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We show that initial data near an unperturbed stable plane wave can evolve into a regime of

spatiotemporal chaos in the slightly forced conservative periodic one-dimensional nonlinear

Schrödinger equation. Statistical measures are employed to demonstrate that this spatiotemporal chaos

is intermittent: there are windows in time for which the solution gains spatial coherence. The parameters

and initial profiles that lead to such intermittency are predicted by utilizing a novel geometrical

description of the integrable unforced equation.
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The appearance of chaos in deterministic spatially de-
pendent systems dates back to Lorenz, who showed that a
set of three ordinary differential equations, describing the
simplified dynamics of rolls in the Rayleigh-Bénard con-
vection system, can exhibit irregular behavior. This under-
standing led to theoretical and experimental studies of
various spatially-dependent systems that exhibit temporal
chaos. Then, an even more intriguing behavior called
spatiotemporal chaos (STC) was identified: chaotic dy-
namics that involve variations in both time and space.
Such behavior is commonly characterized by finding
both positive Lyapunov exponents (temporal chaos) and a
rapid decay of the time average of the two-points spatial
correlation function (spatial decoherence) [1,2]. The phe-
nomenon of STC was experimentally observed in a variety
of systems such as convection experiments [3], rotating
convection [4], chemical reaction-diffusion [5] and colo-
nies of microorganisms [6]. Theoretically, STC was shown
to exist in dissipative models such as the Kuramoto-
Sivashinsky [7], complex Ginzburg-Landau [8] and the
forced and damped nonlinear Schrödinger (NLS) [2,9]
equations. In the one-dimensional setting, these dissipative
systems have finite dimensional attractors, and their di-
mension typically increases with the systems spatial length
L. Such systems with large dimensional attractors were
shown to exhibit STC [8,10]. Notably, STC can also arise
in systems with finite length L and low-dimensional at-
tractors: the dynamics is governed then by only a few
modes having chaotic amplitudes and relative phases [2].

In this context, the forced and damped NLS equation
was proposed to be a prototypical model. On one hand, its
attractor dimension increases with L, and on the other, STC
is observed for short spatial lengths: when the attractor has
more than three modes STC already emerges [2]. Using
modulation instability theory, a critical length scale Lc,
which is independent of the damping and forcing rates, is
identified (details follow): For L > Lc the attractor dimen-
sion exceeds three, thus, in the forced and damped case
STC should appear. Conversely, for L < Lc, only temporal
chaos was observed [2].

Here we address the appearance of STC in small
Hamiltonian systems (L < Lc) by studying the conserva-
tive ac-driven periodic NLS equation. Since there is no
attractor here, there is no obvious low-dimensional mecha-
nism that governs the motion. Indeed, for the same pa-
rameter values different solutions may exhibit regular
behavior, temporal-chaos and even STC (large amplitude
unperturbed solutions typically have many unstable modes
and thus, with forcing, exhibit STC). Yet, one may expect
that for small forcing and small amplitude nearly flat initial
data, the evolution will remain spatially coherent at least
for L < Lc (as in [2]). In this Letter, we show that this is not
the case: STC may appear even when L < Lc. In fact, by
changing only one parameter, the forcing frequency, the
evolution of such an initial profile can be altered from
being regular to being STC.
The focusing periodic 1D NLS perturbed by an ac-driver

"ei�
2t with a frequency �2 (see [11,12] and references

therein) may be transformed to the autonomous NLS equa-
tion with a constant potential [13,14]:

i�t ��xx � ðgj�j2 ��2Þ� ¼ "; �ðx; 0Þ ¼ �0ðxÞ;
(1)

where hereafter �ðx; tÞ ¼ �ðxþ L; tÞ, x 2 R, g ¼ 2 and
�0ðxÞ denotes the initial data profile. We consider here the
Hamiltonian case, so the linear damping term of
[2,11,13,15], �i��, is omitted. The unperturbed equation
(" ¼ 0) is integrable. Its simplest kind of solutions are the
plane waves: �PWðt;MPW; E0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
MPW

p
exp½iEPWt�

iE0�, with mass MPW and frequency EPW ¼ �2 � gMPW.
The plane wave is called resonant when EPW ¼ 0, namely,
when its mass is MPW-res ¼ �2=g. Modulation stability
analysis shows that for MPW 2 1

2g ð2�L Þ2ðj2; ðjþ 1Þ2Þ ¼
ðMjLUM;Mðjþ1ÞLUMÞ and j � 1, the plane waves have j

linearly unstable modes (LUM) [16]. We call the stable
plane waves with 0 LUM elliptic (MPW <M1LUM), the
unstable ones with 1 LUM 1-hyperbolic (M1LUM <
MPW <M2LUM), and the bifurcating from 0 to 1 LUM 1-
parabolic (MPW ¼ M1LUM). The 1-hyperbolic plane waves
have families of homoclinic orbits—solutions with non-
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trivial spatial structure that asymptote to the plane waves as
t ! �1 [11].

When both damping and forcing are considered as in
[2,11,13,15], spatially flat solutions tend to synchronize
with the forcing frequency and converge to a resonant
plane wave with amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPW-res

p
. Then, it is observed

that the number of modes that govern the dynamics is
essentially given by the number of LUMs of the unper-
turbed synchronous plane wave plus one (the flat mode)
[2]. Thus, when this plane wave has only one LUM, a two
mode Galerkin truncation of the system (taking �ðx; tÞ ¼
cðtÞ þ bðtÞ cos2�xL , where c, b are the complex amplitudes

of the first two modes) provides a good approximation of
the full dynamics [13,15]. Then, only temporal-chaotic
solutions associated with the plane wave homoclinic orbits
may appear (see [17–19] for the truncated model analysis).
Once the synchronous plane wave has two or more LUMs,

namely MPW-res � M2LUM and thus L � Lc ¼ 2
ffiffiffi
2

p
�=�,

STC is observed [2,9].
In contrast, in the conservative periodic case, the solu-

tions do not converge to a low-dimensional attractor.
Instead, for any given set of parameters, a variety of regular
and chaotic solutions coexist. Previously, we demonstrated
that for small forcing, solutions evolving form symmetric
initial data close to plane wave withMPW <M2LUM, can be
classified into three types of temporal chaos. Moreover,
these solutions are similar in structure to the solutions of
the two mode Galerkin truncation of the conservative
model [14,19]. In particular, it was observed that when

the one-parabolic plane wave is resonant, namely
MPW-res ¼ M1LUM, hence, �

2 ¼ �2
pr ¼ 1

2 ð2�L Þ2, symmetric

profiles that are initialized near this plane wave exhibit a
new type of temporal-chaotic dynamics that was called
parabolic resonance chaos [14]. Here we consider nearly
flat and asymmetric initial profiles and show that the para-
bolic resonance mechanism can lead to spatial decoher-
ence. We provide a novel geometrical interpretation
and characterization for this development of STC.
Furthermore, we show that STC can appear even when
the profile is initialized near an unperturbed stable plane
wave (0 LUMs) and the forcing is small.
Figures 1(a)–1(c) presents the evolution of such an

initial profile (Mð�ðx; 0ÞÞ<M1LUM ¼ 0:2025) under
Eq. (1) for three different forcing frequencies, where all
other parameters are identical. In particular, L ¼
2�
0:9 < Lcð�Þ for all the three frequencies, namely, the reso-

nant plane wave has always less than two LUM
[MPW-resð�Þ<M2LUM ¼ 0:81]. In the first row the evolu-
tion of the three surfaces j�ðx; tÞj is shown. Notice that
only in the middle plot, at which the frequency was tuned
to be in parabolic resonance, spatial decoherence seems to
emerge. Figure 2 demonstrates that the parabolic resonant
solution is indeed the most decoherent, having the smallest
time averaged spatial autocorrelation. Moreover, it shows
that the decoherence is intermittent—it has windows at
which spatial correlation is regained on observable time
scales (these appear also in dissipative STC systems [7,8]).
This intricate behavior is better understood by examining
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FIG. 1 (color online). Evolution of a nearly flat profile under forcing with three different frequencies: (a) elliptic: �2 ¼ 0:2
(b) parabolic:�2 ¼ 0:45 and (c) hyperbolic:�2 ¼ 1. First row: surface plot, j�ðx; tÞj, Second row: PDE-EMBD: blue, green, and red
curves: projections of unperturbed standing waves branches to the (M, H0) space. Orange, cyan, and magenta lines: projections of the
perturbed solutions: (Mð�ðx; tÞÞ, H0ð�ðx; tÞÞ). Third row: projections to the (Mð�ðx; tÞÞ, � ¼ argðh�ðx; tÞixÞ) space on top of the Hflat

level lines (black). The initial profile is �0ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
0:15

p
ei5=9� þ 10�3eið2�=LÞx, " ¼ 5� 10�2, 2�

L ¼ 0:9.
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two additional projections. Recall that the first two inte-
grals of the unperturbed equation are its mass (particle
number), and the unperturbed Hamiltonian:

Mð�Þ¼ 1

L

Z L=2

�L=2
j�j2dx;

H0ð�Þ¼ 1

L

Z L=2

�L=2

�
�j@x�j2þg

2
j�j4��2j�j2

�
dx;

(2)

so, in particular, Mð�PWðtÞÞ ¼ MPW. For the perturbed
solutions both Mð�ðx; tÞÞ and H0ð�ðx; tÞÞ become time-
dependent (second row of Fig. 1). While jH0ð�ðx; tÞÞ�
H0ð�ðx; 0ÞÞj ¼ Oð"Þ for all time [20], the massMðtÞ of the
parabolic resonant solution (middle column) is ramped up
by the ac driver. We propose that this ramping up of M
provides a low-dimensional mechanism for the develop-
ment of STC; The parabolic resonance instability rampsM
up beyond the threshold value of M2LUM, there, three
modes are activated, and thus STC appears. The intermit-
tent behavior (see Fig. 2) appears when the mass occasion-
ally decreases back to the values of M<M2LUM where
spatial coherence is gained.

The underlying skeleton shown in the second row of
Fig. 1 is the PDE-EMBD—the Energy Momentum Bifur-
cation diagram. We propose that projecting the perturbed
solutions on top of this skeleton provides novel insights
regarding their structure. The skeleton consists of the pro-
jection of the simplest unperturbed solutions of Eq. (1) to
the (H0, M) plane. The blue curves in Figs. 1 and 3 cor-

respond to the plane wave family: fMPW ¼ ð�2�EPWÞ
g ; H0 ¼

g
2M

2
PW ��2MPWg. For MPW >M1LUM its homoclinic or-

bits have the same projection indicated by a dashed blue

curve. The red and green curves correspond to the stand-
ing waves solutions: �swðx; tÞ ¼ eiEtþiE0�EðxÞ, where E,
�EðxÞ are eigenvalues and eigenfunctions of the non-
linear operator N ð�EÞ�E ¼ ð@xx þ gj�Ej2 ��2Þ�E ¼
�E�E satisfying �Eðxþ LÞ ¼ �EðxÞ. Notably, these so-
lutions are found analytically: the equation N ð�EÞ �
E�E ¼ 0, viewed as an initial value problem in x, is the
Duffing equation. Imposing the L periodicity in x leads to
the selection of a discrete set of solution branches.
The PDE-EMBD provides a convenient representation

of these branches of solutions. Since the unperturbed equa-
tion is integrable and M and H0 are preserved, any un-
perturbed solution projected to the PDE-EMBD produces a
single point (Fig. 3). If this point is bounded away from a
particular branch then their corresponding profiles are dis-
tinct. The key observation here is that for the periodic 1D
NLS, the diagram consists of curves that are typically well
separated (only a few projection-produced overlaps and
intersections appear). Hence, it enables to distinguish be-
tween neighborhoods of the different standing waves (and
similarly of the traveling waves) solutions; Projecting a
perturbed solution on top of this integrable skeleton helps
to identify the regions in the infinite dimensional phase
space that it visits; In the hyperbolic frequency case
[Fig. 1(c)], the solution mainly remains near the stable
plane wave regime (solid blue curve) and thus appears
regular. In the elliptic frequency case [Fig. 1(a)] the solu-
tion crosses the unstable plane wave branch (dashed blue
curve), hence exhibits temporal chaos that is associated
with the plane wave homoclinic orbits. In the parabolic
case [Fig. 1(b)], the solution wonders away from the plane
wave curve along the green standing wave branch and the
homoclinic crossings till its mass is ramped up to levels at
which STC appears.
Finally, we show that the classification of solutions that

are initialized near the plane waves depends on both the
number of LUMs associated with them (determined by
their mass) and on their phases. First, recall that spatially

flat solutions of the form �ðx; tÞ ¼ ffiffiffiffiffiffiffiffiffiffi
MðtÞp

exp½i�ðtÞ� are
invariant under the perturbed dynamics and that the motion
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FIG. 3 (color online). (left) The PDE-EMBD: blue, green, and
red curves projections of three standing waves families to the
(H0, M) space. Black points: projections of the two quasiperi-
odic solutions shown on the right. (a) (top): solution that is close
to the plane wave homoclinic orbits. (b) (bottom) solution that is
close to a stable standing wave branch.
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FIG. 2 (color online). The normalized averaged autocorrela-

tion function, CTð�; y; tÞ ¼ RtþT=2
t�T=2

RL=2
�L=2 �ðx; sÞ��ðxþ

y; sÞdxds=RtþT=2
t�T=2

RL=2
�L=2 j�ðx; sÞj2dxds is calculated over a

time window T for the three solutions of Fig. 1 with the elliptic
(orange), parabolic (cyan) and hyperbolic (magenta) frequen-
cies. Inset: Long-time average of the normalized correlations
Re½C3900ð�; x; 2050Þ� (here Im½C3900ð�; x; 2050Þ� � 0). It
shows that for large T, the parabolic resonant solution is the
most decoherent of the three. Similar results are found using the
mutual information measure (see [2,11]). Main figure: temporal
changes of the normalized correlations at the midbox point:
Re½C70ð�; L=2; tÞ�.
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on this ‘‘flat’’ invariant plane is described by the

Hamiltonian HflatðM;�Þ ¼ g
2M

2 ��2Mþ 2"
ffiffiffiffiffi
M

p
cos�

[11,12]. Hflat has a resonance zone near the unperturbed
resonant plane wave MPW-res of width of order

ffiffiffi
"

p
in M.

The third row of Fig. 1, showing the level sets of Hflat,
demonstrates that the chosen " value is sufficiently small
such that the resonance zone lies entirely belowM2LUM for
both the elliptic and parabolic frequencies. The motion in
the neighborhood of this ‘‘flat’’ invariant plane depends on
the value of M: for small values it is stable, for M 2
ðM1LUM;M2LUMÞ it is unstable and exhibits excursions
along the unperturbed homoclinic orbits to the plane
wave, whereas for M>M2LUM we expect STC to appear.
Indeed, compare the Hflat level sets with the projection of
the solutions to the (M, � ¼ argh�ðx; tÞix) plane; In the
elliptic and hyperbolic [21] cases the level sets of Hflat are
essentially traced by the solutions (first and third columns):
only when M 2 ðM1LUM;M2LUMÞ the chaotic homoclinic
excursions appear as straight horizontal lines in the (M, �)
plane. On the other hand, in the parabolic case, we see that
the perturbed motion of a nearly flat profile leads to ramp-
ing up of M much beyond the

ffiffiffi
"

p
resonance zone of the

perturbed flat solutions. The parabolic resonant instability
drives the solutions away from the flat invariant plane. This
instability is sufficiently large to drive the particle number
beyond the critical value of M2LUM, and thus spatial deco-
herence is observed.

This last row reveals an intricate relation between the
choice of the forcing frequency �2, the forcing amplitude
" and the nearly flat initial data (mass and phase); we
demonstrated that we can predict how to alter these to
produce different perturbed solutions. In particular, to
drive a small nearly flat initial profile to STC, it is best to
tune�2 to be close to�2

pr and then increase " till decoher-

ence is achieved. We conjecture that for any given set of
parameters ( 2�L , g) there exist "min ¼ "minð2�L ; gÞ such that
for all " > "min there exists an order one interval of initial
phases and an Oð ffiffiffi

"
p Þ interval of (�2 ��2

pr) values that

drive an arbitrarily small amplitude solution to a spatial
decoherent state. We demonstrated that "min is rather small
["minð0:9; 2Þ � 0:05]. Conversely, coherence for long time
scales may be gained by either decreasing " or by selecting
�2 away from this Oð ffiffiffi

"
p Þ interval.

The implications of our findings on experiments (e.g., of
the dependence of the appearance of STC on the driver
frequency) is yet to be explored; recent experiments with
high intensity laser beams [22] or Bose-Einstein conden-
sates [23] confined in a cigar-shaped [24] or in magneti-
cally guided ring-shaped traps [25], are often modeled by
the integrable 1D NLS. Designing these experiments with
an ac driver with an externally tunable variable frequency
to examine the emergence of STC may be exciting and
may lead to better control of such devices. Moreover, it
may shed light on the dynamical stability of current experi-
ments as the 1D NLS equation models only their leading
order effects [22,26].

We acknowledge the support of the Israel Science
Foundation (273/07), Minerva foundation, and Russian-
Israeli grant (06-01-72023). We thank J. Gibbon, A.
Soffer, E. Titi, D. Turaev, and M. Weinstein for helpful
discussions.

*eli.shlizerman@weizmann.ac.il
†vered.rom-kedar@weizmann.ac.il

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993), and references therein.

[2] D. Cai et al., Phys. Lett. A 253, 280 (1999).
[3] G. Ahlers and R. P. Behringer, Phys. Rev. Lett. 40, 712
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