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Three Types of Chaos in the Forced Nonlinear Schrödinger Equation
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Three different types of chaotic behavior and instabilities (homoclinic chaos, hyperbolic resonance, and
parabolic resonance) in Hamiltonian perturbations of the nonlinear Schrödinger (NLS) equation are
described. The analysis is performed on a truncated model using a novel framework in which a hierarchy
of bifurcations is constructed. It is demonstrated numerically that the forced NLS equation exhibits
analogous types of chaotic phenomena. Thus, by adjusting the forcing frequency, the behavior near the
plane wave solution may be set to any one of the three different types of chaos for any periodic box length.
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The one-dimensional nonlinear Schrödinger (NLS)
equation emerges as a first order model in a variety of
fields—from high intensity laser beam propagation to
Bose-Einstein condensation to water waves theory. The
NLS is completely integrable, hence solvable, in one di-
mension on the infinite line or with periodic boundary
conditions. The realization that the integrable structure
might not persist under small perturbations led to the
investigation of the forced and damped NLS [1].
Extensive numerical studies of this equation and of its
two-mode Galerkin truncation showed that indeed the
perturbation gives rise to rich and complicated dynamics
and that the finite dimensional model faithfully mimics the
partial differential equation (PDE) dynamics when even
and periodic boundary conditions are imposed and the L2

norm of the initial data is not too large [2,3]; see also [4] for
a similar behavior in a nonlocally coupled NLS system. In
this Letter, we provide a new classification of chaotic orbits
in the perturbed, undamped two-mode model and reveal a
new type of chaotic behavior: parabolic resonance.
Moreover, we suggest that in some phase-space regimes
there exists an analogous classification of the chaotic be-
havior of the forced NLS.

Consider the forced NLS equation (with no damping):

�i t �  xx � j j2 � i" exp��i�2t�; (1)

with periodic boundary conditions and with even solutions
in x:  �x; t� �  �x� L; t� �  ��x; t�. Let B �
 exp�i�2t�. B satisfies the same boundary conditions as
 and the autonomous equation:

�iBt � Bxx � �jBj2 ��2�B � i": (2)

In this context, the perturbed NLS was first derived as a
small amplitude envelope approximation of the damped
driven sine-Gordon equation when the driving force is near
resonant [2,5]; then � is set to � � 1 and the only pa-
rameter appearing in the unperturbed system is the period
L. Here we show that it is possible to tune the system into
different types of chaos by varying � and keeping L fixed.

For " � 0, Eq. (2) possesses infinite number of con-
stants of motion. The first two are the ‘‘particle number’’
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I �
R
jBj2dx and the ‘‘energy’’ H 0 �

R
��jBxj

2 �
1
2 jBj

4 ��2jBj2�dx. The total energy H 0 � "H 1 is also
preserved when adding the perturbation H 1 �
i
R
�B� B��dx. Since the forcing term is x independent,

the space of spatially uniform solutions [B�x; t� � 1��
2
p c�t�]

is invariant under the perturbed flow (2). In the unperturbed
system, these are the plane waves solutions, which are time
periodic and are of the form c�t� � jc�0�j exp�i��t�� �
jc�0�j expfi��2 � 1

2 jc�0�j
2�t� i��0�g, so � is the phase of

the plane wave. More generally, we define c�t� to be the
(complex) spatial average of a solution, c�t� ����

2
p
hB�x; t�ix, and � to be the argument of this average,

��t� � arghB�x; t�ix. Then the plane waves appear as
circles in the complex c plane, with periodic motion along
these circles whenever �2 � 1

2 jc�0�j
2. When �2 �

1
2 jc�0�j

2 (so _� � 0), the periodic motion along the plane
wave and the forcing period are in resonance.

Linear stability analysis or ‘‘modulation stability’’ of the
plane waves at " � 0 shows that the solution is stable
(elliptic) when jc�0�j< 2�

L , neutral (parabolic) when
jc�0�j � 2�

L , and unstable (hyperbolic) with exactly one
unstable linear mode cos2�

L x when 2�
L < jc�0�j 	

4�
L . We

propose that the behavior of the perturbed solutions near
the plane wave depends primarily on its local stability and
on the rotation rate on it ( _�).

To demonstrate our approach on the NLS system, we
follow Refs. [6–8] and study first a two-mode Galerkin
truncation of the forced NLS:

B2�x; t� �
1
���
2
p c�t� � b�t� cos�kx�; (3)

where the periodic boundary conditions imply that k �
2�
L j, j 2 Z�, so for the first unstable mode k � 2�

L .
Substituting this solution in the forced NLS equation (2)
and neglecting (see [1–3,5] for discussion of this step)
higher Fourier modes, a two-degrees of freedom near
integrable Hamiltonian system is found:

H�c;c�;b;b�;"��H0�c;c
�;b;b���"H1�c;c

�;b;b��; (4)

with the Poisson brackets f
; 
g ��2ih @@c ;
@
@c�i � 2ih @@b ;

@
@b�i,
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where
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1

8
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1

2
jbj2jcj2 �

3

16
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1

2
��2 � k2�jbj2

�
�2

2
jcj2 �

1

8
�b2c�2 � b�2c2�;

H1 �
i
���
2
p �c� c��:

(5)

At " � 0, these equations are integrable and possess an
additional integral of motion I � 1

2 �jcj
2 � jbj2�; see [3]. A

remarkable property of this truncation is that the two
integrals of motion of the truncated model correspond to
the first two invariants of the unforced PDE. Furthermore,
the spatial independent solutions of the NLS correspond to
the invariant plane �c; b� � �jc�0�j exp�i��t��; 0� of the
truncated model. When the plane wave becomes unstable,
both the PDE and the ordinary differential equation (ODE)
systems possess homoclinic orbits structure—there exist
solutions which are asymptotic to the plane wave solution
as t! �1 [9].

The investigation of this truncated system when the
plane wave is unstable and in resonance led, a decade
ago, to the discovery of a new mechanism of instabil-
ity—the hyperbolic resonance [6–8]. New methodologies
and tools introduced to this PDE-ODE study have finally
led to a proof that the homoclinic resonance dynamics and,
in particular, the birth of new types of multipulse homo-
clinic orbits which is associated with it has analogous
behavior in the PDE setting (see [3,10,11], and references
therein). Here we propose that, more generally, to classify
the behavior near the plane waves, one needs to consider
both its local stability and its rotation rate, and, in particu-
lar, we propose that, when the plane wave is parabolic and
in resonance, a new type of solutions appears.

To fully classify the perturbed motion in the truncated
model, we introduced in Refs. [12,13] the general frame-
work of ‘‘hierarchy of bifurcations’’ and used it to analyze
the integrable structure. The main tools in this framework
are the energy-momentum bifurcation diagrams (EMBD)
and the Fomenko graphs. These give a succinct represen-
tation to the structure of the energy surfaces; the structure
of the level sets on a given surface (H0 is fixed and I is
varied) is described by Fomenko graphs (the first level of
the hierarchy). Changes in the energy surface structure as
the energy is varied are described by the EMBD (second
level), and changes in these diagrams as parameters are
varied are described by the critical energies bifurcation
diagram and correspond to the third level of the hierarchy.
Performing this analysis for the truncated model (see [12]),
we obtained the following classification of the solutions:
For most values of �c�0�; b�0�� and, in particular, near the
plane wave solutions (b � 0) with Ipw < 1

2 k
2, where they

are normally elliptic, the solutions of the unperturbed
systems are quasiperiodic. Hence, under perturbation,
most of these quasiperiodic motions persist (by
Kolmogorov-Arnold-Moser theory) and small resonance
02410
zones appear as well. Because of the nonlinearity, and
the fact that this is a two-degrees of freedom system, for
sufficiently small perturbations the perturbed motion al-
ways stays close to the unperturbed plane wave circle.

For Ipw > 1
2 k

2, the plane wave is normally hyperbolic—
a figure eight homoclinic loop is created. If Ipw � �2,
unperturbed homoclinic solutions have a nonzero spa-
tial average which oscillates in time and a spatial term
which is centered at either x � 0 (‘‘central configuration’’)
or x � L

2 (‘‘wing configuration’’) and decays, as t! �1,
to zero. For the unperturbed system, on the same energy
surface, two normally stable periodic solutions are cre-
ated. These solutions are of the form �c; b� � �jc�0�j;
�jb�0�j� exp�i��t��—the plus sign corresponds to a central
solution, whereas the minus sign corresponds to a winged
solution (the even boundary conditions lead to this selec-
tion of relative equilibria). Thus, on this energy surface, if
1
2 k

2 >�2, unperturbed orbits with initial conditions near
the plane wave with I > Ipw encircle the figure eight,
jumping periodically from central to winged configuration.
Solutions with I < Ipw oscillate around the stable periodic
orbits, having either central or winged configuration.

We propose that, for particle numbers I < 2k2, near the
plane wave solutions, the above qualitative description of
the truncated system applies to the forced NLS as well,
where c�t� represents the spatial average of B�x; t� and b�t�
represents the complex amplitude of the leading (e.g., most
energetic) spatial dependent mode of the solution:
B�x; t� � c�t� � b�t��1�x� � 
 
 
 . For small particle num-
bers [I�0�< 1

2 k
2], most solutions starting near the plane

wave exhibit quasiperiodic motion in time, where one of its
frequencies is associated with � and the other one with the
spatial oscillations around the spatial mean. The spatial
center of these solutions moves periodically from the
central to the wing configuration and back. When the plane
wave becomes hyperbolic, spatial excitations which are
periodic in time are created—these are the PDE analogs
to the two periodic solutions of the truncated model with
nonzero b. These solutions are the spatially periodic ‘‘sol-
itons’’ appearing, because of the even boundary condition,
in central or wing configuration. The figure eight orbits of
the truncated model correspond to the NLS asymptotic
solutions in time—the homoclinic orbits to the plane
wave solution Bh!t!�1Bpw.

The perturbed solutions near the hyperbolic plane wave
exhibit homoclinic chaos; a chaotic zone is created near the
unperturbed separatrices, and the solutions change their
spatial center chaotically in time, as demonstrated in Fig. 1
[in the ODE column of the figures, we use Eq. (3) to
reconstruct B�x; t� from the two-mode model]. This chaotic
zone is essentially uniform in the � variable (different
sections in � are topologically conjugate) as demonstrated
in Figs. 2 and 4, since for almost all � values the motion
rate does not vanish (j _�j> 0). We refer to this behavior as
homoclinic chaos.

The uniformity of the perturbed solutions in the phase is
lost when _� vanishes in the unperturbed system, namely,
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FIG. 2 (color online). B-plane plot—B�x; t�jx�0 in the com-
plex plane. Black (blue) circles correspond to initial plane wave
solution.

FIG. 1 (color online). The amplitude plot: jB�x; t�j vs �x; t�. We
color the centered profiles (x � 0) by black (red) and the winged
ones (x � �L=2) by light gray (green) [according to the spatial
position of the maximum of jB�x; t�j]. In all figures k � 1:025
and � � 10�4, and the initial conditions are B�0� �
�Iinit � 10�5�1� i� coskx�ei�=4, where the labels indicate: HC,
homoclinic chaos (� � 1, Iinit �

��������
3=2

p
); HR, hyperbolic reso-

nance (� � Iinit � 1); PR, parabolic resonance (� � 1:025=
���
2
p

,
Iinit � 0:5125).

FIG. 3 (color online). EMBD diagram. I�t�: particle number;
H0�t�: instantaneous unperturbed energy. Gray (blue) curve:
�I; H0� on the plane waves. Black (red) curve: �I; H0� on the
periodic spatial solitons. Solid line, stable. Dashed line, unstable.
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when I � Ipw
r � �2. Then for 1

2 k
2 <�2 (so Ipw

r > 1
2 k

2) a
hyperbolic resonance appears [6–8]; see Figs. 2 and 4.
Notice that when � � 1 only small wave numbers (k <���

2
p

) satisfy this condition. By introducing the additional
parameter �, we find that for any k value there is an
interval of � values for which the resonant plane wave
circle is hyperbolic: It is hyperbolic for all �> 1��

2
p k.

Finally, we observe that the plane wave is normally
parabolic when I � Ipw

p �
1
2 k

2. For most � values, the
perturbed motion near the parabolic plane wave remains
close to it just as in the elliptic case, since the separatrix is
small and its splitting is exponentially small in the distance
from the bifurcation point. However, when it is parabolic
and resonant (so I � Ipw

r � Ipw
p , namely, � � �pr �

1��
2
p k), the situation is dramatically changed as is demon-

strated in all the figures of this Letter (see also [12–14]). In
particular, initial conditions near the parabolic plane wave
do not stay close to it. It follows from Ref. [12] that the
above list exhausts all types of dynamical phenomena
which may exist in the truncated model near the plane
wave solution for finite k and �, for I < 2k2.

With this interpretation, we can now examine the be-
havior of the forced NLS near the plane wave in the three
situations of interest: the hyperbolic chaos case (HC), the
hyperbolic resonance case (HR), and the parabolic reso-
nance case (PR). Indeed, with the above analysis, it is clear
how to initialize the simulations to obtain each of these
behaviors. In all cases, we choose to start with a small
perturbation from the plane wave [small jb�0�j]; to obtain
02410
the HC situation, we choose for any ��; k� any I�0� 2
�12 k

2; 2k2� which is bounded away from �2. To obtain
HR, we take I�0� � �2 and 1

2 k
2 <�2, whereas PR is

observed when 1
2 k

2 � �2 and I�0� � �2. In the simula-
tions, we set kinit � 1:025 (as in Refs. [2,5]) and set �2

init �
1 in the HR and HC cases and take �2

init � �kinit�
2=2 in the

PR case. The ODE simulations were computed with a
standard ODE solver, and we verified that the largest
Lyapunov exponents of the three solutions are positive
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FIG. 4 (color online). Action-angle diagram: � vs I.
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and, thus, they are indeed chaotic. The PDE simulations
were computed with a scheme of fourth order Runge-Kutta
in time and eighth order central differences in space. We
verified that the total energy is well conserved [jH 0�t� �
"H 1�t� �H 0�0� � "H 1�0�j< 10�5] and that the nu-
merical simulations in Ref. [15] are reproduced.

In Fig. 1, we present jB�x; t�j as a function of �x; t� for a
small interval of time—the chaotic hopping between cen-
tral and wing configurations is well observed, as is the
similarity between the truncated and the full model.
Furthermore, the strong modulation in the maximal ampli-
tude of the PR solutions clearly distinguishes it from the
HC and HR cases. We also observe that the parabolic
resonance solution has two regions—almost periodic and
chaotic. In Fig. 2, we plot, similarly to Refs. [3,15],
[RefB�0; t�g, ImfB�0; t�g] for some interval t. For reference,
we plot in gray (blue) the circle corresponding to the plane
wave which has the same energy (H0) as the chosen initial
conditions. The strong nonuniformity in the phase of the
parabolic resonant solutions is apparent in the truncated
and the full models alike.

In Fig. 3, a new presentation of the solutions is pro-
posed—the motion in the space of the unperturbed invar-
iants (H0 and I) is presented, so that the phase information
is filtered out. In addition, the underlying integrable back-
bone, which comprises the EMBD is shown: The values of
�H0; I� at the periodic solutions are presented as curves in
the plot. The gray (blue) curve corresponds to the plane
wave solution and the black (red) curve to the two periodic
spatial profiles, dashed when they are unstable and solid
when they are stable. The different signatures of the HC,
HR, and PR are clearly seen, as are the long quasi-
integrable segments of the PR solutions.

Finally, to elucidate the different role which is played
by the phase of the spatial average of B, we present the
02410
‘‘action-angle’’ diagram of ��; I� (Fig. 4). We observe that
the main difference between the regular homoclinic chaos
and the hyperbolic resonant chaotic motion has to do with
the nonuniformity in the � variable—thus, it is not ob-
servable in the amplitude plot. Furthermore, Figs. 3 and 4
direct us to a possible description of parabolic resonance.
Notice the paths of the trajectory in the EMBD plot which
strongly suggest that adiabatic description of some seg-
ments of the motion is appropriate. It appears that the
action in the normal plane is a key ingredient in under-
standing the perturbed motion as it is adiabatically pre-
served [16].

Summarizing, the numerical results suggest that, near
the plane waves, for particle numbers which are smaller
than 2k2, there are three types of chaotic instabilities which
are well captured by the two-mode model. Furthermore,
parabolic resonances, which correspond to a new type of
chaotic behavior, were shown to exist in the forced NLS
model and lead to a large variation in the particle number
of the solution.
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