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An unbounded energy growth of particles bouncing off two-dimensional �2D� smoothly oscillating polygons
is observed. Notably, such billiards have zero Lyapunov exponents in the static case. For a special 2D polygon
geometry—a rectangle with a vertically oscillating horizontal bar—we show that this energy growth is not only
unbounded but also exponential in time. For the energy averaged over an ensemble of initial conditions, we
derive an a priori expression for the rate of the exponential growth as a function of the geometry and the
ensemble type. We demonstrate numerically that the ensemble averaged energy indeed grows exponentially, at
a close to the analytically predicted rate—namely, the process is controllable.
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I. INTRODUCTION

The problem of Fermi acceleration has attracted a signifi-
cant interest of researchers since 1949. It was originally pro-
posed by Fermi �1� and later refined by Ulam �2� to explain
the acceleration of cosmic rays observed by Hess �3�. The
Fermi-Ulam model �4,5� consists of a particle bouncing be-
tween two rigid walls, one of which is fixed and the other
oscillates periodically. It is now well established that for the
one-dimensional Fermi-Ulam model, the particle cannot gain
energy unboundedly if the wall motion is smooth. However,
it has been shown that unbounded energy growth can be
achieved when the particle motion takes place in the pres-
ence of potentials �6,7� or if one introduces a relativistic
factor in the equations of motion �8�. Nonsmooth motion and
stochastic fluctuations may also lead to unbounded energy
growth �9� which is typically polynomial in time �10�.

More recently, it was suggested that chaotic two-
dimensional billiards may provide the needed randomness
for the acceleration under smooth oscillations �11–16�. The
quantum mechanical oscillating chaotic billiards also play an
important role in the modeling of mesoscopic devices �17�. It
has been conjectured �13� and proven �16� that a sufficient
condition for unbounded energy growth in two-dimensional
billiards with oscillating boundaries is the chaotic nature
�i.e., the existence of positive Lyapunov exponents on a non-
trivial set� of the underlying static billiard. The existence of
orbits of linear energy growth was established for the so-
called Mather problem in �18–21�. Finally, it was numeri-
cally shown that there can be a very slow unbounded energy
growth even when the static billiard is integrable—such a

growth was observed in oscillating elliptical billiards �22�.
Here, we consider polygonal billiards. While polygonal

billiards have zero Lyapunov exponents, almost all of them
are nonintegrable �23�. The return map to a section in such
billiards may be sometimes related to interval exchange
maps �24�, so one may suspect that a smooth oscillation of a
boundary component is “ideologically” equivalent to a non-
smooth oscillation of a one-dimensional accelerator. Indeed,
for many polygonal geometries, when the oscillation ampli-
tude is small enough, we observe an unbounded energy
growth at a linear rate �as a function of the number of colli-
sions �25��, which is similar to the nonsmooth one-
dimensional case �10� and to the strongly chaotic smooth
case �13� �see, e.g., Fig. 2�b��. Thus, we conjecture that
pseudointegrability �26� is a sufficient condition for achiev-
ing unbounded energy growth in billiards with smoothly os-
cillating boundaries.

May a faster rate of energy growth be achieved? In �16�, a
mechanism was proposed for achieving an exponential en-
ergy growth in chaotic billiards �those with a nontrivial hy-
perbolic invariant set� which are subjected to slow boundary
oscillations. Namely, it was shown that when two �or more�
hyperbolic periodic orbits change their lengths in a nonsyn-
chronous fashion, a particle that visits their neighborhoods in
the correct order will experience exponential energy growth,
and the hyperbolicity of the chaotic set was then used to
establish that such synchronized visits may indeed be ar-
ranged by specific orbits. Exactly the same effect one should
encounter for a geodesic flow on a surface with negative
curvature when the curvature is slowly changing with time,
see �21�. However, as indicated in �16�, most orbits will ex-
perience only quadratic in time energy growth: as the veloc-
ity of the particle inside the breathing billiard increases, the
jumps between different hyperbolic periodic orbits start to
happen, for a typical orbit, too fast; this leads to an effective
averaging of the energy increments or decrements, which
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does not impede the energy growth completely, yet slows it
down significantly.

Inspired by this analysis, we design a simple polygonal
billiard that has two families of periodic orbits that change
their lengths in an antisynchronous way: a rectangle with an
oscillating bar inside. The static version was previously in-
troduced in �27,28�, and was used to study weak mixing
along filamented surfaces in �29�. We show that the slow bar
oscillations inside this billiard lead to exponential energy
growth on average, i.e., it is much faster than any previously
known configuration.

Below, we explain the setting of the problem and calcu-
late analytically the exponential gain or loss of energy a par-
ticle experiences when it completes one pass along the oscil-
lating bar. We then argue that for fast particles the locations
above or below the bar may be viewed as a sequence of
independent random variables, and that this random process
is in favor of gaining energy. Indeed Eqs. �6� and �7� show
that the expected value of the energy gain factor after one
revolution of the particle across the box is, typically, greater
than 1. Numerically, we verify that generic ensembles of
initial conditions do exhibit exponential energy growth, with
the numerically observed rate quite well agreeing with the
analytic predictions.

II. SLITTED RECTANGLE

Consider a billiard in a rectangle with a bar as shown in
Fig. 1 �see �27–29��. By symmetry, we may consider half of
the slitted rectangle: Rs= ��x ,y� � �y� �−1,1� ,x� �0,L�� \
�y=s ,x� �0,����, where s� �−1,1� indicates the slit vertical
position. To achieve acceleration, let the slit oscillate slowly:

s= f���= f̄ + f̃��� ,�� �0,2�� , �=�t, where � f̃���	=0. The
slit vertical velocity is V�t�= ṡ=�f����. The phase space vari-
ables for this billiard geometry are �tn ,xn ,yn ,un ,vn�, where tn
is the time instant of the nth collision, �n=�tn is the phase of
the slit at the collision time, �xn ,yn� is the location of the
particle at tn, and �un ,vn� is the velocity vector of the particle
immediately after the nth collision. The particle undergoes
elastic collisions from all the boundaries. Crucially, the hori-

zontal speed u= �un� remains a constant of motion, whereas
the vertical speed changes only when the moving slit is met:

vn+1 = 2�fn� − vn when�yn = fn,xn � �0,��� , �1�

where fn= f��n� and fn�= f���n�.
Since the horizontal speed stays constant, the time the

particle spends oscillating above or below the slit �at x
� �0,��� is simply T�=2� /u, and the time to return to a
vertical section after completing one cycle around the rect-
angle is TL=2L /u. Hence, the phase shift of the slit after
time T� is ��=2�� /u and the phase shift of the slit after a
full revolution of the particle is �L=2�L /u.

During the slit-travel time the particle’s vertical speed is
changing according to

vn+1 = vn−1 + 2�fn+1� , �2�

where

tn+1 = 
tn−1 +
2 − fn−1 − fn+1

vn−1
motion above the slit

tn−1 −
2 + fn−1 + fn+1

vn−1
motion below the slit.�

�3�

For sufficiently fast particles �tn+1− tn−1�→0. Thus, we may
approximate these difference equations by the ODEs

dv
dt

= 
 �v
f����

1 − f���
motion above the slit

− �v
f����

1 + f���
motion below the slit.� �4�

Integrating from the entry phase � up to the exit phase �
+��, the exit velocity v̄ may be found:

v̄
v

= 

1 − f���

1 − f�� + ���
motion above the slit

1 + f���
1 + f�� + ���

motion below the slit.� �5�

Depending on the values of � and �� and on whether the
particle goes above the bar or below it in each cycle, the
particle will either gain or loose the kinetic energy at each
passing of the slit.

The values of �� ,��� are determined by the particles’ hori-
zontal velocity. The phase gained when the particle traverses
the slit is ��=2�� /u. The distribution of �, the slit phase
when the trajectory enters the slit, depends on �L: if �L /� is
rational, then ��mod 2�� takes only a finite number of val-
ues, otherwise it densely covers �0,2��. We should empha-
size again that the dynamics in � is completely regular as the
horizontal velocity is preserved.

Next, we argue that in the regime where the vertical ve-
locity is large and growing, the vertical location of the par-
ticle after several rounds is essentially unpredictable: it de-
pends sensitively on the exact exit point and velocity at the
previous iterate. To explain the effect, let us consider in more
details the derivation of Eq. �5�. In this equation the entry
phase � represents the phase of the slit at the time of the first

FIG. 1. Geometry of the slitted rectangle. Hereafter, unless oth-
erwise noted, we consider the rectangular billiard with an oscillat-
ing bar with: L=2, �=1, f�t�=−0.1 cos� 2�

70 t�.
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collision of the particle with the bar. Thus, two close-by ini-
tial conditions that are �y apart and hit the bar from the same
side produce a phase shift ��=��y /v. Now, �v̄ /�� is pro-
portional to v �see Eq. �5�, cancellations are possible, but
occur only at specific �� ,��� values�. Hence, two initial con-
ditions that enter the upper part of the slit with the same
velocity and slightly different vertical positions, y and y
+�y, will exit with vertical velocities that are �v̄��y apart.
If the energy grows exponentially, this small difference will
magnify exponentially and thus the difference between the
return vertical positions will also diverge exponentially. This
means that even though the sequence of up and down splits
is deterministic, the correlations decay fast with time.

Thus, we hereafter employ, as a modeling hypothesis, the
view that the particle motion is a random process, with the
particle up and down positions being independent random
variables. Namely, we assume that the probability to fall into
the upper part at the entry phase � is proportional to the
normalized y-interval length, �1− f���� /2, and is independent
of the history of the previous rounds. Then, �, the expected
value of gain in the kinetic energy in one cycle around the
rectangle, for a single particle trajectory that enters the slit
with the phase � and horizontal velocity u is estimated as

�� = E�v̄2/v2� =
1 − f���

2
� 1 − f���

1 − g���

2

+
1 + f���

2
� 1 + f���

1 + g���

2

,

�6�

where g���ª f��+���. It is easy to check that the right-hand
side has, as a function of g, a minimum at g= f �there ��

=1�, which means that

�� 	 1 if f��� � f�� + ��� . �7�

Realizing that the process of energy gain is multiplicative,
we further notice, by a similar computation, that the expec-
tation value of the logarithmic gain is also positive,

m� = E�ln�v̄2/v2��

= �1 − f����ln
1 − f���
1 − g���

+ �1 + f����ln
1 + f���
1 + g���

	 0, if f��� � f�� + ��� . �8�

Equation �7� obviously implies an exponential energy growth
for the expected value of the particle’s energy, whereas Eq.
�8� also implies that almost every initial condition produces
exponentially accelerating trajectory �see below�.

In order to estimate the ensemble growth rate R��
,

R��
ª lim

t→


1

t
ln E� v2�t�

v2�0�� , �9�

consider the energy gain after each cycle around the rect-
angle as a random variable, X�= v̄2 /v2, so the energy gain
after N cycles is given by

v2�t = NTL�
v2�0�

= X�1
X�2

¯ X�N
. �10�

We assume that v is sufficiently large so the �X�i
� may be

viewed as independent random variables, with the mean

value of X� given by Eq. �6�. This allows the expected value
of the product in Eq. �10� to be evaluated as

E�v2�NTL�
v2�0� � = ��1

��2
¯ ��N

= exp��
i=1

N

ln ��i� = exp� N

2�
�

0

2�

ln ��d�� ,

�11�

where the last equality holds only in the nonresonant case,
assuming that �i are distributed uniformly over �0,2�� �see
Fig. 5 for a resonant case�. Notably, while the above formula
does not supply information for the energy growth of a single
trajectory, it shows that for a finite ensemble of K initial
conditions, the observed average energy growth is

� v2�t�
v2�0�� = exp�R��

t� + O� �

�K

 , �12�

where � denotes the standard deviation of v2�t� /v2�0�. As we
show below, the standard deviation can also grow exponen-
tially in time, so larger ensembles are needed as time
progresses. Note that in Eq. �9�, R��

is defined by taking the
limit K→
 first, and the order of the limit cannot be re-
versed.

To learn about the behavior of individual trajectories, we
use Eq. �8� to establish

E�ln
v2�NTL�

v2�0� � = m�1
+ m�2

+ ¯ + m�N

= �
i=1

N

m�i
=

N

2�
�

0

2�

m�d� ª M��
t , �13�

where, again, the second line holds only in the nonresonant
case. By the law of large numbers, it follows that for almost
every trajectory

lim
t→


1

t
ln

v2�t�
v2�0�

= M��
, �14�

namely, for typical trajectories the energy grows exponen-
tially �since M��

	0 for most �� ,L� by Eq. �14��. Assuming
that the additive process of Eq. �13� leads to a normal distri-
bution, the ensemble rate of energy growth is related to the
individual rate of energy growth by R��

=M��
+0.5S��

2 , where

S��

2 t is the variance of ln
v2�NTL�

v2�0� �30�. Notice that R��
may be

positive even when M��
is negative: this situation corre-

sponds to cases in which most individual trajectories decel-
erate yet the ensemble average accelerates. Notably, here we
showed that both rates are positive.

Next, we compute these rates when the bar oscillation

amplitude is small. Let f̃���=�k=1

 �ak sin k�+bk cos k�� be

the Fourier expansion of f̃ . Assuming that � f̃ ��1− � f̄ �, for an
ensemble of initial conditions with a fixed, generically cho-
sen horizontal velocity �u�=2�� /��, it is easy to obtain from
Eqs. �6� and �11� that the rate of the averaged energy growth
in Eq. �9� is
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R��
� 3M��

�
6��

L���1 − f̄2�
�
k=1




�ak
2 + bk

2�sin2k��

2

 0.

�15�

Similarly, one estimates the standard deviation for the en-

ergy gain after N cycles as �2� v2�t=NTL�
v2�0� �

=E�X�1

2 � ·E�X�2

2 �¯E�X�N

2 �−E2� v2�NTL�
v2�0� �, which leads, for small

f̃ , to

��v2�t = NTL�
v2�0�

� � E�v2�NTL�
v2�0�

��exp�4R��
t

3

 − 1.

�16�

Since the ratio of the standard deviation to the expectation
grows exponentially with time, we have to take sufficiently
large ensemble sizes in order to ensure that the average en-
ergy grows at a rate close to the predicted one.

Figure 2 shows the numerically obtained plot of the aver-
aged energy growth vs time for a random ensemble of initial
conditions, comparing three oscillating billiard geometries:
the slitted rectangle, a trapezium, and a half-stadium. For
small enough oscillation amplitudes, the only geometry
which provides exponential energy growth is the slitted rect-
angle and the observed growth rate matches very well with
the predicted rate of Eq. �15�. For the one-harmonic case, the
rate R��

given by Eq. �15� has a simple decaying oscillatory
form, with a global maximum at ��=�max where �max
=tan�0.5�max��2.35, see Fig. 3.

In Fig. 2�a� we present two different ensembles, one with
a generic u �blue/dotted curve� and the other with the u that
provides maximal growth rate �red/solid curve�. A linear fit

to the presented ensembles gives R��
��6.919�0.014�

�10−4 �blue/dotted� and R�max
��9.187�0.049��10−4 �red/

solid�. The corresponding predicted rates are 6.775�10−4

and 9.755�10−4. Other ensembles with the same initial ve-
locity or with a distribution of vertical velocities provide a
similar energy growth rate. The presented results are compu-
tationally solid: the total number of reflections of the particle
is less than 5�105 so that the final accumulated numerical
error for the ensemble average is smaller than 1.4%. The
sample size is sufficient for the presented computational
time: taking half the sample size hardly changes the averaged
behavior for about 40 bar oscillations, at which the exponen-
tial rate is already clearly seen �31�. As can be seen from
Eqs. �12� and �16�, for an ensemble of K particles, the devia-
tion of the statistical average from the theoretical mean value
is O�� /�K�, and for a given ensemble size, after long
enough time the dispersion effects become important and
energy growth is no longer precisely determined by Eq. �9�.
For the maximal ensemble shown in Fig. 2, after Q oscilla-
tions of the bar, we have ��v2�
�E�v2���exp�0.091Q�−1� /K. Thus, the condition, ��v2�
�E�v2�, for the ensemble averaged energy to stay close to
the mean in Eq. �9� is satisfied for Q�11 ln�K+1�. For an
ensemble of 1000 particles, this implies Q�75. As can be
seen in Fig. 2�a�, the observed energy growth starts deviating
from the mean after about 50 oscillations of the bar. On
longer time scales, for a fixed ensemble size K, we expect
that the energy growth rate will converge to the lower value
predicted by Eq. �14�.

In Fig. 2�b� we present the averaged energy growth of
similar ensembles in a typical pseudointegrable oscillating
billiard and in an oscillating chaotic billiard. The pseudoin-
tegrable billiard is a trapezium with an oscillating base, ver-
tical sides and an inclined top at an angle �=� /18. The
chaotic billiard is a half-stadium with an oscillating base,
vertical sides and a half-circle dome. The bottoms’ lengths
are 2� and the billiards are of the same area as the slitted
rectangle. We see that both billiards produce a similar aver-
aged energy growth. The averaged energy has an oscillatory
component associated with the forcing period and a growing
envelope component that appears to be linear in the number
of collisions for as long as 900 base oscillations. We have
checked that other polygons with an oscillating edge lead to
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FIG. 2. �Color online� Ensemble averaged energy growth in the
slitted rectangle and in a typical pseudointegrable accelerator. All
ensembles consist of 1000 randomly placed �uniformly distributed�
particles. �a� The rectangle with an oscillating bar produces expo-
nential growth rates that are controlled by the ensemble horizontal
velocity. Blue curve: u0=4�� /�5, v0=41u0 Red curve: u0

=2�� /�max, v0=41u0. �b� The oscillating pseudointegrable trape-
zium �blue/dotted� and the oscillating chaotic half-stadium �red/
solid� produce much slower energy growth compared to the rect-
angle with oscillating bar �notice that the energy axis is logarithmic
in �a� and linear in �b��. The energy growth in the stadium and the
trapezium appears to be only linear in time for the first 900 cycles.
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similar linear energy growth rates, which are also typically
observed in strongly chaotic, dispersing billiards �it is easy to
compute �16� that the rate, linear in the number of collisions,
corresponds to a quadratic dependence on time in the long
run: as the energy—hence the particle speed—increases, the
time interval between collisions decreases; however, the en-
ergy growth we observe here is not significant enough to
make the nonlinear dependence of the energy on time be
visible in Fig. 2�b��.

Next, we show the predictive power of Eqs. �6� and �15�
in controlling the averaged exponential growth rate of vari-
ous ensembles. Using Parseval’s theorem, an upper bound
for R��

is

R��
�

12��� f̃2	

L���1 − f̄2�
=

12��

L��

� f̃2	

�1 − � f̄ ��2

1 − � f̄ �

1 + � f̄ �
�17�

showing that for a given small oscillation/gap ratio, the best

strategy is to keep f̄ =0 while increasing � f̃2	. Figure 4 vali-
dates the above formula, demonstrating that we are able to
control the exponential growth rate of energy. Figure 4�a�
shows that at f̄ =0 the exponential growth rate increases with

� f̃2	, whereas Fig. 4�b� shows that for a fixed � f̃2	
�1−� f̄ ��2

, the

growth rate decreases with � f̄ �.
Finally, Fig. 5 shows a resonant ensemble: we take 1000

particles, with u0=2�� /� so that �L=2� and ��=�, distrib-
uted evenly over y0� �f�0� ,1� and fixed x0=1.01� so that
�=�0=0.005�. Taking sufficiently large v�0� leads to an en-
ergy growth rate equal to �15.92�0.08��10−4, namely,
larger by a factor of about 1.6 from the maximal averaged
rate and by a factor of 1.9 from the averaged growth rate

predicted by Eq. �15� for ��=�. The averaged exponential
growth here is much noisier than the one we get for generic
ensembles—the reason for that is under current study. This
much higher growth rate is achieved since the value of �, the
slit phase at the instant of the particle’s entrance to the slit
region, remains constant for the resonant ensemble. Hence,
the averaging of the energy gain over � �the last equality in
Eq. �11�� should not be applied, and Eq. �6� should be used
instead to find the corresponding constant ��. Our judicial
choice of �0=0.005� near �32� the maximum of �� �where,
by Eq. �6�, R��

=16.55�10−4� allows to obtain a growth rate
which is significantly higher than the average.

III. CONCLUSIONS

We have demonstrated that our Fermi acceleration ma-
chine leads to a much faster energy growth than other breath-
ing billiards. Moreover, since we can control the energy
growth rate in this accelerator, other issues, such as optimiz-
ing the accelerator efficiency by tuning the forcing higher
harmonics and the slit averaged position may be now ex-
plored.

Would other oscillating billiard geometries lead to an ob-
servable averaged exponential growth rate? Though the os-
cillating stadium has been observed to lead to only quadratic
in time energy growth for small oscillation amplitude �13�,
we have numerically observed that higher oscillation ampli-
tudes can lead to higher growth rates, possibly, yet not
surely, exponential. This is under current study.

We now think that the randomization of the particle posi-
tion and the preservation of the horizontal velocity in the
billiard with the interior oscillating bar are both key ingredi-
ents in achieving the exponential energy growth for small
oscillation amplitudes. Notably, these ingredients keep the
process far from statistical equilibrium: one velocity compo-
nent grows fast, while the other component stays bounded.

Summarizing, we are now able to create exponentially
fast acceleration in a smoothly oscillating Fermi accelerator,
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FIG. 4. �Color online� The controllability of the averaged expo-
nential energy growth rate in the slitted rectangle. The energy

growth rates for different values of � f̃2	 and f̄ are shown. �a� De-

pendence on � f̃2	: Here f =−a1 cos2�
70 t, where a1

= �0.10,0.11,0.12,0.13,0.14�, u0=4�� /�5 and v0=41u0. The ex-
ponential energy growth rate increases approximately linearly with

� f̃2	 �as � f̃2	1�� where ��0.25� �b� Dependence on f̄: fixing � f̃2	
�1−� f̄ ��2

,

and letting f = f̄ −a1 cos2�
70 t with f̄ � �0,0.2� increasing by steps of

0.05, the slope decreases with f̄ . The dashed line is a straight line
that is drawn for reference.
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FIG. 5. �Color online� Energy growth rate for a resonant en-
semble. The ensemble consists of 1000 particles with u0=2�� /�
and v0=299u0 �so that �L=2� and ��=��, distributed evenly over
y0� �f�0� ,1� and fixed x0=1.01� �so that �=�0=0.005��. The
green line slope provides a growth rate of �15.92�0.08��10−4

whereas the predicted rate is R=16.55�10−4.
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and to analytically predict, and thus control, the exponential
growth rate that is realized by various ensembles. We believe
that this is an exciting discovery that can be perhaps experi-
mentally realized.
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