relation is satisfied even when the location of the singularity
manifold depends on Ii since ∇x,yH vanishes on the singularity surfaces. This latter property
is coordinate-independent as long as the coordinates are suitable.

In Figures 2 and 3 we indicate the strongest resonant 3-tori by starred lines (for
·
θ1 = 0) and

dotted lines (for
·
θ2 = 0). The intersection of these surfaces (here planes) with the singularity

surface (x = y = 0) corresponds to the strongly resonant families of lower dimensional tori
{(x, y, I) = (0, 0,−α1, I2)},{(x, y, I) = (0, 0, I1,−α2)}. These two families of 2-tori intersect at
the minimal possible energy where (I1, I2) = (−α1,−α2), corresponding to a 2-torus of fixed
points. Namely, this torus of fixed points corresponds to a topological change in the energy
surface—for energies below the value at which this torus appears there is no allowed motion.
For energies above it we have one connected component of energy surface as described above.
This observation is a trivial manifestation of Theorem 2.

5.3. Qualitative behavior of the near-integrable system (S). The motion in the near-
integrable system H(θ, I) = Hst(I) + εH1(θ, I) is restricted to the energy level H = h. Since
H1(θ, I) is assumed to be bounded, we obtain that the unperturbed energy surfaces with
Hst(I) = h∗, |h∗ − h| < Cε supply an a priori bound to the motion. For energy surfaces of
large extent, such an a priori bound is irrelevant due to Nehorošev-type theorems and the
Arnold conjecture. Hence, in this case the only new information obtained from the EMBD is
regarding the appearance of strong lower dimensional resonant tori (and even this information
can be extracted from the frequency plot). Near the doubly resonant normally elliptic lower
dimensional torus, where (x, y, I) = (0, 0,−α1,−α2), one may expect small perturbations to
produce large instabilities. Our trivial observation regarding the extent of the energy surface
immediately shows that the extent of the instability cannot be larger than O(

√
ε), the extent
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in the I space of the energy surfaces with Hst(I) = h∗, |h∗ − h| < Cε. We may expect that
the behavior near the doubly resonant torus will be dramatically different if the dependence
on the actions is either linear or indefinite, e.g.,

Hst−unbounded(x, y, I1, I2) =
y2

2
+

x2

2
+

1

8

(
x2 + y2

)2
+ α1I1 + α2I2 −

I2
1

2
+

I2
2

2
;

namely, the energy surfaces are unbounded, and, in particular, the energy surface passing
through the elliptic double resonant fixed point is unbounded. Such considerations are the
trivial analogues to the nonlinear stability theorems of Arnold–Marsden and have been studied
and discussed in the context of normal forms near elliptic fixed points [2, 40].

6. A priori unstable systems. The phase space structure of the standard Hamiltonian
Hust (see (2.6)),

Hust(x, y, I1, I2) =
y2

2
− x2

2
+

x4

4
+

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
(6.1)

= Hxy(x, y) + HI(I),(6.2)

is given by the product of a figure eight motion in the xy plane and a family of 2-tori in the
(θ, I) space. The precise structure of each energy surface, which demonstrates how a given
energy may divide between the three modes (degrees of freedom) requires a bit more attention.
Since there are no global action-angle coordinates in the (x, y) plane, it is instructive to start
with the presentation of the energy surfaces in the energy-momentum space and then discuss
the presentation in the frequency space.

6.1. Energy surfaces in the energy-momentum space (U). To construct the EMBD we
find the singularity manifolds of the Hamiltonian (6.1). These manifolds correspond to fixed
points of Hxy(x, y). The normally elliptic singularity surfaces, corresponding to {x = ±1, y =
0}, are given by the identical11 paraboloids

p±ell(h, I1, I2) =

{
(h, I1, I2)|

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
= h +

1

4
, h ≥ hell

}
,

where

hell = −1

4
− 1

2

2∑
i=1

α2
i .

The normally hyperbolic singularity surface corresponding to x = y = 0 and its separatrices
is given by the paraboloid

p0
hyp(h, I1, I2) =

{
(h, I1, I2)|

1

2

2∑
i=1

(
(αi + Ii)

2 − α2
i

)
= h, h ≥ hhyp

}
,

11Adding an asymmetric term like ηx to Hust lifts this degeneracy.
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where

hhyp = −1

2

2∑
i=1

α2
i .

In Figure 4 an EMBD of system (6.1) is presented as two nested paraboloids. The singu-
larity manifolds are drawn according to the normal stability of the lower dimensional invariant
tori they represent—the normally elliptic singularity manifolds (p±ell(h, I1, I2)) are drawn as a
collection of solid curves, whereas the normally hyperbolic singularity manifold (p0

hyp(h, I1, I2))
is drawn as a collection of black dashed curves. Thus we follow the traditional notation in
bifurcation diagrams.

Given an energy surface Hust(x, y, I1, I2) = H0 = h with hell ≤ h < hhyp, the three
dimensional (3D) and 2D EMBD look locally similar to those of the a priori stable system,
presented in Figures 2 and 3: for each fixed energy value in this range the energy surface is
a disk in the (I2, I1) plane. However, each point interior to this disk corresponds to two sets
of 3-tori, one in each well of the potential of Hxy(x, y). Points on the boundary of the disk
correspond to the two normally elliptic 2-tori, {x = ±1, y = 0, Hust(±1, 0, I1, I2) = h}. Hence,
the Fomenko graph for any one dimensional (1D) section of each such disk is given by two
disconnected segments, as shown in Figure 5B. Equivalently, the generalized branched surfaces
for this range of energies is the union of two disconnected discs (see Figure 9B). Each point
belonging to the interior of the branched surfaces represents, as before, a single 3-torus, and
every point on the solid boundary of the discs represents, as before, a single, normally elliptic
2-torus. The multiplicity in the number of components of the level set corresponding to a
given (h, I1, I2) is expressed by the multiplicity in the number of components of the branched
surfaces for these values of (h, I1, I2); see section 3.

For h ≥ hhyp the energy surfaces include the singular level set of the separatrices, which
divides the energy surface into two topologically different regimes; see Figure 5A. A point
(h, I1, I2) inside the disk enclosed by p0

hyp(h, I1, I2) (the dashed circle in Figure 5A) corresponds
to a single 3-torus. Trajectories belonging to this torus encircle both wells in the xy plane. A
point inside the ring bounded between p0

hyp(h, I1, I2) and p±ell(h, I1, I2) corresponds to two sets
of 3-tori; trajectories belonging to one of these tori oscillate in one of the wells in the xy plane.
The Fomenko graph for this case is shown schematically on the cross-section in Figure 5B (in
thick black). The generalized branched surfaces here are two rings which are glued together
in a central disk (Figure 9C). Each regular point of the branched surface corresponds to a
single 3-torus, each point belonging to the dashed circle corresponds to a normally hyperbolic
2-torus and its separatrices, and each point belonging to the solid (outer) boundaries of the
rings corresponds to a single normally elliptic 2-torus.

Intersections of the singularity manifolds with the hypersurfaces of strongest resonances
correspond to folds of these singularity manifolds in the EMBD (see Figures 4 and 5). This
is the essence of Theorem 1 (see section 8.1). For example, the paraboloids p0

hyp(h, I1, I2) and

p±ell(h, I1, I2) fold as they cross the surface I1 = −α1 (and similarly at I2 = −α2) and indeed
·
θi|pf = αi + Ii. Thus, the families of 2-tori, p±ell(h,−α1, I2), p

±
ell(h, I1,−α2), p0

hyp(h,−α1, I2),

and p0
hyp(h, I1,−α2), are all resonant and the 2-tori p±ell(hell,−α1,−α2) and p0

hyp(hhyp,−α1,
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Figure 4. EMBD of an a priori unstable system.
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Figure 5. 2D slices of an EMBD of an a priori unstable system with h > hhyp. A: One energy surface. B:
Range of energy values for a fixed value of I2 and a schematic Fomenko graph.

−α2) are doubly resonant; these are 2-tori of fixed points. In Figure 4 the strong resonance in
the I1 direction (θ̇1 = 0) is denoted by a surface of green starred lines and the strong resonance
in the I2 direction (θ̇2 = 0) by a surface of cyan dotted lines; the double fold corresponding to
a 2-resonant hyperbolic 2-torus (a hyperbolic torus of fixed points) is denoted by a red star.

Observe that the topology of the family of equi-energy normally hyperbolic lower dimen-
sional tori (p0

hyp(h, ·), with fixed h) changes exactly at this double fold point, p0
hyp(hhyp,−α1,

−α2), where a 2-torus of fixed points resides; for h < hhyp the singularity surface p0
hyp(h, ·) does

not exist and the energy surfaces have two disconnected components (Figure 9B), whereas for
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h > hhyp the singularity surface p0
hyp(h, ·) is a circle and the two components of the energy

surface connect on this circle (Figure 9C). This is again a manifestation of Theorem 2 (see
section 8.1). Similarly, for the natural n DOF generalization of Hust,

Hn
ust(x, y, I1, . . . , In−1) =

y2

2
− x2

2
+

x4

4
+

1

2

n−1∑
i=1

(
(αi + Ii)

2 − α2
i

)
(6.3)

= Hxy(x, y) + Hn
I (I),(6.4)

p0
hyp(h, ·) changes from nonexistence for h < hhyp to an n−2 sphere for h > hhyp. In particular,

for n = 2, there are either none or two nonresonant hyperbolic circles on each energy surface. If
the dependence on the I variables is indefinite, then one may have other topological changes
in p0

hyp(h, ·) occurring at the (n − 1)-resonant (n − 1)-torus; either the genus of p0
hyp(h, ·)

changes or two components of p0
hyp(h, ·) coalesce/separate. Notice that the flow along the

lower dimensional (n− 1)-torus reverses its direction as a strong resonance surface is crossed

(namely,
·
θi|pf changes its sign there). This property holds for the general case of nonseparable

systems as well (see [46, 38, 37]).
We emphasize that the appearance of an n− 1 dimensional torus of fixed points which is

normally hyperbolic is a persistent12 phenomena in integrable n (n ≥ 2) DOF Hamiltonian
systems [38] and is not related to the symmetric form of (6.3).

6.2. Energy surfaces in the frequency space (U). For small energy levels, hell ≤ h <
hhyp, we have seen that the disk Hust(x, y, I1, I2) = h in the (I2, I1) plane (see Figures 5B
and 9B) corresponds to two separate smooth compact components of the energy surface. In
the frequency space these appear as one cap of hyperbola, centered at the origin. Indeed,
the natural frequency in the xy plane at the elliptic points is ω0(h, I1, I2)|p±ell(h,I1,I2) =

√
2,

the direction of rotation is preserved for all orbits (so ω0(h, I1, I2) ≥ 0), and the frequency
monotonically decays as the action of the periodic orbits grows. Denoting by ω0 min(h) > 0
the frequency of the two symmetric periodic orbits in the xy plane satisfying Hxy(x, y) = h,
it follows that for this range of energies

ω0 min(h) ≤ ω0(h, I1, I2) ≤
√

2.(6.5)

In Figure 6 an example of such a cap shaped energy surface of system (6.1) in the frequency
space is shown.

For h ≥ hhyp the behavior near the separatrices needs to be presented. Since the frequency
in the xy plane is well defined for all orbits except the separatrices, and since ω0(x, y) → 0 as
the separatrix is approached, defining ω0(0, 0) = 0 makes ω0(x, y) a continuous (nondifferen-
tiable) function of the xy energy level. (This observation is used extensively in the frequency
map plots; see [28].) Hence, for H0 = h ≥ hhyp, an energy surface in the frequency space
has an annular cap component which meets at the (singular) circle ω0 = 0 a central cap;

12The existence of such a torus may be formulated as the existence of a transverse intersection of some finite
dimensional manifolds. Hence, using the transversality theorem, one proves that it exists for a C1-open set of
integrable Hamiltonians, which we take hereafter as the definition of persistence.
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Figure 6. Energy surface of an a priori unstable system in the frequency space for hell < H0 < hhyp.

see Figure 7. The annular cap corresponds to the two sets of tori for which the motion is
restricted to one of the wells in the xy plane, whereas the central cap corresponds to a single
family of 3-tori for which the motion in the xy plane surrounds both wells of the potential.
Recall that strong resonances are created when the energy surface intersects one of the ωi = 0
planes. However, here, the surface approaches the plane ω0 = 0 singularly, and the normally
hyperbolic torus is not resonant in the θ0 direction.

6.3. Qualitative behavior of the near-integrable system (U). Using the plots of the
EMBD we may read off all possible sources of instabilities for near-integrable n DOF systems
with unperturbed Hamiltonian of the form (6.3). Here we need to combine several effects:

• Instabilities associated with the regular resonance web. Such instabilities may appear
near any point in the EMBD.

• Instabilities associated with splitting of the separatrices (as in 1.5 DOF systems). Such
instabilities may appear for any h > hhyp in an ε neighborhood of the surface p0

hyp(h, ·).
• Instabilities associated with the existence of families of separatrices on the same energy

surface (as in Arnold’s conjecture for the existence of whiskered transition chain). For
n ≥ 3, these appear for any h > hhyp near the surface p0

hyp(h, ·).
• Instabilities associated with strongly resonant normally hyperbolic tori. For k < n−1,

the k-resonant normally hyperbolic tori appear for all h > hhyp, and their effect must
be included in the above mentioned transition chain.

• Instabilities associated with the topological bifurcation of the energy surface near
h = hhyp. There, p0

hyp(·) has an n − 1 fold point and the normally hyperbolic torus

p0
hyp(hhyp, ·) is a torus of fixed points. Hence, these are the instabilities associated
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Figure 7. Energy surface of an a priori unstable system in the frequency space for H0 > hhyp.

with perturbations of a normally hyperbolic torus of fixed points in the nondegenerate
case.

While the analysis of each of the above items is not yet well understood, we propose
that the inclusion of rough lower bounds on the instability associated with each of the above
phenomena supplies nontrivial information on the system. In Figure 8 we plot on a 2D
slice of the EMBD and O(ε) band around the separatrix level sets (the light shaded region),
and indicate an O(ε) slab of energies to which the perturbed motion is restricted near a
hyperbolic resonance (the dark shaded strip). The geometry near the hyperbolic resonant
tori immediately presents itself as a source for larger instabilities than the nonresonant terms.
The analysis of this case for n = 2 has been developed; see [23] and references therein. Here
we see that in the 3 DOF context the hyperbolic resonant 2-tori, phyp(h,−α1, I2(h)) and
phyp(h, I1(h),−α2), belong to the circle of equi-energy normally hyperbolic 2-tori, phyp(h, ·);
hence, one is lead to the study of whiskered transition chains with resonant gaps (see [9] and
references therein). The subject of transition chains of whiskers in a priori unstable systems
has received much attention in recent years (see, e.g., [8, 49, 50] and references therein).
Furthermore, as (I1, I2) → (−α1,−α2) we approach a double resonant hyperbolic torus—in
this case the 3D figure corresponds to a revolution of the EMBD in Figure 8 around the
starred line, with the strong resonant planes intersecting as in Figure 4. Here the radius (in
I) of the circle phyp(h, ·) scales as

√
ε (see Figure 8); hence the transition chain created near

such a double resonant hyperbolic torus cannot create large instabilities. If the terms in I
are indefinite near such a torus, this situation may change (though our preliminary numerical
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Figure 8. 2D slice of the EMBD of the perturbed motion. Shaded strip: Region of allowed motion for
perturbed orbits near hyperbolic resonance. Dashed region: Homoclinic chaos region.

simulations appear to indicate that even then the instability induced by the separatrices is
not significantly enhanced [38]).

Finally, we note that the doubly resonant elliptic tori p±ell(h,−α1,−α2) reside on two small
separate components of the energy surface and hence cannot induce large instabilities, and
that other cases corresponding to unbounded energy surfaces may be classified similarly.

7. Bifurcating systems. For n DOF systems with n ≥ 3 the appearance of parabolic
resonant tori is persistent (see [38]); hence their study is both mathematically fascinating and
physically relevant. Combining our understanding of the stable and unstable systems, we can
now study Hbif :

Hbif (x, y, I1, I2) =
y2

2
− x2

2
I1 +

x4

4
+

(
µ1 +

1

2

)
I2
1

2
+

I2
2

2
+ α2I2 + α3I1I2.(7.1)

The phase space structure of the Hamiltonian Hbif for any fixed I is obvious; for I1 > 0 it
is given by the product of a figure eight motion in the xy plane and a family of 2-tori in the
(θ, I) space as in Hust, whereas for I1 < 0 it corresponds to an elliptic motion around the
origin in the xy plane and a family of 2-tori in the (θ, I) space as in Hst. At I1 = x = y = 0
the system has a family of normally parabolic 2-tori. To understand the precise structure of
each energy surface, we again construct the EMBD and the corresponding branched surfaces
and then present the interesting energy surfaces in the frequency space.

The symmetric form of (7.1) implies that at I1 = 0 we have a pitchfork bifurcation in
the xy plane, whereas for a generic asymmetric integrable bifurcating Hamiltonian one should
consider instead a saddle-center bifurcation at I1 = 0. The EMBD and branched surfaces
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Figure 9. Generalized Fomenko graphs: The branched surfaces.

analysis of such systems is analogous to the one presented here. The phenomena of parabolic
resonances (PR) in the asymmetric case has not been investigated yet.

7.1. Energy surfaces in the energy-momentum space (B). Recall that the boundary of
the allowed region of motion is composed of the singularity surfaces corresponding to lower
dimensional normally elliptic tori. For (7.1), these are given by the normally elliptic tori at
{(x, y) = (±

√
I1, 0); I1 > 0},

p±ell(h, I1, I2) =

{
(h, I1, I2)| µ1

I2
1

2
+

I2
2

2
+ α2I2 + α3I1I2 = h; h ≥ h+

min, I1 > 0

}
,(7.2)

and the elliptic tori at {(x, y) = (0, 0); I1 < 0},

p0
ell(h, I1, I2) =

{
(h, I1, I2) |

(
µ1 +

1

2

)
I2
1

2
+

I2
2

2
+ α2I2 + α3I1I2 = h; h ≥ h0

min, I1 < 0

}
.

(7.3)

Another surface of singularity on which the hyperbolic tori {(x, y) = (0, 0); I1 > 0} and their
separatrices live is given by

p0
hyp(h, I1, I2) =

{
(h, I1, I2) |

(
µ1 +

1

2

)
I2
1

2
+

I2
2

2
+ α2I2 + α3I1I2 = h; h ≥ h0

min, I1 > 0

}
.

(7.4)
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Figure 10. EMBD for the bifurcating Hamiltonian, Hbif .

Expressing the Hamiltonian on these surfaces in a quadratic form,

Hbif (0, 0, I1, I2) =
1

2

(
µ1 +

1

2
− α2

3

)(
I1 −

α2α3

µ1 + 1
2 − α2

3

)2

(7.5)

+
1

2
(I2 + α2 + α3I1)

2 − 1

2
α2

2 −
1

2

(α2α3)
2

µ1 + 1
2 − α2

3

,

Hbif (±
√

I1, 0, I1, I2) =
1

2
(µ1 − α2

3)

(
I1 −

α2α3

µ1 − α2
3

)2

(7.6)

+
1

2
(I2 + α2 + α3I1)

2 − 1

2
α2

2 −
1

2

(α2α3)
2

µ1 − α2
3

,

shows that the sign of µ1−α2
3 determines whether the energy surfaces are bounded in I. Here,

for simplicity, we present a bounded case:

µ1 − α2
3 > 0, α2 > 0, 0 < α3 < 1.(7.7)

Other cases change some of the inequalities below, leading to a different EMBD and may be
similarly analyzed; see [36, 35, 37, 38], where we considered mainly unbounded models. Here,
(7.5) and (7.6) define paraboloids, and their intersections with the plane of constant energy
define ellipses (see Figures 10, 11, 12, 13, 14, 15, 16).
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The minimal energies for which these paraboloids are defined are

h+
min = −1

2
α2

2 −
1

2

(α2α3)
2

µ1 − α2
3

< h0
min = −1

2
α2

2 −
1

2

(α2α3)
2

µ1 + 1
2 − α2

3

,(7.8)

with the corresponding minimizing actions

(I1, I2)min 0 =

(
α2α3

µ1 + 1
2 − α2

3

,−
α2

(
µ1 + 1

2

)
µ1 + 1

2 − α2
3

)
,

(I1, I2)min + =

(
α2α3

µ1 − α2
3

,− α2µ1

µ1 − α2
3

)
.

Finally, notice that the surface I1 = 0 cuts the paraboloids p±ell(h, I1, I2) and p0
ell,hyp(h, I1, I2)

along a parabola which corresponds to a family of normally parabolic 2-tori,

p0
par(h, I1, I2) =

{
(h, I1, I2) | I1 = 0,

I2
2

2
+ α2I2 = h, h ≥ hpmin

}
,(7.9)

where

hpmin = −1

2
α2

2 > h0
min.

From these computations we can already conclude that for the chosen set of parameters the
energy surface’s structure is represented by the branched surfaces shown in Figures 11B–E.
Before describing the properties of these surfaces in detail, we examine the appearance of
strong resonances so that the topological bifurcations and the appearance of resonant tori
may be explicitly related.

Since

ω2(I1, I2) =
∂Hbif (x, y, I1, I2)

∂I2
= I2 + α2 + α3I1,(7.10)

resonances in θ2 (i.e., resonances in the direction of I2) are given by the intersection of the
domain of allowed motion with the plane

I2res = −α2 − α3I1.(7.11)

In particular, resonant lower dimensional tori appear when this plane intersects the paraboloids
p0
hyp(h, ·), p0

ell(h, ·), p
±
ell(h, ·), and p0

par(h, ·).
Due to the cross term x2

2 I1 in Hbif (see (7.1)) we cannot get such a simple and explicit
expression for the θ1-resonant tori surface ω1(I1, I2) = 0. However, the intersection of this
surface with the singularity surfaces may be easily found; the hyperbolic (resp., elliptic) lower
dimensional tori p0

hyp(h, ·) (resp., p0
ell(h, ·)) are resonant when ω0

1 = 0, where

ω0
1 =

∂Hbif (0, 0, I1, I2)

∂I1
=

(
µ1 +

1

2

)
I1 + α3I2,(7.12)
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Figure 11. 2D slices of the EMBD of the bifurcating system, Hbif . A: An energy surface in the energy
range h±

min < H0 < h0
min. B: An interval of energy values for a fixed value of I2 = −α2 and all three possible

types of (schematic) Fomenko graphs for Hbif .

so resonance occurs exactly at the fold of the singularity surface in the I1 direction. Hence,
the intersection of the plane

I1res0 = − α3

µ1 + 1
2

I2

with the paraboloid p0
hyp(h, ·) ∪ p0

par(h, ·) ∪ p0
ell(h, ·) corresponds to the family of lower di-

mensional tori that are resonant in the I1-direction (the green starred curves in Figure 10),
p0
res−1(h, I). These tori are normally hyperbolic for I1res > 0, normally elliptic for I1res < 0,

and, at Hbif = hpar−res1 = 0, normally parabolic (then I1res = I2 = 0). Similarly, the elliptic
lower dimensional tori at (x, y) = (±

√
I1, 0), p±ell, are θ1-resonant when ω±

1 = 0, where

ω±
1 =

∂Hbif (±
√
I1, 0, I1, I2)

∂I1
= µ1I1 + α3I2.

Hence, the intersection of the plane

I1res± = −α3

µ1
I2

with the paraboloids p±ell(h, I1, I2) corresponds to these two families of normally elliptic lower
dimensional tori that are resonant in the I1-direction, p±res−1(h, I) (denoted by green starred
curves in Figure 10 as well). The manifold of 3-tori, which are strongly resonant in θ1,
pres−1(h, I1, I2), intersects the paraboloids p0

hyp(h, ·) ∪ p0
par(h, ·) ∪ p0

ell(h, ·) and p±ell(h, I1, I2)

along the families p0
res−1(h, I) and p±res−1(h, I).

Clearly, from the form of (7.1), strong resonance in the xy plane (namely, the nor-
mal frequency Ω = ω0(h, I1, I2) = 0) may occur only at the parabolic tori p0

par(h, 0, I2) =

p0
hyp(h, 0, I2) = p±ell(h, 0, I2), where ω±

0 =
√

2I1 and ω0
0 =

√
−I1 vanish. Notice that here, at

I1 = 0, the natural frequency of the lower dimensional torus does vanish, as opposed to the
formal definition of vanishing ω0

0 which we had introduced for I1 > 0.
In Figure 10 a 3D EMBD of the system (7.1) (Hamiltonian Hbif ) is presented for typical

parameter values (µ1 = 0.3, α2 = 1, α3 = 0.4 in all the EMBD plots, and the corresponding
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Figure 12. 2D slices of EMBD showing the energy range h0
min ≤ H0 < h0

p. A: An energy surface cor-
responding to the energy value H0 = h0

min, showing the hyperbolic bifurcation point. B: A range of energy
values which includes the bifurcation value at which a hyperbolic double resonance occurs for a fixed value of
I2 = I2 min 0. C, D: Energy surfaces containing the singular ellipse (dashed line) corresponding to hyperbolic
2-tori and their separatrices.

energy bifurcation values are h+
min ≈ −1.0714, h0

min = −0. 625, hpmin = −0. 5, and hpar−res1 =
0). The plot includes a limited set of I2 values to allow a glimpse into its complicated inner
structure: the manifold of solid curves corresponds to the singularity manifold of elliptic
2-tori, p±ell(h, I1, I2) and p0

ell(h, I1, I2), the manifold of dashed curves to hyperbolic 2-tori,
p0
hyp(h, I1, I2), and the curve of red circles to parabolic 2-tori, p0

par(h, I1, I2); the strongest

resonance in the I2-direction (θ̇2 = 0) is denoted by a blue surface of dotted lines and the
2-tori with the strongest resonance in the I1-direction (〈θ̇1〉xy = 0) by green starred curves.
The yellow volume (or shaded regions in the 2D EMBD) corresponds to regular 3-tori on
which θ̇1 changes sign (back-flow). The surface of 3-tori which have strong resonance in the
I1-direction is contained in this region.

Taking the 2D slices H0 = h of Figure 10 for increasing h values, we describe below the
structure of the corresponding branched surfaces in Figures 9B–E. The intersections of the
strong resonance surfaces θ̇2 = 0 and ω1(I1, I2) = 0 with these 2D slices are denoted by a
dotted line and a starred curve (which is calculated numerically), respectively.

For energies in the range H0 = h, h+
min ≤ h < h0

min, the energy surfaces are composed
of two separate components corresponding to oscillations in each of the potential wells (as
in the low energy a priori unstable case). The energy surface in the EMBD is an ellipse, so
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any 2D section of Figure 10 for this range of energies is similar to the EMBD slices of system
Hst presented in Figure 3; see Figure 11A. The Fomenko graph for any 1D section of this
ellipse is simply two segments; see Figure 11B. Equivalently, the branched surfaces are two
identical discs as in Figure 9B, and the strong resonance surfaces ω1(I1, I2) = ω2(I1, I2) = 0
intersect the energy surface transversely, as shown by the starred and dotted lines in Figure
11A and schematically in Figure 14A. In particular, since the two resonant in the I1 direction
lower dimensional elliptic tori, p±res−1(h, I1, I2), are separated along the circle p±ell(h, I1, I2) by
the two resonant in the I2 direction lower dimensional elliptic tori, p±res−2(h, I1, I2), it follows
that the curves pres−1(h, I1, I2) and pres−2(h, I1, I2) of resonant 3-tori must intersect at least
once in a double resonant 3-torus as shown schematically in Figure 14A; indeed, a transverse
intersection of the strongest resonance curves is depicted in Figure 11A.

At H0 = h = h0
min (Figure 12A) a hyperbolic resonant bifurcation occurs; the singularity

surface p0
hyp(h, I1, I2) appears in a 2-fold (since I1min 0 > 0), creating a torus of fixed points

which is normally hyperbolic; see Figure 12B, where the 2D slice I2 = I2 min 0 of Figure 10 is
presented, and the newly born 2-resonant hyperbolic torus appears there in the fold of the
dashed curve. Figure 12A shows that this torus does not appear at the intersection of the
two strong resonance curves ω1 = ω2 = 0 (as in the a priori unstable case and as depicted
schematically in Figure 14B). It appears as an isolated star13 (θ̇1 = ω0

1 = 0) residing on the
dotted line (θ̇2 = ω2 = 0). Topologically, at this point the two disks of the branched surfaces
meet, so that for H0 = h, h0

min < h < hpmin, we have, as before, a ring of I values for which
two families of 3-tori, corresponding to oscillation in the wells, coexist and a central disk of
I values for which only one family of 3-tori, corresponding to motion around the two wells,
exists. The boundary between these regions is an ellipse of I values, corresponding to normally
hyperbolic 2-tori; see Figures 12C,D and the corresponding Figures 9C and 5A.

Using the computation of p0
res−1,2(h, I), the minimal number of intersections of the strong

resonance curves pres−1(h, I1, I2) and pres−2(h, I1, I2) in the interior disk is found to be one,
as shown in Figure 14C. The 2D sections of Figure 10 for these ranges of energies demonstrate
that for the bifurcating system (7.1) additional intersections appear14 (see Figure 12A,C,D).
A bifurcation in the iso-energetic strong resonance curve ω1 = 0 occurs at H0 = h = h0

min. For
h < h0

min this resonance curve has one component and it is smooth; at the bifurcation point
h = h0

min it splits to two components—a smooth curve of resonant 3-tori with two resonant
elliptic 2-tori at its boundary and a resonant hyperbolic 2-torus as a separate component (see
Figure 12A). For h0

min < h < hcω1
, the iso-energetic curve ω1 = 0 has three components: the

smooth component of resonant 3-tori with elliptic resonant 2-tori as its boundary and the
other two components, which reside above and below the ellipse of hyperbolic 2-tori and meet
at the two resonant hyperbolic 2-tori, as seen in Figure 12B. As the energy value increases, the
components of ω1 = 0 approach each other until at the next bifurcation point of this curve,
H0 = h = hcω1

, all three components meet again (for the parameters chosen here hcω1
≈ −0.59;

see Figure 12D), forming, for h > hcω1
, one nonsmooth component with cusp points at the

resonant hyperbolic 2-tori, as seen in Figure 13A. (So the resonant surface ω1 = 0 folds in the
shape of a nose looking toward the negative h values in the EMBD.)

13Look below the starred curve, at the boundary of the yellow shaded region.
14One can argue that this more complicated scenario is the generic one.
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Figure 13. 2D slices of EMBD of the bifurcating system, Hbif , showing the parabolic bifurcation point. A:
An energy surface corresponding to the energy value H0 = hp

min. B: A range of energy values which includes
the bifurcation value H0 = hp

min for a fixed value of I2 = −α2.

At H0 = h = hpmin the ellipses p0
hyp(h

p
min, ·) and p±ell(h

p
min, ·) touch the I1 = 0 plane at

I2 = −α2, creating a parabolic torus (see Figure 13A and the schematic representation of
Figure 9D). This bifurcation is, again, associated with a fold in the singularity surfaces of the
EMBD and therefore with a resonance of a lower dimensional torus (see Theorems 4 and 5
in section 8.2). Indeed, at H0 = hpmin, the parabola p0

par(h, I1, I2) folds in the I2 direction at
I2 = −α2; hence this parabolic 2-torus is resonant in θ2:

·
θ2

∣∣∣∣
(0,0,0,−α2)

=
∂Hbif (0, 0, 0, I2)

∂I2

∣∣∣∣
I2=−α2

= 0.

Furthermore, parabolicity of this torus implies that the torus is strongly resonant in the xy
plane; namely, ω0

0 = 0, so at h = hpmin a double resonance occurs at the torus (x, y, I) =
(0, 0, 0,−α2). This coincidence of resonances and of topological changes in the energy surfaces
is shown schematically in Figures 14C–E. Figures 12 and 13 demonstrate its occurrence for
(7.1). The dotted line, representing resonant tori in the I2-direction, intersects the boundary
of the allowed region of motion at the parabolic torus (a circle in the figure).

For h > hpmin, the branched surface is a disk with two flaps emanating from it (see Figure
9E), where the two end points of the flaps correspond to parabolic tori. For Hamiltonian (7.1),
the ellipse Hbif (0, 0, I1, I2) = h defines the boundary of this disc. The ellipse corresponds to
hyperbolic tori for I1 > 0 (the dashed part of the inner ellipses in Figure 15) and elliptic tori
for I1 < 0 (the lower solid part of the ellipses in Figure 15). The flaps’ upper boundaries
(upper solid line in Figure 15) are defined by the ellipse Hbif (±

√
I1, 0, I1, I2) = h for I1 ≥ 0.

The two meeting points of the flaps (denoted by circles) with this disk correspond to the two
parabolic tori which reside on the energy surface (see (7.9)).

Now, consider the relative location of the resonant in the I1-direction 2-tori, p0
res−1(h, I),

and the parabolic 2-tori, p0
par(h, I), on the ellipse Hbif (0, 0, I1, I2) = h. For h values which

are slightly larger than hpmin, this pair of resonant 2-tori lives on the upper part of the ellipse,
above the parabolic tori; hence they correspond to normally hyperbolic resonant 2-tori, as
shown schematically in Figure 14D. For such values of h the curve pres−1(h, I1, I2) intersects
only the upper part of the ellipse (the dashed part of the ellipse in Figure 15A, corresponding
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Figure 14. Energy branched surfaces and strong resonance curves.

Figure 15. 2D slices of an EMBD of the bifurcating system, Hbif . A: An energy surface with hp
min < H0 <

hpar−res1. B: An energy surface with H0 > hpar−res1.

to hyperbolic tori), so there are no resonant in the I1 direction normally elliptic 2-tori at
the origin (i.e., p0

hyp(h, I1, I2) ∩ pres−1(h, I1, I2) = ∅), as shown in Figure 15A. For energy
values greater than H0 = hpar−res1 = 0 (i.e., for h > hpar−res1), this situation changes;
for H0 = h > hpar−res1, the resonant plane pres−1(h, I1, I2) intersects each of the curves
p0
hyp(h, ·) and p0

ell(h, ·) at one point (see the schematic Figure 14F and the energy surface in
Figure 15B). Namely, one of the resonant hyperbolic lower dimensional tori becomes normally
elliptic for H0 = h > hpar−res1. Therefore, at the bifurcation value, H0 = hpar−res1 = 0,
the resonant plane in the I1-direction intersects the ellipse p0

hyp(h, ·) ∪ p0
par(h, ·) ∪ p0

ell(h, ·)
at I1 = I2 = 0, where a parabolic, resonant in the I1 direction, lower dimensional torus is
created (the schematic Figures 14E,F show the aforementioned intersections before and after
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Figure 16. A 2D slice of EMBD of the bifurcating system, Hbif . An energy surface with H0 = hpar−res1,
containing a strongly resonant in the I1-direction parabolic 2-torus.

this bifurcation). Indeed, Figure 16 shows that at H0 = hpar−res1 = 0 one of the resonant
hyperbolic tori changes its stability and becomes parabolic. (The end point of the starred
curve, ω1 = 0, intersects one of the circles denoting a parabolic 2-torus; note that at the
bifurcation point H0 = hpar−res1, the iso-energetic curve ω1 = 0 ceases to have two cusp
points and thereon has only one cusp point at the remaining resonant hyperbolic 2-torus.)
Figure 17A demonstrates that the resonance in the I1-direction is indeed associated with a
fold of the parabola p0

hyp(h, I1, 0)∪p0
par(h, I1, 0)∪p0

ell(h, I1, 0) at the origin; the 2D slice of the
EMBD at I2 = 0 shows that the circle denoting the parabolic torus and the star denoting the
strong resonance in the I1 direction coincide.

Bifurcation values for the parameters are now easily identified. First, we see that at
α2 = 0, h+

min = h0
min = hpmin = hpar−res1 = 0; namely, all the bifurcations mentioned above

occur at one energy surface, and a double resonant (torus of fixed points in the 3 DOF case)
normally parabolic torus is created, as shown in Figure 17B, where the star (ω1 = 0), the
dotted line (ω2 = 0), and the circle (a parabolic torus) coincide. Then, the energy surface
H0 = α2 = 0 of system (7.1) shrinks to one 2-resonant normally parabolic 2-torus of fixed
points. The existence of a double resonant parabolic torus is a codimension one phenomena
for 3 DOF systems and a persistent phenomena in 4 or larger DOF systems [38]. Normally
parabolic tori of fixed points are a codimension one phenomenon for any n ≥ 2 (see [45, 38, 37]
for more details).
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Figure 17. 2D slices of the EMBD at I2 = 0. A: Regular parameter values—at I1 = H0 = 0 a resonance
in the I1 direction occurs. B: At the special bifurcation value α2 = 0. Since α2 = 0, at I1 = H0 = 0 a double
resonance in the I1 and I2 direction occurs.

Second, notice that

d2Hbif (±
√
I1, 0, I1, I2)

dI2
1

= µ1;(7.13)

hence, the fold of the singular surface p+
ell(h, I1, I2) in the I1-direction becomes flatter as

µ1 → 0 (put differently, the dependence of the frequency ω±
1 on I1 becomes weaker). It is seen

that holding α3 fixed in this limit changes the character of the energy surfaces from being
bounded to being unbounded in I1, I2. We will not delve into the analysis of all the different
limits which may be taken here; some of these limits are studied in detail in previous works
(see [45, 46, 35, 36, 37, 38]). In particular, note that the appearance of flat parabolic resonant
tori in such a situation gives rise to strong instabilities (see [38] and [37]).

7.2. The frequency domain plots (B). We plot the energy surfaces (ωH) of the bifurcat-
ing system in the frequency space for typical and bifurcating energy values (h+

min, h
0
min, h

p
min,

and hpar−res1 and h values in between them) with the resonance web plotted on them. We
demonstrate that the structure of these webs differs from the structure of webs of a priori
stable systems in its nonuniformity and its behavior near the origin.

The simplest type of energy surface component contains only elliptic lower dimensional
tori. For H0 = h, h+

min < h < h0
min, it appears as a smooth codimension one surface with

boundaries, as shown in Figure 18, similar to Figure 6. This smooth compact component is a
smooth deformation of the disk appearing in the energy-momentum space, (H0, I2, I1). Trans-
verse intersection of a smooth component of ωH with one of the planes ωj = 0 corresponds
to a strong resonance; for energy surfaces in the range h+

min < h < h0
min this occurs only for

j = 1, 2 (it cannot occur for j = 0 since in this energy range ω0 > 0). In Figure 18 (and in
the following figures here) the red starred curve corresponds to the intersection of the energy
surface, ωH , with the resonance plane, ω1 = 0, and the black thick dotted line denotes the
intersection of ωH with ω2 = 0. The lower dimensional elliptic resonant tori correspond to
the intersections of the surfaces’ boundary, which is plotted in thick black, with the ωj = 0
(j = 1 or 2) planes.



556 A. LITVAK-HINENZON AND V. ROM-KEDAR

1
1.5

2
2.5

3
3.5

−0.5

0

0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ω0ω1

ω
2

Η0=−0.8, µ1=0.3, α2=1.0, α3=0.4

Figure 18. A typical energy surface corresponding to an elliptic energy value H0 = h with h+
min < h < h0

min.
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Figure 19. An energy surface corresponding to the bifurcation value H0 = h0
min, containing a double

resonant hyperbolic torus of fixed points. Left: The frequency map plot. Right: The resonance web on this
energy surface for |k| ≤ 21, where the size of the dots indicates the strength of the resonance.

The energy value H0 = h0
min is a bifurcation value at which one 2-resonant hyperbolic 2-

torus (hyperbolic torus of fixed points) appears. It creates a singular cusp point in the energy
surface ωH (see Figure 19), where this energy surface is presented in the three frequency space
in the left plot (each blue thin curve corresponds to a fixed value of I2, the red starred curve
to the strong resonance ω1 = 0, the black dotted line to the strong resonance ω2 = 0, and
the black thin curve to the boundary of ωH , consisting of 2-tori) and the resonance web on
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Figure 20. A typical energy surface in the hyperbolic energy range, corresponding to an energy value H0 = h
with h0

min < h < hp
min.

this energy surface is presented in the right plot. The resonance webs presented here are
calculated by finding (approximately) the points on the energy surface for which

〈
k, ωH

〉
= 0

for 0 < |k| = |k1|+ |k2|+ |k3| ≤ 21, where the size of the dots is in inverse relation to |k|; i.e.,
the stronger the resonance the larger the dot indicating it (note that for the weaker resonances
the difference in the size of the dots is indistinguishable). The hyperbolic 2-resonant 2-torus in
Figure 19 resides in the cusp, far from the other resonance lines and from the main resonance
junction, where the strong resonances intersect (this might suggest an additional reason for not
observing strong instabilities of the perturbed system near such hyperbolic double resonances
[38]).

Energy surfaces with H0 = h, h0
min < h < hpmin, include an ellipse of hyperbolic tori

with their separatrices. As for the a priori unstable case, we find that the energy surface ωH

collides at this singular ellipse with the plane ω0 = 0 and then bounces back with the same
sign of ω0 (since the direction of motion does not change from the exterior to the interior tori).
Using (7.12) and (7.10) we find that the singularity manifold corresponding to the family of
hyperbolic 2-tori is given by

Hbif (0, 0, I1, I2) = Hbif (0, 0, ω1, ω2)

=
1

2

(
ω0

1 − α3ω2

)2

µ1 + 1
2 − α2

3

+
1

2
(ω2)

2 − 1

2
α2

2 −
1

2

(α2α3)
2

µ1 + 1
2 − α2

3

.(7.14)

For our parameter range it is a tilted ellipse lying in the ω0 = 0 plane which is centered at
the origin; see Figure 20 (similar to Figure 7).
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On one side of this singularity manifold each point on the energy surface corresponds to
two 3-tori, and on the other side to a single 3-torus as summarized by Figure 9C. Each of the
surfaces ωj = 0 (j = 1, 2) intersects the ellipse at two points, at hyperbolic 1-resonant 2-tori.
In [38] we prove that such intersections are persistent. Recall that even though the singular
circle is contained in the ω0 = 0 plane it does not correspond to a double resonance of the
lower dimensional torus: ω0 = 0 at the homoclinic loop, whereas the normal frequency of the
hyperbolic torus is imaginary and is nonzero.
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Figure 21. An energy surface with H0 = hp
min. Left: The energy surface in the frequency space. Right: The

resonance web on this energy surface. Red circle: (Double) resonant (in the I0- and I2-directions) parabolic
2-torus.

At the bifurcation value H0 = hpmin a parabolic (resonant in the I2-direction) torus first
appears; see Figure 21. An important observation is that parabolic tori are a priori resonant :
their normal frequency vanishes. Indeed, let ω = (Ω, ωn−1) ∈ R

n denote the n dimensional
vector of frequencies, including the normal frequency Ω, and the inner frequencies (ωn−1 ∈
R
n−1) of the (n − 1)-torus. Parabolicity implies Ω = 0; hence, k1 = e1

n = (1, 0, . . . , 0)
satisfies the resonance condition

〈
k1, ω

〉
= 0 (indeed, in the resonance web plots a large

dot indicating strongest resonance always appears on the parabolic tori; see, e.g., Figure 21).
Lower dimensional resonance implies that there exists at least one additional vector of integers,
k2 = (0, ln−1), ln−1 ∈ Z

n−1, such that
〈
k2, ω

〉
= 0. Hence, parabolic lower dimensional

resonant tori correspond to junctions in the resonance web with at least one strongest resonance
(indeed, the parabolic torus in Figure 21 is doubly resonant, residing on the junction ω0 =
ω2 = 0). In particular, if the parabolic torus appears at the origin, where all resonances
intersect, it corresponds to an (n− 1)-resonant (n− 1)-torus, namely to a parabolic torus of
fixed points. In [38] we prove that such a scenario is persistent in a one parameter family of
integrable n DOF Hamiltonian systems with n ≥ 2.

A typical energy surface in the energy range H0 = h, hpmin < h < hpar−res1 = 0, is shown
in Figure 22 and in the range H0 = h > hpar−res1 = 0 in Figure 23, where the two parabolic
tori are denoted by red circles. Then, the natural frequency in the xy-direction found from
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Figure 22. A typical energy surface with hp
min < H0 < 0.

linearization at the origin,

ω0
0 =

√
−I1 =

√
ω0

1 − α3ω2

µ1 + 1
2 − α2

3

− α2α3,

shows that the singularity ellipse (7.14) detaches from the ω0 = 0 plane with a square-root
distance. Topologically, the energy surface is well described by the branched surface in Figure
9E.

The colliding surface, at which ωH is singular (nonsmooth), is clearly of codimension two,
and it corresponds to the family of hyperbolic tori which live on the given energy surface.
The end points of this collision surface, where the projection singularity heals and the energy
surfaces cease to contain hyperbolic tori, correspond to parabolic tori, a codimension three
surface, namely, points in Figures 9, 21, 22, 23, and 24 (the parabolic tori are denoted by
red circles). At the parabolic lower dimensional tori the ω0 frequency vanishes. If such an
end surface (in the figures, a point) intersects another resonance surface, a parabolic (doubly)
resonant torus is born. It is now clear that with additional DOF such an intersection (of
the boundary of the collision surface and the resonances on the ω0 = 0 plane) is generically
transverse (see [38] for a proof); hence parabolic resonances (PR) are expected to occur on
surfaces corresponding to a range of energies. For the 3 DOF case, since generically the end
points (corresponding to the inner frequencies of the parabolic tori) change continuously with
the energy values, there exists a set of dense values of energies for which these end points hit
resonance surfaces and PR are created. When an end point of a singularity curve belongs to
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Figure 23. A typical energy surface in the range H0 > h0
par−res1 = 0.
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Figure 24. An energy surface with H0 = hpar−res1 = 0, containing a strongly resonant in the I1 direction
parabolic 2-torus (hence, a double resonant parabolic torus). Left: This energy surface in the frequency space.
Right: The resonance web on this energy surface.

a strong resonance plane ωj = 0 (j = 1 or 2) it corresponds to a strong double resonance of
the parabolic lower dimensional torus (see the resonance webs in Figures 21 and 24).

Figure 23 shows an energy surface for positive H0, where the family of tori encircling the
two wells crosses the ω1 = 0 plane. Figure 24 shows an energy surface with H0 = hpar−res1 = 0,
which contains a resonant in the I1 direction parabolic torus (hence strongly doubly resonant
with ω0 = ω1 = 0) and the resonance web on this energy surface. Setting (in addition) α2 = 0,
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Figure 25. A resonance web on an energy surface near the (locally KAM degenerate) energy surface with
H0 = α2 = 0.

the energy surface with H0 = 0 shrinks to a parabolic torus of fixed points at the origin of
the frequency space. However, nearby energy surfaces (i.e., energy surfaces with α2 = 0 and
a small energy value) have a nondiminishing extent in the frequency space, with resonant
parabolic 2-tori residing near the main junction where many strong resonances intersect; see
Figure 25 (note the scale of the axis).

Summarizing, we discovered that the presentation in the frequency space of the energy
surfaces of Hamiltonians of the form H0(x, y, I) with n− 1 dimensional tori that change their
stability has the following properties:

• For a range of energies, the energy surface is singular along a codimension two surface
belonging to the ω0 = 0 plane. This singularity surface corresponds to hyperbolic lower
dimensional tori and their separatrices. The boundaries of the singularity surface (of
codimension three) correspond to parabolic tori.

• Parabolic resonant tori may be recognized as resonance junctions which belong to the
boundary of the hyperbolic singular surface. For 3 DOF systems these appear on a
dense set of energy values; for n ≥ 4 these appear for a range of energies.

• While the resonance surfaces still intersect the energy surfaces densely, the uniformity
seems to be lost.

• A parabolic torus of fixed points appears when the boundary of the singular surface
contains the origin. Such a scenario appears for special parameter values (a codimen-
sion one phenomena) and on specific energy surfaces.
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7.3. Qualitative behavior of the near-integrable system (B). Using the plots of the
EMBD we may read off all possible sources of instabilities. Here we need to combine several
effects:

• Instabilities associated with the regular resonance web, as in the elliptic case.
• Instabilities associated with the existence of equi-energy family of separatrices and

their resonances, as in the unstable case.
• Instabilities associated with resonant parabolic tori; their appearance implies the co-

existence of equi-energy families of separatrices and equi-energy families of lower di-
mensional elliptic tori, meeting at the parabolic tori. The flatness of the singularity
manifolds (see (7.13)) affects the extent of the instability.

• Instabilities associated with bifurcations in the structure of the singularity manifolds
(manifolds corresponding to lower dimensional tori) of the energy surfaces—namely,
the creation of elliptic, hyperbolic, and parabolic lower dimensional tori, all of which
are associated with resonant lower dimensional tori.

Once again, the analysis of each of the above items has not been done yet. For the
parabolic case we have mainly numerical indications for the behavior of the perturbed orbits;
initial steps of a rigorous analysis of instabilities associated with PR are presented in [39] (a
longer detailed version is in preparation). The behavior near a nonresonant parabolic torus
does not yield instability—the lower dimensional parabolic torus persists [24]—and it appears
that the behavior near it is indistinguishable from that appearing near the lower dimensional
normally elliptic torus. However, numerical simulations indicate that the behavior near PR
is dramatically different; orbits which appear to be chaotic and of a different nature than the
homoclinic chaos are abundant. The structure of these perturbed orbits near 1-PR, which
appear for a dense set of energy values, is similar to the one observed in the 2 DOF case;
see [37, 45]. Further degeneracies make the instabilities more pronounced, see [37, 38] for
examples.

One degeneracy we explore here is the existence of a normally parabolic torus of fixed
points which is of codimension one (α2 = 0) and corresponds to a local violation of the KAM
nondegeneracy condition. The induced strong instabilities of a perturbed orbit with initial
values near this point are presented in Figures 26 and 27; in Figure 26 the perturbed orbit
is projected on the (θ, I) planes, where its complicated structure, while it passes through
the successive resonance zones, may be seen; in Figure 27 we show the development of the
instabilities in the action variables depending on time. These figures were produced for the
perturbed Hamiltonian:

Hε
bif (x, y, θ1, I1, θ2, I2; ε) =

y2

2
− x2

2
I1 +

x4

4
+

(
µ1 +

1

2

)
I2
1

2
+

I2
2

2
+ α3I1I2(7.15)

+ ε

((
1 − x2

2

)
cos(3θ1) + cos(3θ2)

)
.

Graphically, in the frequency space, such a scenario happens when the boundary of the
singularity surface (here the end points of the singularity lines) passes through the origin,
where all the resonance planes intersect. The fact that a parabolic 2-resonant torus resides
at this junction point seems to induce strong instabilities in the perturbed system in both
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Figure 26. Instability in the action variables near 2-PR: A perturbed orbit projected on the (θ, I)
planes, corresponding to the total energy H ≈ 9.953e − 4, with initial conditions (x, y, θ1, I1, θ2, I2; ε) =
(0.2515, 0, 1.57, 0, 1.57, 0, 1e− 3, 1e− 3).

action directions, as seen in Figures 26 and 27. In Figure 28 the corresponding unperturbed
energy surface is shown in the (I2, I1) plane and in the frequency space (see the corresponding
resonance web in Figure 25). The perturbed orbit shown in Figures 26 and 27 approximately
covers the whole possible extent of the actions range on this surface. For more details and
upper bounds on the maximal instability rate see [37, 38, 39]; in particular, in [39] analytical
methods for studying instabilities near 2-PR are suggested.

Note that in 4 or more DOF systems the existence of a double resonant parabolic torus is
persistent without dependence of the system on external parameters, and the local violation
of the KAM iso-energetic nondegeneracy condition is avoided. Numerical simulations suggest
that near such double PR the instabilities and the orbit structure are similar to the ones
appearing in the locally degenerate 3 DOF system (with α2 = 0 ).

8. Bifurcations in the energy-momentum diagrams. Here we formulate the observed
relations between bifurcations in the EMBD and the appearance of lower dimensional res-
onances precisely. First we prove that extrema of the nonparabolic singularity surfaces in
the EMBD occur iff the corresponding tori are resonant. Then we prove that if on a given
energy surface there exists an (n − 1)-nonparabolic torus which is nondegenerately strongly
(n − 1)-resonant (see definitions below), then the topology of the energy surfaces changes at
this value of the energy. We end with formulating similar results for the parabolic case. After
stating the results for the generic parabolic case we show that our model Hamiltonian Hbif



564 A. LITVAK-HINENZON AND V. ROM-KEDAR

0 100 200 300 400 500 600 700 800 900 1000
−0.1

−0.05

0

0.05

0.1

0.15

t

I1
, I

2

Η0=0.001, µ1=0.3, α2=0.0, α3=0.4

Figure 27. Instability in the action variables near 2-PR: A perturbed orbit projected on the time-actions
plane, with initial conditions as in Figure 26. Solid line: I1. Dashed line: I2.
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Figure 28. An energy surface of Hbif with α2 = 0, H0 = 1e − 3. Left: An EMBD in the (I2, I1) plane.
Right: In the frequency space.

is nongeneric in this context (because of its Z2 symmetry) and formulate the corresponding
results to a suitable class of Hamiltonians.

8.1. Folds in the EMBD and resonances. Consider the EMBD near a singular family
of n − 1 lower dimensional tori, pf . (Here we again take s = 1. General value of s will be
considered elsewhere.) The unperturbed Hamiltonian, expressed in suitable local coordinates
near pf , is given by H0 = H0(x, y, I), where pf = (xf , yf , If ) satisfies ∇x,yH0(x, y, I)|pf = 0.

By the implicit function theorem (IFT), if the Hessian of H0 with respect to x, y is nonsingular



ON ENERGY SURFACES AND THE RESONANCE WEB 565

at pf (namely, det ∂2H(x,y,I)
∂x∂y |pf �= 0), we may express this manifold as a graph over the I

variables: pf = (xf (I), yf (I), I). Then, apart from parabolic points (where det ∂2H(x,y,I)
∂x∂y |pf =

0), pf is represented in the EMBD by the codimension one smooth manifold phf = {hf (I), I} =

{H0(xf (I), yf (I), I), I}.15 It is now natural to define extremal points of the singularity surface
in the EMBD.

Definition 5. pcf is a simple k-extremal point of the singularity manifold phf if pcf is non-
parabolic and hf (I) = H0(xf (I), yf (I), I) has a local extremal in k directions at pcf ; i.e., there
exist i1, . . . , ik ∈ {1, . . . , n− 1} such that

∂hf (I)

∂Ii

∣∣∣∣
pcf

= 0 for i = i1, . . . , ik.(8.1)

Theorem 1. Consider a family of singular nonparabolic n − 1 dimensional tori pf (I) =
(xf (I), yf (I), I), where (x, y, I) are suitable coordinates near pf (I). Then pcf = pf (I

c) is a
simple k-extremal point of the corresponding singularity manifold in the EMBD iff pcf corre-
sponds to a k-strongly resonant lower dimensional torus.

Proof. Since pcf is not parabolic the representation phf = {hf (I) = H0(xf (I), yf (I), I), I} is
nonsingular near pcf . Hence, pcf is a k-extremal point iff the surface {hf (I) = H0(xf (I), yf (I), I),
I} in the (h, I) space is extremal in k directions Ii1 , . . . , Iik at pcf . This occurs, by definition,

iff
∂hf (I)
∂Ii

vanishes in the corresponding k directions at pcf as expressed in (8.1). Since we use
suitable coordinates, and since ∇x,yH0(x, y, I)|pf = 0, it follows that for i = i1, . . . , ik

·
θi

∣∣∣∣
pcf

=
∂H(x, y, I)

∂Ii

∣∣∣∣
pcf

=
dH(pf (I))

dIi

∣∣∣∣
pcf

=
∂hf (I)

∂Ii

∣∣∣∣
pcf

= 0.(8.2)

Theorem 1 relates the extremal point of the singularity surfaces in the EMBD and reso-
nances. We have seen that the topology of the energy surfaces changes at folds of these singular
surfaces. We note here the triviality that folds imply extremum points, and extremum points
with first nonvanishing derivatives of even order imply folds.

8.2. Topological bifurcations. In the previous section we saw that Hbif has two values
hc = h+

ell, h
0
hyp which are simple 2-fold points of the elliptic and hyperbolic singularity surfaces

(namely, these singularity surfaces have an even order extrema in two action directions),
several families of curves on which a simple 1-fold occurs (corresponding to the intersection
of the singularity surfaces p±ell, p

0
hyp, p

0
ell with the corresponding resonances), and hc = h0

p is a
1-parabolic fold point corresponding to the first appearance of parabolic tori. We observe that
h+
ell, h

0
hyp, and h0

p correspond to a topological change in the energy surfaces’ structure, namely,
the corresponding topology of the branched surfaces changes across these energy values, but
that the families along which a simple 1-fold occurs do not correspond to such changes. We
would like to formulate these observations. First, we need to define the branched surfaces in
a precise way.

15With a slight abuse of notation we denoted it in previous sections by pf = (hf (I), I) as well (see, for
example, (7.2), (7.3), (7.4)).



566 A. LITVAK-HINENZON AND V. ROM-KEDAR

Recall that hc is a topological bifurcation point if the branched surfaces across hc are not
equivalent (definition 3). If the topology of AS

h , the singularity manifold for a given energy
surface, changes across h, then the branched surfaces across h are not equivalent. Using the
Morse lemma we establish that for s = 1 the singularity manifold, AS

h , changes its topology
near folds of the singularity surfaces. Since folds of the singularity surfaces imply extrema
and extrema imply resonances, the main result follows.

Definition 6. pcf is an n − k (0 < k < n) strongly resonant n − 1 dimensional singular
torus with nondegenerate frequency vector if in the suitable Arnold–Liouville–Nekhoroshev
coordinates

dH0(p
c
f )

dIj
= 0, det

(
d2H0(p

c
f )

dIidIj

)
�= 0, j = 1, . . . , k.(8.3)

The relation between (8.3) and resonances, as stated in the definition, follows from The-
orem 1.

Theorem 2. If pcf is a nonparabolic n−1 strongly resonant n−1 dimensional singular torus
with a nondegenerate frequency vector, then hc = H0(p

c
f ) is a topological bifurcation point.

Proof. The theorem essentially follows from the Morse lemma (see [26] or [41]); we include
some details to enhance the intuition. Using the suitable coordinates near pf , we may write

H0(pf − pcf ) = H0(p
c
f ) + (If − Ic)TA(If − Ic) + O(3),(8.4)

where A is the Hessian at pcf : A =
d2H0(pcf )

dIidIj
(recall that ∇x,yH0(pf − pcf ) ≡ 0). Hence, by

linear orthonormal transformation Uz = I, we may write (8.4) as

H0(pf − pcf ) −H0(p
c
f ) +

n−1−r∑
i=1

ai+rz
2
i+r =

r∑
i=1

aiz
2
i + O(3),

where ai > 0 for all i by the nondegeneracy assumption. In fact, r is the Morse index of
hf (I) = H0(xf (I), yf (I), I) at pcf (the dimension of the subspace for which the Hessian A is
positive definite). The Morse lemma, which applies to hf (I) by (8.3), states that by smooth
local change of coordinates we can eliminate all higher order terms and set all the ai’s to
unity. It follows immediately that intersection of the singularity surface {H0(pf ), If} with the
plane H0(pf ) = h near pcf changes its topology across hc = H0(p

c
f ); if r = n− 1 (resp., r = 0).

Namely, if A is positive (negative) definite, then for h < hc (h > hc) there is no branch of pf
near pcf satisfying H0(pf ) = h, whereas on the other side there is an n− 2 dimensional ellipse
satisfying this equation. If 0 < r < n−1, the hyperboloids pf (h, ·) change their orientation at
h = hc; namely, they do not depend smoothly on h at hc. Since the branched surfaces change
across the surfaces pf (h, ·), the claim is proved.

8.3. Parabolic tori and topological bifurcations. Consider the surface of parabolic lower
dimensional tori ppf = (xpf , ypf , Ipf ) so that

∇x,yH0(x, y, I)|ppf = det
∂2H(x, y, I)

∂x∂y

∣∣∣∣
ppf

= 0.(8.5)
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These three equations define (generically) a codimension two surface in the EMBD, the sin-
gularity surface, phpf . Along phpf two (or more, in symmetric/degenerate cases) singularity

surfaces representing families of nonparabolic (n − 1)-tori, phfi(I), i = 1, . . . , n, meet. For

example, in section 7, the four singularity surfaces phf1,2(I) = p±ell, p
h
f3,4

(I) = p0
hyp,ell meet at

phpf = p0
par. The natural oscillations in the xy plane of the n− 1 dimensional tori ppf vanish,

so these tori are strongly resonant in the ω0-direction. We now address the natural question
in view of Theorem 1: When do extremal points of this singularity surface (phpf ) in the EMBD
correspond to additional strong resonances? Here, one should take careful limits when con-
sidering derivatives across the singular boundary of phfi(I), namely, across phpf . To formulate
such conditions let us investigate more fully (8.5). Define the functions

f1(x, y, I) =
∂H(x, y, I)

∂x
, f2(x, y, I) =

∂H(x, y, I)

∂y
, f3(x, y, I) = det

∂2H(x, y, I)

∂x∂y
;

then (8.5) defines the surface f1(x, y, I) = f2(x, y, I) = f3(x, y, I) = 0. Can this surface be
represented as a graph over the n− 2 actions Jn−2 = (I1, . . . , Ijp−1, Ijp+1, . . . , In−1) for some

chosen index jp? By the IFT, this may be done if ∂(f1,f2,f3)
∂(x,y,Ijp ) is nonsingular, and hence we have

the following definition.
Definition 7. ppf is an n− 1 dimensional parabolic torus which is nondegenerate in the Ijp

direction if ppf satisfies (8.5) and

det
∂(∂H(x,y,I)

∂x , ∂H(x,y,I)
∂y ,det ∂2H(x,y,I)

∂x∂y )

∂(x, y, Ijp)

∣∣∣∣∣∣
ppf

�= 0.(8.6)

If p∗pf is an n− 1 dimensional parabolic torus which is nondegenerate in the Ijp-direction,
then in its neighborhood there is an n−2 dimensional family of parabolic tori ppf which may be
expressed as a graph over the n−2 actions Jn−2 = (I1, . . . , Ijp−1, Ijp+1, . . . , In−1) : ppf (J

n−2) =
(xpf (J

n−2), ypf (J
n−2), Ijp(J

n−2), Jn−2). It follows that the corresponding codimension two
surface in the EMBD can be represented as a graph over the same actions as well:

phpf (J
n−2) = {H0(xpf (J

n−2), ypf (J
n−2), Ijp(J

n−2), Jn−2), Ijp(J
n−2), Jn−2}

= {hpf (Jn−2), Ijp(J
n−2), Jn−2}.

Using (8.5), it follows that

∂hpf (J
n−2)

∂Ij

∣∣∣∣
ppf

=

(
∂H(x, y, I)

∂Ij
+

∂H(x, y, I)

∂Ijp

∂Ijp(J
n−2)

∂Ij

)∣∣∣∣
ppf

(8.7)

=

( ·
θj +

·
θjp

∂Ijp(J
n−2)

∂Ij

)∣∣∣∣
ppf

for j �= jp,

whereas

·
θjp

∣∣∣∣
ppf

=
∂H(x, y, I)

∂Ijp

∣∣∣∣
ppf

=
∂hfi(I)

∂Ijp

∣∣∣∣
pfi→ppf

,(8.8)
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and the independence of the last term on i follows from the smooth dependence of the Hamil-
tonian flow on I, even across the parabolic (in the xy-direction) point. The relation between

extremal points of hpf (J
n−2) (at which

∂hpf (I)
∂Ii

|ppf = 0) and resonances is now clear.
Theorem 3. Consider a family of normally parabolic n−1 dimensional tori ppf = (xpf , ypf ,

Ipf ) which is nondegenerate in the Ijp-direction at pcpf . Then, for j �= jp, an extremal point
in the Ij-direction of the corresponding singularity manifold in the EMBD at pcpf corresponds
to a strong resonance in this direction iff pcpf is strongly resonant in the Ijp-direction or if
Ijp is extremal in Ij at pcpf . pcpf is strongly resonant in the Ijp-direction iff the nonparabolic
singularity surfaces emanating from ppf are extremal in the Ijp-direction in the limit pfi →
pcpf .

An attempt to apply the above theorem to system (7.1) immediately fails—this system
does not satisfy the nondegeneracy condition (8.6). Considering all systems with natural
mechanical potential in the xy plane having a parabolic invariant (n− 1)-torus at the origin,

Hgen
bif (x, y, I) =

y2

2
− x2

2
f(I) + V (x, I),(8.9)

f(0) = 0,
∂V

∂x

∣∣∣∣
(0,0)

= 0,
∂2V

∂x2

∣∣∣∣
(0,0)

= 0,

shows that the nondegeneracy condition (8.6) corresponds to

∂3V

∂x3

∂2V

∂x∂Ijp

∣∣∣∣
(0,0)

�= 0;

namely, the system is asymmetric with respect to reflections in x, and the location of the
bifurcating invariant tori depends on Ijp . Hence, any natural mechanical system with Z2

symmetry does not satisfy (8.6).
We observe that another possibility (which is realized in our case of system (7.1)) of

satisfying (8.5) along a simple n − 2 dimensional surface is to require that the unperturbed
system separates to a sum of two Hamiltonians, the first depending on (x, y, Ijp) and the
second depending on the actions (I1, . . . , In−1). In this case equations (8.5) are independent
of Jn−2 = (I1, . . . , Ijp−1, Ijp+1, . . . , In−1), and any solution of these equations is satisfied for all
Jn−2 values. This separability assumption is of course highly nongeneric from a mathematical
point of view but is certainly of physical relevance (a similar approach appears in the theory
of partial averaging).

Definition 8. ppf is an n−1 dimensional parabolic torus fully degenerate in the Ijp-direction
if ppf does not satisfy (8.6) but does satisfy (8.5) and these equations are independent of Ij
for all j �= jp.

This condition is satisfied for any system of the form (8.9) if f(I) = f(Ijp), V (x, I) =
V (x, Ijp) + g(I). In this case ppf can be locally presented as the surface (xpf , ypf , Ijp,pf , J

n−2)

with xpf , ypf , Ijp,pf independent of Jn−2 so
∂Ijp,pf
∂Ij

= 0 for j �= jp. Indeed, for (7.1), we saw

that jp = 1 and ppf = (xpf , ypf , I1,pf , I2) = (0, 0, 0, I2). Hence, near a parabolic torus, which is
fully degenerate in the Ijp direction, we can present the n− 2 dimensional family of parabolic
tori as phpf (J

n−2) = {H0(xpf , ypf , Ijp , J
n−2), Ijp , J

n−2} = {hpf (Jn−2), Ijp , J
n−2}. The relation
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between extrema of hpf (J
n−2) and additional resonances follows immediately from (8.7) and

(8.8), where we use
∂Ijp
∂Ij

= 0 to conclude the following.

Theorem 4. Consider a family of normally parabolic n−1 dimensional tori ppf = (xpf , ypf ,
Ipf ), which is fully degenerate in the Ijp-direction at pcpf . Then, for j �= jp, the extremal point
in the Ij-direction of the corresponding singularity manifold in the EMBD at pcpf corresponds
to a strong resonance in this direction. pcpf is strongly resonant in the Ijp-direction iff the
nonparabolic singularity surfaces emanating from ppf are extremal in the Ijp-direction in the
limit pfi → pcpf .

As in section 8.2, by the Morse lemma, n − 2 nondegenerate folds in the direction of
the n − 2 actions Jn−2 of the codimension two surface phpf (J

n−2) correspond to topological
bifurcations. From (8.7) and (8.8) we conclude that such folds are not always associated with
resonances, and we should distinguish between three cases.16 For the fully degenerate case
folds and resonances are simply related.

Theorem 5. Consider an n−1 dimensional parabolic torus, pcpf . Assume pcpf is completely
degenerate in the Ijp-direction and that pcpf is n− 2 strongly resonant with nondegenerate fre-
quency vector in the I1, . . . , Ij−1, Ij+1, . . . , In−1-directions; then hpc = H0(p

c
pf ) is a topological

bifurcation point.

In section 7, the energy hpc = h0
p is a topological bifurcation point which is well described

by this theorem; at h0
p parabolic tori first appear, and we have seen that a resonance in the

I2-direction occurs there.

In the generic case, a fold of phpf (J
n−2) in the Ij-direction is associated with resonance if

·
θjp = 0 or if

∂Ijp (Jn−2)

∂Ij
|pcpf = 0. Hence, topological bifurcations occurring at an n − 2 fold of

phpf (J
n−2) are associated with a resonance only if additional conditions are satisfied. To satisfy

these additional conditions in a persistent way the system must have additional parameters
or symmetries.

Theorem 6. Consider an n− 1 dimensional parabolic torus, pcpf . Assume that pcpf is non-
degenerate in the Ijp-direction and that the Hamiltonian at pcpf is locally separable, namely,
∂Ijp (Jn−2)

∂Ij
|pcpf = 0 for all j �= jp. Then, if pcpf is n− 2 strongly resonant with nondegenerate

frequency vector in the I1, . . . , Ij−1, Ij+1, . . . , In−1-directions, then hpc = H0(p
c
pf ) is a topo-

logical bifurcation point. Without imposed symmetries, such a phenomenon is of codimension
n− 2.

Theorem 7. If pcpf is an n − 1 dimensional parabolic torus of fixed points which is non-
degenerate in the Ijp-direction and has nondegenerate frequency vector in the I1, . . . , Ij−1,
Ij+1, . . . , In−1-directions then hpc = H0(p

c
pf ) is a topological bifurcation point. Without im-

posed symmetries, such a phenomenon is of codimension one.

9. Discussion. We have shown that when the generalized action-angle coordinates can be
extended globally (as in our prototype models of normally stable, unstable, and bifurcating

16Note that there are two different (independent) types of nondegeneracies. One corresponds to the standard
assumption regarding changes in the frequency vector (Definition 6) and is needed for applying the Morse
lemma. The other corresponds to the nondegenerate (degenerate) dependence of the parabolic tori on a
specific action (Definitions 7,8).
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tori) the combination of the EMBD and the branched surfaces supply global qualitative de-
scription of the near-integrable dynamics; on these diagrams the topological changes in the
energy surfaces and the appearance of lower dimensional resonances are apparent, and thus
various mechanisms for instabilities (such as homoclinic orbits, hyperbolic resonances, and
PR) may be clearly identified. In particular, we proved that topological bifurcations of the
energy surfaces correspond to folds of singularity surfaces in these diagrams and hence to res-
onances. In other works [37, 38] we have demonstrated that the curvature of these singularity
surfaces at the folds plays a crucial role in the extent of the instabilities in the perturbed
system. Again, such effects are easily identified in these diagrams.

Many issues remain for future studies:

• We have seen (sections 6.3 and 7.3) that there is a long list of instabilities associated
with the near-integrable motion near families of lower dimensional tori which is not
well understood yet.

• For 2 DOF systems, the description of the energy surfaces as graphs gives a useful
insight regarding the evolution of the instabilities in the action variables (or, more
generally, in the adiabatic variables of the system) under small conservative perturba-
tions or conservative noise [20]. These ideas were generalized to n DOF systems with
strong conservative noise which destroys all integrals of motion and small nonconser-
vative noise which leads to diffusion between different energy surfaces [19]. In view
of our work, one is lead naturally to investigation of motion in integrable (or near-
integrable) systems with small conservative noise by studying random motion along
branched surfaces.

• The behavior of systems for which the local generalized action-angle coordinates cannot
be globally extended is yet to be studied. In particular, one would like to extend
the presentation here so it will be applicable to the work of Fomenko and coworkers
in which the topology of complicated systems, like the rigid body, is fully analyzed
[17, 18]. On one hand, one may use general constants of motion plots in a similar
fashion to what we have proposed for the EMBD, yet the relation between folds and
resonances will be lost. On the other hand, even for such plots, finding the branched
surfaces topology from the Fomenko graphs is challenging.

• The restriction to systems with compact level sets excludes important examples such as
the Kepler problem. Delicate issues related to the possible appearance of noncompact
critical level sets and singularities of the potential need to be addressed (see [47]).

• Notice that the generalized action-angle local representation naturally leads to inves-
tigation of the Hamiltonian function evaluated along the singularities as a function of
the n − s actions. Hence, as noted in [33], singularity theory may be used to classify
all persistent bifurcations in the s DOF subsystem. Here, we further observe that
resonances are also associated with singularities of this function. Full classification, as
had been achieved for some of the bifurcation scenarios, is yet to be developed.

• Finally, the effect of n−s dimensional tori with various stabilities in the 2s dimensional
normal space for s > 1 (as in [33]) on the EMBD structure and the branched surfaces
structure is yet to be understood.
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