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The truncated forced nonlinear SchrédingdtS) model is known to mimic well the forced NLS
solutions in the regime at which only one linearly unstable mode exists. Using a novel framework
in which a hierarchy of bifurcations is constructed, we analyze this truncated model and provide
insights regarding its global structure and the type of instabilities which appear in it. In particular,
the significant role of the forcing frequency is revealed and it is shown that a parabolic resonance
mechanism of instability arises in the relevant parameter regime of this model. Numerical experi-
ments demonstrating the different types of chaotic motion which appear in the model are
provided. ©2005 American Institute of PhysidDOI: 10.1063/1.1831591

Putting an order in a multidimensional chaotic system by system§.The realization that such integrable structure might
classifying all the different types of trajectories and find-  not persist under small perturbations led, almost two decades
ing their corresponding phase space regions is, in general, ago* to the development of a program in which the influ-

a formidable and perhaps even unattainable task. Near-  ence of forcing and damping that breaks the integrability of
integrable Hamiltonian systems are a fascinating play- the partial differential equatioiPDE) is considered. This
ground in this respect as some rough classification may rogram included extensive numerical study of the perturbed
bhe found. Indeed, VYJe derrl}odnstra_tg r(mjer_e thhat IN SOME CaSeS ppEs which was presented in various forms. Since the phase
their structure may be well described via the construction space is infinite dimensional, it is indeed unclear which form
of a three-level hierarchy of bifurcations. The analysis . . -

. : . : supplies the best understanding of the solution’s structure. It
reveals, in a systematic way, the typical and singular so- was then suggested that a finite-dimensional model—a two-
lutions on a given energy level, and how these are altered 99 . m

mode Galerkin truncation of the perturbed NLS—faithfully

as the energy level and the parameters are varied. In , : _C
particular, all the different types of singular unperturbed ~ describes the PDE dynamics when even and periodic bound-

solutions arising in a given model may be classified. The ary conditions are imposed and thgnorm of the initial data
various types of chaotic trajectories which are produced IS not too large*® Furthermore, it was shown that the un-
by the perturbation in the neighborhood of such solutions ~ perturbed truncated system is a two degrees of freedom
are shown. The concrete system we analyze is a two-mode Hamiltonian system with an additional integral of motion,
truncation of the forced one-dimensional nonlinear hence, is integrable. The study of the perturbed two-mode
Schrédinger equation, an equation which describes many model is the main subject of this paper.
phenomena in physics such as the Bose—Einstein conden- Previous investigation of the truncated system led to the
sation. Our analysis explains the phase-space structure of discovery of a new mechanism of instability—the hyperbolic
this extensively studied reduced model, discloses the sig- resonance—by which homoclinic solutions to a lower di-
nificance of the forcing frequency parameter, and reveals mpensjonal resonance zone are credtetf. The unperturbed
new types of chaotic solutions in it. structure of the truncated model which is responsible for this
behavior is a circle of fixed points which is hyperbolic in the
transverse directiorisee Sec. Ill for a precise definitipn
New methodologies and tools introduced to this PDE-ODE
The one-dimensional nonlinear SchrodingéNLS) study have finally led to a proof that the homoclinic reso-
equation emerges as a first-order model in a variety of fieldgance dynamics, and in particular the birth of new types of
in physics—from high-intensity laser beam propagation tomultipulse homoclinic orbits which is associated with it, has
Bose—Einstein condensation to water waves theory; since &nalogous behavior in the PDE settifsge Refs. 1, 10, 15,
is the lowest order normal form for the propagation ofand 16, and references therein
strongly nonlinear dispersive waves its appearance in such a The appearance of a hyperbolic circle of fixed points in
wide range of applications is mathematically obviqisee the truncated model is not a special property of the NLS
Ref. 1 and references thergiit was one of the triumphs of model—investigation of the structure of low-dimensional
mathematics when it was realized that the NLS is completelyear-integrable Hamiltonian systeifsee Ref. 1¥shows that
integrable in one dimension on the infinite lit@er with pe-  hyperbolic resonances are a persistent phenomenordes
riodic boundary conditionsand hence completely solvable, grees of freedom systems wittx 2; among such integrable
leading to the beautiful theoretical development of inverseHamiltonian systems there are open sets of Hamiltonians
scattering, Lax pair, and spectral analysis of such nonlineawvhich have am—-1-dimensional torus of fixed points which

I. INTRODUCTION
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is normally hyperbolic. The existence of such tori may betools correspond to generalizations and extensions of the
formulated as the existence of transverse intersection daftandard energy-momentum maps and the Fomenko graphs
some finite-dimensional manifolds. Hence, using the transwhich were previously developed and applied to several in-
versality theorem, one proves that hyperbolic resonant torieresting integrable systerﬁ‘é‘?lThese diagrams were con-
exist for aC'-open set of integrable Hamiltonians, which we structed for a simple 2-d.o.f. model which describes the mo-
take hereafter as the definition of persistence. tion of high-altitude weather balloons in the atmosphere. In
The framework of studying the phase-space structure oRefs. 17, 32, and 33 such diagrams were constructed for a
the perturbed NLS and its modal truncations as perturbationgariety of normal form-type models with=2 and 3. The
to increasingly larger dimensional integrable systems appearsain emphasis in these constructions is that, given a conser-
to be promising. Yet, despite a century-long study of nearvative perturbation, the Hamiltonian which is preserved in
integrable Hamiltonian systems, our qualitative understandthe perturbed flow defines the energy surfaces which are
ing of inherently higher dimensionalnonreducible to close, metrically but not necessarily topologically, under
smooth, symplectic two-dimensional map®ear-integrable some mild conditions, to the perturbed surfatese Appen-
dynamics is lacking. Qualitative understanding means herdix A). Thus, the structure of the unperturbed surfaces sup-
that the effect of small perturbations on different unperturbedglies a priori bounds to the perturbed motion.
orbits may bea priori predicted for some nontrivial time The next level in the hierarchy consists of the energy
scales. For example, such a qualitative understanding existsfurcation values® across which the energy surfaces are no
for generic near-integrable one-and-a half degrees of fredenger C! conjugate. Thus, it describes how the energy sur-
dom systems; the unperturbed periodic orbits which fill al-face differential topology is changed with This level of
most all of the phase space are replaced by KAM tori, Canbifurcation was implicitty mentioned befd?®?**' but has
tori, and resonance bands, whereas the neighborhood abt been fully investigated. We have shown in Refs. 17, 32,
homoclinic loops of the integrable system is replaced by hoand 33 that the energy-momentum bifurcation diagram sup-
moclinic chaotic zones. While there are some long-standinglies a graphical tool for realizing such bifurcation scenarios
open problems regarding the asymptotic behavior of suclon this second level. In Refs. 17 and 32—-35 we have shown
systems(notably the decay rate of averaged observables ithat the simplest bifurcatiofa fold in the codimension one
the chaotic zone and the measure of the chaotic Ydie singularity surfacesis associated with resonances—namely
the basic transport and instability mechanisms are well unwith a dynamical phenomenon! Indeed, previous works have
derstood on time scales which are logarithmic in the perturmostly concentrated on one specific dynamical phenomenon
bation paramete?rq'ﬂAnother example is the behavior of or- which changes the level set topology—the appearance of iso-
bits of near-integrable degrees of freedord.o.f) systems lated fixed points, where the structure of the level sets and
in a neighborhood of an unperturbed, compact, regular northe energy surfaces becomes more complex ascreases
degenerate level set with Diophantine frequency vector{see Refs. 25, 29, and 36, and related wprkiere, we list
while the asymptotic behavior of the solutions in such re-all the othetknownscenarios creating energy bifurcation val-
gions is still unknown(the famous Arnold diffusion conjec- ues for the 2-d.o.f. caséolds, cusps and their symmetric
ture), it is known that for extremely long timéat least ex- analogs, curve crossings, and asymptotes to infiaityg dis-
ponential in the perturbation param&fe%g) the orbits will  cuss their dynamical implicationgesonances, parabolicity,
hover near the preserved KAM tori. In both examples, whilelower dimensional toripr global bifurcationsor no special
the asymptotic behavior is unknown, there is a good underocal implications, unknown yet, respectively
standing of the characteristic behavior of all orbits in a given  The last level in the hierarchy is concerned with the
neighborhood for a long transient time. parameter dependence of the energy bifurcation values. The
Here, we propose the following framework for obtaining bifurcation values here are the parameter vajat which
such a qualitative information for a class ofd.o.f. near- the bifurcation sequence of the second level chafges, by
integrable Hamiltonian system@nd demonstrate this ap- changing the order of the energy bifurcating vajudsor
proach on the truncated NLS equatiprSiven an integrable example, for the 2-d.o.f. case, at a parameter value for which
n-degrees of freedom family of Hamiltonian systemsthe fold-resonance energy bifurcation vahi®intersects the
Ho(g,p; ») depending on the vector of parameterscon-  cusp-parabolic energy bifurcation valb®", a resonant para-
sider the following three-level hierarchy of bifurcations: The bolic circle®® (a circle of fixed points which is normally para-
first stage consists of the analysis of the structure of the levddolic) is created. The perturbed motion near parabolic reso-
sets(the sets of phase-space points along whichnaton-  nant tori exhibits instability. We establish here that a
stants of motion are fixgdn a single energy surfagthe set  parabolic resonance appears for some relevant parameter val-
of phase-space points along which the unperturbed energy iges in the perturbed truncated NLS model, and demonstrate
fixed). Bifurcation values at this level correspond to the val-that the perturbed orbits near such values are of different
ues of the constants of motion across which the topology otharacteristics than the trajectories which were previously
the level sets on a given energy surfadg(q,p; #)=h is  observed. Using this framework the importance of a second
changed. The set of these values was called the “bifurcatioparameter, the forcing frequency, which was set to be 1 in
set” by Smalé* and the “singularity manifolds” by Lerman most previous studies, is highlighted.
and Umanskif® The energy-momentum bifurcation diagram The paper is ordered as follows: In Sec. Il we describe
and the branched surfaces provide a complete description ¢fie model which we study—the two-mode truncation of the
this level set’s structure on any given energy surface. Thestrced NLS equation. In Sec. Il we discuss the structure of
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the perturbed and unperturbed energy surfaces, and in Seelc(0)|expli(2?-3|c(0)|T+iy(0)). Linear stability analysis
IV we construct the energy-momentum bifurcation diagramof such solutions a&=0 shows that there is exactly one
and the Fomenko graphs for this model. Together, these supmnstable mode, c637X/L), when

ply complete information on the structure of the energy sur-
faces and their dependence on the energy, namely this sec-
tion completes the first level of the hierarchy of bifurcations

analysis. In Sec. V we present numerical solutions of the L
Wwhereas for lower values ¢¢(0)| the plane-wave solution is

perturbed model at regular energy values in various formsIinearly stable(neutra). The various references use various
demonstrating how the underlying integrable structure deter-

mines their character. Next, in Sec. VI we discuss the seconrdesc""lmgS ofgs, X, andT, leading to some multiplication

) . . constants in the above relation—all of these relations are of

level of the hierarchy—the energy bifurcation values. We . .

. . . course equivalent. Furthermore, in most of the works either
show that in our model three possible mechanisms for the . ) '
: . . or Q (usuallyQ) is considered as fixed. We see that for large
appearance of such bifurcations exist and for completeness "~ . o
. . . . ox size the plane-wave solution is unstable even for small
we discuss one other mechanism which appears in other " =
models. We demonstrate that the appearance of ener bifuarlmp“tUde’ as expected.

PP 9y Consider a two-mode complex Fourier truncation for Eq.

cation values is usually associated with some dynamical phe(é)
nomenon of the perturbed trajectories. Finally, in Sec. VII we
describe how the energy bifurcation values vary with the 1
model parameters—the interval length and the frequency of ~ B2(X,T) = —=c(T) + b(T)coskX, %)
the forcing. We again relate parameter bifurcation values V2

with dynamical phenomenon of the perturbed dynamics. Afwhere the periodic boundary conditions imply that

ter the discussion and the conclusions, in Appendix A, we

prove that under quite general conditionsrod.o.f. systems, k= 2_77j
for small Hamiltonian perturbations, the energy surfaces of L
glﬁ e[r)((; r;l;rnboetdn ;cneds S‘g:ﬁ;;gu;gg;icsgﬁ;ecmoijfé;t:é%s; ch))( eagﬁd since we are interested in the first unstable mode we take

B consists of several energy-momentum bifurcation diad = >+ SUPStituting this solution to the NLS equati(@), set-

. : ting a=A=0 andI'=1, and neglectingsee Refs. 3—-10 for
grams and their corresponding Fomenko graphs. discussion of this stgphigher Fourier modes, we obtain the

following equations of motion:

21 47
— <|c(0)| = —, 4
= <[c(0)] =T @

jez, (6)

Il. THE NLS EQUATION
—ic+(Yel2+ i pl2— 02)e + L(ch* *\h=i2
Consider the following forced and damped NLS equa- IC+(2|C| +ab*-0 )C+ 2(cb* +be* )b=iN2e, @
tion: ]
—ib + (3[c]?+ 2|b]2 - (Q%+ k)b + 2 (bc* + cb* )c=0.
—igr+ ot [P =ie(ay— Mg+ T exp-iQ2T)), _ _ _ _
1 Here, |b| is the amplitude of the first symmetric mode and
(1) Ic|/v2 is the amplitude of the plane wave. These equations
with periodic boundary conditions and with even solutions inare of the form of a 2-degrees of freedom near-integrable

X Hamiltonian system with the Hamiltonian
P(X,T) = (X +L,T), s (0,T) = 0. H(c,c*,b,b* ;&) =Hg(c,c*,b,b*)

Let +gH,(c,c*,b,b*), (8)
B = expliQ2T). 2) and the Poisson brackets{f,g}=-2i({(d/dc,aloc*)

+(dl b, al db*)), where
Then,B satisfies the same boundary conditions/eand the ,
autonomougtime-independeftequation 1 1 3 1 QO
&} p nteq H0=§|c|4+§|b|2|c|2+1—6|b|4—5(92+k2)|b|2—?|c|2
—iB1+Byx+ (|B2-Q?)B=ig(aB- AByx+1I). (3)

This equation was extensively studied in the last two + }(bzc*2 +b2c?), 9)
decades;® and in this section we will mention only the rel- 8
evant results. In this context, the perturbed NLS was first
derived as a small amplitude envelope approximation of the
damped driven sine—Gordon equati@GE when the driv-
ing force is in the near-resonance frequency. Ti&n1 and ) »
the only parameter appearing in the unperturbed system gurthermore, a}t::O, these equations possess an additional
the box sizd.. integral of motion

The space of spatially uniform solutiongB(X,T) | = 1(|c|2+ Ib2) (10)
=(1/42)c(T)] is invariant under the perturbed flo@®) and 2 '
the unperturbed solutions are of the forne(T) and thus are integrable; see Refs. 3, 4, and 8-10.

i
Hi=—=(c-c*).
1 \’E
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IIl. ENERGY SURFACES shows that one can extend the solutionHg®,p®;e)=h
Hf_om any givene in the interval(0,e(5)) to zero—which
mpletes the proof. Using the bounds of Property 1 allows
e to show that this continuation may be done uniformly in

(g,p)|; hence, it is independent & [ |

The Hamiltonian(9) satisfies the theorem assumptions
sinceH, has quartic growth ifc|, |b|, wheread, is linear in
c|; see Appendix A for more details. Therefore, we conclude
that the perturbed and unperturbed energy surfaces are close

Most of this paper is devoted to the study of the structureo each other as long as the level sets belonging to the un-
of the energy surfaces of the integrable part of the truncategerturbed energy surface are bounded away from neighbor-
NLS model. Before we delve into this study, we notice that ithoods of fixed point§whereVH, vanishes Since the fixed
suppliesa priori bounds to the perturbed motion. Indeed, points of the systeni7) belong to a finite number of level
since the perturbation is Hamiltonian aadtonomousfor  sets, hence they reside on a finite number of isolated energy
any &, a perturbed orbit with energh [so H(c,b;e)=h,  surfaces(see Appendix A and one concludes that for the
(c,b) e{c(t),b(t)};cr] satisfies Hy(-)=h—gH;(-;¢). Notice  most part of the phase space the unperturbed and perturbed
the importance of the transformatid@) which transforms  surfaces are close to each other. The behavior near the fixed
the nonautonomous equatié¢h) to the autonomous on@),  points requires further analysis, as expected.
and the resulting dependence of the unperturbed equation on Notice that the closeness of the perturbed and unper-
). We prove below that for sma#, points belonging to the turbed energy surfacees noimply that they are topologi-
perturbed and unperturbed energy surfaces must be closgally conjugate. Nonetheless, this geometrical closeness is
uniformly in h, as long ag|VHo(")| is bounded away from sufficient to obtaina priori bounds on the motion! Another
zero and the growth rate df, for large ||(c,b)|| is slower  point is that the Euclidean distance is clearly coordinate de-
than that ofH,. Hereafter, all norms are the Euclidean pendent, yet a smooth symplectic transformation of the co-
norms: (g, pI*=2La*+ZL|p> and  [[VH|?  ordinates will merely change the constats) in the theo-
=3 |gH/ aq)?+ =L |oH/ dpi)®. Hence, the structure of the rem.
unperturbed energy surfaces in @) interval of energies
nearh supplies global information on the allowed range of
motion of the perturbed orbits. More precisely: B. The unperturbed energy surfaces

Property 1. The Hamiltonian Hq,p;e)=Hqy(q,p)
+eH(q,p;e) is said to have the boundness property if
Ho(g,p) and Hi(g,p;e) are C° and are bounded with
bounded derivatives on bounded sets. Moreover, for any L
>0 there exists a constant;land aneg; such that for all0
seg<gg

Here, the closeness of the perturbed and unperturbed e
ergy surfaces is discussed, the expected structure of ener
surfaces of 2-degrees-of-freedom integrable Hamiltonians i
described, and finally the specific structure of the energ
surfaces of the unperturbed truncated NLS model is found.

A. Perturbed energy surfaces

The integrable 2-d.o.f. truncated NLS Hamiltonian,
Ho(c,b), (c,b) e M=C X, has two integrals of motiorti,
andl. Both integrals are smooth functions of their variables,
and they are pairwise in involutiofH,1}=0. Furthermore,
since the level sets of in the(c,b) 4-dimensional space, are
3-spheres, the Hamiltonian level setdy ={(c,b)eM,

'V Ho(a,p)| Ho(c,b)=g;,1(c,b)=g,}, are clearly compact; hence, the un-
perturbed flow is complete. By the Liouville—Arnold theo-
rem (see Refs. 27, 37, and B&he connected compact com-

dHq(q,p;e) ponents of the level setdg, on whichdl anddH, are(point-
|Hi(q,p;e)| Je wise) linearly independent, are diffeomorphic to 2-tori, and
> Lymax | VHy(q,p;e)l, lapl l@.pl hence a transformation to action-angle coordinafkly

=Hy(J)] near such level sets is nonsingular. Here, direct
(11) computation shows thatl anddH, are linearly independent

for almost all values ot andb.

Theorem 1 Consider a near-integrable Hamiltonian Consider a neighborhood of a level 9ét, which con-

H(q,p;e)=Ho(a,p)+eH(a,p;e), e<1, (q,p) € M, where tains a singularity set at whictil and dH, are linearly de-
M is a 2n-dimensional symplectic manifold and H satisfiespendent(e.g., the plane=0), but do not vanish simulta-
the boundness Property 1. Consider the energy surfacaeously. Then, on each connected and closed component of
Me(h)={(q?,p°)|H(g?,p?;e)=h}. Then, for eachs>0 there  such a Hamiltonian level set there is some neighborHdpd
exists aneg(8) and a constant K5) (independent of hsuch  in which the HamiltonianHy(c,b) may be transformed by
that for all 0<e<gy(6), and for all (g°,p°) e M?(h) satis-  the reduction procedure to the forfsee Refs. 25 and 37

fying

for all [|(q,p)|| > L.

|V Ho(a, %) > &, Ho@p.D).  @P.¢J) EUCRIXREXTEXRY,
there exists(q®,p°®) € M%(h) [i.e., Ho(q%,p®)=h] such that (12
(02, p%)—(q°, pO)| <K(d)e. which does not depend on the angles of the togisThe

Proof. See Appendix A for details. First, we prove that symplectic structure of the new integrable Hamilton{ag)
since ||VH(g?,p?)|| is bounded away from zero, so is is dqldp+de¢[idJ, where (q,p,¢,J) are the generalized
[VH(g?,p®)|. Then, an implicit function type of argument action-angle variables.
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TABLE I. Singular circles.

Invariant circle:6,ye T* Exists for Description
(1) ppw=(x=0,y=0,1,7), 1=0 Plane waveb=0)
(2) psp=(U=0,0=0,1,6), =0 Symmetric modéc=0)
3) Pown=
(X:i\y'i;(—k2+2|)’yzoy| ), I=2K2 PW mixed modgbc# 0)
(u=+181+2k2,0=0,1,0), >3k ’
(4) P
(x=0,y=%2k,1,7), | > 2Kk2 SM mixed modebc# 0)
(u=0,p=%v21-4K2,1,0), | =2k ’
For our model, the symmetryc—cexpiy), b Ic| ||
—bexpliy) of Hy(c,b) inspired the following symplectic u= HX' v=- Hy-
change of variables to the generalized action angle coordi-
nates(x,y,!,vy) (see Ref. 1% The geometrical structure of the new Hamiltonian,
_ _ _ Ho(q,p,J), is such that for any fixed a circle is attached to
c=|clexpliy), b=(x+iy)expiy), (13)  every point of the(q,p) plane. The singular level sets con-
tain a fixed point in the normal plar(g, p)
_1 2 2 2 _ _
= 2(c*+ x4y, (4 Vi Ho@P:d)lp, =0, pr=(@,pr.dy). (18)

Then, the Hamiltoniart9) becomes Generically, for 2-degrees-of-freedom systems, we expect to

HX,Y,1,7) = Ho(x,y,1) + eH1(X,Y,1,7), have a one-parameter family _of solu_tionito_these equations,
namely a one-parameter family of circlég, ps,Js, ¢). The
where stability type of these circles in the normal direction to the

family of circles is simply determined by the stability of the

+ — 2 2
LY ERXT), (xy) €B={xy)h*+y* <2}, fixed points of the reduced systdithe system in th@ormal

and plan€ %49 which, in the(q, p,J) coordinate system is de-
1 1 - 3 N termined by
Ho(x,y,D) =312 = 071 + (1 = 3K2)x° = fox = DPy? + 5oy #H
0 — 12
- Ly, (15 de«( e pf) -2 19

wherep; satisfies(18). Notice that a single circle belonging

to this family has neutral stability in the action direction. The
The transformation to these variables is singularcaD, normal stability referred to in the Hamiltonian context ig-
namely on the circle IZ=x?+y?, where the phase is ill nores this direction; see Refs. 39 and 41 and references
defined and the perturbation term has a singular derivativeherein. When\pf is real and nonvanishing the corresponding
In previous works'**the analysis was performed for phase- family of tori is said to be normally hyperbolic, when it
space regions which are bounded away from this circle. Wganishes it is called normally parabolic, and when it is pure
introduce a similar symplectic transformation which is valid imaginary it is normally elliptic; see the detailed references
as long ah+#0 in Ref. 33 and the discussion in Ref. 39. The motion on these
circles is described by the equations

Hy(x,y,1,9) = V221 = x2 - y2 sin . (16)

b=|ble’, c=(u+iv)e’ 1=3W2+v?+b]?), (17

and obtain the equation of motion in the canonical coordi- dt = o(, pr, Jy), dt =0,
nates(u,v, I, ) from the Hamiltonian(9)
where o(q,p,J)=[dHy(q,p,d)]/4J is the frequency vector.

Ho(u,v,1) =212+ (— 02+ 302 - 202 - k2)| - &u? Following the terminology of Ref. 25, the invariant circles
on which Eq.(18) is satisfied are called here singular circles,
and the curves of energy and action values on which this
- equation is satisfiefi.e., the curve(Hq(qs,ps,Jds),Js) in the
Hi(u,v,1) = V2(v cos@+usin ). (H,J) plang are called the singularity surfaces. We will see
that the structure of these singularity surfaces serves as an
Gorganizing skeleton of the energy surfaces.

For our model, the singular circles are easily found by
setting Vxy)Ho(X,y,1)=0 for circles satisfyingx®+y?<2l,
and similarly V,,Ho(u,v,1)=0 for circles satisfyingu?
x=|blcog 8-y, y=|blsin(6-17), +v2<2l. As in Refs. 11-14, we identify six such families of

_3 22,4292, 4,22, 1 4
gUv+ sku” + skv° + 5507,

When bothy and 6 are well definedthe (x,y,1,7y) and the
(u,v,1,0) correspond to two charts of the 3-sphere define
by Ref. 39, namely forch+ 0, the two sets of coordinates
are simply related

Downloaded 09 Jul 2006 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



013107-6 E. Shlizerman and V. Rom-Kedar Chaos 15, 013107 (2005)

TABLE II. Normal stability of singular circles.

Jacobian eigenvalues Elliptic for Hyperbolic for Parabolic for
(1) (\pw)?=K3(-K2+21) I <3k? 1> 3k? 1= 2k
) (\ew?=C1+1A1-K2) | <2K? > 2Kk I5m=2k?
(3) (\pwm?=3(2k*-K21 -612) 1> 212 =242
(@) (\gmm®=4K3(2K2-1) 1> 2k e I5m=2k?

singular circles as summarized in Table I—the plane-wave circle of fixed points when this frequency vanishes as listed

(b=0) and symmetric modéc=0) families are the two pure in Table IIl below.

states and the other four families correspond to circles which Using the transformation to ﬂ'(a,y, |) coordinates, the

bifurcate from these two pure families when they lose stabilcorresponding 2-d.o.f. system wifh=1 was studied in the

ity. _ _ __ dissipative and conservative case&:*In particular, it was
Table Il includes the calculation of the normal stability realized that a specially interesting phenomena occurs when

multipliers for these families of circles, namely the calcula—the circle corresponding to a plane was=0) is a normall
tion of Eq. (19 for this case, showing that the first two P 9 P y

above a threshold level which depends on the box size. ~fémark 1 we conclude that such a circle appears in the rel-
Remark 1. Recall that we expect the two-mode model toevant regime for any, at 1=0? for Q/y2<k<y20).
apply for regions in which the plane-wave solution has atThen, ate=0, pairs of fixed points on this circle are con-
most one unstable mode. Usifg) and(13), it follows that  nected by two heteroclinic orbits. This realization led to a
near the circle b=0 we should expect the analysis to be valid beautiful theoretical study of the behavior of integrable sys-
for 1 <2k2. Interestingly enough, we see that exactly at this Items with such a normally hyperbolic circle of fixed points
value the symmetric mode solutions lose their stability. Theinder conservativé**® and dissipative"'* perturbations,
analysis and numerical simulations of the truncated mOdebhowing that the perturbed system has various types of ho-
with 1> 2k are performed here to demonstrate some inter-mqclinic and heteroclinic orbits. Furthermore, these studies
esting dynamlcgl phen'omena, but their relevance to the full,q {5 the development of a geometrical PDE approach by
PDE dynamics 1S a'dmlttedly dOUb.thI . . which it was proved that the perturbed NLS equation has
The dynamics in the angle direction faf+y?<2l is - . -
described by homoclinic solutions to the resonant plane-wz_:\ve solutions;
see Refs. 1, 15, and 16, and references therein.
IMHo(X,y,1) Kovacic** includes in his study global analysis of the
a (20 integrable system in which, after identifying the critidal
values, the level setd=h are plotted for typical values df
Here, we present the integrable system using energy-
de 3 , 3, 1, 5 dHuu,D momentum bifurcation diagrams and Fomenko graphs, in-
ot =o(u,l) = §| -0+ ZU v k== —a vestigating the surfaced=h and their extent in thé direc-
tion. This representation allows a better understanding of the
(21) behavior under small conservative perturbations since the to-
In particular, the invariant circles listed in Table | have antal energyH is preserved. The implications of this represen-
inner frequencyw(l)=[dHy(ps)]/dl, and they correspond to tation on the damped case will be studied elsewhere.

d
d—?zw(x,y,l):l—92+x2:

and foru?+v2< 2l we have

TABLE Ill. Resonant and parabolic singular circles.

Parabolic
w(p;)=[dH(p;)/dI] I-resonance |-parabolic resonance
pw=| ()2 pw= ()2 pw—1y2 1
(1) oP=1-0 =0 Ip"=3K Qppw=7K
V2

— 3 2412 _ A

@ =l =0E o 224 lir=2¢ Opan 26

' 3

(3) QPvm=221 - 02— 4K? pum_ T2+ 4 1pv=1K2 0 L
r pr-pw=

15 2

(4) w*m=1-02 [smm= ()2 I5m= 2k Qpr-emi= V2K
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FIG. 1. (Color onling. EMBD graph fork=1.025,Q2=1. Thick black(blue) line—p,,, thin black(red line—py,y, thick gray(magentaline—p; thin gray
(green line—pgmm Dashed lines—normally hyperbolic circles; solid lines—normally elliptic circles.

IV. ENERGY MOMENTUM BIFURCATION DIAGRAMS mode circles(c=0). The EMBD contains the resonance in-

The energy-momentum bifurcation diagram (EMBD) formation for both representations.

supplies global information on the bifurcations of the energy

surfaces structure and their relation to resonances. Consid&r Construction of the EMBD
an integrable Hamiltonian systeiy(q, p) in a regionD C M

at which a tra_nsformation to the local generalized coordinat%i”t
system Hy(q,p,J) is nonsingular. The energy-momentum
map assigns to each point of the phase spage,J) a point

in the energy-momentum spacéh=Hy(q,p,J),J). The
energy-momentum bifurcation diagram is a plot in theJ)
space(for (h,J) in the range oD) which includes(see Ref.
33 for then-d.o.f. formulation

Calculation of the singular surfaces and the normal sta-
y of the lower dimensional tori are the first steps in de-
picting the global structure of the energy surfaces. We begin
the construction of the EMBD by plotting the singular sur-
faces(Hy(ps(1)),!) in the(h,I) plane, wherdp;(l)) are given
by the six families of Table I.
In Fig. 1 we plot these curves for the nondimensional

wave numbek=1.025 at()=1, which is the value used in
« The regiotts) of allowed motion(the closure of all regions ~ previous works:>°Other values ok and() are presented in

in which the energy-momentum mapping is a trivial fiber Appendix B. We use the usual convention in bifurcation dia-

bundle; see Refs. 24 and 27 grams by which normally stable circles are denoted by solid
» The singular surfacesh,J)=(Hy(p;),J;) [see Eq.(18)] lines, whereas normally hyperbolic circles are denoted by

where the normal stability of the corresponding singulardashed linegsee Table |i. Different colors are used for the

circles, defined by Eq(19), is indicated. different families of invariant circlegthick and thin black

« The strongest resonance surfaces on which the inner frdines (blue and red in the color plot$or the plane wave and
quency of the circles vanishes(p;) =0 {and possibly the its bifurcating branch, and thick and thin gray lin@sagenta
regions in which backflow occurs, whefde(q,p,J)]/dt and green in the color plot$or the symmetric mode and its
changes sign along the level set=Hy(q,p,J),J)}- bifurcation branch The allowed region of motion is

« The energies at which topological bifurcations occur andshaded—for each poirth, 1) in this shaded region there are
the Fomenko graphs in the intervals separated by these,b) values satisfyingHo(c,b)=h, 1=5(/c/+[b|». An en-
bifurcation points. ergy surface in this diagram is represented by the intersection

of a vertical line with the allowed region of motion. The

Note that the energy-momentum bifurcation diagram detopology of the level sets for differeritvalues on a given

pends on the choice of the generalized action-angle coordenergy surfacéi.e., the number of disconnected 2-tori which

nates(q,p,J); see Ref. 33 for discussion. In particuléie  correspond to eackh,l) value and the manner by which

form of the perturbatiordetermines the strongest resonantthese tori glue together at the singular valuissepresented
directions, and the actions in the EMBD are chosen accorthy the Fomenko graphs as described next.

ingly. Here, Eq.(9) implies that the dominant resonant direc-

tion is indeed the conjugate angle Itoin both the(x,y,1)

and the(u,v,l) coordinate systems. Hence, the convenientB' Fomenko graphs
coordinates for the energy-momentum bifurcation diagram is  The Fomenko graphs are constructed by assigning to
(h,1). Notice that while the momentum variallés globally ~ each connected component of the level gets the given
defined, the associated angle coordinate is defined differentignergy surfacea point on the graph, so there is a one-to-one
near the plane-wave circldb=0) and near the symmetric correspondence between thésee Refs. 29 and 33Then,
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FIG. 2. (Color onling. Fomenko graphs fok=1.025,Q2=1. Clear triangle-p,,,, solid triangle—pp,, Clear circle—ps,; solid circle—pgmm
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an edge of this graph corresponds to a regular one-parametsinows the more complex energy surface at the energy level
family of two tori, whereas vertices correspond to singularcorresponding to line 5 in Fig. 1 and to diagram 5 in Fig. 2.
values of(h,l) at which some families of tori glue together Projections of the energy surface are plotted twice; the en-
or shrink to a singular circle. In the standard construction ofergy surface is the two-dimensional surface in tiey,1)

the Fomenko grapf$the main objective is the study of the space[respectively,(u,v,!) spacé multiplied, for all c#0
topology of the surfaces and the level sets; hence, for exfor all b+ 0), by the circleye St (§e SY). The redundant
ample, all the normally elliptic singular circles are assignedpresentation in théu,v,l) space is shown to better explain
the same symbalmolecule “A”). Here, we distinguish be-  the |evel set's topology near the cirae0, where the trans-
tween the different singular circles as these correspond tgyrmation to the(x,y, 1) coordinates is singular. In Fig. 3 we
different dynamic in the NLS. Thus, we denote the invariantjemonstrate more precisely the relations between the energy-
circles corresponding to the plane-wave fanijy,) and the  momentum bifurcation diagram, the Fomenko graph, and the
invariant circles which emanate from thel,,) by 0Pen  energy surface; indeed, let us describe in details the level

and full triangles, respectively. The invariant circles corre-gapg topology on this energy suface as the actida in-
sponding to the symmetric mode familys,) and the invari-  o55ed.

ant circles which emanate from thefpg,,,,) are denoted by _ _ _
open and full circles. In this way the topological changes of(1) The lowest value corresponds to the intersection of line
the level sets are discovered and the energy surface may be 5 with the solid gray line in Fig. 1, to the open circle on

reconstructed from these graphs. the Fomenko graph, and to the lowest level set in Fig.
Figure 1 shows the energy-momentum bifurcation dia- 3—the symmetriﬁode circle. The level set here is the
gram for the truncated NLS model kt1.025,Q1=1. The circle =0, |b|=V2lgy, which is normally elliptic. It is

numbered vertical lines on this figure indicate energy values represented in théu,v) plane as a point—the origin—
for which the Fomenko graphs were constructed, as shown in  which is multiplied by the circle ird [the representation
Fig. 2. Thus, the simple segment corresponding to graph 1 in  in the (x,y) plane is singular hefe For a bit largerl

Fig. 2 corresponds to a# X S' energy surface—a sphere in values each level set is composed of one torus—the Fo-
the (u,v,1) space, multiplied by the circlé e S'. Figure 3 menko graph has a single edge for such valuds anhd

- (s - .- w8 gesooos

5
() T - e I - N
O 3
) T 5 :,‘-
Q é
1
|
‘ -0.44 “—H

FIG. 3. (Color onling. EMBD, Fomenko graph, and energy surfa¢emdeS') for k=1.025,Q=1, h=-0.44.
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indeed we see that in both tlfe,y) plane and théu,v) V. THE NLS TRUNCATED SOLUTION’'S STRUCTURE
plane a single circle, corresponding to a torus, appears®T REGULAR ENERGY LEVELS

(2) When thel value reacheslthe dashfad. black line in Fig. 1, Using the EMBD and the Fomenko graphs, we gave a
the level set becomes singular—it is composed of they| description of the structure of the unperturbed solutions
plane-wave circle and its homoclinic surfaces, shown agn 5 given energy surface in th&,y,l,y) and (u,v,l1,6)

a figure-eight level set in théx,y) plane. On the three- coordinate system. An energy surface is a regular surface if
dimensional energy surface this figure eight is multipliedthe Fomenko graph is identical in its neighborhtio@.g., in

by the circley e S. This singular level set is denoted by Fig. 2, graphs 1, 2, 4, 6, 7, 8, and 10 all correspond to regular
the open triangle with dashed boundary in the Fomenkwaalues. For such energy values, the detailed understanding
graph. of the unperturbed structure immediately translates into a

(3) As | is further increased, each point in thie,1) plane  qualitative understanding of the perturbed motion: for suffi-
has two tori associated with it—in the Fomenko graphciently small perturbation an edge in the Fomenko graph
we see that there are two edges for these valuésasfd ~ (corresponding to a family of two toridisintegrates into a
the corresponding level sets at they) plane have two Cantor set of KAM tori and Cantori with resonance bands
disconnected circles. These circles shrink to two pointgwith their own chaotic zongsresiding in the gaps of the
which are two normally elliptic invariant circles of the Cantor set. The vertices which correspond to hyperbolic
p|ane_Wave_mixed_mode type at a criticelvalue at circles develop(generically into circles with Spllt separa-
which line 5 is tangent to the curve corresponding totrices with the usual chaotic zone associated with them. The

Powrm IN Fig. 1; for energies above line 5 the energyvertices which correspond to normally elliptic circles have
sﬁlrface splits in two due to this curve. Thus, this valuedgain the usual Birkhoff normal form/resonant behavior de-

of the energy is an energy bifurcation value—the levelPending on the ratio of their normal and inner frequencies,

sets for lower energieiagram 4 and higher energies which needs to be calculated. In Fig. 4 we show several

: : : turbed orbits foh~=-0.42, i.e., energy surface which is
(diagram 6 undergo different topological changes as thePEMur N
action is increased along the energy surfagaphs cor- described by graph 6 in Fig. 2. To make the perturbed mo-

responding to such energy bifurcation values are gelions visible we let the: value be 10 times larger than the

. value in the consequent figures of the perturbed orbits. No-
noted here by * in the Fomenko graph sequehcése . : . ; ;
Wo circlespt e denoted by the solid trianales in the tice that this graph has eight different edges corresponding to
CIrCIESPpwm ar n y solid tnangies 1 eight separate families of two tori, three vertices correspond-
Fomenko graph.

. . o ing to hyperbolic circles with separatrices, and seven vertices
(4) Further increase df leads us again to the two-tori situ- g yp b

. ) > . corresponding to normally elliptic circles.
ation until the curvep,,, is intersected again. Then, the The relation between the solutions in they,l,y) [or

two tori coalesce at the singular level set of the plane(u,v'he)] spaces to the truncated soluti@y(X,T) and
wave and its homoclinics, which is denoted as before by,ance to  the truncated solutiony,(X, T) =B,(X, T)

an open triangle. _ xexp(-iQ?T) of Eq. (1) is easily found forc#0 via the
(5) Further increase dfleaves us with one connected com- ransformations°

ponent of the level sets until the dashed gray line in the
EMBD, which denotes the normally hyperbolic circles ~ By(X,T) = (\/| (T) = 30¢3(T) +y*(T)) + (x(T)
Psm denoted in the Fomenko graph by an open circle, is . .
intersected. This singular level set is again, topologi- +|y(T))cost)exp(|y(T)),
cally, a figure-eight times a circle, but now it is repre-
sented in theu,v plane[since the(x,y) coordinates are

Pr(X,T) = Bo(X, T)exp(—iQ%T),

singular herg and similarly forb+0
(6) For largerl values, in the Fomenko graph, two edges ]
emanate from the circle correspondingotg, These cor- BA(X,T) = (U (M +iv(M)
respond to the two families of tori which oscillate near + \/I (T) - %(uz(T) T 04(T))cos kx)exp(ie(T)),

the two symmetric-mode-mixed-mode circles. The up-
per boundary of the energy surface is reached when
these two tori shrink to the corresponding invariant
circles—when line 5 intersected the thin gray line— In previous works it was suggested that plotdB@X, T)| as
when the two solid circles in the Fomenko graph area function of(X,T) for a small interval of timgwe will call
reached. this representationthe amplitude plot and a plot of
(Re(B(0,T)},Im{B(0,T)}) for a longerT interval (we will
This rather lengthy explanation can be repeated now fotall this representation tH&-plane plo} reveal the difference
each Fomenko graph without the explicit computation of thebetween regular and chaotic motion. We present the various
corresponding energy surfaces. Namely, these graphs encogerturbed orbits which reside on the same energy surface in
all needed information for the reconstruction of the energythese projections. It is seen that left and right branches of tori
surface$’ We note that a similar construction for some with the same values(oscillating near the circlep,’;Wm and
n-d.o.f. systems has been recently sugge&ed Ref. 33 and Powm respectively appear in thé-plane plots as projections
references therejn of tori with different radii (observe the light and dark green

Pr(X,T) = Bo(X, T)exp(— iQ2T).

Downloaded 09 Jul 2006 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



013107-10  E. Shlizerman and V. Rom-Kedar Chaos 15, 013107 (2005)

2 —
e
1.5
1
z 3
0.5 =
L
5°
0
27, 0 2
Y X
25— j f TS 25
' ' ' : 5
] SETTTI ——_-—A— -------- 1.5¢ |
? ; i % 1} )
T I S S SN R 05 1
— e B
— — E 0
| S | IS RS S (A 05
—---—:.-C-_:': : !
1y SRRE— fronnnnnenes freeeeennnnes = 15
: ; 3 ]
0 H H H H j 25 :
-0.45 0.44 -0.43 -0.42 oM -0.4 25 2 15 | 05 0 05 1 15 2 25
H Re(B)

FIG. 4. (Color). Perturbed orbits on energy surface 6 shown on the projected energy surfaces, the EMBD, Brglathe plot fore:(l/\f‘E)l(Tz, k
=1.025,h=-0.42.

orbits in Fig. 4, and in the amplitude plots as phase-shiftedsingularity curvegthe curves corresponding to the circles in
in X solutions(thus, the right branch has its maxima>at the EMBD) with respect to changes in the energy, namely to
=0, whereas the left one Xt=7/2k, as was demonstrated in folds, branchingqcusps, intersections, and asymptotes of
the earlier workd. On the other hand, the upper and lower the singularity curves to a vertical line. The dynamical phe-
brancheqoscillating near the circlep;,,,and ps,, respec- nomena associated with each of these simplest geometrical
tively) are indistinguishable in these plots. Presentingfeatures of the singularity surfaces are listed below. Thus, for
Re{B(X,T)} for these solutions shows similar center-wingsthe 2-degrees-of-freedom case singularity theory may be
jumps. The chaotic solutions in these projections are shownsed to classify all possible energy bifurcation valisse
as well, the ones associated with,, exhibiting left-right  also Ref. 33 Here, we do extend some of the notions to the
jumps in the amplitude plots and inner—outer radii jumps inn-d.o.f. framework as this has not been previously discussed.
the B plane plots, whereas the ones associated pgttshow A complete classification of all the possible singularities of
left—right jumps in the reaB plots. these singularity surfaces and their dynamical consequences
has not been developed yet.
VI. BIFURCATING ENERGY VALUES

Intersecting the energy-momentum bifurcation diagrams

with a vertical line and constructing the corresponding Fo- . . .

. . A. Folds in the singularity surfaces and resonances

menko graphs leads to a full description of a given energy
surface. It follows that changes in the differential topology of  Clearly (see, for example, Fig.)1the energy surfaces

the energy surfaces can be easily read off from thesehange their topology whenever there is a fold in the singu-

diagrams—they precisely correspond to singularities of thdarity surfaces. Furthermore, it was established in Ref. 33
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TABLE IV. Singular surfaces—Hamiltonian at the singular circles.

Ho(X¢,Ys,1) Evaluation Exist for
() H(Xpw,ypw,I)=H(0,0,I)=(§—QZI 1=0
(2) H(Ugmyvgm )=(0,0,)=212-1(Q2+K2) =0
(3) HOG e Yiwm: ) = 112 = Q2+ 2K + 7K 1=Kk
(4 H(ugmm,vgmml):g—m —Kk4 | =2

Chaos 15, 013107 (2005)

resonance under perturbatignfer energies below the bifur-
cating energy(say forh<hP"; see diagrams 1 and 2 there
the energy surfaces do not include any circle of this family,
whereas for energies beyond this va(say, forh>hP", dia-
gram 4-10 theretwo circles of this family appear on the
same energy surface.

The perturbed dynamics near such circles of fixed
points, occurring on these bifurcating energy surfaces, is dif-
ferent than the standard perturbed motion which was de-
scribed in Sec. V. When the resonant circles are normally
elliptic (for Q<Qp,_p,, for the plane-wave circles, fof)
<Qpr—sm for the mixed-mode circles, and fér>(,_,, for
the plane-wave mixed circlgsthe coupling creates a reso-
nance zone. Then, one expects that an even number of fixed
points will survive the perturbation, half of them becoming

that extremum of nonparabolic s_ingularity surfaces correstable and half unstable. Consider the motion near a stable
spond to strong resonance relations for the lower dimenpoint Pow(¥(0)) belonging top,,, which survives the pertur-

sional invariant tori

dHo

dHo déi
dJ

= O'
dt

ie{l,...n-1, (22

Pt Py
wherep; is also a fixed point in the normal plane, namely a
solution of Eq.(18) [the equivalencé€22) can be easily veri-
fied by using the chain rulél8) and the fact thatJ, ¢) are
conjugate canonical variabfés”]. In particular, a fold of the
singularity surfaceHq(qs,p;,J;) at the nonparabolic torus
(g5, ps.Js) implies that thisn—1-dimensional torus is—1

resonant, namely it is a torus of fixed points. The normalWhICh €

stability of this torus may be elliptic or hyperbolic. Notice

that the appearance of such folds is a persistent phenomencﬁﬁ
hence, so is the appearance of circles of fixed points it

2-d.o.f. systemgsee the corresponding theorems in Ref. 17
To find a set of bifurcating energies we need to list the ex
tremum of the surfacedy(q;, ps,Js) for the various singular-

bation. Then,(T)=y(0)+%T), where|[¥(T)| is small and
similarly all the other components @f(T) remain close to
Pew(7(0)). Hence, the correspondiri@plane plots shown in
Fig. 5 are quite different—instead of seeing circles, indepen-
dently of the initial phases, as in the nonresonant case, we
will see asymmetric spots for some phases and circles for
others.

The motion near hyperbolic resonant circles is of a com-
pletely different naturé:* of particular interest for the
NLS model are the hyperbolic resonance plane-wave circles
xist whenlB¥=3k2 < 1P"=02, WhenQ=1 these ap-
pear only for small wave numbefk<+/2), namely for suf-
iently large intervals. By introducing the additional param-
ter(), we see that for ani value there is an interval d®
values for which the resonant plane-wave circle is hyper-
bolic: it is hyperbolic for allQ>Q,_,,=(1/V2)k, and by
Remark 1 the two-mode model is relevant for v2k (in-

ity manifolds. To establish that at these values the topologg!€€d. the symmetric mode resonant circles are hyperbolic for
of the energy surface changes we also need to verify tha® > Qpr-sm= V2K, SO their relevance is unclgarHere, we

these are nondegenerate. In Table Il we list th@lues for

show some perturbed trajectories which appear in the hyper-

which folds are created for the six singular surfaces of Tabld0lic resonance regime. We see that the main difference be-

[1l, all of which are indeed nondegenerdie fact quadratit
The values ofl for which the singular circles are parabolic
are listed as well.

Using the resonaritvalues of Table Il in Table IV, we

tween the regular homoclinic chaos and the hyperbolic reso-
nant chaotic motion has to do with the nonuniformity in the
angle variable—thus, it is not observable in the amplitude
plot but is clearly seen in thB-plane plots, and the re&

conclude that the following energy values correspond to biPlot- Indeed, in Fig. 7 we show the behavior near regular

furcations due to the resonances/folds:
4

w2
r 2 1

hrsm: _ %(QZ + k2)2,

pwm_ _
hy"=

H(Q2+ 437+ 2K, for k<20,

1
for k< —=0.

V2 23

P
2

homoclinic orbits, whereas Fig. 6 shows the behavior near
resonant homoclinic orbits. We note that in these plots typi-
cal chaotic orbits are shown—these orbits shadow some of
the countable infinity of multipulse homoclinic and hetero-
clinic orbits that exist due to the transverse separatrix cross-
ings (see Ref. 1 and references thejein

B. Branching surfaces and parabolic circles

Another source for bifurcations in the energy surface
structure appears when the singularity surface has a(cusp
split in the symmetric cage For the 2-degree-of-freedom

At each of these energies the corresponding family of circlegase such a cusp/splitting is associated with the appearance

(for examplepy,,) has a circle of fixed pointge.g., the open
triangle in diagram 3* in Fig. 2 corresponds to a normally
hyperbolic circle of fixed points, giving rise to hyperbolic

of a parabolic circlgfor the n-d.o.f. case we look for a fold
in the surface of parabolic tori, namely we look for an2
resonant parabolio-1 tori; see Ref. 33 for precise state-
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FIG. 5. A perturbed orbit near an elliptic resonant circle ksr2, e=(1/\f§)10'3. Initial
(x(0),y(0),1(0), ¥(0))=(-0.001,0.001,0.9983 /).
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1.04

0.96

0.94

05

-0.4995 -0.499

-0.4985

conditions: (c(0),b(0))=(-1.413+0.00i,0.001-0.001), i.e.,

men). Thus, the appearance of the parabolic cifzlg at h Notice that by Remark 1 the first parabolic circle, at
=hp" (similarly, p,,, at h=hi") from which the branches of (x,y,1)=(0,0,I8"), is always in the range at which the two-
circles p;,,, emerge implies that for energies below this mode model is expected to be valid. The second parabolic
value (graph 1 in Fig. 2 no such circles appear, and the circle, at(u,v,1)=(0,0,I5™, occurs at ar value for which a
Fomenko graph has no splitting to two edges, whereas larg&zcond mode becomes unstable near the oireje=0. Thus,
energies have these two circles as the upper boundary of the rajevance to the PDE is doubtful.

energy surfacédiagrams 2—10 In Table Il we list the two The behavior near a branching point is not simple—to

parafl'b(zjllct: valu(;ej.tpf. F;Iuglglng tff1ese valut?? mtot.TabIe rlmvh analyze it one needs to understand how Hamiltonian trajec-
we Tind two additional values ot energy bITUrcations WhiCh 1 ieq cross bifurcation® It appears that the action in the

appear due to singularity surface branchings
b= 2k2(3k2 - Q?), hi"=k* - 2202,

1.405

Im(B)

(24)

1.405

— 1.395

normal plane is a key ingredient in understanding the per-
turbed motion as it is adiabatically preser/édt follows

L= EETTE TP

1.385

L
-
N

0,423
H

-0.422

0421

FIG. 6. A perturbed orbit near a hyperbolic resonant circlekﬁett.025,e=1/\f§103. Initial conditions:(c(0),b(0))=(-0.999-0.00i,-1.001+0.00), i.e.,
(x(0),y(0),1(0), (0))=(1.001,-0.001,0.9983 ).
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FIG. 7. A perturbed orbit near a family of hyperbolic circles k;rl.025,e=é10'3. Initial conditions:(c(0),b(0))=(-1.4132-0.00i,-0.8954+0.001, i.e.,
(x(0),y(0),1(0), ¥(0))=(0.8954,-0.001,1.399%r).

that to distinguish between the motion near a regular elliptimamically insignificant energy bifurcation value. For our ex-
circle and a parabolic circle one needs to investigate verample, it follows from Table Il that the two curves
small actions in the normal plarief the order of the action  (H(ppu(1)),1) and (H(pss{1)),1) cross atl=0 and atl=Ig,
of the unperturbed homoclinic loop at energies of order =4k? and that no other singularity curves cross.
+0(g)]. Only for such trajectories may the chaotic transfer ~ 1=0 corresponds to the trivial solutiamrb=0, at which
across the homoclinic loopwith a chaotic zone which is both singularity curves are normally elliptic and at their in-
exponentially small in the distance from the parabolic cjrcle tersection we have addelliptic point—ann-2 singular level
be observed. We do not attempt to present here numericakt, as in the first case above. Thus, the corresponding en-
verification for this delicate phenomenon. ergy, hp=0, is a dynamically significant energy bifurcation
value.

Igb:4k2 corresponds to the intersection of the two sin-
gularity curves(of pp,, and ps,) at a value for which both

A third possible source for topological changes in thefamilies are normally hyperboli(tsinceIgb>|;m:2k2>lg‘”
energy surface is the crossing of singular surfaces. Such aﬂ%kz for all k>0; see Table )l Indeed, at this value our
intersection of Singular surfaces of-1-dimensional invari- system admits four heteroclinic connections between the
ant tori can be a result of one of the following phenomena:p|ane-wave circles and the Symmetric mode Circm Ref.

(1) Appearance of a higher dimensional singularity, namely!#- The energy-momentum bifurcation diagra(ese Fig. 1
ann-2 invariant torus. show the intersection between the corresponding singularity

(2) Appearance of a global bifurcation—e.g., the creation ofcurvesdashed gray and dashed blackhe Fomenko graphs
heteroclinic connection between two families ot 1 (graphs 8-10 in Fig.)2demonstrate that a global bifurcation
normally hyperbolic families. must occur—the solid circle¢that denotep;,,,,) are con-

(3) Appearance of two unrelated singular level sets for thd'€cted to the open circlghat denoteps, and its homoclinic
same action and energy valuétinrelated means that ©rbitS) in graph 8 and to the open triangithat denotesy,,
the Fomenko graphs before and after the crossings ha\@d its homoclinic orbitsin graph 10. Hence, this intersec-
the property that there are no edges connecting the veFon corresponds to a global bifurcation and the correspond-

tices associated with these two singular surfaces. ing energy is an energy bifurcation value. Summarizing, we
find two additional energy bifurcation values resulting from

Each one of these phenomena appears to be persistghe singularity surfaces crossings
under C" integrable perturbation witlm>2. The first and _  L2(oL2 (2
second cases imply that at the corresponding energy and ac- Mo=0, =427~ 0, (25)
tion values there are singular orbits of a new type, whereaand both of them are dynamically significant.
the third case does not. The response of the system to per- While the appearance of the global bifurcation intersec-
turbations is therefore altered in the first and second case btibn is intriguing from the mathematical point of view, it
not in the third. We thus call the first two dynamically sig- appears at values df for which more than one unstable
nificant energy bifurcation values, whereas the third is a dymode exists and the two-mode model cannot capture the full

C. Singular surfaces crossings and global bifurcation

Downloaded 09 Jul 2006 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



013107-14  E. Shlizerman and V. Rom-Kedar Chaos 15, 013107 (2005)

1.51

TBOB Fooeeeee P

o St
-
-

1.495

149 i : .
a8 0375 FED] 0373 o2

H

151

1505 o

Im(E)
o

14951

1.49 i i L i I i
o] o a0 100 150 200 250 300 350
Re(B) T

FIG. 8. A perturbed orbit near the global bifurcation for V3/8, £=(1/v2)1073. Initial conditions: (c(0),b(0))=(~1.7311-0.00i, -0.001+0.000), i.e.,
(x(0),y(0),1(0), ¥(0))=(0.001,-0.001, 1.4983x).

dynamics(see Remark )L Notice that the four heteroclinic latter two appear. Figure 9 shows the graph of the eight
connections give rise to homoclinic chains; hence, under peurveshf™, hi*, he™, ha™ hPYT, he™T hy, hg as a function of
turbation, one expects to obtain the usual chaotic behavid) for k=1.025, and a similar figure can be constructed for
associated with homoclinic chaos. Since the heteroclinithese curves as a function kffor a fixed ) value (in prin-
connections connect the two chafxsy,|,y) and(u,v,1,6), ciple we could expect to have some codimension two singu-
we present in Fig. 8 the behavior in both of them, where thdarities but this does not appear to be the case)hé&ras is
motion near the singular circles in each chart needs to ba bifurcation diagram of the energy bifurcation values—
ignored. In Fig. 8 we present the additiofiblt) graph which  crossings and cusps of curves in this diagram correspond to
is defined globally, unlike thél,y) and(l, ) presentations bifurcations of the EMBDsEven for a fixedk the emerging

that become singular near0 andb=0, respectively. picture is complicated—there are many intersections of these
curves, so a complete description of the truncated NLS
D. Unbounded singularity surfaces model consists of many different EMBD figures and their

. corresponding Fomenko graph sequences. A few representa-
We remark that another possible source for an energ¥. e ones are shown in Appendix B

bifurcation value is the appearance of a critical energy at

. . ! - As in the case of crossings of singular surfaces, we ob-
which one of the singularity surfaces tends to infirite., g g

serve that some of the crossings do not have dynamical sig-

C C C C H
(Ho(Py), 1, -+ JIn-g) = (he, J7, .. im0 9, -+ Jhey), With nificance while others do—intersections of singular surfaces

possibly more than one infinite direction; see Ref. 19, Wher%vhich correspond to the same action values may lead to dy-
it was shown that a motion in a central field may exhibit such

. amical significant bifurcations. In such a case some of the
a property. In this case energy surfaces become unboundegrbit,s structure may be of higher codimension. Then, even

g!lj[he de direction after ,th's Cr't'c"ﬂ Elmerdgy va:jllue. Th's lp'ossll'- for small perturbation its existence may alter the local behav-
||t_y oes_”nkc:t appde_a:jmlour Lno el and its dynamical Impli-jo of some trajectories. These cases are enlarged in Fig. 9.
cations will be studied elsewhere. Let us discuss the structure near several such external

bifurcations—nbifurcations of the energy bifurcation values.
VII. PARAMETRIC BIFURCATIONS

The third level of the bifurcation hierarchy consists of o parabolic resonances
the study of the dependence of the EMBDs on the param-
eters of the problem, the wave numberand the forcing When the curve corresponding to a fold of a singular
frequency). Equations(23—(25) include the eight energy surface(indicating the existence of a torus of fixed points
bifurcation values for our model. At these values of energie@nd the curve corresponding to the parabolic circles intersect,
the energy surface structure changes. Hence, any singulariy parabolic circle of fixed_points is created. Indeed, at the
in the dependence of the surfaces of bifurcation values on theritical value k=Kg,_p,= V2Q) [respectively, atk= Kor—sm
parameters changes the sequence of the Fomenko grapkg1/12)Q] the plane-wave familyb=0 (respectively, the
Fixing one of the parameters, the curves of energy bifurcasymmetric mode familyc=0) possesses a parabolic resonant
tion values can have singularities of the fold, asymptotegircle atlpr:QZ; at this value of the parameter three bifur-
cusp, and crossing types. In our case we find that only theating energy curves interse¢t"=hi"=h"" (similarly, at
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FIG. 9. Bifurcation diagram of the energy bifurcation valuesKerl.025,() is varied.
k=Kpr-sm hr=hp™=h?""); see Fig. 9. The corresponding In Fig. 10 the perturbed motion near the plane-wave

EMBD has therefore a fold occurring exactly at the point atcirc_le (b=0) under parabolic resonance conditiorfk
which the singularity curve changes from solid to a dashed-y2,Q2=1) is shown. Similar behavior is observe_d near the
line. circle ¢c=0 in the (u,v,!,0) coordinates ak=1/y2,Q0=1

The appearance of parabolic resonances gives rise to trathen the perturbation is of the forni,(c,c*,b,b*)
jectories which have different characteristics than trajectories —(i/\ﬁ)(c—c* )—(irll\@(b—b* ), so it does not vanish on
appearing in 1.5-d.o.f. systems and of trajectories passing=0. The projections of the trajectory on the energy-
through separatrices, compare Figs. 5, 7, and 10. Furthemomentum bifurcation diagram demonstrate that the singu-
more, it is observedsee Ref. 3pthat large instabilities occur larity surfaces dominate the perturbed motion. The appear-
near parabolic resonances when additional degeneracigdce of these trajectories in thi@plane plot and in the
occur—when the curvature of one of the branches at themplitude plots demonstrates that their character is different
parabolic resonant points approaches zero and a near-flat RRen the orbits appearing in the homoclinic and hyperbolic
appeargsee Refs. 17 and 32 for the higher dimensional for-resonant chaotic orbits.
mulation and examplegs

2 B. Resonant global bifurcation

EZHO(X(J)’Y(J)'J) o 0. When the global bifurcation curve and the curve corre-
PPy sponding to a foldcircle of fixed point intersect, a hetero-

Here, we find that (dz/d|2)Ho(X(|)1y(|)1|)|{p PamPE Y clinic connection between an invariant hyperbolic circle of
={1,2,%,1}, namely, these are fixed nonvanishing numbersfixed points and an invariant hyperbolic circle is created.
Hence, we conclude that the instability mechanism associSuch intersections occur whéy,=h" and whenhg,=hp™
ated with the near-flat resonance does not exist in this modeimple calculation shows that these scenarios occuk at
It follows that an introduction of an additional parameter =2/2 andk=Q/\5, respectively
which controls, for example, the mixed terms in the Hamil-
tonian Hy(x,y,l) can alter this property and induce strong PW= (2= = 42 sz
. . r gb hnd ’
instabilities. 2
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FIG. 10. A perturbed orbit near the plane-wave parabolic resonant circldi#dé, s:(l/\f§)103. Initial conditions: (¢(0),b(0))=(-1.4132-0.00i,
—0.001+0.00D), i.e. (x(0),y(0),1(0), ¥(0))=(0.001,-0.001,0.9986 7).

2(0%+ k%) 5 sponding circles cross whely,=ht" and whenhg,=h3"
3 lgp=4K" = k= \_— =0.4472). However, it is immediately seen that thevalues at which
the global bifurcations occur@,,=4k?) and thel values at

In fact, as is seen from Fig. 9, and may be easily verified atvhich parabolicity appeal($8‘”:§k2, Io= 2k2) are well sepa-
k=Q/2 (respectively, ak=/\5), the curveshy, andh?"  rated for allk values which are bounded away from O.
(respectivelyh?™ are tangent. It implies that fdcvalues in - Hence, the dynamics associated with these two phenomena
the range(0.4472),0.5Q) near-resonant behavior of both appears on separate phase-space regions and the coincidence
circles involved in the global bifurcations is expectedifls  of these two energy bifurcation values is not dynamically
not very small(generally, we expect that with two param- significant.
eters a global bifurcation between two resonant circles may Finally, at k=0 many of the curves cross; thus, in the
be found—but this is not the case here limit of small k we expect quite a complicated behavior as

Geometrically, at these values bthe unperturbed sys- many of the bifurcations occur for very nearbyalues and
tem has a circle of fixed point$at ppu(lg-pw) a@nd  the curvature of all the curves in the EMBD are quite small.
Psrrilrgb-sm)» respectively; see Table |livhich has four fami- ~ As we have mentioned—small curvature means degeneracies
lies of heteroclinic connections to a periodic orf@ét  and strongest possible instabilities. However, by Remark 1,
Psrllrgb-pw) @Nd Poulligo-sm), respectively. The behavior of  all these phenomena are relevant only for srhafuadratic
such a structure under small perturbations has not been ania-k) values.
lyzed yet, to the best of our knowledge. Simulations near
these two values reveal an intriguing picture of instability
which is not well understood yet. In Fig. 11, a representativey/||]. CONCLUSIONS
simulation is presented. We note again that the relevance of
such trajectories to the PDE model is questionabdenark Two main themes were developed in parallel in this
1), yet the general phenomenon of a family of heteroclinichaper—on one hand global analysis of a specific model—the
connections between a circle of fixed points and a periodigryncated forced NLS system was studied, and on the other a
orbit is robust as a codimension one phenomenon in 2-d.0.feneral framework for analyzing such near-integrable sys-
systems(and hence is expected to be a persistent phenomems was suggested. Let us first summarize the main features
enon inn-d.o.f. systems witm>2). of this framework and then relate to the specific results re-
garding the truncated forced NLS.

Given an integrable family of Hamiltonian systems
Ho(q,p,J; u) depending on the vector of parameterswe

Notice that several other crossings exist—these do impl)Eropose that the following three-level hierarchy of bifurca-

: ion scenario organizes all possible behaviors under small
topological changes on the sequences of the Fomenko grapns N
but do not imply that the local qualitative behavior of solu- perturbations:
tions will be altered. For example, the global bifurcation en-» The first level consists of the values of the constants of
ergy and the parabolic bifurcation energy of the two corre- motion across which the topology of the level sets on a

Ism_
o=

C. Other crossings
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FIG. 11. A perturbed orbit near a resonant global bifurcatiorkﬁol/Z,s:(ll\E),103. Initial conditions:(c(0),b(0))=(-1.4132-0.00iL, —0.001+0.00i),
i.e. (x(0),y(0),1(0),y(0))=(0.001,-0.001,0.9986 .

given energy surfacély(q,p,J; w)=h is changed. These —2-dimensional tori, global bifurcations, or unrelated
are the values at which the singularity surfaces cross the dynamical phenomena which occur simultaneougis
vertical hyperplanédy=h on the energy momentum bifur- list may be nonexhaustiye

cation diagrams, and correspond to the vertices in the Fa4) The asymptotes to infinity were not investigated in this
menko graphs. context yet.

* The second level consists of the energy bifurcation values
ht at which the form of the Fomenko graph Changesl The third level, at which the singularities of the projec-
namely across which the energy surfaces are no |oﬁ§er tion of the energy bifurcation surfaces onto the parameter
conjugate by a near-identity mapping. Thus, it describespace are found, reveals the existence of locally degenerate
how the energy surface differential topology is changedsolutions. In particular, we have shown that the parabolic
with h. resonance phenomena and the resonant global bifurcation
« The third level consists of the bifurcating parameter valuephenomena are associated with such singularities, and that
P at which the bifurcation sequence of the second levethese appear in the truncated NLS model.
changes. Indeed, applying these tools to analyze the truncated
forced NLS equations led to several new insights. First, we
Most previous works have concentrated on the first leve{yere |ed by the analysis to introduce a second parameter, the
alone, by which the topology of level sets on a given energyrequency of the forcing) and showed that foany given
surface are studied. For a large class of systems the Fomenkg,ve number khyperbolic resonance appears for an open
graphs(and the corresponding branched surfaces in highefyerval of ) values, whereas parabolic resonance appears at
dimensiong provide a full description of this level. The sec- ggjated( values. For any, both types of resonances appear
ond and third level of this hierarchy have not been explicitlyith amplitudes for which the two-mode model is expected
identified z_in_d des_cnbed. Th(_)ugh Ref. 31 discusses the seg; e valid; thus, by tuning the forcing frequency inherently
o_nd Ieve_I, it is mainly done with respect to the appearance Ofiitferent dynamics may be produced. Second, we observe
fixed points in 2-degrees-of-freedom systems. The bifurcag,5; gach of the bifurcations listed in the hierarchical struc-
tlpns of the second IeveI. are the energy values_ at which thfﬁre produces, in the near-integrable system, a different type
smgulqr surfaces of the first Igvel are singular with respect tQu perturbed orbit in an open neighborhood of the bifurcation
projections on the energy axis. For2 we have described values. In particular, we demonstrate that orbits associated

four types of such singularities: folds, cusps, crossings, ar]%ith elliptic resonances, homoclinic chaos, hyperbolic reso-

asymptotes. We havg shown t.h at these singularities may tHaances, parabolic resonances, global bifurcations, and reso-
associated with certain dynamical phenomena:

nant global bifurcations have different characteristics in vari-
(1) Folds are associated with—1-dimensional resonant ous projections. Presently, we seek tools for making a more

tori. precise distinction between these various types of trajecto-
(2) Cusps are associated with-1-dimensional parabolic ries.
tori. The relation between the new Hamiltonian finite-

(3) Crossings of two surfaces are associated with either dimensional resultthe appearance of parabolic resonances
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and resonant global bifurcations in this modahd the PDE oHy

solutions is under current investigation. One would hope that iy | o <[V Hl(q P° _5”

these will turn out to produce finite-dimensional dissipative (@ p)

analogs and infinite-dimensional conservative and dissipative <[V Hy(e, )] < n dHo

analogs as did the hyperbolic resonance scenario. old"p v 1 @ '

thus
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Summarizing, we established thiadH / a0 | (e oy | > 5 &
=5/(2\2n) for all (fF,p°) e M’S(h) satl_fylng Eq.(Al) pro-
APPENDIX A vided e<eg,(d)= m|n{1/(2V2n) 5/(2V2n)1/K,,e,} where
K; is defined by(A2) and L, is the smallest constant for
which Eq.(11) is satisfied withL,=1 o
By the implicit function theorem, sincé&y®,p®) solves
Here, we prove Theorem 1: Consider a near-integrableH(q ,p?:e)=h, and there exists one coordinate, sgysuch
HamiltonianH(q, p; ) =Ho(d,p) +eH1(q,p;&), £<1, (4,p)  that| dH,/da | is bounded away from zero, it follows
€M, whereM is a 2n-dimensional symplectic manifold and that fore<e,(8) the equatiorH(q®, p*;e)=h has a solution
H satlsfles the boundness Property 1. Consider the energyr |-z small. Moreover, a unique solution of the
surfaceM?(h)={(g®, p?) |H(0®,p?;e)=h}. Then, for eachd  form (0, p2)=(X(e) 0, ... .GF, P°) where  x(s)
>0 there exists ang(6) and a constar(4) (independent of  —q. (g2, ... ,qﬁ_,p;,s) may be found by solving the initial
h) such that for all G=e<so(8), and for all (d°,p*)  value problem
e M#(h) satisfying

Closeness of perturbed and unperturbed energy
surfaces

HL (X, ... TP )

Hl(x,qg ,qip?,s) +e

| V Ho(a®,p*)] > 5, (A1) ax__ ¢
de AH(X,05, ... 05 P°%e)

there exists(q?,p® € MOh) [i.e., Ho(q®, p°)=h] such that q
(@, p?) = (e, P2) | <K()e. '

Proof. Roughly, the proof is a simple application of the =F(xe), (A3)
implicit function theorem, with a continuation argument B
which shows that a sufficiently smalj(5) may be chosen so x(e) =qf.
that the gradient oH is bounded away from zero on the . — )
interval [0,8) for all 0= < 4(9). SinceF(x, &) is smooth and bounded ne@r;, ), a unique

solution locally exists. We need to show that this solution

First, let us prove that there exists a(5) such that for ; e
be extended to the intervid,s]. For (g%, p°) € Bng,

all 0<= < &,(J) there exists at least one coordinate, say, with™&

no loss of generality, g, such that | Hloay| (@ py]  H1 and its derivatives are bounded, and since
> 6/(22n). | 0H1 904 (e |>5/(2\r2n) independent ofe (for all &

ChooseL, e; so that Property 1 is satisfied with=1.  <&2(9)), it follows that |[F(x,¢)| remains bounded on the
Let interval [0,¢] for sufficiently smalle. For [|(g°, p?)||> 5Ly,

rescale Eq(A3) by ||(g?, p®)|, then Eq(11) and the ch0|ce of
q; as the direction at whicRHy(g°, p°®) is maximal, guaran-
tees again thalF(x,)|/||(g%,p?)| remains bounded on the
interval [0,e] for sufficiently smalle [the choice ofng
where B_={(q,p)|[(q,p)|<L}. Consider a poin{which is  guarantees that for sufficiently smallthe inequalitieg(11)
not a fixed point on the perturbed energy surfatgf,p7) ~ and the bound; will hold for all x(e)]. L
e M#(h), so thatH(q?,p?;e)=h and || VHq(q?,p?)||> & for
somes. It follows that there exists at least one coordinate,Application to the truncated NLS model
say, with no loss of generality,q;, such that
| Hol 90| .p)| > &' = sl\2n.  Hence, for (q¢,p°)
e M#(h)N By, satisfying (A1), for all s<min{e;, &' /2K1} Ho = glc|*+ |b|* + 2[b|?c?(1 + 3 cog2 argbc* )))
we |mmed|ately get that dH/ ooy |z pm)| > &' —eKy >3 1s . 0f 1 1

M#(h) is large, so that there eX|(;2qc“3Lp )‘6 ) € Mé(h) satlsfymg ~ 2L+ - 3lcf, (A4)
l(q?,p%)|>Ly, then by Property 1, for alle<e;, namely all its quartic terms have positive coefficients,
||VH1(q p*;e)| <|VHo(a?,p%). Assume with no loss whereas the perturbation is linear|o, |b], it follows imme-
of  generality that |dHo/dos|epel=maxcn,  n  diately that indeed for sufficiently largel, |b| both the un-
X{| dHo! a0t| gz.p7)| »| MHol IPi|(qz.po)|}- Then perturbed energy and its gradient magnitude are much larger

Ky= max {maX V Hy(q,p;s)|}, (A2)

EgEe [O ,€l] BZL1

Since the unperturbed energy may be written in the form
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FIG. 12. EMBD graph folk=11/10.

than the perturbation and its gradient as needed for the theo- =~ €
rem to apply. max= Pmaxt O YA
Denote bycle bl the maximal amplitude of,b on A
the energy surfackl(c,c*,b,b*; e)=h So, formally, the larger thé the larger the extent of the
energy surface and the larger the range of unperturbed en-
Cﬂigx: max|c|:H(c,c*,b,b* ; &) = h}, ergy surfaces which we need to consider. Howeveh i§

very large the structure ofl, remains asymptotically un-
changed and one can verify that in fact this limit may be

Cpﬁgxz max|b|:H(c,c*,b,b*;g) =h}, studied by rescaling; substituting
it follows from (A4) that for h>1, 0 b0 =o(¢h). Fur- =S B b
thermore, it can be shown, using the form of Eg), that for IS
large values oh the system cannot have fixed points. In fact,
one can prove the following: leads to
Lemma There exists arh* (k) such that ifh>h* (k), _ 1
then|| VHolu,c.c+ bb+)=hll # O- H(c,c*,bb* )= h(Ho(c,—C* b,b*)+ O(v_ﬁ)

Proof. Let us find all solutions td| VHolu(cc* b=l
=0. Clearly, atc=b=0 VHO|H0(c,c*,b,b*)=h| =0, soh*(k)>0
=Hy(0,0,0,0. Using the nonsingular transformation to the
(x,y,1,7v) coordinates foc # 0, and the nonsingular transfor- ) ) S
mation to the(u,v,l, ) coordinates whem+ 0, it follows namely to the near-integrable motion with finfe
that || VHo|p e, bb+)=nl|=0 only when the invariant circles
of Table | are circles of fixed points, namely at the resonanf*PPENDIX B: DIAGRAMS’ DEPENDENCE ON

& JER—
+WHi(C,C*,b,b*)>,

| values,l=I,, of Table Ill. Plugging these resonanvalues PARAMETERS
into Table Ill, we find that circles of fixed points appear at A few representative EMBD and Fomenko graphs
the following h values: Ho(pf_reQ:{—l,—ék“—%kz—%,l% are presented in Figs. 12-17 to demonstrate possible
~1ek?= 35, ~3~K*. It follows that for allh> 7:k* there are  different sequences of energy bifurcation values in our
no fixed points on the energy surfaces. B model when the wave numbdris varied and the forcing
In fact, it follows from (7) that for h sufficiently large, frequency is fixed toQ=1. In Figs. 12 and 13 the
for all (c,b) satisfyingHy(c,c*, b,b*)=h, we have sequence of eight energy bifurcation values is
(RS™™ WP, he™, hgy, hP*™ K™, h¥ ho) for k=1/%. Whereas,
ax{ dHp(c,c*,b,b* )‘ dHp(c,c*,b,b*) } 3/4 in Figs. 14 and 15 the value ok is increased to
m , = Ch”". _ /_gg .
db* Jc* k=v75 and the sequence is altered to

(hE™™ hE™, hPY, gy, he™ hP"™, hE™, hg). - Furthermore, in this
case, the global bifurcation valdly) is close to the folds of
the two dashed linesh?™ hP") which correspond to reso-
nances of the symmetric mode circlegy, and the plane
wave circle ,,. It follows (and observed numerica)lyhat
he = ho +O<%), for =0(|hg,—hi™)=0(0.05 trajectories neap,,, Visit the

It follows from the implicit function theorem and the form of
the perturbatiorinamely, sinceHi(iz_l,Z) are linear inc,b
so that|H;| < O(th)], that fore=o(vh)

Cax = Cmax neighborhood of the global bifurcation region and the re-
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FIG. 13. Fomenko graphs figure flar1/10.
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FIG. 16. EMBD graph fok=13/8.
gions of hyperbolic resonances of both circles. The invariant circles corresponding to the symmetric mode

In Figs. 16 and 17 the value d& is further increased family (ps,) and the invariant circles which emanate from
to k:\/g and the sequence changes tothem(p;,,,,), are denoted by open and full gray circles, again
(h™™, b, h;m, hf‘”,hgb,hfwm,hg"",ho). Here, the parabolic With the usual convention for the stability.
point (h°™ is close to resonances of the symmetric mode
circle(h?™ and the symmetric mixed mode cirdle®™). Nu- ~ APPENDIX C: FROM SINE-GORDON TO NLS

r
merical simulations show that perturbed orbits near these Bishop et al3? investigated the chaotic attractor of the

values have similar characteristics to parabolic resonance. damped driven sine—Gordon equatiGE with even spa-
In the EMBD the thick(thin) black line corresponds to tial symmetry and periodic boundary conditions
the plane wave family,,, (the mixed mode emanating from

it, Powm- The thick(thin) gray line corresponds to the sym- Uy — Uy + SINU = 8(— au + ]\utxx"' r coqwt)), (Cy
metric mode familyps,,, (the mixed mode emanating from it,
Psmm- These curves are dashgdll) when the corresponding u(x,t) =u(x+L,t), u(0,t) =0,

circle is hyperbolic(elliptic). On the Fomenko graphs, we -

denote the invariant circles corresponding to the plane waveherew is the driving frequencyl. is the box sizedl" is the
family (pyy) and the invariant circles which emanate from driving amplitude, da is the damping, andA is an addi-
the(pﬁwn), by open and full black triangles, respectivélgr  tional wave-number-dependent damping term which was in-
clarity, the boundary of the triangle is dashed when it istroduced in Ref. 14. The NLS approximation for the SGE is
normally hyperbolic and full when it is normally ellipfic  obtained by developing a small amplitude envelope approxi-

3 - 5" 6 7 8 9" 10 11 12

vy vyYvVYvVYYY
Kf | | e C‘) C) o {} LY L LN
é/ \o VAN (L (L g Q) <L %J s

FIG. 17. Fomenko graphs figure flae J318.
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mation for the near-resonance frequeriey=1-6w) case.
More precisely,
form

u=2V5a[BoX, T + B4X, T) * €71,
whereB4(X,T) is assumed to be analytic i) and

o=1-56w, X=\26wx, T=dut.

(C2)

Introducing a small parametersuch that
A= e, I'= £88°20%,  w=e20a,

with all other parameters of order one, one finds ttthais

one looks for solutions of the SGE of the
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