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It is demonstrated numerically that smooth three degrees of freedom Hamiltonian systems that are
arbitrarily close to three-dimensional strictly dispersing billiards �Sinai billiards� have islands of
effective stability, and hence are nonergodic. The mechanism for creating the islands is corners of
the billiards domain. © 2006 American Institute of Physics. �DOI: 10.1063/1.2357331�

The motion of a point particle traveling with a constant
speed inside a region D«RN, NÐ2, undergoing elastic
collisions at the regions’s boundary, is known as the bil-
liard problem. Since the days of Boltzmann, scientists
have been using various billiard models to approximate
the classical and semiclassical motion in systems with
steep potentials (e.g., for studying classical molecular dy-
namics, a cold atom’s motion in dark optical traps, and
microwave dynamics). The invalidity of this approxima-
tion near certain types of trajectories is the main issue of
this paper. Indeed, we examine this approximation in the
most robust case of a scattering Sinai billiard (all the
boundary components of the billiard are smooth, dispers-
ing, and their intersections are all oblique). Such billiards
are known to be ergodic, hyperbolic, and strongly mixing,
thus small smooth deformations of the billiard bound-
aries do not change these properties. Nonetheless, it had
been long conjectured that by introducing smooth steep
potentials that are close to the billiards, hyperbolicity
may be destroyed. In the two-dimensional settings, it had
been proven analytically that tangent periodic orbits and
certain corners produce stability islands for arbitrarily
steep potentials, with precise estimates of the scaling of
the islands size with the steepness parameter. Direct gen-
eralization of these results to higher dimensions may pro-
duce nonhyperbolic behavior, but one would intuitively
suspect that in the scattering case there will always be
some unstable directions that will destroy stability. Here,
we provide a mechanism for the creation of islands of
effective stability (destroying both hyperbolicity and er-
godicity) in the higher-dimensional setting. We demon-
strate numerically that the islands of stability are created
for an arbitrarily steep potential in both two- and three-
dimensional billiards. Furthermore, we show that the is-
lands are created for an interval of steepness parameters,
hence, for a fixed geometry, one may destroy an island by
either making the potential steeper or softer.

I. INTRODUCTION

Sinai billiards are known to be ergodic and strongly
mixing.1–3 In many applications,4–7 the billiard’s flow is a

simplified model that imitates the conservative motion in a
steep potential,

H = �
i=1

N
pi

2

2
+ W�q;��, W�q;�� →

�→0
�0 q � D \ �D

c q � �D ,
� �1�

where c may be infinite. Here we always take the particle’s
energy, h, to be smaller than c so that the particle is confined
to D. An important question is whether the billiard and the
smooth flows are similar for sufficiently small �, and in par-
ticular whether the billiard’s ergodicity property is preserved.
A definite answer to such a question requires a well-defined
limiting procedure.8,9 For finite-range axis-symmetric poten-
tials, it was shown that some configurations remain
ergodic10–13 while other configurations may possess stability
islands.14,15 Recently, it was established that in the most gen-
eral two-dimensional settings of dispersing billiards �not nec-
essarily axis-symmetric or of finite range�, the answer is defi-
nitely negative; it was proven that there are two mechanisms
for the creation of stability islands for arbitrarily small �.
One mechanism is tangency-periodic orbits or homoclinic
orbits that are tangent to the billiard’s boundary produce
islands.9 Another mechanism is corners: a sequence of regu-
lar reflections that begins and ends in a corner �termed a
corner polygon� may, under some prescribed conditions, pro-
duce stable periodic orbits.16 In both cases, it was shown that
a two-parameter family of potentials W�q ;� ,�� �� is the soft-
ness parameter and � is responsible for a regular continuous
change of the billiard’s geometry� possesses a wedge in the
�� ,�� plane, at which the Hamiltonian flow has an elliptic
periodic orbit. This orbit limits the tangent billiard orbit/
corner polygon as �→0. Furthermore, a method for estimat-
ing the width of the stability wedge in the parameter space
and of the area of the elliptic islands in the phase space was
developed; for typical potentials both quantities have a
power-law dependence on �.9,16 These findings were realized
experimentally using cold atoms in atom-optics billiards.6 In
the experiments, a mixing billiard domain is drawn by a
fast-moving laser beam that encloses cold atoms. A small
gap is opened after an initial run time, and the fact that the
decay rate of the remaining atoms depends on the gap loca-
tion demonstrates that the dynamics is not mixing and that
some of the particles are trapped in stability islands. The
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numerical simulations of the experiments show that islands
are indeed produced by corner polygons.6

Much less is known on the dynamics in multidimen-
sional billiards �N�3�. Motivated by the Boltzmann hypoth-
esis regarding the ergodicity of hard sphere gas, the ergodic-
ity property of hard-wall semidispersing billiards was studied
extensively �see Refs. 17–19 and reference therein�. Nondis-
persing ergodic billiards in RN with N�3 were constructed
in Refs. 20–23. In these papers and in Ref. 24, examples of
three-dimensional semifocusing billiards with mixed phase
space were presented as well. Conditions under which mul-
tidimensional billiards with finite range spherically symmet-
ric potentials are hyperbolic were found in Ref. 25. A semi-
classical study of three-dimensional Sinai billiards was
presented in Ref. 26. Recently, the asymptotic expansion of
regular �nontangent, away from corners� motion in steep
multidimensional potentials by integrals along an auxiliary
multidimensional billiard was developed.27 In this work, the
geometry is arbitrary, and error bounds on the billiard ap-
proximation are found.

Here, we demonstrate numerically, for the first time, that
islands of stability are created for arbitrarily small � in three-
dimensional soft billiards. The ability to locate small islands
of stability in the six-dimensional phase space of the highly
chaotic nearly billiard three-degrees-of-freedom flow may
appear to be hopeless. Three technical innovations enable us
to establish these results numerically. The first idea is to
construct a simple symmetric billiard, so that instead of look-
ing for islands of stability in arbitrary places, we may con-
centrate on the properties of a simple periodic trajectory that
exists for all small � values by symmetry. We examine its
stability properties by computing the monodromy matrix of
the local return map near this orbit. Inspired by Refs. 6 and
16, we chose a trajectory that limits, as �→0, to the simplest
possible corner polygon—a cord that enters a corner �see the
bold lines in Figs. 1–3�. Furthermore, in the three-
dimensional case, by the symmetry of the constructed bil-
liard, the two nontrivial pairs of eigenvalues of the mono-
dromy matrix are identical, and are thus controlled by a

single parameter. The second idea is that by using proper
rescaling, it is possible to integrate numerically the equations
of motion for arbitrarily small �. Indeed, if we fix the geom-
etry and take small � values, we encounter the usual problem
of stiffness near the boundary. On the other hand, the equiva-
lent increase of the billiard’s domain by a similarity factor
does not introduce a serious numerical problem since �W is
small in the domain’s interior. The third idea is that the
boundaries of the wedges of stability in the parameter space
may be found numerically by a continuation scheme on the
critical eigenvalues value. Thus the stability regions may be
found effectively and efficiently.

II. BILLIARD GEOMETRY

To construct concrete examples, we define the billiard’s
domains as the region exterior to several spheres �k with
centers at Ak and radii rk, �k�Ak ,rk�= �q�RN :�i=1

N �qi−Ai
k�2

= �rk�2	, N=2 or 3. For the two-dimensional case, we take
three circles �Fig. 1�. The first two circles �A1,2 ,r1,2�
= �a , ±b ,r� intersect at the point qc= �d ,0�, where d�a ,b ,r�
=a−
r2−b2, and the third circle, which has a larger radius,
has �A3 ,r3�= (−R−d�a ,b ,r� ,0 ,R) with R�r�b. The angle
between the tangents to the two circles at qc is given by

FIG. 1. �Color online� The billiard geometry in the 2D case. A cord � is
denoted by the bold line.

FIG. 2. �Color online� The billiard geometry in the 3D case. The cord � is
denoted by the bold line.

FIG. 3. �Color online� The billiard geometry in the 3D case, at the cross
section y=0. The cord � is denoted by the bold line.
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�2D = � − a cos�1 − 2
b2

r2 � , �2�

so that when r=b these circles are tangent and �2D=0. The
cord �= ��x ,y� 
x� �−d ,d� ,y=0	 is a corner polygon: at
�x ,y�= �−d ,0� it reflects from the large circle �3 according to
the billiard’s reflection law ��in=�out=� /2� and at �x ,y�
= �d ,0� it enters a corner. We will study the behavior of the
smooth system near this corner polygon, thus the closing of
the billiard domain away from this line is irrelevant here. It
may be achieved by a union of a finite number of dispersing
smooth boundaries that meet at nonzero angles, or by enclos-
ing the whole system in a large box. For all �	0, the family
of billiard tables thus defined belongs to the class of Sinai
billiards—they are mixing dynamical systems, having one
ergodic component and a positive Lyapunov exponent for
almost all initial conditions.

Similarly, in the three-dimensional case, we take four
spheres �Figs. 2–4�. Three spheres have equal radii r and
have equidistant centers, �A1,2 ,r1,2�= �a ,b , ±
3b ,r� , �A3 ,r3�
= �a ,−2b ,0 ,r�. These three spheres intersect, for r�2b, at
qc= �d ,0 ,0�, where d�a ,b ,r�=a−
r2−4b2. The fourth
sphere, of radius R�r, is located at a distance 2d from the
corner point, �A4 ,r4�= (−R−d�a ,b ,r� ,0 ,0 ,R). The angle be-
tween the pairs of tangent lines to the circles of intersections
of pairs of spheres is

�3D = a cos�−
1

2
�1 +

3

�3 − r2/b2��� , �3�

so r=2b corresponds to the case �3D=0. Furthermore, the
cord �= ��x ,y ,z� 
x� �−d ,d� ,y=z=0	 is a corner polygon.
Here again we can close the billiard domain by adding a
finite number of dispersing surfaces that intersect each other
in finite angles, or by a large box, so that for all �	0 the
resulting billiard domain is compact and dispersing. Note
that if we rescale all the spheres and the distances between
them by a fixed scale L, the billiards geometry will not

change and the corresponding corner angles remain
unchanged.

III. EQUATIONS OF MOTION
FOR THE SMOOTH FLOW

Consider the smooth motion in this region, which is in-
duced by the potential W�q ;w0�=�k=1

n Vk�q ;w0�; Vk�q ;w0�
may be taken as the Gaussian potential associated with
the boundary component �k, Vk�q ;w0�=V(Qk�q� ;w0)
=exp�−Qk

2�q� /w0
2�, where Qk�q� is the distance between q

and the circle �k :Qk�q�=
�i=1
N �qi−Ai

k�2−rk, and w0 is the
softness parameter. In the cold atom experiment, w0 corre-
sponds to the width of the laser beam,6 and V(Qk�q� ;w0)
corresponds to the averaged effective Gaussian potential that
bounds the atoms. Previously, we established that as this po-
tential tends to a hard-wall potential �w0→0�, regular reflec-
tions of the smooth flow tend to those of the billiard.9,27 By
the symmetric placement of the spheres, it is clear that for
any w0
w0

* �where min�W�q ;w0
*�=h�, there exists a periodic

solution ��t ,w0�= (x�t ,w0� ,0 ,0) that limits, as w0→0, to the
corner polygon �. Notice that studying this system for a fixed
w0 and a billiard domain that is increased proportionally by a
factor L �so �Ak ,rk�→ �LAk ,Lrk�� is equivalent to studying it
in a fixed geometry with w0 replaced by �=w0 /L. Thus, by
increasing the domain size, we may approach the limit �
→0 without the numerical problems associated with the stiff
limit w0→0.

IV. NUMERICAL COMPUTATIONS

From the analysis of Ref. 16, we expect that the stability
of ��t ,� ,�� will depend nontrivially on both � and the geo-
metrical parameter of the billiard � and that near �k=� /k
islands will appear �the limit �→0 at which the billiard is
not a Sinai billiard, and thus billiard orbits may be trapped
for an arbitrarily large number of reflections near the corner,
has not been studied in Ref. 16�. We find that all the regions
in the �� ,�� plane at which islands of stability associated
with ��t ,� ,�� exist �other islands of stability may coexist�
emerge from �=0 at some finite �k

± values, and converge
toward �� ,��→ �� /k ,0�. Hence, we first find the stability of
��t ,� ,�=0� by computing the eigenvalues of the mono-
dromy matrix of the return map to the local cross section at
x=0 for a range of � values. Since there is always a pair of
neutral eigenvalues corresponding to the flow direction, for
the 2D case the monodromy matrix has the eigenvalues
�1,1 ,� ,1 /�	, where � is the largest eigenvalue, which is
different from 1. In the 3D case, due to the symmetric form
of the geometry, the spectrum is of the form
�1,1 ,� ,1 /� ,� ,1 /�	 �i.e., saddle foci do not appear�. In Fig.
5, the real part of � is shown for a range of � values for the
2D and 3D cases. The large oscillations from positive to
negative values guarantee the existence of intervals of � at
which Re��	� �−1,1�; on these intervals, � is imaginary and
belongs to the unit circle. In the left panels of Figs. 6 and 7,
we present an enlarged segment of Fig. 5 with a regular �
scale. These calculations are used to find the values of �
=�k

± at which Re��	= ±1, where a saddle center and period-
doubling bifurcations occur, respectively �in the three-

FIG. 4. �Color online� The billiard geometry in the 3D case: at the cross
section x=xf the radius of the circles is rf =
r2− �xf −a�2. Dotted line: xf

=a, solid line: xf =d, dashed line: d
xf 
a+r.
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dimensional case these are double-bifurcation points due to
the symmetry�. Then, starting at �� ,��= �0,�k

±�, we use a con-
tinuation method for finding the bifurcation curves for �
	0, as shown in the right panels of Figs. 6 and 7. In the
wedges enclosed by these two curves, the periodic orbit
��t ,� ,�� is elliptic, with Floquet multipliers exp�±i�� �in the
three-dimensional case each multiplier has multiplicity 2�,
and � varies between 0 and � as the wedges are crossed.
One expects that this linear stability will also result in non-
linear stability for most �nonresonant� � values. More elabo-
rate study of the resonances and the relation to the analytic
predictions of Ref. 16 are of interest but are beyond the
scope of the current paper. For the two-dimensional case, we
verified that indeed the phase portraits one obtains as a
wedge of stability is crossed are the familiar islands that
appear near a saddle center and Hamiltonian period-doubling
bifurcations �e.g., as in the Hamiltonian Hénon map�.

In the three-dimensional case, for all � values, the mul-
tipliers are in 1:1 resonance due to the symmetry. For generic

systems, for almost all � values �values that are nonresonant
with the frequency of ��t ,� ,���, we expect to have nonlinear
stability �see, e.g., Ref. 28�. Indeed, projections of the four-
dimensional symplectic return map to x=0 for several �� ,��
values are shown in Fig. 8. It is demonstrated that indeed
inside the wedged region ��t ,� ,�� is nonlinearly stable for
the full integration time �approximately 4000 periods�.
Moreover, if we add a sufficiently small, asymmetric pertur-
bation to the potential �e.g., V=W+
 cos�y+��cos�z+��
with 
 ,� ,�=O�0.0001��, we find that the effective stability
region still persists. For the phase-space simulations, we use
a symplectic integrator �GniCodes29�, which keeps h up to an
accuracy of 10−11. Thus, we can confidently detect islands
with transversal kinetic energy of up to 10−8 �so �py , pz�
=O�10−4��. This limits our phase-space calculations to �
�0.04—smaller values of � produce smaller islands and
their detection via phase-space plots requires a higher accu-
racy in the integration. We stress, however, that the calcula-
tions of the bifurcation curves are accurate for much smaller
� values; in these calculations, only a single return map is
computed and there exists a sharp transition between large
positive and large negative values of the eigenvalues �see the
left panels of Figs. 6 and 7�, so the existence of elliptic
regimes is guaranteed. Comparing the 2D and 3D wedges of
stability, it appears that the 3D wedges are indeed narrower.

V. CONCLUDING REMARKS

While the appearance of islands in two-degrees-of-
freedom steep Hamiltonian systems is somewhat expected,
the mechanisms for their appearance in the higher-
dimensional settings are not as well understood �see Refs. 30
and 28 for some generic possibilities�. Furthermore, their
appearance guarantees only effective stability due to the pos-
sible existence of Arnold diffusion.31 Nonetheless, by KAM
theory, in the nondegenerate case, a large set of initial con-
ditions belongs to KAM tori and thus stays forever near the
stable periodic orbit. Thus, the existence of islands in the
higher-dimensional setting implies that ergodicity is de-

FIG. 5. �Color online� The real part of eigenvalue � at �=0 as a function of
log��� for 2D and 3D.

FIG. 6. �Color online� 2D. Left: real part of eigenvalue � �bold� at �=0.
Right: wedges of stability in the parameter space.

FIG. 7. �Color online� 3D. Left: real part of eigenvalue � �bold� at �=0.
Right: wedges of stability in the parameter space. See Fig. 8 for phase
portraits of the parameter values corresponding to A–D.
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stroyed independently of the possible leakage out of the ef-
fective stability zone after an exponentially long time. This
latter possibility suggests that stickiness may be an interest-
ing event also in this higher-dimensional setting.

Here, we propose for the first time a mechanism for the
creation of stability islands for smooth systems that are arbi-
trarily close to strictly dispersing three-dimensional billiards;
we showed that potentials V�q ;� ,�� that become arbitrarily
steep as �→0 possess wedges in the �� ,�� plane at which a
periodic orbit is elliptic. Thus, on the one hand, there exist
one-parameter families of potentials V(q ;� ,����) that have a
stable periodic orbit for arbitrarily small �. Since we showed
that in the wedges ����→��0�	0 as �→0, it follows that
these potentials have islands of stability even when they are
arbitrarily close to hard-wall dispersing (Sinai) billiards. On
the other hand, for any fixed �� �0,� /2� there exists an
interval of positive � values for which islands of stability
exist. Thus, these islands may be destroyed by either making
the potential steeper or softer—a somewhat nonintuitive re-
sult.
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