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The truncated forced nonlinear SchrödingersNLSd model is known to mimic well the forced NLS
solutions in the regime at which only one linearly unstable mode exists. Using a novel framework
in which a hierarchy of bifurcations is constructed, we analyze this truncated model and provide
insights regarding its global structure and the type of instabilities which appear in it. In particular,
the significant role of the forcing frequency is revealed and it is shown that a parabolic resonance
mechanism of instability arises in the relevant parameter regime of this model. Numerical experi-
ments demonstrating the different types of chaotic motion which appear in the model are
provided. ©2005 American Institute of Physics. fDOI: 10.1063/1.1831591g

Putting an order in a multidimensional chaotic system by
classifying all the different types of trajectories and find-
ing their corresponding phase space regions is, in general,
a formidable and perhaps even unattainable task. Near-
integrable Hamiltonian systems are a fascinating play-
ground in this respect as some rough classification may
be found. Indeed, we demonstrate here that in some cases
their structure may be well described via the construction
of a three-level hierarchy of bifurcations. The analysis
reveals, in a systematic way, the typical and singular so-
lutions on a given energy level, and how these are altered
as the energy level and the parameters are varied. In
particular, all the different types of singular unperturbed
solutions arising in a given model may be classified. The
various types of chaotic trajectories which are produced
by the perturbation in the neighborhood of such solutions
are shown. The concrete system we analyze is a two-mode
truncation of the forced one-dimensional nonlinear
Schrödinger equation, an equation which describes many
phenomena in physics such as the Bose–Einstein conden-
sation. Our analysis explains the phase-space structure of
this extensively studied reduced model, discloses the sig-
nificance of the forcing frequency parameter, and reveals
new types of chaotic solutions in it.

I. INTRODUCTION

The one-dimensional nonlinear SchrödingersNLSd
equation emerges as a first-order model in a variety of fields
in physics—from high-intensity laser beam propagation to
Bose–Einstein condensation to water waves theory; since it
is the lowest order normal form for the propagation of
strongly nonlinear dispersive waves its appearance in such a
wide range of applications is mathematically obviousssee
Ref. 1 and references thereind. It was one of the triumphs of
mathematics when it was realized that the NLS is completely
integrable in one dimension on the infinite linesor with pe-
riodic boundary conditionsd and hence completely solvable,
leading to the beautiful theoretical development of inverse
scattering, Lax pair, and spectral analysis of such nonlinear

systems.2 The realization that such integrable structure might
not persist under small perturbations led, almost two decades
ago,3,4 to the development of a program in which the influ-
ence of forcing and damping that breaks the integrability of
the partial differential equationsPDEd is considered. This
program included extensive numerical study of the perturbed
PDEs which was presented in various forms. Since the phase
space is infinite dimensional, it is indeed unclear which form
supplies the best understanding of the solution’s structure. It
was then suggested that a finite-dimensional model—a two-
mode Galerkin truncation of the perturbed NLS—faithfully
describes the PDE dynamics when even and periodic bound-
ary conditions are imposed and theL2 norm of the initial data
is not too large.3–10 Furthermore, it was shown that the un-
perturbed truncated system is a two degrees of freedom
Hamiltonian system with an additional integral of motion,
hence, is integrable. The study of the perturbed two-mode
model is the main subject of this paper.

Previous investigation of the truncated system led to the
discovery of a new mechanism of instability—the hyperbolic
resonance—by which homoclinic solutions to a lower di-
mensional resonance zone are created.11–14 The unperturbed
structure of the truncated model which is responsible for this
behavior is a circle of fixed points which is hyperbolic in the
transverse directionssee Sec. III for a precise definitiond.
New methodologies and tools introduced to this PDE-ODE
study have finally led to a proof that the homoclinic reso-
nance dynamics, and in particular the birth of new types of
multipulse homoclinic orbits which is associated with it, has
analogous behavior in the PDE settingssee Refs. 1, 10, 15,
and 16, and references thereind.

The appearance of a hyperbolic circle of fixed points in
the truncated model is not a special property of the NLS
model—investigation of the structure of low-dimensional
near-integrable Hamiltonian systemsssee Ref. 17d shows that
hyperbolic resonances are a persistent phenomenon inn de-
grees of freedom systems withnù2; among such integrable
Hamiltonian systems there are open sets of Hamiltonians
which have ann−1-dimensional torus of fixed points which
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is normally hyperbolic. The existence of such tori may be
formulated as the existence of transverse intersection of
some finite-dimensional manifolds. Hence, using the trans-
versality theorem, one proves that hyperbolic resonant tori
exist for aC1-open set of integrable Hamiltonians, which we
take hereafter as the definition of persistence.

The framework of studying the phase-space structure of
the perturbed NLS and its modal truncations as perturbations
to increasingly larger dimensional integrable systems appears
to be promising. Yet, despite a century-long study of near-
integrable Hamiltonian systems, our qualitative understand-
ing of inherently higher dimensionalsnonreducible to
smooth, symplectic two-dimensional mapsd near-integrable
dynamics is lacking. Qualitative understanding means here
that the effect of small perturbations on different unperturbed
orbits may bea priori predicted for some nontrivial time
scales. For example, such a qualitative understanding exists
for generic near-integrable one-and-a half degrees of free-
dom systems; the unperturbed periodic orbits which fill al-
most all of the phase space are replaced by KAM tori, Can-
tori, and resonance bands, whereas the neighborhood of
homoclinic loops of the integrable system is replaced by ho-
moclinic chaotic zones. While there are some long-standing
open problems regarding the asymptotic behavior of such
systemssnotably the decay rate of averaged observables in
the chaotic zone and the measure of the chaotic zone18,19d,
the basic transport and instability mechanisms are well un-
derstood on time scales which are logarithmic in the pertur-
bation parameter.20,21Another example is the behavior of or-
bits of near-integrablen degrees of freedomsd.o.f.d systems
in a neighborhood of an unperturbed, compact, regular non-
degenerate level set with Diophantine frequency vector;
while the asymptotic behavior of the solutions in such re-
gions is still unknownsthe famous Arnold diffusion conjec-
tured, it is known that for extremely long timesat least ex-
ponential in the perturbation parameter22,23d the orbits will
hover near the preserved KAM tori. In both examples, while
the asymptotic behavior is unknown, there is a good under-
standing of the characteristic behavior of all orbits in a given
neighborhood for a long transient time.

Here, we propose the following framework for obtaining
such a qualitative information for a class ofn d.o.f. near-
integrable Hamiltonian systemssand demonstrate this ap-
proach on the truncated NLS equationsd. Given an integrable
n-degrees of freedom family of Hamiltonian systems
H0sq,p;md depending on the vector of parametersm, con-
sider the following three-level hierarchy of bifurcations: The
first stage consists of the analysis of the structure of the level
setssthe sets of phase-space points along which alln con-
stants of motion are fixedd on a single energy surfacesthe set
of phase-space points along which the unperturbed energy is
fixedd. Bifurcation values at this level correspond to the val-
ues of the constants of motion across which the topology of
the level sets on a given energy surfaceH0sq,p;md=h is
changed. The set of these values was called the “bifurcation
set” by Smale24 and the “singularity manifolds” by Lerman
and Umanskii.25 The energy-momentum bifurcation diagram
and the branched surfaces provide a complete description of
this level set’s structure on any given energy surface. These

tools correspond to generalizations and extensions of the
standard energy-momentum maps and the Fomenko graphs
which were previously developed and applied to several in-
teresting integrable systems.24–31 These diagrams were con-
structed for a simple 2-d.o.f. model which describes the mo-
tion of high-altitude weather balloons in the atmosphere. In
Refs. 17, 32, and 33 such diagrams were constructed for a
variety of normal form-type models withn=2 and 3. The
main emphasis in these constructions is that, given a conser-
vative perturbation, the Hamiltonian which is preserved in
the perturbed flow defines the energy surfaces which are
close, metrically but not necessarily topologically, under
some mild conditions, to the perturbed surfacesssee Appen-
dix Ad. Thus, the structure of the unperturbed surfaces sup-
plies a priori bounds to the perturbed motion.

The next level in the hierarchy consists of the energy
bifurcation valueshb across which the energy surfaces are no
longerC1 conjugate. Thus, it describes how the energy sur-
face differential topology is changed withh. This level of
bifurcation was implicitly mentioned before24,29,31 but has
not been fully investigated. We have shown in Refs. 17, 32,
and 33 that the energy-momentum bifurcation diagram sup-
plies a graphical tool for realizing such bifurcation scenarios
on this second level. In Refs. 17 and 32–35 we have shown
that the simplest bifurcationsa fold in the codimension one
singularity surfacesd is associated with resonances—namely
with a dynamical phenomenon! Indeed, previous works have
mostly concentrated on one specific dynamical phenomenon
which changes the level set topology—the appearance of iso-
lated fixed points, where the structure of the level sets and
the energy surfaces becomes more complex asn increases
ssee Refs. 25, 29, and 36, and related worksd. Here, we list
all the otherknownscenarios creating energy bifurcation val-
ues for the 2-d.o.f. casesfolds, cusps and their symmetric
analogs, curve crossings, and asymptotes to infinityd and dis-
cuss their dynamical implicationssresonances, parabolicity,
lower dimensional tori,or global bifurcationsor no special
local implications, unknown yet, respectivelyd.

The last level in the hierarchy is concerned with the
parameter dependence of the energy bifurcation values. The
bifurcation values here are the parameter valuesmb at which
the bifurcation sequence of the second level changesse.g., by
changing the order of the energy bifurcating valuesd. For
example, for the 2-d.o.f. case, at a parameter value for which
the fold-resonance energy bifurcation valuehres intersects the
cusp-parabolic energy bifurcation valuehpar, a resonant para-
bolic circle35 sa circle of fixed points which is normally para-
bolicd is created. The perturbed motion near parabolic reso-
nant tori exhibits instability. We establish here that a
parabolic resonance appears for some relevant parameter val-
ues in the perturbed truncated NLS model, and demonstrate
that the perturbed orbits near such values are of different
characteristics than the trajectories which were previously
observed. Using this framework the importance of a second
parameter, the forcing frequency, which was set to be 1 in
most previous studies, is highlighted.

The paper is ordered as follows: In Sec. II we describe
the model which we study—the two-mode truncation of the
forced NLS equation. In Sec. III we discuss the structure of
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the perturbed and unperturbed energy surfaces, and in Sec.
IV we construct the energy-momentum bifurcation diagram
and the Fomenko graphs for this model. Together, these sup-
ply complete information on the structure of the energy sur-
faces and their dependence on the energy, namely this sec-
tion completes the first level of the hierarchy of bifurcations
analysis. In Sec. V we present numerical solutions of the
perturbed model at regular energy values in various forms,
demonstrating how the underlying integrable structure deter-
mines their character. Next, in Sec. VI we discuss the second
level of the hierarchy—the energy bifurcation values. We
show that in our model three possible mechanisms for the
appearance of such bifurcations exist and for completeness
we discuss one other mechanism which appears in other
models. We demonstrate that the appearance of energy bifur-
cation values is usually associated with some dynamical phe-
nomenon of the perturbed trajectories. Finally, in Sec. VII we
describe how the energy bifurcation values vary with the
model parameters—the interval length and the frequency of
the forcing. We again relate parameter bifurcation values
with dynamical phenomenon of the perturbed dynamics. Af-
ter the discussion and the conclusions, in Appendix A, we
prove that under quite general conditions onn d.o.f. systems,
for small Hamiltonian perturbations, the energy surfaces of
the perturbed and unperturbed systems are close to each
othersyet not necessarily topologically conjugated. Appendix
B consists of several energy-momentum bifurcation dia-
grams and their corresponding Fomenko graphs.

II. THE NLS EQUATION

Consider the following forced and damped NLS equa-
tion:

− icT + cXX + ucu2c = i«sac − LcXX + G exps− iV2Tdd,

s1d

with periodic boundary conditions and with even solutions in
X

csX,Td = csX + L,Td,cXs0,Td = 0.

Let

B = c expsiV2Td. s2d

Then,B satisfies the same boundary conditions asc and the
autonomousstime-independentd equation

− iBT + BXX + suBu2 − V2dB = i«saB − LBXX + Gd. s3d

This equation was extensively studied in the last two
decades,3–9 and in this section we will mention only the rel-
evant results. In this context, the perturbed NLS was first
derived as a small amplitude envelope approximation of the
damped driven sine–Gordon equationsSGEd when the driv-
ing force is in the near-resonance frequency. Then,V=1 and
the only parameter appearing in the unperturbed system is
the box sizeL.

The space of spatially uniform solutionsfBsX,Td
=s1/Î2dcsTdg is invariant under the perturbed flows1d and
the unperturbed solutions are of the formcsTd

= ucs0duexpsisV2− 1
2ucs0du2dT+ igs0dd. Linear stability analysis

of such solutions at«=0 shows that there is exactly one
unstable mode, coss2pX/Ld, when

2p

L
, ucs0du ø

4p

L
, s4d

whereas for lower values ofucs0du the plane-wave solution is
linearly stablesneutrald. The various references use various
rescalings ofc, X, and T, leading to some multiplication
constants in the above relation—all of these relations are of
course equivalent. Furthermore, in most of the works eitherL
or V susuallyVd is considered as fixed. We see that for large
box size the plane-wave solution is unstable even for small
amplitude, as expected.

Consider a two-mode complex Fourier truncation for Eq.
s3d

B2sX,Td =
1
Î2

csTd + bsTdcoskX, s5d

where the periodic boundary conditions imply that

k =
2p

L
j , j [ Z+, s6d

and since we are interested in the first unstable mode we take
j =1. Substituting this solution to the NLS equations3d, set-
ting a=L=0 andG=1, and neglectingssee Refs. 3–10 for
discussion of this stepd higher Fourier modes, we obtain the
following equations of motion:

− iċ + s 1
2ucu2 + 1

2ubu2 − V2dc + 1
2scb* + bc* db = iÎ2«,

s7d
− iḃ + s 1

2ucu2 + 3
4ubu2 − sV2 + k2ddb + 1

2sbc* + cb* dc = 0.

Here, ubu is the amplitude of the first symmetric mode and
ucu /Î2 is the amplitude of the plane wave. These equations
are of the form of a 2-degrees of freedom near-integrable
Hamiltonian system with the Hamiltonian

Hsc,c * , b,b * ; «d = H0sc,c * , b,b * d

+ «H1sc,c * , b,b * d, s8d

and the Poisson bracketshf ,gj=−2isk] /]c,] /]c* l
+k] /]b,] /]b* ld, where

H0 =
1

8
ucu4 +

1

2
ubu2ucu2 +

3

16
ubu4 −

1

2
sV2 + k2dubu2 −

V2

2
ucu2

+
1

8
sb2c*2 + b*2c2d, s9d

H1 =
− i
Î2

sc − c * d.

Furthermore, at«=0, these equations possess an additional
integral of motion

I = 1
2sucu2 + ubu2d, s10d

and thus are integrable; see Refs. 3, 4, and 8–10.
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III. ENERGY SURFACES

Here, the closeness of the perturbed and unperturbed en-
ergy surfaces is discussed, the expected structure of energy
surfaces of 2-degrees-of-freedom integrable Hamiltonians is
described, and finally the specific structure of the energy
surfaces of the unperturbed truncated NLS model is found.

A. Perturbed energy surfaces

Most of this paper is devoted to the study of the structure
of the energy surfaces of the integrable part of the truncated
NLS model. Before we delve into this study, we notice that it
suppliesa priori bounds to the perturbed motion. Indeed,
since the perturbation is Hamiltonian andautonomous, for
any «, a perturbed orbit with energyh fso Hsc,b;«d=h,
sc,bdP hcstd ,bstdjtPRg satisfies H0s·d=h−«H1s· ;«d. Notice
the importance of the transformations2d which transforms
the nonautonomous equations1d to the autonomous ones3d,
and the resulting dependence of the unperturbed equation on
V. We prove below that for small«, points belonging to the
perturbed and unperturbed energy surfaces must be close,
uniformly in h, as long asi¹H0s·di is bounded away from
zero and the growth rate ofH1 for large isc,bdi is slower
than that of H0. Hereafter, all norms are the Euclidean
norms: isq,pdi2=oi=1

n uqiu2+oi=1
n upiu2 and i¹Hi2

=oi=1
n u]H /]qiu2+oi=1

n u]H /]piu2. Hence, the structure of the
unperturbed energy surfaces in anOs«d interval of energies
nearh supplies global information on the allowed range of
motion of the perturbed orbits. More precisely:

Property 1. The Hamiltonian Hsq,p;«d=H0sq,pd
+«H1sq,p;«d is said to have the boundness property if
H0sq,pd and H1sq,p;«d are C` and are bounded with
bounded derivatives on bounded sets. Moreover, for any L2

.0 there exists a constant L1 and an«1 such that for all0
ø«,«1

i ¹ H0sq,pdi

. L2 max5i ¹ H1sq,p;«di,
uH1sq,p;«du

isq,pdi
,«

U ]H1sq,p;«d
]«

U
isq,pdi

6
for all isq,pdi . L1. s11d

Theorem 1. Consider a near-integrable Hamiltonian
Hsq,p;«d=H0sq,pd+«H1sq,p;«d, «!1, sq,pdPM, where
M is a 2n-dimensional symplectic manifold and H satisfies
the boundness Property 1. Consider the energy surface
M«shd=hsq« ,p«d uHsq« ,p« ;«d=hj. Then, for eachd.0 there
exists an«0sdd and a constant Ksdd sindependent of hd such
that for all 0ø«,«0sdd, and for all sq« ,p«dPM«shd satis-
fying

i ¹ H0sq«,p«di . d,

there existssq0,p0dPM0shd fi.e., H0sq0,p0d=hg such that
isq« ,p«d−sq0,p0di,Ksdd«.

Proof: See Appendix A for details. First, we prove that
since i¹H0sq« ,p«di is bounded away from zero, so is
i¹Hsq« ,p«di. Then, an implicit function type of argument

shows that one can extend the solution ofHsq« ,p« ;«d=h
from any given« in the intervals0,«0sddd to zero—which
completes the proof. Using the bounds of Property 1 allows
one to show that this continuation may be done uniformly in
isq,pdi; hence, it is independent ofh. j

The Hamiltonians9d satisfies the theorem assumptions
sinceH0 has quartic growth inucu, ubu, whereasH1 is linear in
ucu; see Appendix A for more details. Therefore, we conclude
that the perturbed and unperturbed energy surfaces are close
to each other as long as the level sets belonging to the un-
perturbed energy surface are bounded away from neighbor-
hoods of fixed pointsswhere¹H0 vanishesd. Since the fixed
points of the systems7d belong to a finite number of level
sets, hence they reside on a finite number of isolated energy
surfacesssee Appendix Ad and one concludes that for the
most part of the phase space the unperturbed and perturbed
surfaces are close to each other. The behavior near the fixed
points requires further analysis, as expected.

Notice that the closeness of the perturbed and unper-
turbed energy surfacesdoes notimply that they are topologi-
cally conjugate. Nonetheless, this geometrical closeness is
sufficient to obtaina priori bounds on the motion! Another
point is that the Euclidean distance is clearly coordinate de-
pendent, yet a smooth symplectic transformation of the co-
ordinates will merely change the constantKsdd in the theo-
rem.

B. The unperturbed energy surfaces

The integrable 2-d.o.f. truncated NLS Hamiltonian,
H0sc,bd, sc,bdPM =C3C, has two integrals of motion:H0

andI. Both integrals are smooth functions of their variables,
and they are pairwise in involution:hH0,Ij=0. Furthermore,
since the level sets ofI, in thesc,bd 4-dimensional space, are
3-spheres, the Hamiltonian level setsMg=hsc,bdPM ,
H0sc,bd=g1,Isc,bd=g2j, are clearly compact; hence, the un-
perturbed flow is complete. By the Liouville–Arnold theo-
rem ssee Refs. 27, 37, and 38d, the connected compact com-
ponents of the level setsMg, on whichdI anddH0 arespoint-
wised linearly independent, are diffeomorphic to 2-tori, and
hence a transformation to action-angle coordinatesfH0

=H0sJdg near such level sets is nonsingular. Here, direct
computation shows thatdI anddH0 are linearly independent
for almost all values ofc andb.

Consider a neighborhood of a level setMg0 which con-
tains a singularity set at whichdI and dH0 are linearly de-
pendentse.g., the planec=0d, but do not vanish simulta-
neously. Then, on each connected and closed component of
such a Hamiltonian level set there is some neighborhoodD,
in which the HamiltonianH0sc,bd may be transformed by
the reduction procedure to the formssee Refs. 25 and 37d

H0sq̄,p̄,Jd, sq̄,p̄,f,Jd [ U # R1 3 R1 3 T1 3 R1,

s12d

which does not depend on the angles of the torus,f. The
symplectic structure of the new integrable Hamiltonians12d
is dq̄∧dp̄+df∧dJ, where sq̄, p̄,f ,Jd are the generalized
action-angle variables.
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For our model, the symmetryc→c expsigd, b
→b expsigd of H0sc,bd inspired the following symplectic
change of variables to the generalized action angle coordi-
natessx,y,I ,gd ssee Ref. 14d:

c = ucuexpsigd, b = sx + iydexpsigd, s13d

I = 1
2sucu2 + x2 + y2d. s14d

Then, the Hamiltonians9d becomes

Hsx,y,I,gd = H0sx,y,Id + «H1sx,y,I,gd,

where

sI,gd [ sR+ 3 Td, sx,yd [ BI = hsx,ydux2 + y2 , 2Ij,

and

H0sx,y,Id = 1
2I2 − V2I + sI − 1

2k2dx2 − 7
16x

4 − 3
8x2y2 + 1

16y4

− 1
2k2y2, s15d

H1sx,y,I,gd = Î2Î2I − x2 − y2 sing. s16d

The transformation to these variables is singular atc=0,
namely on the circle 2I =x2+y2, where the phaseg is ill
defined and the perturbation term has a singular derivative.
In previous works11–14the analysis was performed for phase-
space regions which are bounded away from this circle. We
introduce a similar symplectic transformation which is valid
as long asbÞ0

b = ubueiu, c = su + ivdeiu, I = 1
2su2 + v2 + ubu2d, s17d

and obtain the equation of motion in the canonical coordi-
natessu,v ,I ,ud from the Hamiltonians9d

H0su,v,Id = 3
4I2 + s− V2 + 3

4u2 − 1
4v2 − k2dI − 7

16u
4

− 3
8u2v2 + 1

2k2u2 + 1
2k2v2 + 1

16v4,

H1su,v,Id = Î2sv cosu + u sinud.

When bothg andu are well definedfthe sx,y,I ,gd and the
su,v ,I ,ud correspond to two charts of the 3-sphere defined
by Ref. 39g, namely forcbÞ0, the two sets of coordinates
are simply related

x = ubucossu − gd, y = ubusinsu − gd,

u =
ucu
ubu

x, v = −
ucu
ubu

y.

The geometrical structure of the new Hamiltonian,
H0sq̄, p̄,Jd, is such that for any fixedJ a circle is attached to
every point of thesq̄, p̄d plane. The singular level sets con-
tain a fixed point in the normal planesq̄, p̄d

¹sq̄,p̄duH0sq̄,p̄,Jdupf
= 0, pf = sq̄f,p̄f,Jfd. s18d

Generically, for 2-degrees-of-freedom systems, we expect to
have a one-parameter family of solutions to these equations,
namely a one-parameter family of circlessq̄f , p̄f ,Jf ,fd. The
stability type of these circles in the normal direction to the
family of circles is simply determined by the stability of the
fixed points of the reduced systemsthe system in thenormal
plane27,39,40d, which, in thesq̄, p̄,Jd coordinate system is de-
termined by

detSU ]2H0

]2sq̄,p̄d
U

pf

D = − lpf

2 s19d

wherepf satisfiess18d. Notice that a single circle belonging
to this family has neutral stability in the action direction. The
normal stability referred to in the Hamiltonian context ig-
nores this direction; see Refs. 39 and 41 and references
therein. Whenlpf

is real and nonvanishing the corresponding
family of tori is said to be normally hyperbolic, when it
vanishes it is called normally parabolic, and when it is pure
imaginary it is normally elliptic; see the detailed references
in Ref. 33 and the discussion in Ref. 39. The motion on these
circles is described by the equations

df

dt
= vsq̄f,p̄f,Jfd,

dJ

dt
= 0,

where vsq̄, p̄,Jd=f]H0sq̄, p̄,Jdg /]J is the frequency vector.
Following the terminology of Ref. 25, the invariant circles
on which Eq.s18d is satisfied are called here singular circles,
and the curves of energy and action values on which this
equation is satisfiedfi.e., the curvesH0sq̄f , p̄f ,Jfd ,Jfd in the
sH ,Jd planeg are called the singularity surfaces. We will see
that the structure of these singularity surfaces serves as an
organizing skeleton of the energy surfaces.

For our model, the singular circles are easily found by
setting ¹sx,ydH0sx,y,Id=0 for circles satisfyingx2+y2,2I,
and similarly ¹su,vdH0su,v ,Id=0 for circles satisfyingu2

+v2,2I. As in Refs. 11–14, we identify six such families of

TABLE I. Singular circles.

Invariant circle:u ,gPT1 Exists for Description

s1d ppw=sx=0,y=0,I ,gd, I ù0 Plane wavesb=0d
s2d psm=su=0,v=0,I ,ud, I ù0 Symmetric modesc=0d
s3d ppwm

± =

sx= ±Î4
7s−k2+2Id ,y=0,I ,gd, I ù

1
2k2 PW mixed modesbcÞ0d

su= ±Î6
7I + 4

7k2,v=0,I ,ud, I .
1
2k2 ”

s4d psmm
± =

sx=0,y= ±2k,I ,gd, I .2k2 SM mixed modesbcÞ0d
su=0,v= ±Î2I −4k2,I ,ud, I ù2k2 ”
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singular circles as summarized in Table I—the plane-wave
sb=0d and symmetric modesc=0d families are the two pure
states and the other four families correspond to circles which
bifurcate from these two pure families when they lose stabil-
ity.

Table II includes the calculation of the normal stability
multipliers for these families of circles, namely the calcula-
tion of Eq. s19d for this case, showing that the first two
families become unstable when their norm is increased
above a threshold level which depends on the box size.

Remark 1. Recall that we expect the two-mode model to
apply for regions in which the plane-wave solution has at
most one unstable mode. Usings4d and s13d, it follows that
near the circle b=0 we should expect the analysis to be valid
for I ø2k2. Interestingly enough, we see that exactly at this I
value the symmetric mode solutions lose their stability. The
analysis and numerical simulations of the truncated model
with I.2k2 are performed here to demonstrate some inter-
esting dynamical phenomena, but their relevance to the full
PDE dynamics is admittedly doubtful.

The dynamics in the angle direction forx2+y2,2I is
described by

dg

dt
= vsx,y,Id = I − V2 + x2 =

]H0sx,y,Id
]I

, s20d

and foru2+v2,2I we have

du

dt
= vsu,v,Id =

3

2
I − V2 +

3

4
u2 −

1

4
v2 − k2 =

]H0su,v,Id
]I

.

s21d

In particular, the invariant circles listed in Table I have an
inner frequency,vsId=f]H0spfdg /]I, and they correspond to

a circle of fixed points when this frequency vanishes as listed
in Table III below.

Using the transformation to thesx,y,Id coordinates, the
corresponding 2-d.o.f. system withV=1 was studied in the
dissipative and conservative cases.1,11–14In particular, it was
realized that a specially interesting phenomena occurs when
the circle corresponding to a plane wavesb=0d is a normally
hyperbolic circle of fixed pointssfrom Tables II and III and
remark 1 we conclude that such a circle appears in the rel-
evant regime for anyV, at I =V2 for V /Î2,k,Î2Vd.
Then, at«=0, pairs of fixed points on this circle are con-
nected by two heteroclinic orbits. This realization led to a
beautiful theoretical study of the behavior of integrable sys-
tems with such a normally hyperbolic circle of fixed points
under conservative1,12,13 and dissipative11,14 perturbations,
showing that the perturbed system has various types of ho-
moclinic and heteroclinic orbits. Furthermore, these studies
led to the development of a geometrical PDE approach by
which it was proved that the perturbed NLS equation has
homoclinic solutions to the resonant plane-wave solutions;
see Refs. 1, 15, and 16, and references therein.

Kovacic14 includes in his study global analysis of the
integrable system in which, after identifying the criticalI
values, the level setsH=h are plotted for typical values ofI.
Here, we present the integrable system using energy-
momentum bifurcation diagrams and Fomenko graphs, in-
vestigating the surfacesH=h and their extent in theI direc-
tion. This representation allows a better understanding of the
behavior under small conservative perturbations since the to-
tal energyH is preserved. The implications of this represen-
tation on the damped case will be studied elsewhere.

TABLE II. Normal stability of singular circles.

Jacobian eigenvalues Elliptic for Hyperbolic for Parabolic for

s1d slpwd2=k2s−k2+2Id I ,
1
2k2 I .

1
2k2 Ip

pw= 1
2k2

s2d slsmd2= s 3
2I +k2ds 1

2I −k2d I ,2k2 I .2k2 Ip
sm=2k2

s3d slpwmd2= 4
7s2k4−k2I −6I2d I .

1
2k2

¯ Ip
pw= 1

2k2

s4d slsmmd2=4k2s2k2− Id I .2k2
¯ Ip

sm=2k2

TABLE III. Resonant and parabolic singular circles.

vspfd=fdHspfd /dIg I-resonance I-parabolic
Parabolic
resonance

s1d vpw= I −V2 Ir
pw=V2 Ip

pw= 1
2k2

Vpr−pw=
1
Î2

k

s2d vsm= 3
2I −sk2+V2d

Ir
sm=

2sV2+k2d

3

Ip
sm=2k2 Vpr−sm=Î2k

s3d Vpwm= 15
17I −V2− 4

7k2

Ir
pwm=

7V2+4k2

15
Ip
pw= 1

2k2

Vpr−pw=
1
Î2

k

s4d vsmm= I −V2 Ir
smm=V2 Ip

sm=2k2 Vpr−sm=Î2k
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IV. ENERGY MOMENTUM BIFURCATION DIAGRAMS

The energy-momentum bifurcation diagram (EMBD)
supplies global information on the bifurcations of the energy
surfaces structure and their relation to resonances. Consider
an integrable Hamiltonian systemH0sq,pd in a regionD#M
at which a transformation to the local generalized coordinate
system H0sq̄, p̄,Jd is nonsingular. The energy-momentum
map assigns to each point of the phase spacesq̄, p̄,Jd a point
in the energy-momentum spacesh=H0sq̄, p̄,Jd ,Jd. The
energy-momentum bifurcation diagram is a plot in thesh,Jd
spacesfor sh,Jd in the range ofDd which includesssee Ref.
33 for then-d.o.f. formulationd

• The regionssd of allowed motionsthe closure of all regions
in which the energy-momentum mapping is a trivial fiber
bundle; see Refs. 24 and 27d.

• The singular surfacessh,Jd=sH0spfd ,Jfd fsee Eq.s18dg
where the normal stability of the corresponding singular
circles, defined by Eq.s19d, is indicated.

• The strongest resonance surfaces on which the inner fre-
quency of the circles vanishes,vspfd=0 hand possibly the
regions in which backflow occurs, wherefdfsq̄, p̄,Jdg /dt
changes sign along the level setsh=H0sq̄, p̄,Jd ,Jdj.

• The energies at which topological bifurcations occur and
the Fomenko graphs in the intervals separated by these
bifurcation points.

Note that the energy-momentum bifurcation diagram de-
pends on the choice of the generalized action-angle coordi-
natessq̄, p̄,Jd; see Ref. 33 for discussion. In particular,the
form of the perturbationdetermines the strongest resonant
directions, and the actions in the EMBD are chosen accord-
ingly. Here, Eq.s9d implies that the dominant resonant direc-
tion is indeed the conjugate angle toI, in both thesx,y,Id
and thesu,v ,Id coordinate systems. Hence, the convenient
coordinates for the energy-momentum bifurcation diagram is
sh,Id. Notice that while the momentum variableI is globally
defined, the associated angle coordinate is defined differently
near the plane-wave circlessb=0d and near the symmetric

mode circlessc=0d. The EMBD contains the resonance in-
formation for both representations.

A. Construction of the EMBD

Calculation of the singular surfaces and the normal sta-
bility of the lower dimensional tori are the first steps in de-
picting the global structure of the energy surfaces. We begin
the construction of the EMBD by plotting the singular sur-
facessH0spfsIdd ,Id in thesh,Id plane, wherespfsIdd are given
by the six families of Table I.

In Fig. 1 we plot these curves for the nondimensional
wave numberk=1.025 atV=1, which is the value used in
previous works.3,5–9Other values ofk andV are presented in
Appendix B. We use the usual convention in bifurcation dia-
grams by which normally stable circles are denoted by solid
lines, whereas normally hyperbolic circles are denoted by
dashed linesssee Table IId. Different colors are used for the
different families of invariant circlesfthick and thin black
lines sblue and red in the color plotsd for the plane wave and
its bifurcating branch, and thick and thin gray linessmagenta
and green in the color plotsd for the symmetric mode and its
bifurcation branchg. The allowed region of motion is
shaded—for each pointsh,Id in this shaded region there are
sc,bd values satisfyingH0sc,bd=h, I = 1

2sucu2+ ubu2d. An en-
ergy surface in this diagram is represented by the intersection
of a vertical line with the allowed region of motion. The
topology of the level sets for differentI values on a given
energy surfacefi.e., the number of disconnected 2-tori which
correspond to eachsh,Id value and the manner by which
these tori glue together at the singular valuesg is represented
by the Fomenko graphs as described next.

B. Fomenko graphs

The Fomenko graphs are constructed by assigning to
each connected component of the level setsson the given
energy surfaced a point on the graph, so there is a one-to-one
correspondence between themssee Refs. 29 and 33d. Then,

FIG. 1. sColor onlined. EMBD graph fork=1.025,V=1. Thick blacksblued line—ppw; thin blacksredd line—ppwm; thick graysmagentad line—psm; thin gray
sgreend line—psmm. Dashed lines—normally hyperbolic circles; solid lines—normally elliptic circles.
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an edge of this graph corresponds to a regular one-parameter
family of two tori, whereas vertices correspond to singular
values ofsh,Id at which some families of tori glue together
or shrink to a singular circle. In the standard construction of
the Fomenko graphs29 the main objective is the study of the
topology of the surfaces and the level sets; hence, for ex-
ample, all the normally elliptic singular circles are assigned
the same symbolsmolecule “A”d. Here, we distinguish be-
tween the different singular circles as these correspond to
different dynamic in the NLS. Thus, we denote the invariant
circles corresponding to the plane-wave familysppwd and the
invariant circles which emanate from themsppwm

± d by open
and full triangles, respectively. The invariant circles corre-
sponding to the symmetric mode familyspsmd and the invari-
ant circles which emanate from themspsmm

± d are denoted by
open and full circles. In this way the topological changes of
the level sets are discovered and the energy surface may be
reconstructed from these graphs.

Figure 1 shows the energy-momentum bifurcation dia-
gram for the truncated NLS model atk=1.025,V=1. The
numbered vertical lines on this figure indicate energy values
for which the Fomenko graphs were constructed, as shown in
Fig. 2. Thus, the simple segment corresponding to graph 1 in
Fig. 2 corresponds to anS23S1 energy surface—a sphere in
the su,v ,Id space, multiplied by the circleuPS1. Figure 3

shows the more complex energy surface at the energy level
corresponding to line 5 in Fig. 1 and to diagram 5 in Fig. 2.
Projections of the energy surface are plotted twice; the en-
ergy surface is the two-dimensional surface in thesx,y,Id
spacefrespectively,su,v ,Id spaceg multiplied, for all cÞ0
sfor all bÞ0d, by the circlegPS1 suPS1d. The redundant
presentation in thesu,v ,Id space is shown to better explain
the level set’s topology near the circlec=0, where the trans-
formation to thesx,y,Id coordinates is singular. In Fig. 3 we
demonstrate more precisely the relations between the energy-
momentum bifurcation diagram, the Fomenko graph, and the
energy surface; indeed, let us describe in details the level
set’s topology on this energy suface as the actionI is in-
creased.

s1d The lowestI value corresponds to the intersection of line
5 with the solid gray line in Fig. 1, to the open circle on
the Fomenko graph, and to the lowest level set in Fig.
3—the symmetric mode circle. The level set here is the
circle c=0, ubu=Î2Ism, which is normally elliptic. It is
represented in thesu,vd plane as a point—the origin—
which is multiplied by the circle inu fthe representation
in the sx,yd plane is singular hereg. For a bit largerI
values each level set is composed of one torus—the Fo-
menko graph has a single edge for such values ofI, and

FIG. 2. sColor onlined. Fomenko graphs fork=1.025,V=1. Clear triangle—ppw; solid triangle—ppwm. Clear circle—psm; solid circle—psmm.

FIG. 3. sColor onlined. EMBD, Fomenko graph, and energy surfacessmodeS1d for k=1.025,V=1, h=−0.44.
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indeed we see that in both thesx,yd plane and thesu,vd
plane a single circle, corresponding to a torus, appears.

s2d When theI value reaches the dashed black line in Fig. 1,
the level set becomes singular—it is composed of the
plane-wave circle and its homoclinic surfaces, shown as
a figure-eight level set in thesx,yd plane. On the three-
dimensional energy surface this figure eight is multiplied
by the circlegPS1. This singular level set is denoted by
the open triangle with dashed boundary in the Fomenko
graph.

s3d As I is further increased, each point in thesh,Id plane
has two tori associated with it—in the Fomenko graph
we see that there are two edges for these values ofI, and
the corresponding level sets at thesx,yd plane have two
disconnected circles. These circles shrink to two points
which are two normally elliptic invariant circles of the
plane-wave-mixed-mode type at a criticalI value at
which line 5 is tangent to the curve corresponding to
ppwm in Fig. 1; for energies above line 5 the energy
surface splits in two due to this curve. Thus, this value
of the energy is an energy bifurcation value—the level
sets for lower energiessdiagram 4d and higher energies
sdiagram 6d undergo different topological changes as the
action is increased along the energy surfacesgraphs cor-
responding to such energy bifurcation values are de-
noted here by * in the Fomenko graph sequencesd. The
two circlesppwm

± are denoted by the solid triangles in the
Fomenko graph.

s4d Further increase ofI leads us again to the two-tori situ-
ation until the curveppw is intersected again. Then, the
two tori coalesce at the singular level set of the plane
wave and its homoclinics, which is denoted as before by
an open triangle.

s5d Further increase ofI leaves us with one connected com-
ponent of the level sets until the dashed gray line in the
EMBD, which denotes the normally hyperbolic circles
psm, denoted in the Fomenko graph by an open circle, is
intersected. This singular level set is again, topologi-
cally, a figure-eight times a circle, but now it is repre-
sented in theu,v planefsince thesx,yd coordinates are
singular hereg.

s6d For larger I values, in the Fomenko graph, two edges
emanate from the circle corresponding topsm. These cor-
respond to the two families of tori which oscillate near
the two symmetric-mode-mixed-mode circles. The up-
per boundary of the energy surface is reached when
these two tori shrink to the corresponding invariant
circles—when line 5 intersected the thin gray line—
when the two solid circles in the Fomenko graph are
reached.

This rather lengthy explanation can be repeated now for
each Fomenko graph without the explicit computation of the
corresponding energy surfaces. Namely, these graphs encode
all needed information for the reconstruction of the energy
surfaces.29 We note that a similar construction for some
n-d.o.f. systems has been recently suggestedssee Ref. 33 and
references thereind.

V. THE NLS TRUNCATED SOLUTION’S STRUCTURE
AT REGULAR ENERGY LEVELS

Using the EMBD and the Fomenko graphs, we gave a
full description of the structure of the unperturbed solutions
on a given energy surface in thesx,y,I ,gd and su,v ,I ,ud
coordinate system. An energy surface is a regular surface if
the Fomenko graph is identical in its neighborhood31 se.g., in
Fig. 2, graphs 1, 2, 4, 6, 7, 8, and 10 all correspond to regular
valuesd. For such energy values, the detailed understanding
of the unperturbed structure immediately translates into a
qualitative understanding of the perturbed motion: for suffi-
ciently small perturbation an edge in the Fomenko graph
scorresponding to a family of two torid disintegrates into a
Cantor set of KAM tori and Cantori with resonance bands
swith their own chaotic zonesd residing in the gaps of the
Cantor set. The vertices which correspond to hyperbolic
circles developsgenericallyd into circles with split separa-
trices with the usual chaotic zone associated with them. The
vertices which correspond to normally elliptic circles have
again the usual Birkhoff normal form/resonant behavior de-
pending on the ratio of their normal and inner frequencies,
which needs to be calculated. In Fig. 4 we show several
perturbed orbits forh<−0.42, i.e., energy surface which is
described by graph 6 in Fig. 2. To make the perturbed mo-
tions visible we let the« value be 10 times larger than the«
value in the consequent figures of the perturbed orbits. No-
tice that this graph has eight different edges corresponding to
eight separate families of two tori, three vertices correspond-
ing to hyperbolic circles with separatrices, and seven vertices
corresponding to normally elliptic circles.

The relation between the solutions in thesx,y,I ,gd for
su,v ,I ,udg spaces to the truncated solutionB2sX,Td and
hence to the truncated solutionc2sX,Td=B2sX,Td
3exps−iV2Td of Eq. s1d is easily found forcÞ0 via the
transformations5,10

B2sX,Td = sÎIsTd − 1
2sx2sTd + y2sTdd + sxsTd

+ iysTddcoskXdexpsigsTdd,

c2sX,Td = B2sX,Tdexps− iV2Td,

and similarly forbÞ0

B2sX,Td = sussTd + ivsTdd

+ ÎIsTd − 1
2su2sTd + v2sTddcos kXdexpsiusTdd,

c2sX,Td = B2sX,Tdexps− iV2Td.

In previous works it was suggested that plots ofuBsX,Tdu as
a function ofsX,Td for a small interval of timeswe will call
this representationthe amplitude plotd and a plot of
sRehBs0,Tdj , ImhBs0,Tdjd for a longerT interval swe will
call this representation theB-plane plotd reveal the difference
between regular and chaotic motion. We present the various
perturbed orbits which reside on the same energy surface in
these projections. It is seen that left and right branches of tori
with the sameI valuessoscillating near the circlesppwm

+ and
ppwm

− , respectivelyd appear in theB-plane plots as projections
of tori with different radii sobserve the light and dark green
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orbits in Fig. 4d, and in the amplitude plots as phase-shifted
in X solutionssthus, the right branch has its maxima atX
=0, whereas the left one atX=p /2k, as was demonstrated in
the earlier works9d. On the other hand, the upper and lower
branchessoscillating near the circlespsmm

+ andpsmm
− , respec-

tivelyd are indistinguishable in these plots. Presenting
RehBsX,Tdj for these solutions shows similar center-wings
jumps. The chaotic solutions in these projections are shown
as well, the ones associated withppw exhibiting left–right
jumps in the amplitude plots and inner–outer radii jumps in
theB plane plots, whereas the ones associated withpsm show
left–right jumps in the realB plots.

VI. BIFURCATING ENERGY VALUES

Intersecting the energy-momentum bifurcation diagrams
with a vertical line and constructing the corresponding Fo-
menko graphs leads to a full description of a given energy
surface. It follows that changes in the differential topology of
the energy surfaces can be easily read off from these
diagrams—they precisely correspond to singularities of the

singularity curvessthe curves corresponding to the circles in
the EMBDd with respect to changes in the energy, namely to
folds, branchingsscuspsd, intersections, and asymptotes of
the singularity curves to a vertical line. The dynamical phe-
nomena associated with each of these simplest geometrical
features of the singularity surfaces are listed below. Thus, for
the 2-degrees-of-freedom case singularity theory may be
used to classify all possible energy bifurcation valuesssee
also Ref. 33d. Here, we do extend some of the notions to the
n-d.o.f. framework as this has not been previously discussed.
A complete classification of all the possible singularities of
these singularity surfaces and their dynamical consequences
has not been developed yet.

A. Folds in the singularity surfaces and resonances

Clearly ssee, for example, Fig. 1d, the energy surfaces
change their topology whenever there is a fold in the singu-
larity surfaces. Furthermore, it was established in Ref. 33

FIG. 4. sColord. Perturbed orbits on energy surface 6 shown on the projected energy surfaces, the EMBD, and theB-plane plot fore=s1/Î2d10−2, k
=1.025,h=−0.42.
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that extremum of nonparabolic singularity surfaces corre-
spond to strong resonance relations for the lower dimen-
sional invariant tori

UdH0

dJi
U

pf
*
= 0 ⇔ Udfi

dt
U

pf
*
= 0, i P h1, . . . ,n − 1j, s22d

wherepf
* is also a fixed point in the normal plane, namely a

solution of Eq.s18d fthe equivalences22d can be easily veri-
fied by using the chain rules18d and the fact thatsJ,fd are
conjugate canonical variables33,35g. In particular, a fold of the
singularity surfaceH0sq̄f , p̄f ,Jfd at the nonparabolic torus
sq̄f , p̄f ,Jfd implies that thisn−1-dimensional torus isn−1
resonant, namely it is a torus of fixed points. The normal
stability of this torus may be elliptic or hyperbolic. Notice
that the appearance of such folds is a persistent phenomenon;
hence, so is the appearance of circles of fixed points in
2-d.o.f. systemsssee the corresponding theorems in Ref. 17d.
To find a set of bifurcating energies we need to list the ex-
tremum of the surfacesH0sq̄f , p̄f ,Jfd for the various singular-
ity manifolds. To establish that at these values the topology
of the energy surface changes we also need to verify that
these are nondegenerate. In Table III we list theI values for
which folds are created for the six singular surfaces of Table
III, all of which are indeed nondegeneratesin fact quadraticd.
The values ofI for which the singular circles are parabolic
are listed as well.

Using the resonantI values of Table III in Table IV, we
conclude that the following energy values correspond to bi-
furcations due to the resonances/folds:

hr
pw = −

V4

2
,

hr
sm= − 1

3sV2 + k2d2,

hr
pwm= − 7

30sV2 + 4
7k2d2 + 1

7k4, for k , Î2V,

hr
smm= −

V4

2
− k4, for k ,

1
Î2

V. s23d

At each of these energies the corresponding family of circles
sfor exampleppwd has a circle of fixed pointsse.g., the open
triangle in diagram 3* in Fig. 2 corresponds to a normally
hyperbolic circle of fixed points, giving rise to hyperbolic

resonance under perturbationsd; for energies below the bifur-
cating energyssay for h,hr

pw; see diagrams 1 and 2 thered
the energy surfaces do not include any circle of this family,
whereas for energies beyond this valuessay, forh.hr

pw, dia-
gram 4-10 thered two circles of this family appear on the
same energy surface.

The perturbed dynamics near such circles of fixed
points, occurring on these bifurcating energy surfaces, is dif-
ferent than the standard perturbed motion which was de-
scribed in Sec. V. When the resonant circles are normally
elliptic sfor V,Vpr−pw for the plane-wave circles, forV
,Vpr−sm for the mixed-mode circles, and forV.Vpr−pw for
the plane-wave mixed circlesd, the coupling creates a reso-
nance zone. Then, one expects that an even number of fixed
points will survive the perturbation, half of them becoming
stable and half unstable. Consider the motion near a stable
point ppwsgs0dd belonging toppw which survives the pertur-
bation. Then,gsTd=gs0d+ g̃sTd, where ug̃sTdu is small and
similarly all the other components ofp«sTd remain close to
ppwsgs0dd. Hence, the correspondingB-plane plots shown in
Fig. 5 are quite different—instead of seeing circles, indepen-
dently of the initial phases, as in the nonresonant case, we
will see asymmetric spots for some phases and circles for
others.

The motion near hyperbolic resonant circles is of a com-
pletely different nature.11–14 Of particular interest for the
NLS model are the hyperbolic resonance plane-wave circles
which exist whenIp

pw= 1
2k2, Ir

pw=V2. WhenV=1 these ap-
pear only for small wave numberssk,Î2d, namely for suf-
ficiently large intervals. By introducing the additional param-
eterV, we see that for anyk value there is an interval ofV
values for which the resonant plane-wave circle is hyper-
bolic: it is hyperbolic for allV.Vpr−pw=s1/Î2dk, and by
Remark 1 the two-mode model is relevant forV,Î2k sin-
deed, the symmetric mode resonant circles are hyperbolic for
V.Vpr−sm=Î2k, so their relevance is uncleard. Here, we
show some perturbed trajectories which appear in the hyper-
bolic resonance regime. We see that the main difference be-
tween the regular homoclinic chaos and the hyperbolic reso-
nant chaotic motion has to do with the nonuniformity in the
angle variable—thus, it is not observable in the amplitude
plot but is clearly seen in theB-plane plots, and the realB
plot. Indeed, in Fig. 7 we show the behavior near regular
homoclinic orbits, whereas Fig. 6 shows the behavior near
resonant homoclinic orbits. We note that in these plots typi-
cal chaotic orbits are shown—these orbits shadow some of
the countable infinity of multipulse homoclinic and hetero-
clinic orbits that exist due to the transverse separatrix cross-
ings ssee Ref. 1 and references thereind.

B. Branching surfaces and parabolic circles

Another source for bifurcations in the energy surface
structure appears when the singularity surface has a cuspsor
split in the symmetric cased. For the 2-degree-of-freedom
case such a cusp/splitting is associated with the appearance
of a parabolic circlesfor the n-d.o.f. case we look for a fold
in the surface of parabolic tori, namely we look for ann−2
resonant parabolicn−1 tori; see Ref. 33 for precise state-

TABLE IV. Singular surfaces—Hamiltonian at the singular circles.

H0sxf ,yf ,Id Evaluation Exist for

s1d Hsxpw,ypw,Id=Hs0,0,Id=s I2

2
−V2Id I ù0

s2d Hsusm,vsm,Id=s0,0,Id= 3
4I2− IsV2+k2d I ù0

s3d Hsxpwm
± ,ypwm

± ,Id= 15
14I2− sV2+ 4

7k2dI + 1
7k4 I ù

1
2k2

s4d Hsusmm
± ,vsmm

± ,Id=
I2

2
−V2I −k4 I ù2k2
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mentd. Thus, the appearance of the parabolic circlepsm at h
=hp

sm ssimilarly, ppw at h=hp
pwd from which the branches of

circles psmm
± emerge implies that for energies below this

value sgraph 1 in Fig. 2d no such circles appear, and the
Fomenko graph has no splitting to two edges, whereas larger
energies have these two circles as the upper boundary of the
energy surfacesdiagrams 2–10d. In Table III we list the two
parabolic values ofI. Plugging these values into Table IV,
we find two additional values of energy bifurcations which
appear due to singularity surface branchings

hp
pw = 1

2k2s 1
4k2 − V2d, hp

sm= k4 − 2k2V2. s24d

Notice that by Remark 1 the first parabolic circle, at
sx,y,Id=s0,0,Ip

pwd, is always in the range at which the two-
mode model is expected to be valid. The second parabolic
circle, atsu,v ,Id=s0,0,Ip

smd, occurs at anI value for which a
second mode becomes unstable near the circlex=y=0. Thus,
its relevance to the PDE is doubtful.

The behavior near a branching point is not simple—to
analyze it one needs to understand how Hamiltonian trajec-
tories cross bifurcations.36 It appears that the action in the
normal plane is a key ingredient in understanding the per-
turbed motion as it is adiabatically preserved.42 It follows

FIG. 5. A perturbed orbit near an elliptic resonant circle fork=2, e=s1/Î2d10−3. Initial conditions: scs0d ,bs0dd=s−1.413+0.001i ,0.001−0.001id, i.e.,
sxs0d ,ys0d ,Is0d ,gs0dd=s−0.001,0.001,0.9983,−pd.

FIG. 6. A perturbed orbit near a hyperbolic resonant circle fork=1.025,e=1/Î210−3. Initial conditions:scs0d ,bs0dd=s−0.999−0.001i ,−1.001+0.001id, i.e.,
sxs0d ,ys0d ,Is0d ,gs0dd=s1.001,−0.001,0.9983,−pd.
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that to distinguish between the motion near a regular elliptic
circle and a parabolic circle one needs to investigate very
small actions in the normal planefof the order of the action
of the unperturbed homoclinic loop at energies of orderhp

+Os«dg. Only for such trajectories may the chaotic transfer
across the homoclinic loopswith a chaotic zone which is
exponentially small in the distance from the parabolic circled
be observed. We do not attempt to present here numerical
verification for this delicate phenomenon.

C. Singular surfaces crossings and global bifurcation

A third possible source for topological changes in the
energy surface is the crossing of singular surfaces. Such an
intersection of singular surfaces ofn−1-dimensional invari-
ant tori can be a result of one of the following phenomena:

s1d Appearance of a higher dimensional singularity, namely
an n−2 invariant torus.

s2d Appearance of a global bifurcation—e.g., the creation of
heteroclinic connection between two families ofn−1
normally hyperbolic families.

s3d Appearance of two unrelated singular level sets for the
same action and energy values.sUnrelated means that
the Fomenko graphs before and after the crossings have
the property that there are no edges connecting the ver-
tices associated with these two singular surfaces.d

Each one of these phenomena appears to be persistent
under Cr integrable perturbation withr .2. The first and
second cases imply that at the corresponding energy and ac-
tion values there are singular orbits of a new type, whereas
the third case does not. The response of the system to per-
turbations is therefore altered in the first and second case but
not in the third. We thus call the first two dynamically sig-
nificant energy bifurcation values, whereas the third is a dy-

namically insignificant energy bifurcation value. For our ex-
ample, it follows from Table III that the two curves
sHsppwsIdd ,Id and sHspsmsIdd ,Id cross atI =0 and atI = Igb

=4k2 and that no other singularity curves cross.
I =0 corresponds to the trivial solutionc=b=0, at which

both singularity curves are normally elliptic and at their in-
tersection we have a 4d elliptic point—ann−2 singular level
set, as in the first case above. Thus, the corresponding en-
ergy, h0=0, is a dynamically significant energy bifurcation
value.

Igb=4k2 corresponds to the intersection of the two sin-
gularity curvessof ppw and psmd at a value for which both
families are normally hyperbolicssince Igb. Ip

sm=2k2. Ip
pw

= 1
2k2 for all k.0; see Table IId. Indeed, at this value our

system admits four heteroclinic connections between the
plane-wave circles and the symmetric mode circlesssee Ref.
14d. The energy-momentum bifurcation diagramsssee Fig. 1d
show the intersection between the corresponding singularity
curvessdashed gray and dashed blackd. The Fomenko graphs
sgraphs 8–10 in Fig. 2d demonstrate that a global bifurcation
must occur—the solid circlessthat denotepsmm

± d are con-
nected to the open circlesthat denotespsm and its homoclinic
orbitsd in graph 8 and to the open trianglesthat denotesppw

and its homoclinic orbitsd in graph 10. Hence, this intersec-
tion corresponds to a global bifurcation and the correspond-
ing energy is an energy bifurcation value. Summarizing, we
find two additional energy bifurcation values resulting from
the singularity surfaces crossings

h0 = 0, hgb = 4k2s2k2 − V2d, s25d

and both of them are dynamically significant.
While the appearance of the global bifurcation intersec-

tion is intriguing from the mathematical point of view, it
appears at values ofI for which more than one unstable
mode exists and the two-mode model cannot capture the full

FIG. 7. A perturbed orbit near a family of hyperbolic circles fork=1.025,e= 1
Î2

10−3. Initial conditions:scs0d ,bs0dd=s−1.4132−0.001i ,−0.8954+0.001id, i.e.,
sxs0d ,ys0d ,Is0d ,gs0dd=s0.8954,−0.001,1.3995,pd.
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dynamicsssee Remark 1d. Notice that the four heteroclinic
connections give rise to homoclinic chains; hence, under per-
turbation, one expects to obtain the usual chaotic behavior
associated with homoclinic chaos. Since the heteroclinic
connections connect the two chartssx,y,I ,gd andsu,v ,I ,ud,
we present in Fig. 8 the behavior in both of them, where the
motion near the singular circles in each chart needs to be
ignored. In Fig. 8 we present the additionalsI ,td graph which
is defined globally, unlike thesI ,gd and sI ,ud presentations
that become singular nearc=0 andb=0, respectively.

D. Unbounded singularity surfaces

We remark that another possible source for an energy
bifurcation value is the appearance of a critical energy at
which one of the singularity surfaces tends to infinityfi.e.,
sH0spfd ,J1, . . . ,Jn−1d→ shc,J1

c , . . . ,Jj−1
c ,` ,Jj+1

c , . . .Jn−1
c d, with

possibly more than one infinite direction; see Ref. 19, where
it was shown that a motion in a central field may exhibit such
a propertyg. In this case energy surfaces become unbounded
in theJj direction after this critical energy value. This possi-
bility does not appear in our model and its dynamical impli-
cations will be studied elsewhere.

VII. PARAMETRIC BIFURCATIONS

The third level of the bifurcation hierarchy consists of
the study of the dependence of the EMBDs on the param-
eters of the problem, the wave numberk, and the forcing
frequencyV. Equationss23d–s25d include the eight energy
bifurcation values for our model. At these values of energies
the energy surface structure changes. Hence, any singularity
in the dependence of the surfaces of bifurcation values on the
parameters changes the sequence of the Fomenko graphs.
Fixing one of the parameters, the curves of energy bifurca-
tion values can have singularities of the fold, asymptote,
cusp, and crossing types. In our case we find that only the

latter two appear. Figure 9 shows the graph of the eight
curveshr

pw, hp
pw, hr

sm, hp
sm, hr

pwm, hr
smm, hgb, h0 as a function of

V for k=1.025, and a similar figure can be constructed for
these curves as a function ofk for a fixedV value sin prin-
ciple we could expect to have some codimension two singu-
larities but this does not appear to be the case hered. This is
a bifurcation diagram of the energy bifurcation values—
crossings and cusps of curves in this diagram correspond to
bifurcations of the EMBDs. Even for a fixedk the emerging
picture is complicated—there are many intersections of these
curves, so a complete description of the truncated NLS
model consists of many different EMBD figures and their
corresponding Fomenko graph sequences. A few representa-
tive ones are shown in Appendix B.

As in the case of crossings of singular surfaces, we ob-
serve that some of the crossings do not have dynamical sig-
nificance while others do—intersections of singular surfaces
which correspond to the same action values may lead to dy-
namical significant bifurcations. In such a case some of the
orbit’s structure may be of higher codimension. Then, even
for small perturbation its existence may alter the local behav-
ior of some trajectories. These cases are enlarged in Fig. 9.
Let us discuss the structure near several such external
bifurcations—bifurcations of the energy bifurcation values.

A. Parabolic resonances

When the curve corresponding to a fold of a singular
surfacesindicating the existence of a torus of fixed pointsd
and the curve corresponding to the parabolic circles intersect,
a parabolic circle of fixed points is created. Indeed, at the

critical value k=kpr−pw=Î2V frespectively, at k=kpr−sm

=s1/Î2dVg the plane-wave family,b=0 srespectively, the
symmetric mode family,c=0d possesses a parabolic resonant
circle at Ipr=V2; at this value of the parameter three bifur-
cating energy curves intersect:hr

pw=hp
pw=hr

pwm ssimilarly, at

FIG. 8. A perturbed orbit near the global bifurcation fork=Î3/8, «=s1/Î2d10−3. Initial conditions:scs0d ,bs0dd=s−1.7311−0.001i ,−0.001+0.001id, i.e.,
sxs0d ,ys0d ,Is0d ,gs0dd=s0.001,−0.001,1.4983,pd.
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k=kpr−sm, hr
sm=hp

sm=hr
smmd; see Fig. 9. The corresponding

EMBD has therefore a fold occurring exactly at the point at
which the singularity curve changes from solid to a dashed
line.

The appearance of parabolic resonances gives rise to tra-
jectories which have different characteristics than trajectories
appearing in 1.5-d.o.f. systems and of trajectories passing
through separatrices, compare Figs. 5, 7, and 10. Further-
more, it is observedssee Ref. 35d that large instabilities occur
near parabolic resonances when additional degeneracies
occur—when the curvature of one of the branches at the
parabolic resonant points approaches zero and a near-flat PR
appearsssee Refs. 17 and 32 for the higher dimensional for-
mulation and examplesd

U d2

dJ2H0sxsJd,ysJd,JdU
pf→pf

pr
→ 0.

Here, we find that usd2/dI2dH0sxsId ,ysId ,Iduhppw,psm,ppwm
± ,psmm

± j

=h1, 3
2 , 15

7 ,1j, namely, these are fixed nonvanishing numbers.
Hence, we conclude that the instability mechanism associ-
ated with the near-flat resonance does not exist in this model.
It follows that an introduction of an additional parameter
which controls, for example, the mixed terms in the Hamil-
tonian H0sx,y,Id can alter this property and induce strong
instabilities.

In Fig. 10 the perturbed motion near the plane-wave
circle sb=0d under parabolic resonance conditionssk
=Î2,V=1d is shown. Similar behavior is observed near the
circle c=0 in the su,v ,I ,ud coordinates atk=1/Î2,V=1
when the perturbation is of the formH2sc,c* , b,b* d
=−si /Î2dsc−c* d−siG1/Î2dsb−b* d, so it does not vanish on
c=0. The projections of the trajectory on the energy-
momentum bifurcation diagram demonstrate that the singu-
larity surfaces dominate the perturbed motion. The appear-
ance of these trajectories in theB-plane plot and in the
amplitude plots demonstrates that their character is different
then the orbits appearing in the homoclinic and hyperbolic
resonant chaotic orbits.

B. Resonant global bifurcation

When the global bifurcation curve and the curve corre-
sponding to a foldscircle of fixed pointsd intersect, a hetero-
clinic connection between an invariant hyperbolic circle of
fixed points and an invariant hyperbolic circle is created.
Such intersections occur whenhgb=hr

pw and whenhgb=hr
sm.

Simple calculation shows that these scenarios occur atk
=V /2 andk=V /Î5, respectively

Ir
pw = V2 = Igb = 4k2 ⇔ k =

V

2
,

FIG. 9. Bifurcation diagram of the energy bifurcation values fork=1.025,V is varied.
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Ir
sm=

2sV2 + k2d
3

= Igb = 4k2 ⇔ k =
V

Î5
= 0.4472V.

In fact, as is seen from Fig. 9, and may be easily verified at
k=V /2 srespectively, atk=V /Î5d, the curveshgb and hr

pw

srespectively,hr
smd are tangent. It implies that fork values in

the ranges0.4472V ,0.5Vd near-resonant behavior of both
circles involved in the global bifurcations is expected if« is
not very smallsgenerally, we expect that with two param-
eters a global bifurcation between two resonant circles may
be found—but this is not the case hered.

Geometrically, at these values ofk the unperturbed sys-
tem has a circle of fixed pointsfat ppwsIrgb−pwd and
psmsIrgb−smd, respectively; see Table IIIg which has four fami-
lies of heteroclinic connections to a periodic orbitfat
psmsIrgb−pwd and ppwsIrgb−smd, respectivelyg. The behavior of
such a structure under small perturbations has not been ana-
lyzed yet, to the best of our knowledge. Simulations near
these two values reveal an intriguing picture of instability
which is not well understood yet. In Fig. 11, a representative
simulation is presented. We note again that the relevance of
such trajectories to the PDE model is questionablesremark
1d, yet the general phenomenon of a family of heteroclinic
connections between a circle of fixed points and a periodic
orbit is robust as a codimension one phenomenon in 2-d.o.f.
systemssand hence is expected to be a persistent phenom-
enon inn-d.o.f. systems withn.2d.

C. Other crossings

Notice that several other crossings exist—these do imply
topological changes on the sequences of the Fomenko graphs
but do not imply that the local qualitative behavior of solu-
tions will be altered. For example, the global bifurcation en-
ergy and the parabolic bifurcation energy of the two corre-

sponding circles cross whenhgb=hp
pw and whenhgb=hp

sm.
However, it is immediately seen that theI values at which
the global bifurcations occurssIgb=4k2d and theI values at
which parabolicity appearssIp

pw= 1
2k2,Ip

sm=2k2d are well sepa-
rated for all k values which are bounded away from 0.
Hence, the dynamics associated with these two phenomena
appears on separate phase-space regions and the coincidence
of these two energy bifurcation values is not dynamically
significant.

Finally, at k=0 many of the curves cross; thus, in the
limit of small k we expect quite a complicated behavior as
many of the bifurcations occur for very nearbyI values and
the curvature of all the curves in the EMBD are quite small.
As we have mentioned—small curvature means degeneracies
and strongest possible instabilities. However, by Remark 1,
all these phenomena are relevant only for smallI squadratic
in kd values.

VIII. CONCLUSIONS

Two main themes were developed in parallel in this
paper—on one hand global analysis of a specific model—the
truncated forced NLS system was studied, and on the other a
general framework for analyzing such near-integrable sys-
tems was suggested. Let us first summarize the main features
of this framework and then relate to the specific results re-
garding the truncated forced NLS.

Given an integrable family of Hamiltonian systems
H0sq̄, p̄,J;md depending on the vector of parametersm, we
propose that the following three-level hierarchy of bifurca-
tion scenario organizes all possible behaviors under small
perturbations:

• The first level consists of the values of the constants of
motion across which the topology of the level sets on a

FIG. 10. A perturbed orbit near the plane-wave parabolic resonant circle fork=Î2, «=s1/Î2d10−3. Initial conditions: scs0d ,bs0dd=s−1.4132−0.001i ,
−0.001+0.001id, i.e. sxs0d ,ys0d ,Is0d ,gs0dd=s0.001,−0.001,0.9986,−pd.
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given energy surfaceH0sq̄, p̄,J;md=h is changed. These
are the values at which the singularity surfaces cross the
vertical hyperplaneH0=h on the energy momentum bifur-
cation diagrams, and correspond to the vertices in the Fo-
menko graphs.

• The second level consists of the energy bifurcation values
hb at which the form of the Fomenko graph changes,
namely across which the energy surfaces are no longerC1

conjugate by a near-identity mapping. Thus, it describes
how the energy surface differential topology is changed
with h.

• The third level consists of the bifurcating parameter values
mb at which the bifurcation sequence of the second level
changes.

Most previous works have concentrated on the first level
alone, by which the topology of level sets on a given energy
surface are studied. For a large class of systems the Fomenko
graphssand the corresponding branched surfaces in higher
dimensionsd provide a full description of this level. The sec-
ond and third level of this hierarchy have not been explicitly
identified and described. Though Ref. 31 discusses the sec-
ond level, it is mainly done with respect to the appearance of
fixed points in 2-degrees-of-freedom systems. The bifurca-
tions of the second level are the energy values at which the
singular surfaces of the first level are singular with respect to
projections on the energy axis. Forn=2 we have described
four types of such singularities: folds, cusps, crossings, and
asymptotes. We have shown that these singularities may be
associated with certain dynamical phenomena:

s1d Folds are associated withn−1-dimensional resonant
tori.

s2d Cusps are associated withn−1-dimensional parabolic
tori.

s3d Crossings of two surfaces are associated with eithern

−2-dimensional tori, global bifurcations, or unrelated
dynamical phenomena which occur simultaneouslysthis
list may be nonexhaustived.

s4d The asymptotes to infinity were not investigated in this
context yet.

The third level, at which the singularities of the projec-
tion of the energy bifurcation surfaces onto the parameter
space are found, reveals the existence of locally degenerate
solutions. In particular, we have shown that the parabolic
resonance phenomena and the resonant global bifurcation
phenomena are associated with such singularities, and that
these appear in the truncated NLS model.

Indeed, applying these tools to analyze the truncated
forced NLS equations led to several new insights. First, we
were led by the analysis to introduce a second parameter, the
frequency of the forcingV and showed that forany given
wave number khyperbolic resonance appears for an open
interval ofV values, whereas parabolic resonance appears at
isolatedV values. For anyk, both types of resonances appear
with amplitudes for which the two-mode model is expected
to be valid; thus, by tuning the forcing frequency inherently
different dynamics may be produced. Second, we observe
that each of the bifurcations listed in the hierarchical struc-
ture produces, in the near-integrable system, a different type
of perturbed orbit in an open neighborhood of the bifurcation
values. In particular, we demonstrate that orbits associated
with elliptic resonances, homoclinic chaos, hyperbolic reso-
nances, parabolic resonances, global bifurcations, and reso-
nant global bifurcations have different characteristics in vari-
ous projections. Presently, we seek tools for making a more
precise distinction between these various types of trajecto-
ries.

The relation between the new Hamiltonian finite-
dimensional resultssthe appearance of parabolic resonances

FIG. 11. A perturbed orbit near a resonant global bifurcation fork=1/2,«=s1/Î2d ,10−3. Initial conditions:scs0d ,bs0dd=s−1.4132−0.001i ,−0.001+0.001id,
i.e. sxs0d ,ys0d ,Is0d ,gs0dd=s0.001,−0.001,0.9986,−pd.
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and resonant global bifurcations in this modeld and the PDE
solutions is under current investigation. One would hope that
these will turn out to produce finite-dimensional dissipative
analogs and infinite-dimensional conservative and dissipative
analogs as did the hyperbolic resonance scenario.
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APPENDIX A

Closeness of perturbed and unperturbed energy
surfaces

Here, we prove Theorem 1: Consider a near-integrable
HamiltonianHsq,p;«d=H0sq,pd+«H1sq,p;«d, «!1, sq,pd
PM, whereM is a 2n-dimensional symplectic manifold and
H satisfies the boundness Property 1. Consider the energy
surfaceM«shd=hsq« ,p«d uHsq« ,p« ;«d=hj. Then, for eachd
.0 there exists an«0sdd and a constantKsdd sindependent of
hd such that for all 0ø«,«0sdd, and for all sq« ,p«d
PM«shd satisfying

i ¹ H0sq«,p«di . d, sA1d

there existssq0,p0dPM0shd fi.e., H0sq0,p0d=hg such that
isq« ,p«d−sq0,p0di,Ksdd«.

Proof: Roughly, the proof is a simple application of the
implicit function theorem, with a continuation argument
which shows that a sufficiently small«0sdd may be chosen so
that the gradient ofH is bounded away from zero on the
interval f0,«̄d for all 0ø«̄,«0sdd.

First, let us prove that there exists an«2sdd such that for
all 0ø«̄,«2sdd there exists at least one coordinate, say, with
no loss of generality, q1, such that uu]H /]q1usq«̄,p«̄du
.d / s2Î2nd.

ChooseL1,«1 so that Property 1 is satisfied withL2=1.
Let

K1 = max
«Pf0,«1g

hmax
B2L1

i ¹ H1sq,p;«dij, sA2d

where BL=hsq,pd u isq,pdiøLj. Consider a pointswhich is
not a fixed pointd on the perturbed energy surfacesq«̄ ,p«̄d
PM «̄shd, so thatHsq«̄ ,p«̄ ; «̄d=h and i¹H0sq«̄ ,p«̄di.d for
somed. It follows that there exists at least one coordinate,
say, with no loss of generality, q1, such that
uu]H0/]q1usq«̄,p«̄du.d8=d /Î2n. Hence, for sq«̄ ,p«̄d
PM«shdùBL1

satisfying sA1d, for all «̄,minh«1,d8 /2K1j
we immediately get thatuu]H /]q1usq«̄,p«̄du.d8− «̄K1.

1
2d8. If

M«shd is large, so that there existsq«̄ ,p«̄dPM «̄shd satisfying
isq«̄ ,p«̄di.L1, then by Property 1, for all «̄,«1,
i¹H1sq«̄ ,p«̄ ; «̄di, i¹H0sq«̄ ,p«̄di. Assume with no loss
of generality that uu]H0/]q1usq«̄,p«̄du=maxiPh1,. . .,nj
3huu]H0/]qiusq«̄,p«̄du , uu]H0/]piusq«̄,p«̄duj. Then

U ]H1

]q1
U

sq«̄,p«̄d
ø i ¹ H1sq«̄,p«̄; «̄di

, i ¹ H0sq«̄,p«̄di , Î2nUU ]H0

]q1
U

sq«̄,p«̄d
U ,

thus

UU ]H

]q1
U

sq«̄,p«̄d
U . UU ]H0

]q1
U

sq«̄,p«̄d
Us1 −Î2n«̄d .

1

2
d8,

for «̄,minh«1,1 /s2Î2ndj.
Summarizing, we established thatuu]H /]q1usq«̄,p«̄du.

1
2d8

=d / s2Î2nd for all sq«̄ ,p«̄dPM«shd satisfying Eq.sA1d pro-
vided «̄,«2sdd=minh1/s2Î2nd ,d / s2Î2nd1/K1,«1j where
K1 is defined bysA2d and L1 is the smallest constant for
which Eq.s11d is satisfied withL2=1.

By the implicit function theorem, sincesq«̄ ,p«̄d solves
Hsq«̄ ,p«̄ ; «̄d=h, and there exists one coordinate, sayq1, such
that uu]H1/]q1usq«̄,p«̄du is bounded away from zero, it follows
that for «̄,«2sdd the equationHsq« ,p« ;«d=h has a solution
for u«− «̄u small. Moreover, a unique solution of the
form sq« ,p«d=sxs«d ,q2

«̄ , . . . ,qn
«̄ ,p«̄d where xs«d

=q1sq2
«̄ , . . . ,qn

«̄ ,p«̄ ,«d may be found by solving the initial
value problem

dx

d«
= −

H1sx,q2
«̄, . . . ,qn

«̄,p«̄,«d + «
]H1sx,q2

«̄, . . . ,qn
«̄,p«̄,«d

]«

]Hsx,q2
«̄, . . . ,qn

«̄,p«̄,«d
]q1

= Fsx,«d, sA3d

xs«̄d = q1
«̄.

SinceFsx,«d is smooth and bounded nearsq1
«̄ , «̄d, a unique

solution locally exists. We need to show that this solution
may be extended to the intervalf0,«̄g. For sq«̄ ,p«̄dPB3

2
L1

,

H1 and its derivatives are bounded, and since
uu]H /]q1usq«̄,p«̄du.d / s2Î2nd independent of «̄ sfor all «̄

,«2sddd, it follows that uFsx,«du remains bounded on the
interval f0,«̄g for sufficiently small «̄. For isq«̄ ,p«̄di.

3
2L1,

rescale Eq.sA3d by isq«̄ ,p«̄di, then Eq.s11d and the choice of
q1 as the direction at which¹H0sq«̄ ,p«̄d is maximal, guaran-
tees again thatuFsx,«du / isq«̄ ,p«̄di remains bounded on the
interval f0,«̄g for sufficiently small «̄ fthe choice of 3

2L1

guarantees that for sufficiently small«̄ the inequalitiess11d
and the boundK1 will hold for all xs«dg. j

Application to the truncated NLS model

Since the unperturbed energy may be written in the form

H0 = 1
8ucu4 + 3

16ubu4 + 1
2ubu2ucu2s1 + 1

2 coss2 argsbc* ddd
− 1

2s1 + k2dubu2 − 1
2ucu2, sA4d

namely all its quartic terms have positive coefficients,
whereas the perturbation is linear inucu, ubu, it follows imme-
diately that indeed for sufficiently largeucu, ubu both the un-
perturbed energy and its gradient magnitude are much larger
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than the perturbation and its gradient as needed for the theo-
rem to apply.

Denote bycmax
h,« , bmax

h,« the maximal amplitude ofc,b on
the energy surfaceHsc,c* , b,b* ; «d=h

cmax
h,« = maxhucu:Hsc,c * , b,b * ; «d = hj,

cmax
h,« = maxhubu:Hsc,c * , b,b * ; «d = hj,

it follows from sA4d that for h@1, cmax
h,0 ,bmax

h,0 =OsÎ4hd. Fur-
thermore, it can be shown, using the form of Eq.s7d, that for
large values ofh the system cannot have fixed points. In fact,
one can prove the following:

Lemma: There exists anh* skd such that ifh.h* skd,
then iu¹H0uH0sc,c*,b,b* d=hiÞ0.

Proof: Let us find all solutions toiu¹H0uH0sc,c*,b,b* d=hi
=0. Clearly, atc=b=0u¹H0uH0sc,c*,b,b* d=hu =0,u so h* skd.0
=H0s0,0,0,0d. Using the nonsingular transformation to the
sx,y,I ,gd coordinates forcÞ0, and the nonsingular transfor-
mation to thesu,v ,I ,ud coordinates whenbÞ0, it follows
that iu¹H0uH0sc,c*,b,b* d=hi=0 only when the invariant circles
of Table I are circles of fixed points, namely at the resonant
I values,I = Ir, of Table III. Plugging these resonantI values
into Table III, we find that circles of fixed points appear at
the following h values: H0spf−resd=h−1

2 ,−1
3k4− 2

3k2− 1
3 , 1

15k4

− 4
15k2− 7

30 ,−1
2 −k4j. It follows that for all h.

1
15k4 there are

no fixed points on the energy surfaces. j

In fact, it follows from s7d that for h sufficiently large,
for all sc,bd satisfyingH0sc,c* , b,b* d=h, we have

maxHU ]H0sc,c * , b,b * d
]b*

U,U ]H0sc,c * , b,b * d
]c*

UJ ù Ch3/4.

It follows from the implicit function theorem and the form of
the perturbationfnamely, sinceHisi =1,2d are linear inc,b
so thatuHiu,OsÎ4hdg, that for «=osÎhd

cmax
h,« = cmax

h,0 + OS «

Îh
D ,

bmax
h,« = bmax

h,0 + OS «

Îh
D .

So, formally, the larger theh the larger the extent of the
energy surface and the larger the range of unperturbed en-
ergy surfaces which we need to consider. However, ifh is
very large the structure ofH0 remains asymptotically un-
changed and one can verify that in fact this limit may be
studied by rescaling; substituting

c̄ =
c
Î4 h

, b̄ =
b
Î4 h

,

leads to

Hsc,c * , b,b * d = hSH0sc̄,c̄ * , b̄,b̄ * d + OS 1
Îh

D
+

«

h3/4Hisc̄,c̄ * , b̄,b̄ * dD ,

namely to the near-integrable motion with finiteh.

APPENDIX B: DIAGRAMS’ DEPENDENCE ON
PARAMETERS

A few representative EMBD and Fomenko graphs
are presented in Figs. 12–17 to demonstrate possible
different sequences of energy bifurcation values in our
model when the wave numberk is varied and the forcing
frequency is fixed toV=1. In Figs. 12 and 13 the
sequence of eight energy bifurcation values is
shr

smm,hr
pw,hr

sm,hgb,hr
pwm,hp

sm,hp
pw,h0d for k=Î 1

10. Whereas,
in Figs. 14 and 15 the value ofk is increased to
k=Î 9

40 and the sequence is altered to
shr

smm,hr
sm,hr

pw,hgb,hp
sm,hr

pwm,hp
pw,h0d. Furthermore, in this

case, the global bifurcation valueshgbd is close to the folds of
the two dashed linesshr

sm,hr
pwd which correspond to reso-

nances of the symmetric mode circle −psm and the plane
wave circle −ppw. It follows sand observed numericallyd that
for «=Osuhgb−hr

smud=Os0.05d trajectories nearppw visit the
neighborhood of the global bifurcation region and the re-

FIG. 12. EMBD graph fork=Î1/10.
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FIG. 13. Fomenko graphs figure fork=Î1/10.

FIG. 14. EMBD graph fork=Î9/40.

FIG. 15. Fomenko graphs figurek=Î9/40.
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gions of hyperbolic resonances of both circles.
In Figs. 16 and 17 the value ofk is further increased

to k=Î3
8 and the sequence changes to

shr
smm,hr

sm,hp
sm,hr

pw,hgb,hr
pwm,hp

pw,h0d. Here, the parabolic
point shp

smd is close to resonances of the symmetric mode
circleshr

smd and the symmetric mixed mode circleshr
smmd. Nu-

merical simulations show that perturbed orbits near these
values have similar characteristics to parabolic resonance.

In the EMBD the thicksthind black line corresponds to
the plane wave familyppw sthe mixed mode emanating from
it, ppwmd. The thicksthind gray line corresponds to the sym-
metric mode familypsm sthe mixed mode emanating from it,
psmmd. These curves are dashedsfull d when the corresponding
circle is hyperbolicsellipticd. On the Fomenko graphs, we
denote the invariant circles corresponding to the plane wave
family sppwd and the invariant circles which emanate from
the sppwm

± d, by open and full black triangles, respectivelysfor
clarity, the boundary of the triangle is dashed when it is
normally hyperbolic and full when it is normally ellipticd.

The invariant circles corresponding to the symmetric mode
family spsmd and the invariant circles which emanate from
themspsmm

± d, are denoted by open and full gray circles, again
with the usual convention for the stability.

APPENDIX C: FROM SINE–GORDON TO NLS

Bishop et al.3–9 investigated the chaotic attractor of the
damped driven sine–Gordon equationsSGEd with even spa-
tial symmetry and periodic boundary conditions

utt − uxx + sinu = ds− âut + L̂utxx + Ĝ cossvtdd, sC1d

usx,td = usx + L,td, uxs0,td = 0,

wherev is the driving frequency,L is the box size,dĜ is the

driving amplitude,dâ is the damping, anddL̂ is an addi-
tional wave-number-dependent damping term which was in-
troduced in Ref. 14. The NLS approximation for the SGE is
obtained by developing a small amplitude envelope approxi-

FIG. 16. EMBD graph fork=Î3/8.

FIG. 17. Fomenko graphs figure fork=Î3/8.
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mation for the near-resonance frequencysv=1−dṽd case.
More precisely, one looks for solutions of the SGE of the
form

u = 2ÎdṽfBdsX,Tdeivt + BdsX,Td * e−ivtg, sC2d

whereBdsX,Td is assumed to be analytic ind, and

v = 1 −dṽ, X = Î2dṽx, T = dṽt.

Introducing a small parameter« such that

L̂ = «L, Ĝ = «8d3/2ṽ3/2G, ã = «2v̄a,

with all other parameters of order one, one finds thatsthis
consistency condition has not been set explicitly in previous
publicationsd provided

d ! « ! 1,

the leading order term ind, BsX,Td=B0sX,Td, satisfies the
following forced and damped NLS equations3d with V2=1:

− iBT + BXX + suBu2 − 1dB = i«saB − LBXX + Gd. sC3d
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