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ABSTRACT. The appearance of elliptic periodic orbits in families ofn-dimensional smooth
repelling billiard-like potentials that are arbitrarily steep and limit to Sinai billiards is es-
tablished for any finiten. For typical potentials, the stability regions in the parameter space
scale as a power-law in1/n and in the steepness parameter. Thus, it is shown that even
though these systems have a uniformly hyperbolic (albeit singular) limit, the ergodicity
of this limit system is destroyed in the more realistic smooth setting. The considered ex-
ample is highly symmetric and is not directly linked to the smooth many particle problem.
Nonetheless, the possibility of explicitly constructing stable motion in smoothn degrees
of freedom systems limiting to strictly dispersing billiards is now established.

1. INTRODUCTION

At sufficiently high temperature, many-particle gas systems show fast decay of correla-
tion, and, for most initial configurations, the time averages of this system and the appro-
priately defined ensemble averages coincide. This fundamental observation of Boltzmann
lead to the development of the theory of statistical mechanics. It was further suggested
by Boltzmann that at such temperatures the particles interaction resembles that of hard
spheres, independent of the details of their effective potentials, hence, that a gas of hard
spheres supplies an instructive universal model for studying statistical properties of gases.
Notably, Boltzmann considered the many-particle case. Krylov explained that the fast de-
cay of correlations of the hard sphere model is caused by the instability associated with
the dispersive nature of the collision between the hard spheres, similar to the instabilities
that appear in geodesic flows with negative curvature [15]. Sinai found that this instability
appears in any dispersing billiard1 geometry (later on called Sinai billiards2) in any di-
mension, and set the mathematical foundation for rigorously studying such systems. Sinai
proved, in his seminal works [30, 32], that such systems are ergodic and hyperbolic in the
two-dimensional billiard case. He further stated (the Sinai-Boltzmann conjecture3) that if
one considers the motion ofN hard spheres on ad -dimensional torus, this motion will be
mixing4 for anyd≥ 2 andN≥ 2. In particular, the Sinai-Boltzmann conjecture means that
for anyN,d ≥ 2, ergodicity is achieved independently of the number of particles because
of the universal nature of the instability associated with the convex particles collision.

We propose that the study of real particles, with smooth potentials, or, more generally,
in studying Hamiltonians with smooth steepn-dimensional potentials, may shed light on

1The behavior of a point particle travelling with a constant speed in a regionD, undergoing elastic collisions
at the region’s boundary, is known as the billiard problem. The billiard is dispersing if its boundary is piecewise
strictly concave when looking from the billiards’s interior.

2Strictly dispersing billiards for which the smooth boundary components intersect at positive angles (no cusps
are allowed).

3Proved initially for theN = d = 2 by Sinai[32], then for theN = 2,d = 3 by Sinai and Chernov [33] whereas
the most general higher dimensional cases were studied by Krámli, Siḿanyi, and Sźasz, see [11, 12, 13, 14, 26,
25, 29, 27, 28]

4on the reduced manifold, eliminating the total energy and momenta conservation laws.
1
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the role of dimensionality in this problem. Thus, to formalize this notion, we consider a
Hamiltonian

(1.1) H =
n

∑
i=1

p2
i

2
+W(x;ε)

whereW(x;ε) is a smooth potential that becomes a hard-wall potential5 in the limit ε→ 0:

W(x;ε) →
ε→0

{
0 x∈ D\∂D,
c x∈ ∂D.

In general, studying (1.1) for a finiteε value is a formidable task. Boltzmann’s insight and
Sinai’s theory, in which then-dimensional nonlinear system is replaced by the study of bil-
liards, serve as a great simplification. To mimic the soft nature of the particles interactions
and still obtain a tractable system, finite-range axis-symmetric potentials were introduced.
It was established that these systems may be studied by a modified (non-smooth) billiard
map, and thus that in two dimensions some configurations remain ergodic [30, 31, 16, 6, 3],
while other configurations may possess stability islands [2, 5]. More recently, some higher
dimensional configurations were proved to be hyperbolic [4].

Yet, it was noticed in [35] that the behavior of any smooth approximation has to be
fundamentally different from the discontinuous behavior of the billiards. Indeed, in math-
ematical terms the Krylov-Sinai instability translates to the existence of a universal hy-
perbolic structure in any dispersing billiard problem. More precisely, the family of cones
dx·dp> 0 is forward invariant with respect to the billiard flow in the dispersing case in-
dependent of the details of the billiard’s shape. After each reflection from the billiard’s
boundary, the cones are mapped into each other with flipped orientation (the normal com-
ponent of the momentump changes sign, while all other components are preserved), see
[32, 37, 35]. In particular, nearby orbits experiencing different number of reflections (i.e.
near tangencies or near corners), have unstable manifolds with opposite orientability prop-
erties – one orientable and the other non-orientable [35]. Such a discontinuous dependence
of the unstable manifold on initial conditions in smooth uniformly hyperbolic systems is
impossible.

On the other hand, the hyperbolic structure near regular orbits of the billiard (e.g. peri-
odic orbits that are bounded away from the singularity set) is typically inherited by steep
billiard-like potentials [35, 21]. It follows that the Krylov-Sinai instability mechanism in-
deed controls the smooth dynamics but only for some limited time scale, after which the
non-hyperbolic behavior which stems from the billiard singularities will prevail. Therefore,
we propose that the dependence of this instability time scale on the number of particles and
other parameters is the most relevant question in the study of many-particle systems.

One concludes then, that in order to study the dynamics of real particles, one needs to
study (1.1) for smooth steep potentials, utilizing the theoretical advancements regarding
the singular billiard limit as a tool in this study. This approach requires a well-defined
limiting procedure that is well developed by now [17, 22, 21].

This formulation was first introduced in the most general two-dimensional setting of
Sinai billiards (not necessarily axis-symmetric, nor of finite range) in [22]. After proving
that regular hyperbolic orbits of the billiard persist in the smooth flow, two mechanisms
by which the billiards ergodicity property is destroyed were identified [22, 36]. One such

5herec > 0 may be finite or infinite, and we always take the particle’s energy,h, to be positive and strictly
smaller thanc so that the particle cannot cross∂D.
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mechanism is a tangency: periodic orbits or homoclinic orbits that are tangent to the bil-
liard’s boundary produce islands of stability [22]. Another mechanism are corners – a
sequence of regular reflections that begins and ends in a corner (termed acorner polygon)
may, under some prescribed conditions, produce stable periodic orbits [36]. In both cases
it was shown that a two-parameter family of potentialsW(x;µ,ε) (ε is the steepness pa-
rameter andµ is responsible for a regular continuous change of the billiard’s geometry)
possesses a wedge in the(µ,ε)-plane, at which the Hamiltonian flow has an elliptic peri-
odic orbit. This orbit limits to the tangent billiard orbit or the corner polygon asε → 0.
These findings were shown to correctly describe the motion of cold atoms in atom-optics
billiards in laboratory experiments [10].

What would one expect in the multi-dimensional case? Can there be other type of uni-
versal instabilities, besides the Krylov-Sinai one, that would make such systems ergodic
for sufficiently steep potentials? Namely, would the billiard’s ergodicity be preserved for
n-dimensional steep billiard-like potentials whenn≥ 3? While there are some conjectures
regarding the generic appearance of islands in smoothn degrees of freedom systems, re-
sults of this nature appeared only in the case ofC1-flows andassumethe systems are not
partially hyperbolic (see [34, 19, 1, 24]), which is the heart of the problem here. Indeed,
the above described mechanism of orientation flipping, which corresponds to a direct gen-
eralization of our previous two-dimensional results (e.g. [22]) to dispersingn-dimensional
billiards, will produce orbits that have one pair of imaginary multipliers (ruining hyper-
bolicity), yet all the other(n−2) pairs can still correspond to hyperbolic behavior. Thus,
though destroying hyperbolicity, this mechanism is not necessarily going to kill ergodic-
ity in the smooth case, as the existence of some uniform partially hyperbolic structure is
not ruled out. This intuition might lead one to believe that the mechanisms described in
[22, 36] for ruining ergodicity are inherently two-dimensional.

However, it was numerically demonstrated recently that regions of effective stability,
hereafter called islands, are created in steep dispersing three-dimensional billiards for what
appears to be arbitrarily smallε [20]. Before further describing this construction and its
current generalization to then degrees of freedom case, let us discuss the issue of islands
in the multi-dimensional context.

As opposed to the two-dimensional situation, due to the possible existence of Arnold
diffusion, one cannot claim that in the vicinity of non-degenerate non-resonant elliptic or-
bit there exists an invariant open neighborhood (on energy surfaces or on the full phase
space). Nonetheless, by KAM theory, near such elliptic orbits there exists apositive mea-
sure setfoliated by KAM-tori that corresponds to trajectories that remainforevernear the
elliptic trajectory. Furthermore, while other trajectories in this neighborhood may perhaps
escape, this can take exponentially long time [18, 7] (namely, such islands may corre-
spond to high-dimensional dynamical traps, generalizing the two-dimensional stickiness
phenomena). Thus, hereafter, an island in the multi-dimensional context will be defined as
the small neighborhood of the elliptic orbit which is effectively stable [7], bearing in mind
that only in the two degrees of freedom case this neighborhood is known to correspond to
an invariant set.

The islands constructed in [20] are produced by a highly symmetric orbit of the smooth
system which visits the vicinity of a symmetric3-corner. The3-corner is a point at which
three smooth spheres of identical radius intersect in a symmetric fashion, so that only
one characteristic parameterµ controls the angle of their intersection (µ = 0 corresponds
to a cusp whereasµ = 1 corresponds to a complete overlap of the spheres, see Figure
1). It is demonstrated numerically in [20] that for any value ofε there are intervals ofµ
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values for which the symmetric orbit is elliptic. Here, we generalize this example to then-
dimensional case, for arbitrary largen, proving, that for certain classes of smooth repelling
potentials (such as the power-law family) the smooth symmetric orbit which enters the
vicinity of ann-corner has, for arbitrary smallε, intervals ofµ values for which it is elliptic
(all its 2n multipliers belong to the unit circle). Furthermore, these intervals converge to
positiveµ values and their length, for sufficiently smallε values, scales as a function ofεn.
In other words, we show that for arbitrarily largen, we can constructn-dimensional Sinai
billiards and corresponding families of billiard-like smooth potentials, where, for arbitrary
steepness the smooth flow possesses elliptic behavior. Our main result may be summarized
by the following theorem:

Theorem 1. There exist families of analytic billiard potentials that limit (in the sense
of [36]), as the steepness parameterε → 0, to Sinai billiards inn-dimensional compact
domains6, yet, for arbitrary smallε, the corresponding smooth Hamiltonian flows have
stable (elliptic) periodic orbits.

Proof. We construct specific families ofn-dimensional billiards depending on a parame-
ter µ, such that the billiards are Sinai billiards for anyµ > 0 depending smoothly onµ
for µ∈ (0,1) (Section 2). We then consider families of potentialsW(x;µ,ε) that limit as
ε → 0, for any fixedµ, to these billiards. We establish that for sufficiently smallε these
Hamiltonian flows have a periodic orbitγ(t,µ,ε) and we prove that the Floquet multipliers
of this orbit may be found by solving a linear second order equation with a time-periodic
coefficient (Section 3). This coefficient depends onµ,ε and n as parameters, and it ap-
proaches a sum of delta-like functions asε → 0. For certain classes ofW(x;µ,ε) (e.g.
whenW(x;µ,ε) decays as a power-law in the distance to the scatterers) we are able to ana-
lyze the asymptotic behavior of the emerging linear second order equation: we prove that
for these potentials there are countable infinity values ofµ, one of them given by1√

n (i.e.

bounded away fromµ = 0,1), from which a wedge of stability region in the(µ,ε) plane
emerges. Namely, we prove that for anyn, for arbitrary smallε, there exists an interval of
µ values at whichγ(t,µ,ε) is linearly stable (Lemma 1 in Section 3). ¤

In particular, this theorem proves that such systems are not partially hyperbolic.

The paper is ordered as follows; we first construct the geometry of the limiting bil-
liard domain. The construction of the billiards boundary, by intersecting several(n−1)-
dimensional spheres inRn, is valid for any finite dimensionn. Then, we establish that in the
smooth case, for sufficiently smallε, there exists a symmetric periodic orbitγ(t) which cor-
responds to the one dimensional motion along the diagonal (in then-dimensional space),
and that this motion may be found by integrating a one-degree of freedom system which is
independent ofn. Next we show that the linear stability analysis about this motion is gov-
erned by a single second order linear differential equation with a time periodic coefficient
in which n appears as a parameter. In the third section we construct asymptotic solutions
to this equation showing that for smallεn it has intervals of parameter values at which
γ(t) is linearly stable, thus establishing the main theorem. Precise estimates of the length
of these intervals are found for the power-law case. In the last section we integrate nu-
merically these equations and compare the numerically found wedges of stability with the
corresponding asymptotic estimates. Finally, we demonstrate the appearance of islands of
effective stability by numerical integration of the symmetricn d.o.f. system and of a slight

6in particular, for any finiten such billiards are hyperbolic, ergodic and mixing.
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FIGURE 1. The billiard geometry in the two-dimensional and three-
dimensional cases.

asymmetricperturbation of it for a fewn values(n = 2,3,10) for two different types of
potential families – the power-law family and the Gaussian family (e.g. we present islands
of effective stability of dispersing, repelling, nonlinear 20 dimensional system).

2. CONSTRUCTION OF THE BILLIARD AND THE LIMITING SMOOTH FLOWS

2.1. The billiard geometry. Define then-dimensional billiard’s domainD as the region
exterior to(n+1) spheresSn−1: one sphereΓn+1 of radiusRwhich is centered on the diag-
onal at a distanceL from the origin, i.e. at the point1√n(L, ...,L), andn spheresΓ1, . . . ,Γn

of radiusr, each centered along a different principle axis at a distance0≤ l ≤ r
√

n
n−1

from the origin, i.e. the sphereΓk is centered at(0, . . . , l︸ ︷︷ ︸
k

, . . . ,0) (Figure 1). To obtain a

bounded domain, we enclose this construction by a largen-dimensional hyper-cube cen-
tered at the origin (we will look only at the local behavior near the diagonal connecting the
radius-r spheresΓ1, . . . ,Γn to the radius-R sphereΓn+1 and thus we will not be concerned
with the form of the outer boundary). The diagonal line(ξ, ...,ξ) intersects the radius-
R sphere in the normal direction and the spheresΓ1, . . . ,Γn at their common intersection
pointPc = (ξc, ...,ξc), where (Figure 1):

(2.1) ξc =
l
n

+
1√
n

√
r2− l2(1− 1

n
)

Thus, forL > R+
√

n ξc, it defines acorner ray

γ =
{

(ξ, ...,ξ)| ξ ∈
(

ξc,
L−R√

n

)}

that starts at the cornerPc, gets reflected from the radius-R sphere and returns toPc (and
then get stuck as there is no reflection rule at the corner).

Notice that the dynamics in the billiard is unchanged when all the geometrical parame-
ters are proportionally increased, hence, with no loss of generality, we may setr = 1 and
regard all the other parameters as scaled byr. It is convenient for us to express the scaled
l andL through

(2.2) µ=

√
1− (1− 1

n
)
l2

r2 and d =
L−R−√n ξc

r
.
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The parameterd corresponds to the length of the diagonal rayγ whereasµ governs the
angle created by the intersection of then spheres at the corner point (both parameters have
a finite limit asn→∞). At µ= 0 then spheres are tangent to each other, namely the corner
becomes a cusp. The caseµ = 1/

√
n corresponds tol = r, hence the spheres intersect

at a right angle. The caseµ = 1 corresponds tol = 0, namely the limit at which then
spheres collapse to a single sphere of radiusr which is centered at the origin. In this case
the diagonal becomes a hyperbolic periodic orbit of the billiard (note that the limitµ→ 1
is singular: atµ = 1 the billiard’s boundary is smooth, whereas for allµ∈ (0,1) it has a
corner).

2.2. Smooth motion – the diagonal periodic orbit. In this section we establish that for
sufficiently smallε the diagonal corner rayγ of the billiard flow transforms into a peri-
odic orbit of the smooth flow. Consider the smooth motion in the scaled billiard region,
governed by the Hamiltonian (1.1), i.e.

(2.3) H =
n

∑
i=1

p2
i

2
+W(x1, . . . ,xn)

with

(2.4) W(x;ε) =
1
n

n

∑
k=1

V

(
Qk

ε

)
+ V

(
Qn+1

ε

)

whereQk(x) (the pattern function of [23, 21]) is the distance fromx to Γk:

(2.5)

Qk(x) =

√
n

∑
i=1

x2
i −2lxk + l2 −1 for k = 1, ...,n

Qn+1(x) =

√
n

∑
i=1

(xi − L√
n)2 −R

(recall that we scaler = 1). The potentials associated with ther−spheres (i.e.V
(

Qk
ε

)
) are

multiplied by the1/n factor so that for alln values the potential height near the corner is
of the same magnitude as the potential near theR-sphere.

TheCk+1 (k≥ 1) smooth functionV satisfies atz> 0

(2.6) V(z) > 0 andV ′(z) < 0,

so the potentials are repelling. We further assume thatV ′′(z) decays sufficiently rapidly
for largez (with accordance to the assumptions in [23, 21, 36]), so there exists someα > 0
such that

(2.7) V ′′(z) = O

(
1

z2+α

)
asz→+∞.

As a typicalV, one can take the power-law potentials:

(2.8) V(z) =
(

1
z

)α
, α > 0,

the Gaussian potential

(2.9) V(z) = exp
(−z2) ,

or the exponential potential
V(z) = exp(−z) ,
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that naturally appear in applications (e.g. the Gaussian form arises in the problem of cold
atomic motion in optical traps [10], whereas the power-law and exponential potentials are
abundant in various classical models of atomic interactions).

The potentialW(x;ε) given by (2.4),(2.5) is symmetric with respect to any permutation
of the xi ’s (i = 1, . . . ,n). This strong symmetry enables us to progress with the analysis
for anyn. Notice that it is easy to break this symmetry, by, for example, multiplying the
termsV(Qk(x)/ε) in (2.4) by slightly different coefficients. Such a modification is studied
numerically in Section 4.2.

Now, consider the smooth motion along the diagonalx1 = · · ·= xn = ξ. By the symme-
try,

∂
∂x1

W(ξ, . . . ,ξ) =
∂

∂xi
W(ξ, . . . ,ξ) for i = 1, . . . ,n.

so the plane{x1 = · · · = xn = ξ, p1 = · · · = pn = ξ̇} is an invariant submanifold of the
phase space. It follows from the conservation of energy that

(2.10) H = n
ξ̇2

2
+W(ξ, . . . ,ξ),

for the orbits in this manifold; by differentiating this identity we obtain the following
equation of motion on the invariant plane:

(2.11) ξ̈+
∂

∂x1
W(ξ, . . . ,ξ) = 0.

Let

(2.12) ν =
√

n(ξ−ξc),

whereξc is defined by (2.1) withr = 1. The energy conservation law (2.10) at the fixed
energy levelh/2 reads as

(2.13)
h
2

=
ν̇2

2
+We f f(ν;ε,µ,d),

where the effective potential is as follows (see (2.4),(2.5) and (2.12)):

(2.14) We f f = V

(√
1+2µν+ν2 −1

ε

)
+V

(
d−ν

ε

)
.

Equation (2.11) for the motion on the diagonal line transforms then into the equation
(which is independent ofn):

(2.15) ν̈+
∂

∂ν
We f f(ν;ε,µ,d) = 0.

This is a Hamiltonian equation with the Hamiltonian given by the right-hand side of (2.13).
SinceV ′ < 0, for any finiteε, the potentialWe f f(ν;ε,µ,d) has a minimal value forν in
the interval(0,d) and the potential is monotonically increasing as the boundaries of this
interval are approached. Thus, by (2.13), it has periodic solutions for the non-critical values
of h in the interval:

(2.16) h > hmin(ε,µ,d) := 2minWe f f(ν)

(ath= hmin the periodic orbit degenerates into an equilibrium point). The critical values of
h are those at whichWe f f has maxima, and then the periodic orbit is replaced by homoclinic
or heteroclinic orbits.

Summarizing, we have established the following lemma:
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Lemma 1. For every non-critical value ofh > hmin(ε,µ,d) the Hamiltonian flow (2.3)
satisfying (2.4)-(2.6) possesses in the energy levelH = h

2 a periodic solution of the diagonal

form: γ(t) = (ξ(t), . . . ,ξ(t)) whereξ(t) = v(t)√
n + ξc with v(t) ∈ (0,d) being a periodic

solution of (2.15) with energyh2.

Let T(ε,µ,d,h) denote the period ofγ(t). To fix the notation, let us parameterize time
alongγ(t) so thatt = 0 will correspond to the turning point near the corner whereasT/2
corresponds to the turning point near the large sphere, namely:

We f f(ν(0)) = We f f(ν(T/2)) =
h
2

with ν(0)≈ 0, ν(T/2)≈ d.

3. STABILITY OF THE PERIODIC ORBIT

To study the stability of the periodic orbitγ(t), one needs to linearize the Hamiltonian
equations of motion corresponding to (1.1) about this solution, solve the corresponding2n-
dimensional linear system with the time-periodic coefficients for a set of2n orthonormal
initial conditions and find the stability of the associated(2n×2n)-dimensional monodromy
matrix, leading finally to a set of2n Floquet multipliers (2 of which are trivially one). The
symmetric form of the potential allows to reduce this formidable task to a much simpler one
– to solving a single second order homogeneous equation with a time periodic coefficient
which depends onn as a parameter in a very simple form:

Lemma 2. The Floquet multipliers of theT-periodic orbit γ(t) are (1,1,λ, 1
λ , ...,λ, 1

λ )
whereλ is given by:

(3.1) λ =
1
2

Tr(A)+

√
Tr(A)2

4
−1,

andA is the monodromy matrix of the second order linear equation:

(3.2) ÿ+a(t)y = 0

with theT-periodic coefficienta(t) given by (see also (2.15)):
(3.3)

a(t;ε,µ,d,R,n,h) =

(
V ′(ε−1(

√
1+2µν+ν2−1))

ε
√

1+2µν+ν2
+

V ′(ε−1(d−ν))
ε(R+d−ν)

)

+
1−µ2

n−1

(
V ′′(ε−1(

√
1+2µν+ν2−1))

ε2(1+2µν+ν2)
− V ′(ε−1(

√
1+2µν+ν2−1))

ε
√

(1+2µν+ν2)3

)

= a−(ν(t);ε,µ,d,R,h)+
1−µ2

n−1
a+(ν(t);ε,µ,d,h),

Proof. Consider the linearization aboutγ(t) of the system defined by (2.3). Let:

(3.4)
b(t) = ∂2

∂x1∂x2
W(ξ(t), . . . ,ξ(t)),

a(t) = ∂2

∂x2
1
W(ξ(t), . . . ,ξ(t))− ∂2

∂x1∂x2
W(ξ(t), . . . ,ξ(t))
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By symmetry, ∂2

∂xi∂x j
W(ξ(t), . . . ,ξ(t)) = b(t) for all i 6= j and ∂2

∂x2
i
W(ξ(t), . . . ,ξ(t)) = a(t)+

b(t) for all i. Hence,the linearization of (2.3) is given by

(3.5) ẍi +a(t)xi +b(t)
n

∑
j=1

x j = 0, i = 1, . . . ,n.

Let s= ∑n
i=1xi andyi = xi − s

n in (3.5). By summing the above equation oni we obtain

(3.6)
s̈+(a(t)+nb(t))s= 0,

ÿi +a(t)yi = 0 i = 2, . . . ,n

Every equation in this system is decoupled from the others, therefore the spectrum of the
Floquet multipliers ofγ(t) is the union of the spectra of the monodromy matrices (i.e. the
spectra of the time-T maps) corresponding to each of the equations. It is easy to check that
the first equation is the linearization of (2.11) aboutξ(t). Hence, both the eigenvalues of its
monodromy matrix are equal to1 (as (2.11) is a Hamiltonian equation). These correspond
to trivial Floquet multipliers ofγ(t). Since the rest of the equations in (3.6) are identical,
the other Floquet multipliers ofγ(t) correspond to then− 1 identical pairsλ and λ−1,
the eigenvalues of the monodromy matrix of equation (3.2) with theT-periodica(t) given
by (3.4). By applying the above formulas to the system (2.3),(2.4),(2.5), and using the
coordinateν instead ofξ (see (2.12)), we obtain (3.3). ¤

To establish the main theorem, the spectral properties of the2×2 monodromy matrix
A of equation (3.2), that depend onn and the geometric parameters viaa(t), need to be
studied. For any finiten, whenγ(t) is near the corner point (i.e.ν is close to zero) the third
term of (3.3) is of order1/ε2 and thus dominatesa(t). This singular behavior leads to fast
oscillations of the solutions of (3.2) at the corresponding time interval, so careful analysis
of the resulting multipliers is needed. Thus, the rest of this section is dedicated to studying
the dependence of the eigenvalues ofA on the parameters.

First, we show that in the limit of fixedε and largen the periodic orbitγ(t) is unstable.
Likewise, we show that in the limit of low energies (nearh = hmin(ε,µ,d), see (2.16)), the
periodic orbit which oscillates near the fixed point is unstable for alln above some critical
value. These observations show that the stable orbits we get do not correspond to a motion
near the bottom of a potential well. Then, we prove the main result, that for any fixedn
there exists a sequence ofµ values,µk, such that the periodic orbit is stable in wedges in
the (µ,ε) plane that are close to(µk,0). The widths of these wedges is then found in two
specific limits, with explicit formulae in the power-law potential case.

In the limit n = +∞, equation (3.2) turns into

ÿ+a−(t)y = 0.

Sincea− is always negative by (2.6), this equation cannot have non-trivial bounded so-
lutions and the monodromy matrixA has multiplierλ > 1. Thus, at every fixedε and
h > hmin(ε,µ,d), the diagonal solutionγ(t) is linearly unstable for sufficiently largen.
Therefore, it is not surprising that the stability zones that we find later on correspond to
bounded values ofεn, i.e. for higher dimension of the configuration space one should make
the potentialsteeperin order to make the diagonal periodic orbit stable.

The stability of the equilibrium state on the diagonal, ath = hmin, is determined by

equation (3.2) of Lemma 2; the equilibrium is linearly stable ifa−+
1−µ2

(n−1)
a+ > 0, and
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FIGURE 2. The critical dimension,nc, beyond which the fixed point
at the minimal energy level becomes unstable, for various(µ,d,ε) at
R = 10. Results for three potentials are presented: power-law (solid),
exponential (dotted) and Gaussian (dashed).

linearly unstable ifa−+
1−µ2

(n−1)
a+ < 0, where instead ofν(t) in a± one should substitute

the value ofν = ν f that corresponds to the minimum ofWe f f (see (2.14)). Defining

nc(µ,d,R,ε) = 1+
a+(vf )
−a−(vf )

(1−µ2),

we see that the equilibrium (and small oscillations on the diagonal near it) are stable at
n < nc and unstable atn > nc. In Figure 2 we plotnc(µ,d,R,ε) for the power-law, ex-
ponential and Gaussian potentials, showing the dependencies ofnc on µ,d andε. In the
case of power-law potential,nc does not depend onε (see (2.8),(2.14) and (3.3)), thus, the
stable periodic orbit that we find for smallε clearly does not inherit its stability from the
equilibrium state, i.e. the effect has truly billiard origin. For the exponential and Gaussian
casesnc diverges asε→ 0. In these cases the stable fixed point appears for exponentially
small energies (see ((2.14)). Since the effective potential is essentially flat away from the
scatterers, for energies that are not exponentially small, the amplitude of the oscillations
becomes large and the linearization nearvf is not applicable. Indeed, it is proved below
that for such energies the periodic orbit changes its stability several times asε → 0, so
again, the stability regions we find do not correspond to small oscillations that inherit their
stability from the equilibrium state.
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FIGURE 3. The rescaled ingredients ofa(t) of eq. (3.3). The peaks of
a+(t) anda−(t) are shown to scale as1/ε2 and1/ε respectively. Here
µ= 0.5, andε = 0.1,0.01,0.001from widest to narrowest respectively.

For any finiten, for sufficiently smallε, γ(t) has a finite positive period anda(t) changes
sign7 as shown in Figure 3, so the behavior of the monodromy matrixA in the limit ε→ 0
becomes non-trivial. Our main result is that there are wedges in the(µ,ε) space at which
the eigenvalues ofA are on the unit circle:

7While a− is always negative, for sufficiently smallε, there exists an interval oft values at whicha+ is
positive (asV ′ is negative, andV is bounded from below, it follows thatV ′′ has to be positive somewhere). In
fact,a+ > 0 everywhere in the power-law potential case.
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Theorem 2. Suppose the potential functionV satisfies (2.6),(2.7). Then, given anyh ∈
(0,2V(0)), any naturaln≥ 2, and any positived and R, there exists a tending to zero
countable infinite sequence1≥ µ0 > µ1 = 1/

√
n > ... > µk > ... > 0 such that arbitrarily

close to every point(µ= µk,ε = 0) there are wedges of(µ,ε) at which the orbitγ is linearly
stable.

Proof. Recall the definition of the monodromy matrixA: the linear second order differen-
tial equation (3.2) with the periodic coefficienta(t) defines the linear map:(y(t0),y′(t0)) 7→
(y(t0+T),y′(t0+T)) = A(y(t0),y′(t0)). WhileA may depend on the choice oft0, its eigen-
values, the Floquet multipliers ofγ(t), do not. We chooset0 =−∆t where∆t > 0 is slowly
tending to zero asε→ 0, and expressA as the product of two matrices:A = BC, whereC
corresponds to the map fromt =−∆t to t = ∆t (i.e. to the linearized smooth motion in the
neighborhood of the billiard corner, where the third term of (3.3) dominates and fast oscil-
lations appear), andB corresponds to the time interval[∆t,T−∆t] (i.e. to the linearization
about the smooth regular motion along the diagonal and the regular reflection from the
radiusRsphereΓn+1 in the normal direction att = T/2).

Below, we find the form ofB (lemma 3) andC (lemma 4) in the limit of smallε and
fixed µ. In fact, we show in the proof of lemma 4 that by rescaling time byδ = ε/µ and
taking the appropriate limits of (2.15) and (3.3), the matrixC may be found by integrating
a simplified scattering problem. There, only the rescaled third term of (3.3) appears with a
rescaling parameterβ:

(3.7) β =
1−µ2

(n−1)µ2 ,

and equation (2.15) is replaced by an equation which is independent ofε andµ (eq. (3.11)).
We then show that the trace ofA is dominated by a term of the forms21(β)

δ wheres21(β) is
a coefficient of the scattering matrix associated with the simplified scattering problem. We
thus conclude (sinceδ→ 0 asε→ 0) that the wedges in the(µ,ε) plane, where the trace of
A varies between−2 to 2, emanate near the points at whichs21(β) changes sign. We then
show (lemma 5) that the zeroes ofs21(β) correspond to the ”spectrum” of the simplified
scattering problem. Namely, bounded solutions appear if and only ifs21(β) vanishes, and
the number of zeroes of a fundamental solution of the scattering problem is even when
s21 > 0 and is odd whens21 < 0. We complete the proof by noticing that in this simplified
scattering problem it is easy to establish that the number of zeroes of all solutions increases
to infinity asβ→ ∞ (i.e. whenµ→ 0+), and to conclude that there is a countable number
of µ values at which bounded solutions appear. These are the values at whichs21 vanishes
and wedges of stability are formed.

The form ofB is easily found by utilizing the billiard limit (using [21]):

Lemma 3. For small ∆t and sufficiently smallε, the linearized map about the diagonal
orbit: (y(∆t),y′(∆t)) 7→ (y(T−∆t),y′(T−∆t)) = B(y(∆t),y′(∆t)) satisfies

(3.8) B =

(
1+ 2d

R
2d√

h
(1+ d

R)
2
R

√
h 1+ 2d

R

)
+o(1)

Proof. Fixing ∆t and lettingε→ 0, the diagonal periodic orbitγ(t) on the interval[∆t,T−
∆t] approaches the boundary of the billiard domain only once, att = T/2, hitting the radius-
R sphereΓn+1 in the normal direction. This is a regular reflection, therefore, according to
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[21]8, the flow map from any time moment before the reflection to any moment after the
reflection is close to the corresponding map for the billiard flow. The closeness is along
with k derivatives of the map (recall thatV is Ck+1,k≥ 1), i.e. the derivative of the flow
map fromt = ∆t to t = T−∆t tends to the derivative of the billiard flow map asε→ 0. It
is true for every fixed∆t, hence it remains true for a sufficiently slowly tending to zero∆t.

Because of the symmetry of the diagonal orbitγ, the matrix of the derivative of the
smooth flow has a block-diagonal structure with one idempotent block that corresponds to
the variables in (3.6) and the other blocks equal toB. The derivative matrix of the billiard
flow has the same structure; to find this matrix, consider the billiard flow of a particle with
a velocity

√
h which starts at a distanced from the sphere of radiusR and reflects in the

normal direction back to its original position atT = 2d/
√

h. Then, by direct computation,
it can be shown that theith block of the linearization of the billiard flow map is of the form:

∂(yi(T−0), ẏi(T−0))
∂(yi(+0), ẏi(+0))

=

(
1+ 2d

R
2d√

h
(1+ d

R)
2
R

√
h 1+ 2d

R

)

and (3.8) follows from [21] as explained above (the same results can be achieved by as-
ymptotic integration of equation (3.2), namely following a simplified version of the below
construction ofC). ¤

Finding the form ofC is more complicated, and requires the integration of (3.2) in some
asymptotic limits. In Appendix A, we prove the following:

Lemma 4. For any fixedµ∈ (0,1), small∆t and sufficiently smallε, the linearized map
about the diagonal orbit near the corner: (y(−∆t),y′(−∆t)) 7→ (y(∆t),y′(∆t))=C(y(−∆t),y′(−∆t))
satisfies

(3.9) C =
(

s11+σs21(1+o(1))+o(1) s21O(δσ2)+O(δσ)
1
δ (s21(1+o(1))+O(σ−1−α)) s22+σs21(1+o(1))+o(1)

)
,

whereδ,σ−1 are small scaling parameters (tending to0 asε→ 0) such thatδσ = ∆t, and
Sis a matrix which tends9, asε→ 0, to a smooth limitS0(µ).

Let us explain the meaning of the matrixSand the parameters that appear in (3.9). It is
shown in the appendix that by rescaling time byδ = ε/µ, in the appropriate scaling limit,
only the third term of equation (3.3) matters and so eq. (3.2) near the corner reduces to

(3.10)
d2

dτ2 y+βV ′′(z(τ)) y = 0,

whereβV ′′ corresponds to the limit of the third term of (3.3) (multiplied byδ2), and
z(τ) = ε−1(

√
1+2µν(τ)+ν(τ)2− 1) solves, in the asymptotic limit, an equation which

is independent ofε andµ:

(3.11)
h
2

=
(z′)2

2
+V(z), z′(0) = 0.

Notice that by (2.7) equations (3.10)-(3.11) define a scattering matrix: it is shown in the
appendix that the solutionsz(τ) to (3.11) run from+∞ through some minimal positive
value back to+∞ sufficiently rapidly and thus that (3.10) reduces, in the limit ofτ→±∞
to d2

dτ2 y = 0. Then, as is usual in scattering theory, one may define two bases of solutions

8it is easy to verify that the conditions (2.6)-(2.7) onV suffice to guarantee thatW(q,ε) satisfies the conditions
in [21].

9uniformly on any compact subset ofµ> 0.
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at the two asymptotic limits. Lety±(τ) denote the uniquely defined solutions having the
following asymptotic form asτ→±∞ (respectively):

(3.12) y±(τ) = 1+O(|τ|−α), y′±(τ) = O(|τ|−1−α).

Let ŷ±(τ)) denote solutions10 with asymptotic:

(3.13) ŷ± = τ+O(|τ|1−α), y′±(τ) = 1+O(|τ|−α)

so the Wronskians of(y−(τ), ŷ−(τ)) and of(y+(τ), ŷ+(τ)) are1. Let S0 denote the scatter-
ing matrix which sends the coefficients of the solution in the basis(y−(τ), ŷ−(τ)) into the
coefficients of the same solution in the basis(y+(τ), ŷ+(τ)) . This matrix depends only on
β andh – the only two parameters that appear in the above limit equations. In Appendix A
we derive the finiteε version of (3.10)-(3.11), the corresponding asymptotic bases and the
scattering matrixS(µ,ε) which limits toS0(µ) asε→ 0 for any fixedµ> 0.

Notice thatδ, the small time rescaling parameter, appears as a denominator in theC21

entry – this reflects the high sensitivity ofy′(∆t) to changes iny(−∆t).
Using the formulae forBandC ((3.8) and (3.9)) withσδ = ∆t tending to zero sufficiently

slowly andδ→ 0, one obtains that the trace of the monodromy matrixA = BC equals to

(3.14) Tr(A) =
2d

δ
√

h
(1+

d
R

)s21(1+o(1))+(s11+s22)(1+
2d
R

)+o(1).

The periodic orbit is stable when|Tr(A)|< 2. Note that the main contribution to (3.14) is
given by the term that includess21: sinceδ→ 0 asε→ 0, if s21(µ,ε) stays bounded away
from zero, then for sufficiently smallε the trace ofA is very large and positive for positive
s21 and very large negative for negatives21. This means that if we fixh,n,d,R, chooseε
sufficiently small and changeµ, thenTr(A), as a function ofµ, will change sign near the
values ofµ wheres21(µ,0) changes sign. ThenTr(A) is necessarily small near these values
of µ. Therefore, from these values ofµ a wedge of parameter values for which the periodic
orbit γ is linearly stable emerges. We need to establish that there is an infinite number of
such values ofµ.

By definition, s21 is determined as follows (see appendix): take the solutiony−(τ) of
(3.10) that tends to1 asτ =−∞, then

(3.15) s21 =
dy−
dτ

(+∞),

namely, the asymptotic properties ofy−(τ) determines21. Next we establish a precise
relation between the asymptotic form ofy−(τ) and the zeroes ofs21, and between the
number of zeroes ofy−(τ) and the sign ofs21:

Lemma 5. The limit system (3.10) has a non trivial bounded solutiony−(τ;µ∗) for all
τ ∈ (−∞,+∞) if and only ifs21(µ∗,0) = 0. Furthermore,

(3.16)
ds21

dβ

∣∣∣∣
s21=0

=





−√hI, β(µ∗) = 0,

− 1
βy−(+∞)

R +∞
−∞ y′−(s)2ds, β(µ∗) 6= 0,

where

(3.17) I =
1√
h

Z +∞

−∞
V ′′(z(τ))dτ =

2√
h

Z +∞

V−1(h/2)
V ′′(z)

dz√
h−2V(z)

.

10the functionŝy±(τ)) are defined in a unique way in Appendix A.
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If s21(µ,0) 6= 0, thensigns21 = (−1)N (y−) whereN (y−) denotes the number of zeroes of
y−(τ). Finally, if µ∗ < 1, or µ∗ = 1 and I > 0, thenN (y−) is decreased by one whenµ
changes fromµ∗−0 to µ∗+0.

Proof. Using the definition of the scattering matrix (see (3.12),(3.13)),y− has the follow-
ing asymptotic asτ→+∞ (uniformly on any compact subset of positive values ofµ):

y− = s21(τ+O(τ1−α))+s11(1+O(τ−α)),(3.18)

y′− = s21(1+O(τ−α))+O(τ−1−α),

It thus follows immediately that ifs21vanishes, theny−(τ) is bounded. To prove the con-
verse, notice that non-trivial bounded solutions must be proportional toy−(τ) asτ→−∞,
and therefore, ifs21 6= 0, these cannot remain bounded asτ→+∞.

Next, we establish (3.16). Defineu = dy−/dβ. By definition (see (3.15))

(3.19)
ds21

dβ
= u′(+∞).

By differentiating (3.10) with respect toβ we find thatu is the solution of

u′′+βV ′′(z(τ))u =−V ′′(z(τ))y−(τ),
which satisfiesu(−∞) = u′(−∞) = 0. By the variation of constants formula (recall that the
Wronskian ofy−(τ) andŷ−(τ) is 1):

(3.20) u(τ) = y−(τ)
Z τ

−∞
V ′′(z(s))y−(s)ŷ−(s)ds− ŷ−(τ)

Z τ

−∞
V ′′(z(s))y−(s)2ds.

It follows that

u′(+∞) = y′−(+∞)
Z +∞

−∞
V ′′(z(s))y−(s)ŷ−(s)ds− ŷ′−(+∞)

Z +∞

−∞
V ′′(z(s))y−(s)2ds.

If s21 = 0, then we havey′−(+∞) = 0 andŷ′−(+∞) = y−1
− (+∞) (since the Wronskian is1).

Thus,

(3.21)
ds21

dβ
=− 1

y−(+∞)

Z +∞

−∞
V ′′(z(s))y−(s)2ds at s21 = 0.

At β 6= 0 we haveV ′′(z)y− =−β−1y′′−, hence, integrating by parts, we find

(3.22)
Z ∞

−∞
V ′′(z(s))y−(s)2ds=

1
β

Z +∞

−∞
y′−(s)2ds,

which gives the second line of (3.16).
At β = 0 the scattering matrix of system (3.10) is the identity sos21(1,0) = 0. In

this case (3.10) has the bounded solutiony(τ) = 1 and by (3.21) the first line of (3.16) is
obtained, or equivalently

(3.23)
ds21

dµ
|µ=1 =

2
n−1

√
hI.

Finally, let us relate the number of zeroes of the fundamental solutiony−, N (y−), and
the sign ofs21. By (3.15), if y− → +∞ as τ → +∞, thens21 > 0, and if y− → −∞ as
τ→+∞, thens21 < 0. Recall thaty−(−∞) = 1 is always positive. Clearly, ifs21 > 0, then
y− has an even number of zeros, and ifs21 < 0, then the number of zeros ofy− is odd so
signs21 = (−1)N (y−) as claimed.

Note thaty− cannot have multiple zeros, as it is a non-trivial solution of a second order
linear homogeneous equation. It follows that asµ varies, the number of zeros ofy− can
increase only when some zeros come out of+∞.
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It follows from (3.18), and the fact thats2
21+s2

12 is bounded away from zero by preser-
vation of the Wronskian, thaty− may have only one zero at largeτ. Therefore, ifN (y−)
changes at someµ> 0, the increase/decrease in the value ofN equals exactly to1.

It follows from (3.20) and (3.18) that ats21 = 0 (i.e. wheny−(τ) is bounded)

d
dβ

y−(τ) = u(τ) = τu′(+∞)+o(τ)τ→+∞.

Hence, it follows from (3.19), and from (3.16) withµ∗ < 1, or µ∗ = 1 andI > 0, that for all
τ sufficiently large

(3.24) sign
d
dµ

y−(τ) = sign
ds21

dµ
= signy−(+∞) = (−1)N (y−).

so it follows thatN (y−) decreases whenµ increases throughµ∗. ¤

It follows from the trace formula (3.14), that to complete the proof of Theorem 2,
we need to show that the coefficients21 of the scattering matrix for the limit equation
(3.10),(3.11) changes its sign infinitely many times. By the above lemma, we need to
examine the bounded solutions of (3.10) and their number of zeroes.

Now, notice that independently of the choice ofV and of the value ofh there are two
values ofµ at which the bounded solutions are easily identified. Atµ = 1 we have the
bounded solutiony− = 1 which has no zeroes. Atµ = µ1 = n−1/2 there is a bounded
solution with one zero:y(τ) = z′(τ), wherez is the solution of (3.11). It follows from
(3.16) that when11 I > 0, s21 changes sign from negative to positive whenµ increases
throughµ = 1 (recall thatβ′(µ) < 0 for µ < 1), and whenI < 0 (this is the case e.g. of
Gaussian potential (2.9) ath close to2) s21 changes sign from positive to negative. It
follows from (3.24) that atµ = µ1 +0 we haves21 < 0. Hence, using (3.23) we see that if
I < 0, there existsµ= µ0 < 1 for whichs21 = 0 (so there is a non-constant positive bounded
solution atµ0). This is the tip of the0-th stability zone. Furthermore, since forµk < 1 the
number of zeros ofy− always decreases by one whenµ changes fromµk−0 to µk + 0, it
follows that forI < 0 there is only one suchµ0 value in the interval(n−1/2,1), whereas for
I > 0 we setµ0 = 1.

We conclude that fork≥ 1, the tipµ = µk of thek-th stability zone corresponds to the
existence of a bounded solution of (3.10), which has exactlyk zeros. To establish that
there is a countable infinity of values of suchµk, recall that there is a non-empty interval of
values ofτ for whichV ′′(z(τ)) is strictly positive (by (2.6) and (2.7)). Since the coefficient
β of V ′′(z)y grows to+∞ asµ→+0, it follows that the number of zeros of every solution
of (3.10) on this interval grows to infinity asµ→+0. In particular, the number of zeros of
y− – hence the number of sign changes ins21 – grows to infinity asµ→+0, as required.

This completes the proof of Theorem 2. ¤

Notice that the pointsµk where the stability zones touch the axisε = 0 are determined
by the behavior of the limit system (3.10)-(3.11) only. In particular, depending on the form
of V andh there are the correspondingβk values at which the stability zones appear, and

11This is always the case ifV ′′ > 0 for all z, e.g. for the power-law potentials (2.8), where the following
explicit formula forI may be established:

(3.25) I = 2(α+1)(h/2)1/α
Z π/2

0
(cosθ)

2
α +1 dθ > 0.
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these are independent ofn,d andR. Thus, we conclude from (3.7) that

µk = (1+βk(n−1))−1/2,

where the numbersβk → +∞ depend only onh and on the potential functionV. If I > 0
thenβ0 = 0. For allV andh we haveβ1 = 1.

Note that in the proof of Theorem 2 the limit of fixedµ> 0 andε→ 0 was considered. It
follows that for any finitek value a stability zone will appear nearµk for sufficiently small
ε (non-uniformly ink). In the appendix we prove that an infinite number of these stability
zones extend towards theε axis:

Lemma 6. Let L be a continuous curve in the region(µ≥ 0,ε > 0) of the(µ,ε)-plane,
which starts at(µ = 0,ε = 0). ThenL intersects the region of stability of the diagonal
periodic orbitγ in an infinite sequence of intervals converging to(µ= 0,ε = 0).

Proof. See Appendix A. After calculating the form of the matrixC in this limit of small
(µ,ε), which involves deriving a rescaled system similar to (3.10), it is shown that the trace
of A changes between±2 whenever the number of zeroes of the bounded solutions of this
rescaled system are changed. Then, we again argue that the number of zeros of this system
tends to infinity as(µ,ε)→ 0. ¤
3.1. Estimates of the stability wedges width.We have thus established that for any finite
dimensionn there is an infinite number of wedges of linear stability zones emanating from
µ values at(0,1). Next we estimate their width in the(µ,ε)-plane atβ values that are near
β0 = 0 (corresponding to eitherµ close to1 or to largen):

Proposition 1. If I > 0 (see (3.17)), then the diagonal periodic orbitγ is stable for(µ,ε)
values in the wedge enclosed by the two curves

(3.26) ε+
0 = I

1−µ2

(n−1)µ2

(
1+

1
d+R

)−1

+o

(
1−µ2

(n−1)µ2

)

and

(3.27) ε−0 = I
1−µ2

(n−1)µ2

(
1+

1
d

)−1

+o

(
1−µ2

(n−1)µ2

)
.

Proof. See Appendix A, where formula (3.14) is expanded inβ,ε near(0,0) at whichS
limits to the identity matrix. ¤

The other limit in which we are able to obtain analytical results regarding the stability
wedges width corresponds toµ= 0, i.e. it is the limit of the zero angle between the spheres
Γ1, . . . ,Γn at the corner point. We prove that for sufficiently largek, the stability zone
emanating from(µk,ε = 0) extends towards theε-axis as shown in Figure 4:

Proposition 2. Consider the power-law potentialV(Q,ε) =
(

ε
Q

)α
. Then, for sufficiently

small ε and µ, there exists an infinite number of disjoint stability tongues in the(µ,ε)
plane at whichγ(t;µ,ε,n) is linearly stable. For sufficiently largek thekth stability zone
emanates from theµ axis near the bifurcation value:

(3.28) µk ≈ 1
k

√
2(α+1)
α(n−1)

,

and extends up to theε-axis, intersecting it near

(3.29) εk ≈ (h/2)1/α (α+1)
α(n−1)

4
π2k2

(Z π/2

0
(sinθ)1/αdθ

)2

,
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at a stability interval of length

(3.30) (∆ε)k ≈ 4εk

πkG(0,α)d(1+ d
R)

(
4α(α+1)

n−1
(2εk)α

h

)1/2(α+1)

whereG(0,α) > 0 depends only onα and is defined by (B.12).

Proof. See Appendix B for details. It is proved that any curve of the form

(3.31) LM = {(µ,ε) : 2εM = µ2(1−M)},
with M ∈ [0,1] considered as a fixed parameter, intersects the stability wedges infinite
number of times. Moreover, the location and width of these intersections is evaluated
along a parameterization ofLM by an auxiliary parameterρ:

(3.32) ρ =
√

2ε+µ2.

Thus, formula (3.28) is established by applying formula (B.14) alongLM=1 whereas for-
mulae (3.29),(3.30) are established by applying (B.14) and (B.15) alongLM=0 (using (B.3)
and (B.5)). ¤

As described next, the asymptotic formulae are in excellent agreement with our numer-
ics.

4. NUMERICAL COMPUTATIONS

4.1. Stability of the periodic orbit. In general, the numerical computation of a periodic
trajectory and its stability in a steepn-dimensional potential is, for largen, a difficult
problem; a high-dimensional scheme for locating the periodic trajectory is needed, and
the search involves the integration of nonlinear, stiff, high-dimensional system. Once the
periodic orbit is found, the numerical computation of the linearized system and its Floquet
multipliers for largen may be a formidable task.

Here we use Lemmas 1 and 2 and some proper rescaling to reduce this problem to a
simpler computational task. The search for the periodic orbit is unnecessary by Lemma
1 (using symmetry and proper parameters) and the need to compute eigenvalues of large
matrices is demolished by Lemma 2: for alln we find the solutions of one second-order
non-linear equation (2.15) and the monodromy matrix of one second-order linear equation
(3.2),(3.3) which depends onn as a parameter. The steep limit is handled as in [20]: we fix
ε and increase the size of the billiard domain (r in (2.2)) to get an effectively smallε = ε/r
without running into stiffness problems (in the bulk of the domain the motion is essentially
inertial and non-stiff).

To find the stability regions, as shown in Figure 4, we use the continuation scheme
which was developed in [20]; first we compute the stability ofγ(t) at µ = 0 (the case of
a cusp created byn tangent spheres) along theε-axis (see Figure 4 left12). By symmetry
(see Lemma 2),Re(|λn(µ= 0,ε))|) > 1 always corresponds to real eigenvalue (i.e. saddle-
foci do not appear) and thus the values ofε = ε±k (n) at which Re(λn(µ = 0,ε)) = ±1
correspond to degenerate saddle-center and degenerate period-doubling bifurcations re-
spectively. Then, we use the values ofε = ε±k (n) as the starting point for a continuation
scheme inµ to locate thekth wedge of stability in the(µ,ε) plane (see Figure 4 right).

12Note that the curves in this diagram represent the graph ofRe(λ(µ= 0,ε)) so they are not horizontal. Their
horizontal appearance reflects the rapid large oscillation ofλ in the smallε limit.
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FIGURE 4. Bifurcation diagram for the power-law potential. Left: real
part of the eigenvalueλ(ε) at µ = 0; note thatλ changes very fast as
nε changes. Right: Wedges of stability in(µ,nε) space (note that the
ε-axis is scaled withn). The stability wedges lie between the saddle-
center bifurcation curves (dotted lines) and the period doubling bifur-
cation curves (solid lines). The asymptotic predictions (thin lines) of
formulae (3.27),(3.26) for the first wedge are shown.
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with theε-axis (ε±0,1(n)) is shown to scale like1/n.

With accordance to Theorem 2 and Propositions 1,2, these calculations (performed for
the Gaussian, exponential and power-law potentials, and shown here only for the power-
law case) demonstrate that for any givenn, at µ = 0, the stability ofγε,n,µ=0(t) rapidly
changes asε→ 0+, whereas for anyµ∈ (0,1), there is a finite number of intervals ofε in
which γε,n,µ(t) is stable.

Next, we demonstrate that the asymptotic formulae provided in these propositions are
in good agreement with the numerics; in all the numerical simulations shown below we fix
h= 1,R= 10andd = 2 , consider the power-law case (2.8) withα = 1, and study, for each
n, how the stability ofγ(t) depends onµ andε.

Figure 4 shows that the estimates (3.26),(3.27) of Proposition 1 for the stability bound-
ary of the first wedge and their numerical calculation agree when either1−µ is small orn

is large (recall theo
(

1−µ2

(n−1)µ2

)
correction term in (3.26),(3.27)).

The origin of the second stability zone atε = 0 is found, by Theorem 2, to be given by
µ1 = 1/

√
n, soµn=3

1 ≈ 0.577 andµn=10
1 ≈ 0.33, which agrees with the numerical data at

Figure 4.
The behavior nearµ = 0 is examined next. In Figure 5 we plotε±0,1(n), the first and

secondε value at whichγε,n,µ=0(t) becomes stable, as a function ofn−1. It shows that

ε±k (n) ≈ β±k
n−1(k = 0,1) in accordance to (3.29), even thoughk is not sufficiently large for

the asymptotic estimates to hold.
For largerk values, the oscillatory behavior inlogε of Re(λn(µ = 0,ε)) is shown in

Figures 6 and 7.
Indeed, in the proof of Proposition 2, it is established that for the power-law potential,

at α = 1 (see Appendix B):

(4.1) Tr(A) = G(0,1)
(

h(n−1)
ε

) 1
4

d(1+
d
R

)sin(2

√
h

ε(n−1)
+2ϕ(0,1))+ ...

with G(0,1),ϕ(0,1) some constants, and thus, using (3.1),λn(µ = 0,ε) may be estimated
in this asymptotic limit; Figure 7 shows the agreement between the numerical computation
and the asymptotic form for sufficiently smallε; we fittedG(0,1) = 1.85,ϕ(0,1) = 1.1π
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- analytical estimates (eq. (4.1)). Thick line (red) - numerical computa-
tions.

for then = 3 case and used these for then = 10 case, suggesting that these constants are
indeed independent ofn as predicted by (4.1).

Figure 6 shows theε dependence of the envelope ofRe(λn(µ = 0,ε)) for finite n. We
observe anε−0.29 envelope, whereas (4.1) suggests anε−0.25 envelope for the power-law
potential13. The discrepancy may be the result of finiteε effects. For then = 1000case we
do not observe enough oscillations for (4.1) to be meaningful. This finding shows that for
very smallε values, approaching the cusp limit, the orbitγε,n,µ=0(t) has increasingly large
multipliers that grow, on the appropriately defined subsequence ofε values, as a power law
in (n/ε).

4.2. Non-linear stability – Phase space plots.To support the claim that for(µ,ε) values
inside the stability wedges the linearly stable periodic orbitγε,µ(t) is surrounded by island
of effective stability (i.e. that KAM tori survive in its neighborhood), we choose parameter
values inside the wedges (using Figure 4 right) and integrate the2n equations of motion
directly. The(x1, p1) projection of the return map to the sectionξs = L−R

2 for the power-
law potential withn = 10 is shown14 in Figure 8 (left column). The islands of effective
stability are clearly observed in this projection. To examine the non-degeneracy of these
islands to asymmetric perturbations, we introduce the following family of potentials:

(4.2) V pert
k (x;ε) = Vk(x;ε)+δakVk(x;ε),

13Similar fitting for the Gaussian case gives rise to anε−0.61 envelope.
14Notice that the wedges emanating fromµk < 1 or those corresponding to largern values (where our theoret-

ical predictions for the wedges are in better agreement with the numerics) correspond to much smallerε values,
see 4 right. For such smallε’s, the computation of the phase portraits, in which long integrations that include
many collisions are performed, becomes more prone to numerical errors.
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whereak are uniformly distributed on the unit interval (i.e. we consider the case by which
each sphere has a slightly different potential). The phase portraits of the perturbed motion
with δ = 0.001are shown in the right column of Figure 8 (we do verify that the projection

plots ofX = ‖x− γ(0)‖ ,P =
∥∥∥ ·x− γ̇

∥∥∥ remain bounded, namely that there is no instability

in any direction of the 20-dimensional phase space).

5. DISCUSSION

We have constructed a set of examples that show that for ann-dimensional dispersing
billiard, for any finiten, symmetric corners withn faces can produce islands of effective
stability when the billiard is replaced by a more realistic model of a particle moving in a
steep repelling potential, for arbitrarily high values of the steepness of the potential. In
particular, for a certain symmetric geometry, we have found a specific (diagonal) periodic
orbit for which we proved that for anyn there is a countable set of wedges in the parameter
plane where the periodic orbit is linearly stable. As the steepness parameter,ε−1, tends to
infinity, these stability zones do not disappear and remain in a finite region of the parameter
plane up toε = 0 that corresponds to the (dispersing) billiard limit. Moreover, we were
able to estimate the width and location of these wedges for the power-law potentials. The
qualitative results and the asymptotic formulae were supported by numerical computations
for the power-law, the Gaussian and the exponential potentials. Finally, we conjecture
that for most parameter values in the wedges, where the periodic orbit is linearly stable, a
region of effective stability is created (namely, KAM-tori exist, i.e. despite the symmetric
form of the potential, the behavior near the elliptic points is similar to the behavior near
generic elliptic points). This conjecture15 is supported by numerical simulations for several
n values, for both the power-law and the Gaussian potentials: in these simulations islands
of effective stability surviving small symmetry breaking perturbations of the potential are
clearly seen (see Figure 8, where projections of islands in 20-dimensional phase space are
shown for the power-law potential).

From the mathematical point of view, one generally expects that smooth Hamiltonian
systems will have islands of stability. Here, we go beyond genericity type results – we
identified specific mechanisms by which the ergodicity and hyperbolicity of the underly-
ing dispersing billiard are destroyed, and a stable motion is created in the problem of a
particle moving in a smooth, steep repellingn-dimensional potential. The proofs construc-
tion includes estimates for the scaling of the stability zones with the control parameters
and a description of the bifurcation sequence associated with their creation – such explicit
results may be of interest in specific applications.

Admittedly, the presented construction has two limitations that we hope to abolish in
future works; the first is the strong symmetry under which the example is constructed; it
leads to a highly degenerate spectra – in fact all the non-trivial Floquet multipliers collapse
onto only one pair(λ,1/λ), (which is shown to belong to the unit circle in the intervals of
stability). Thus, in the symmetric case resonance phenomena must be studied. When the
symmetry is slightly broken, either all the eigenvalues remain on the unit circle, or some of
them may bifurcate in quadruples to a Hamiltonian Hopf bifurcation. Such possibility may
pose difficulties in proving that the periodic orbit remains stable (though one would expect
that even in this case stable regions will be created, see [8, 9]). The other limitations is that

15To establish these results analytically one may consider the symmetry breaking terms as perturbations that
introduce small coupling to the linearized equations (3.5) and study under what conditions the degeneracy of the
spectrum unfolds and remains on the unit circle. Proving that the orbit is non-linearly stable appears to be even
more challenging.
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the constructed mechanism for the creation of islands requires ann-corner – it corresponds
to the intersection ofn truly n-dimensional strictly dispersing scatterers in ann-dimensional
space. Currently, the most interesting applications of high-dimensional billiards (n > 3)
are concerned with the problem ofN particles in ad dimensional box. In this case the
scatterers in then = Nd-dimensional configuration space are cylinders with onlyd− 1
dispersing directions [33, 27], and the phase space structure may prohibit the appearance
of the symmetricn-corners considered here.

We believe that both of these issues may be resolved in future works. Indeed, the main
ingredient in our construction is the concurrent singularity inn−1 directions which is in-
duced by then-corner. We conjecture that it is possible to produce islands (non-degenerate
elliptic orbits) in any smooth dispersing billiard family in which singular orbits are con-
trolled byn−1 independent parameters (here the angles between then faces of the corner).
The symmetric settings are simply convenient for collapsing the number of independent
control parameters (here to one). Furthermore, we conjecture that the set of billiards hav-
ing singular orbits that produce elliptic islands16 are dense in the family of Sinai billiards17.
Hence, while we did not prove yet that a system ofN soft particles ind-dimensional box is
non-ergodic, we can now state that it is likely to be true – if strictly dispersive geometries
give rise to elliptic islands, semi-dispersing geometries should do so as well. The method-
ologies we develop might shed light on the scaling of the non-ergodic components with
N andε, supplying interesting insight on the Boltzmann ergodic hypothesis: while in the
hard sphere case Sinai’s works show that there is no need to consider the largeN limit
(which is a major ideological cornerstone in Boltzmann’s argument),N does enter into the
estimates of the non-ergodic component volume (and possibly their stickiness properties)
in the smooth case.
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APPENDIX A. L INEARIZED BEHAVIOR NEAR THE CORNER

Here we construct the linearized reflection matrix near the corner in the finiteµ case and
establish Proposition 1 regarding the stability wedge width in this limit. Then we consider
the limit of µ→ 0+: we construct the reflection matrixC in this limit and establish Lemma
6.

First we present the proof of Lemma 4 regarding the form ofC, the matrix corre-
sponding to the linearized map near the corner:(y(−∆t),y′(−∆t)) 7→ (y(∆t),y′(∆t)) =
C(y(∆t),y′(∆t)) in the limit of smallε and fixedµ> 0:

Proof. On the time interval[−∆t,∆t] we scale timet → δ · τ where

(A.1) δ = ε/µ.

16here other singularities such as multiple tangencies to the billiard boundary and multiple visits tok-corners
with k < n need to be included.

17The recent results of [4], in which hyperbolicity is proved for finite range potentials that have discontinu-
ous derivatives at their outer perimeter, is consistent with these conjectures – we propose that in that work the
hyperbolicity is linked to the lack of smoothness of the potentials.
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Note thatẏ(t) then changes toy′(τ)δ−1, hence

(A.2) C =
(

1 0
0 δ−1

)
Ĉ

(
1 0
0 δ

)
,

whereĈ is the matrix of the linear map

(
y(−σ)
y′(−σ)

)
7→

(
y(σ)
y′(σ)

)
= Ĉ

(
y(−σ)
y′(−σ)

)

defined by the rescaled equation (3.2):

(A.3) y′′+δ2a(τδ)y = 0

on the intervalτ ∈ [−σ,σ], where we denote

(A.4) σ = ∆t/δ.

Note thatσ tends to+∞ aso(ε−1), because we assume that∆t = o(1)ε→0. Let us introduce
a new variablez by the rule

(A.5)
√

1+2µν+ν2 = 1+ εz,

i.e. z is a rescaled distance to the corner. Recall that we choose our parameterization of
time alongγ in such a way thatt = 0 corresponds to the point nearest to the corner. Hence,
we have from (2.13),(2.14),(A.5),(2.7) that

h
2

= V(z)+O(εα),

i.e. z(0) stays uniformly bounded for allε. As the velocityν̇ is bounded from above
by virtue of (2.13),(2.6), it follows thatν(t)− ν(0) = O(∆t) at |t| ≤ ∆t, soz(t)− z(0) =
O(∆t/ε), i.e. z= o(ε−1) for all t from this interval.

It is easy to see that equation (A.3) (see also (3.3)) takes the following form after the
rescaling:

(A.6) y′′+
(

1−µ2

(n−1)µ2V ′′(z)+ εã(z,ε)
)

y = 0

whereã is uniformly bounded and

(A.7) ã = O(|z|−1−α),

uniformly for all zsuch thatεz is small. Equation (2.13) changes to

(A.8)
h
2

=
(z′)2

2
(1+φ(z,ε))+V(z)+Ṽ(z,ε),

where

(A.9) Ṽ = O(εα), and φ = o(1)ε→0.

As we mentioned, we consider equations (A.6),(A.8) atz≤ z∗ with somez∗ = o(ε−1).
Therefore, atz > z∗ we may defineφ and Ṽ in an arbitrary way, and we define there
φ(z) = φ(z∗) and Ṽ(z) = Ṽ(z∗)(z∗/z)α. Then, by virtue of (2.7),(A.9), the potential in
the right-hand side of (A.8) uniformly (for all smallε) tends to zero asz→ +∞. Hence,
uniformly for all smallε,

z(τ) = τ(
√

h+o(1)) as τ→±∞.

By plugging this into (A.6), and defining̃a(z) = ã(z∗)(z∗/z)2+α we see from (2.7),(A.7)
that equation (A.6) has the form

(A.10) y′′+Q(τ,ε)y = 0 where, uniformly for allε, Q = O(|τ|−2−α) as τ→+∞.
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Moreover,Q is continuous with respect toε and has a limit (uniformly for allz) asε→ 0:
the limit system is

(A.11)
y′′+βV ′′(z) y = 0,

β = 1−µ2

(n−1)µ2

wherez(τ) solves

(A.12)
h
2

=
(z′)2

2
+V(z).

It is a routine fact that every solutiony(τ) of equation of type (A.10) grows at most
linearly asτ→±∞; and that there exists a limit for the derivativey′:

(A.13) y′(τ) = D±
1 +O(|τ|−α),

uniformly for any bounded set of initial conditions and for all smallε. Moreover, the
solution is bounded asτ → +∞ if and only if D+

1 = 0; and the solution stays bounded as
τ → −∞ if and only if D−

1 = 0. Among the solutions bounded asτ → +∞, there exists
exactly one solutiony+ which tends to1. Analogously, there exists exactly one solution
y− which tends to1 asτ→−∞:

(A.14) y±(τ) = 1+O(|τ|−α), y′±(τ) = O(|τ|−1−α).

We also take a pair̂y+(τ) andŷ−(τ) of solutions such that

(A.15) ŷ′−(−∞) = 1, ŷ′+(+∞) = 1,

hence

(A.16) ŷ± = τ+O(|τ|1−α).

The solutionŝy± are not uniquely defined, therefore we now fix a certain canonical choice
of them, in order to ensure that they will depend continuously onε and other parameters
of the problem. To do that, letϕ(τ) denote the solution of (A.10) with initial conditions
ϕ(0) = 1, ϕ′(0) = 0, and letψ(τ) be the solution with initial conditionsψ(0) = 0, ψ′(0) = 1
(we deal with time-reversible equations, and in this settingϕ andψ are, respectively, the
even and odd solutions of (A.10); we do not use this in the proof of this theorem). Recall
that

(A.17) det

(
ϕ ψ
ϕ′ ψ′

)
= 1

for all τ, by Wronsky formula. Asy+ is defined uniquely (by condition (A.14)), there exist
uniquely defined constantsK1 andK2 such that

(A.18) y+ = K1ϕ−K2ψ

(one can show thatK1 = ψ′(+∞) andK2 = ϕ′(+∞), but we do not use this information).
We will choose

(A.19) ŷ+ =
K2

K2
1 +K2

2

ϕ+
K1

K2
1 +K2

2

ψ.

Note that(y+, ŷ+) are related to(ϕ,ψ) by a linear transformation with the determinant
equal to1. Therefore, by virtue of (A.17),

(A.20) det

(
y+ ŷ+
y′+ ŷ′+

)
= 1
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for all τ. By taking a limit asτ→+∞, we obtain from this formula (see also (A.14),(A.13))
that ŷ′+(+∞) = 1, i.e. thus defined̂y satisfies (A.15),(A.16), as required. Analogously one
can fix the choice of̂y−; note that

(A.21) det

(
y− ŷ−
y′− ŷ′−

)
= 1.

As y+ andŷ+ are linearly independent, every solution is a linear combination of them:

(A.22) y(τ) = D+
0 y+ +D+

1 ŷ+.

The same solution can be written as

(A.23) y(τ) = D−
0 y−+D−

1 ŷ−.

It follows that the solutions of (A.3) define a continuously depending onε scatteringmatrix
S(ε):

(A.24)

(
D+

0
D+

1

)
= S

(
D−

0
D−

1

)
.

Moreover, the matrix̂C of the map

(
y(−σ)
y′(−σ)

)
7→

(
y(σ)
y′(σ)

)
is given by

(A.25) Ĉ =
(

y+(σ) ŷ+(σ)
y′+(σ) ŷ′+(σ)

)
·S(ε) ·

(
ŷ′−(−σ) −ŷ−(−σ)
−y′−(−σ) y−(−σ)

)
.

Recall thatσ→+∞. By (A.2),(A.25),(A.14),(A.16),(A.13),

(A.26) C =
(

s11+o(1)+σs21(1+o(1)) s21O(δσ2)+O(δσ)
1
δ (s21(1+o(1))+O(σ−1−α)) s22+o(1)+σs21(1+o(1))

)
.

wheresi j (ε) are the entries of the scattering matrix. ¤

The proof of Proposition 1, regarding the width of the stability wedges for smallβ
values is established next:

Proof. The stability zone corresponds to|Tr(A)|< 2. By (3.14),(A.1) the boundaryTr(A)=
2 is given by

(A.27) ε(2− (s11+s22)(1+
2d
R

)+o(1)ε→0) =
2√
h

d(1+
d
R

)s21,

and the boundaryTr(A) =−2 is given by

(A.28) ε(−2− (s11+s22)(1+
2d
R

)+o(1)ε→0) =
2√
h

d(1+
d
R

)s21,

wheresi j are the entries of the scattering matrixS(µ,ε) of equation (A.6). Atβ = 1−µ2

(n−1)µ2 =
0, ε = 0 equation (A.6) (the finiteε version of (3.10)) degenerates intoy′′ = 0, and the
scattering matrix is equal to the identity. Thus, atβ close to0 and smallε, we find that

(A.29) s11+s22 = 2+o(1)

and

(A.30) s21 = q1β+q2ε+o(|ε|+ |β|),
where

q1 =
∂s21

∂β
|(β=0,ε=0)
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and

q2 =
∂s21

∂ε
|(β=0,ε=0) .

(while S may be non differentiable inε for generalβ, it can be shown, using (A.6), that
at β = ε = 0 the expansion (A.30) is valid). Thus, by plugging (A.29),(A.30),(3.23) into
(A.27),(A.28), we find the following equations for the boundaries of the stability zone near
(β = 0,ε = 0):

ε(
2
√

h
d+R

+q2)+o(ε) =−
√

hIβ+o(β)

and

ε(
2
√

h
d

+q2)+o(ε) =−
√

hIβ+o(β).

As we see, in order to prove the lemma, it remains to show that

(A.31) q2 = 2
√

h.

By definition, s21 equals toy′−(+∞) wherey−(τ) is the solution of (A.6) that satisfies
y−(−∞) = 1. Let us write (A.6) in the form (A.10). By differentiating (A.10) we find that
the derivativeu(τ) = ∂

∂ε y−(τ) satisfies

u′′+Qu=−∂Q
∂ε

y−.

As Q = 0 andy− = 1 for all τ at β = 0,ε = 0, we obtain that

q2 = u′(+∞)|(β=0,ε=0) =−
Z +∞

−∞

∂Q
∂ε

dτ.

From (A.6),(A.3),(3.3), we find

∂Q
∂ε
|(β=0,ε=0) = ã(z,0)|β=0 = V ′(z).

This gives us (see also (3.11))

q2 =−
Z +∞

−∞
V ′(z(τ))dτ =

Z +∞

−∞
z′′(τ))dτ = z′(+∞)−z′(−∞) = 2

√
h,

as required. ¤

Next we find the form ofC in the limit at which bothµ andε are small. Here, as in
Lemma 4, on the time interval[−∆t,∆t] we scale timet → δ · τ, yet here we choose a
different scaling coefficientδ (compare with (A.1)):

(A.32) δ =
ε√

2ε+µ2
.

Obviously,δ→ 0 (at least asO(
√

ε)) asε andµ tend to zero. Then, the matrixC is given by
formula (A.2), whereĈ is the corresponding matrix for system (A.3) obtained from (3.2)
by the new time-scaling.

With such scaling, system (A.3) gets the form

(A.33) y′′+
1

2ε+µ2

(
1−µ2

n−1
V ′′(z)+ εã(z,ε)

)
y = 0
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whereã is uniformly bounded and satisfies (A.7) for allzsuch thatεz is small. The equation
for z(τ) changes from (A.8) to

(A.34)
(z′)2

2
(1+ εz)2 =

(
h
2
−V(z)−Ṽ(z,ε)

)
(M +(1−M)z(1+ εz/2)) ,

where

(A.35) M(ε,µ) =
µ2

µ2 +2ε
,

andṼ satisfies (A.9). Like in the proof of Lemma 4, we consider only the intervalz≤ z∗
with z∗ = o(ε−1), so outside this interval we may replace the termsεz with εz∗ both in
the right- and left-hand side of (A.34), and replaceṼ(z,ε) with Ṽ(z∗,ε)(z∗/z)α. Thenz(τ)
tends to+∞ linearly withτ or faster, with the velocity bounded away from zero. It follows
that like in of Lemma 4, the system (A.33),(A.34) belongs to the class (A.10), hence the
matrixĈ is expressed by formula (A.25) via the scattering matrixS(ε,µ) defined by (A.24).

Lemma 7. For small∆t and sufficiently smallµ andε, the linearized map about the diag-
onal orbit near the cornerC : (y(−∆t),y′(−∆t)) 7→ (y(∆t),y′(∆t)) = C(y(∆t),y′(∆t)) is of
the form

(A.36) C =
K2

1 −K2
2

K2
1 +K2

2

(
1+O((δ/∆t)α) O(∆t)
O(δα(∆t)1+α) 1+O((δ/∆t)α)

)
+K1K2C̃,

whereδ→ 0 asε→ 0, C̃ is a matrix whose exact form is irrelevant here andK1,K2 are the
coefficients of the even and odd components of the solutiony−(τ) of equation (A.33) with
zsolving (A.34).

Proof. Here we will use the time-reversibility of equation (A.33),(A.34): ify(τ) is its
solution, theny(−τ) is a solution as well. It follows that

y−(τ) = y+(−τ),

hence, by (A.18),

(A.37) y−(τ) = K1ϕ(τ)+K2ψ(τ),

whereϕ andψ are, respectively, the even and odd solutions of (A.33). Then, analogously
to (A.19),

(A.38) ŷ+ =− K2

K2
1 +K2

2

ϕ+
K1

K2
1 +K2

2

ψ.

From (A.18),(A.19),(A.37),(A.38),(A.22),(A.23),(A.24) we obtain the following formula
for the scattering matrix:

(A.39) S=




K2
1 −K2

2

K2
1 +K2

2

− 2K1K2

(K2
1 +K2

2)2

2K1K2
K2

1 −K2
2

K2
1 +K2

2




.

By (A.2), (A.25), (A.14), (A.16), (A.13), (A.4), (A.39) the required form ofC, namely
(A.36) is found. ¤

Finally we establish Lemma 6 regarding the stability wedges in this limit:
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Proof. As before, we represent the monodromy matrixA as the product of the two matrices
B andC. SinceB corresponds to the regular part of the diagonal orbit and is independent
of µ, Lemma 3 applies in this smallµ andε limit as well and the matrixB is given by (3.8).
As δ and∆t tend to zero, while∆t does this sufficiently slowly, we find from (A.36),(3.8)
that

(A.40) Tr(A) =
{ −2(1+ 2d

R )+o(1)(ε,µ)→0 <−2 at K1 = 0,

2(1+ 2d
R )+o(1)(ε,µ)→0 > 2 at K2 = 0,

The sought stability intervals on the curveL correspond to|Tr(A)| < 2. Therefore, by
virtue of (A.40), we will prove the lemma if we show that there exists a converging to zero
sequence of values of(ε,µ) ∈ L which corresponds toK1 = 0 and a converging to zero
sequence of values of(ε,µ) ∈ L for whichK2 = 0.

By (A.39), vanishing ofK1 or K2 corresponds to vanishing ofs21, i.e. to the bounded-
ness of the solutiony− of (A.33). At K1 = 0 we have from (A.37) thaty− = ψ, i.e. the
bounded solution is odd, while atK2 = 0 the bounded solutiony− = ϕ is even. Thus,K1 = 0
corresponds to the existence of a bounded solutiony− with an odd number of zeros, and
K2 = 0 corresponds to the existence of a bounded solution with an even number of zeros.

It remains to note that the coefficient
1−µ2

(n−1)(2ε+µ2)
of V ′′(z)y in (A.33) tends to+∞ as

(ε,µ)→ 0. From that, exactly like in the proof of Theorem 2, we obtain that the number
of zeros ofy− tends to infinity as(ε,µ)→ 0. We also showed in the proof of Theorem 2
that each time the number of zeros changes, the increase is exactly1. Now, the required
existence of a converging to zero sequence of values of(ε,µ)∈L which corresponds to the
existence of a bounded solution with odd number of zeros (i.e.K1 = 0) and a converging
to zero sequence of values of(ε,µ) ∈ L which corresponds to the existence of a bounded
solution with even number of zeros (K2 = 0) follows immediately. ¤

APPENDIX B. THE POWER-LAW POTENTIAL

To establish Proposition 2, we integrate equation (A.33) with the power-law potential
in the asymptotic limit of small(ε,µ). In fact, we show below that by parameterizing the
(µ,ε) plane by the parameters

(B.1) (ρ,M) = (
√

2ε+µ2,
µ2

2ε+µ2 )

we obtain estimates to the width of the wedge for all sufficiently smallρ uniformly in M.
We first introduce some notations. Recall that the parabolas emanating from the origin
LM = {(µ,ε) : 2εM = µ2(1−M)} were defined for a fixed parameterM ∈ [0,1] and thatρ
is used to parameterize these curves. Let

(B.2) J(M) =
Z +∞

(2/h)1/α

dz

z
√

(hzα−2)(M +(1−M)z)
.

In particular,

(B.3) J(1) =
π√
2α

andJ(0) =
(

h
2

)1/2α √2
α

Z π/2

0
(sinθ)1/α dθ,
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and atα = 1, J(0) =
√

h. Let

(B.4) P(ρ,M) =
√

Mh

(
καρ2 n−1

α(α+1)

) 1
α+2

,

whereκ = κ(ρ,M) solves the equation

(B.5)

(
h

1−M
4

κ1+ α
α+2 +

√
Mhκ

α
α+2

)α+2

ρ2 =
α(α+1)

n−1
.

Note thatκ → +∞ asρ → 0, while P(ρ,M) remains bounded:P∈ [0,1]. Moreover, one
can rewrite (B.5) in the following form (recall thatδ = ε

ρ and
√

M = µ
ρ , see (A.32),(A.35)):

(B.6)
h
2

κδ+µ
√

h = (ρ/κ)α/(α+2)
(

α(α+1)
n−1

)1/(α+2)

,

from which it follows immediately that

(B.7) κδ = κ
ρ(1−M)

2
= o(1).

Consider an equation

(B.8) y′′(θ)+
1

((1−P)θ2 +Pθ)α+2 y(θ) = 0

defined atθ > 0. In the limit θ → +0, the coefficient ofy in (B.8) tends to+∞, which
produces fast oscillations iny: every solution has the asymptotic given by

(B.9)

y(θ)≈ E1((1−P)θ2 +Pθ)
α+2

4 cos(
Z +∞

θ

dθ
((1−P)θ2 +Pθ)1+α/2

)−

E2((1−P)θ2 +Pθ)
α+2

4 sin(
Z +∞

θ

dθ
((1−P)θ2 +Pθ)1+α/2

)

with some constantE1,2. The asymptotic behavior asθ→+∞ is given by (A.22),(A.16),(A.14),(A.20)
i.e.

(B.10) y(θ) = F0(1+O(θ−α))+F1θ(1+O(θ−α))

with some constantF0,1. Thus, solutions of (B.8) define the scattering matrixŜ(P,α):

(B.11)

(
F0

F1

)
= Ŝ

(
E1

E2

)
.

For convenience of later computation we use the following general form forŜ:

(B.12) Ŝ(P,α) =
( √

gcosζ √
gsinζ√

Gcosϕ
√

Gsinϕ

)
.

Notice thatdetŜ= 1 by construction, hence

(B.13)
√

Ggsin(ϕ−ζ) = 1.

whereG,g,ϕ,ζ depend only onP andα.
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Proposition 3. In the case of the power-law potentialV(Q,ε) =
(

ε
Q

)α
, every curveLM,

M ∈ [0,1], intersects infinitely many stability tongues; the intersections happen near (see
(B.2))

(B.14) ρ = ρk =
2J(α,M)

√
α(α+1)

πk
√

n−1
,

and the length of the intervals is given by (see (B.4),(B.5) and (B.7))

(B.15) (∆ρ)k ≈ ρk

πk

√
h

G(P(ρk,M),α)d(1+ d
R)

ρkκ(ρk,M)(1−M).

Proof. As before, we need to estimate the scattering matrixS for the rescaled equation
(A.33). For the power-law potential we haveV ′′ > 0, so the coefficient ofy is positive at
smallε for all z. Thus, we may represent equation (A.33) in the form

(B.16) y′′+Ω2(τ,ε,µ)y = 0,

We consider equation (B.16) separately on the interval|τ| ≤ R, and on the intervals
|τ|> R, whereR(ε,µ) tends sufficiently slowly to infinity as(ε,µ)→ 0 (i.e. asρ→ 0). R is
chosen so that for|τ| ≤ R the frequencyΩ is large, hencey is highly oscillatory, and so its
envelope is found below by the method of averaging. Then, we show that on the intervals
|τ| > R (B.16) limits, after some rescaling, to (B.8). Thus, the scattering matrix of (A.33)
is found by composing the rescaledŜwith the oscillatory solution envelope and then with
the rescaled̂S−1. OnceS is found, the stability regions are found from traceA.

Let R(ε,µ) be chosen such thatΩ tends to+∞ uniformly on the interval|τ| ≤ R, as
(ε,µ)→ +0 (it tends to+∞ indeed on any finite interval ofτ — hence it tends to+∞ on
any sufficiently slowly growing interval as well). Then, there exists a limit of (A.33) and
(A.34) by which

(B.17) lim
ρ→0

ρ2Ω2 =
α(α+1)

(n−1)zα+2 ,

with z(τ) solving

(B.18) (
h
2
− 1

zα )(M +(1−M)z) =
(z′)2

2
, z′(0) = 0.

Let us apply an averaging procedure to (B.16) on the intervalτ ∈ [−R,R]: define(r,φ)
by

√
Ω y =

√
r cosφ,

1√
Ω

y′ =
√

r sinφ.

Then, equation (B.16) takes the form

r ′ =
Ω′(τ)

Ω
r cos2φ, φ′ =−Ω− Ω′(τ)

2Ω
sin2φ,

or, after we introduce the fast and slow phases

(B.19) η =
Z

Ω(τ)dτ, Φ = φ+η,

the following form

(B.20)
dr
dη

= ωr cos2(Φ−η),
dΦ
dη

=−ω
2

sin2(Φ−η),
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whereω := Ω′(τ)/Ω2(τ); by (B.17) (and sincez′ is bounded by (B.18))

(B.21) ω = O(
√

2ε+µ2),

uniformly for |τ| ≤ R (providedR grows sufficiently slowly). Sinceω in (B.20) is small,
by virtue of the averaging principle, the solutions of (B.20) are close to the solutions of the
averaged (with respect toη) system for everyo(ω−2)-long interval of values ofη.

In fact, the total change inη cannot exceed
R +∞
−∞ Ω(τ)dτ = O(ρ−1) = o(ω−2) (see

(B.19),(B.17),(B.21)). Hence, for allτ ∈ [−R,R], the solutions of (B.20) remain close
to the solutions of the system averaged with respect toη, which is simply

dr
dη

= 0,
dΦ
dη

= 0.

Thus, the evolution fromτ =−R to τ = R is, to the leading order, just a rotation by the
angle−R R

−RΩ(τ)dτ. Denote:

(B.22) Srot(a,b) =




cos
Z b

a
Ω(τ)dτ sin

Z b

a
Ω(τ)dτ

−sin
Z b

a
Ω(τ)dτ cos

Z b

a
Ω(τ)dτ


 .

So the values ofy andy′ at τ =±Rare related by:

(B.23)




√
Ω(R) y(R)

1√
Ω(R)

y′(R)


≈ Srot(−R,R) ·




√
Ω(R) y(−R)

1√
Ω(R)

y′(−R)




(by time-reversibility,Ω(R) = Ω(−R)).
Let us now consider the behavior of solutions of (A.33) on the intervalτ > R. Hereτ is

large, and we estimate the solution of (A.34) as

z(τ)(1+ εz(τ)/2) = h
1−M

4
τ2(1+O(τ−α))+

√
Mhτ(1+O(τ−α)).

Recall that we are interested only in the behavior for|τ| ≤ ∆t/δ, which corresponds to
z= o(ε−1) (see (A.32) and (A.35)), so we may write

z(τ) = h
1−M

4
τ2(1+o(1)ρ→0)+

√
Mhτ(1+o(1)ρ→0)

on the intervalτ > R. After scaling the timeτ = κθ whereκ is given by (B.5), we find
(after some algebraic manipulations) that equation (A.33) on this interval transforms into

(B.24) y′′(θ)+
1+o(1)

((1−P)θ2 +Pθ(1+o(1)))α+2 y(θ) = 0,

whereP(ρ,M) is given by (B.4). Since equation (B.24) limits to (B.8) asρ → 0, its scat-
tering matrix is well approximated by the scattering matrixŜof (B.8). Thus, returning to
the timeτ = κθ, we obtain from (B.11),(B.9),(B.10) that

(B.25)




D+
0

κD+
1


 = Ŝ




E1

E2


≈ Ŝ·Srot (τ,∞) ·




√
κΩ(τ)y(τ)

1√
κΩ(τ)

κy′(τ)




whereD+
0,1 are the coefficients of the expansion (A.22) for the solutions of (A.33).
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By time-reversibility, for the intervalτ <−R we have

(B.26)




D−
0

−κD−
1


≈√κŜ ·Srot (−∞,τ) ·




√
Ω(τ)y(τ)

− 1√
Ω(τ)

y′(τ)


 ,

namely,



√
Ω(τ)y(τ)

1√
Ω(τ)

y′(τ)


≈ 1√

κ

(
1 0
0 −1

)
·S−1

rot (−∞,τ) · Ŝ−1




D−
0

−κD−
1




=
1√
κ

Srot (−∞,τ) ·
(

1 0
0 −1

)
· Ŝ−1




D−
0

−κD−
1


 .(B.27)

From (B.23),(B.25) and (B.27) we find(
D+

0
κD+

1

)
≈ Ŝ ·Srot (R,∞) ·Srot(−R,R) ·Srot (−∞,R) ·

(
1 0
0 −1

)
· Ŝ−1

(
D−

0
−κD−

1

)

= Ŝ

(
cos
R +∞
−∞ Ω(τ)dτ sin

R +∞
−∞ Ω(τ)dτ

−sin
R +∞
−∞ Ω(τ)dτ cos

R +∞
−∞ Ω(τ)dτ

)(
1 0
0 −1

)
Ŝ−1

(
1 0
0 −1

)(
D−

0
κD−

1

)
.

By (B.12), this gives us the following formula for the scattering matrixS: (D−
0 ,D−

1 )→
(D+

0 ,D+
1 ):

(B.28) S≈
( √

Ggsin(Ψ+ϕ+ζ) κgsin(ψ+2ζ)
G
κ sin(Ψ+2ϕ)

√
Ggsin(Ψ+ϕ+ζ)

)
,

where

(B.29) Ψ =
Z +∞

−∞
Ω(τ)dτ≈ 2J

ρ

√
α(α+1)

n−1

andG,g,ϕ,ζ are the coefficients of the scattering matrixŜ that depend only onP andα
(see (B.17),(B.18),(B.2)).

Now, like in the proof of Theorem 2, by virtue of (A.2),(A.25),(A.14),(A.16),(A.13),(3.8),
(B.7),(B.28), we obtain the following formula18 for the trace of the monodromy matrix
A = BC:
(B.30)

Tr(A) =
2G√
hδκ

d(1+
d
R

)sin(Ψ+2ϕ)(1+o(1))+2
√

Ggsin(Ψ+ϕ+ζ)(1+
2d
R

)+o(1).

EquatingTr(A) to ±2 supply the stability intervals (B.14),(B.15); Sinceδκ is small (see
(B.7)) andG is non-zero (by (B.13)), only the first term is of importance, and the stability
intervals are created whenΨ+2ϕ≈ πk, which gives (B.14) (see (B.29)). Formula (B.15)
is found from:

∆ρ
∣∣∣∣
dΨ
dρ

∣∣∣∣
2G√
hδκ

d(1+
d
R

)≈ 4.

¤

18In particular, settingµ = 0 and α = 1 in (B.30) (so M = P = 0, δ =
√

ε/2,ρ =
√

2ε,κ =
( 1

ε
1

n−1

) 1
4
( 4

h

) 3
4 ,J(0) =

√
h) gives formula (4.1).
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[29] N. Simányi and D. Sźasz,Hard ball systems are completely hyperbolic, Ann. of Math. (2)149(1999), no. 1,
35–96.

[30] Ya.G. Sinai,On the foundations of the ergodic hypothesis for dynamical system of statistical mechanics,
Dokl. Akad. Nauk. SSSR153(1963), 1261–1264.

[31] On a “physical” system with positive “entropy”, Vestnik Moskov. Univ. Ser. I Mat. Meh., 1963
(5):6–12, 1963.

[32] , Dynamical systems with elastic reflections: Ergodic properties of scattering billiards, Russian
Math. Sur.25 (1970), no. 1, 137–189.

[33] Ya.G. Sinai and N.I. Chernov,Ergodic properties of some systems of two-dimensional disks and three-
dimensional balls, Uspekhi Mat. Nauk42 (1987), no. 3(255), 153–174, 256, In Russian.

[34] F. Takens,Homoclinic points in conservative systems, Invent. Math.18 (1972), no. 3–4, 267–292.
[35] D. Turaev and V. Rom-Kedar,Islands appearing in near-ergodic flows, Nonlinearity11 (1998), no. 3, 575–

600.
[36] D. Turaev and V. Rom-Kedar,Soft billiards with corners, J. Stat. Phys.112(2003), no. 3–4, 765–813.
[37] M. Wojtkowski,Principles for the design of billiards with nonvanishing lyapunov exponents, Comm. Math.

Phys.105(1986), no. 3, 391–414.

ANNA .RAPOPORT@WEIZMANN .AC.IL , VERED.ROM-KEDAR@WEIZMANN .AC.IL , WEIZMANN INSTITUTE,
REHOVOT, ISRAEL.

TURAEV@CS.BGU.AC.IL , BEN GURION UNIVERSITY, BEER-SHEVA , ISRAEL.


