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Abstract
The integrable structure of the periodic one-dimensional nonlinear Schrödinger
equation is utilized to gain insights regarding the perturbed near-integrable
dynamics. After recalling the known results regarding the structure and
stability of the unperturbed standing and travelling waves solutions, two new
stability results are presented: (1) it is shown numerically that the stability
of the ‘outer’ (cnoidal) unperturbed solutions depends on their power (the L2

norm): they undergo a finite sequence of Hamiltonian–Hopf bifurcations as
their power is increased. (2) another proof that the ‘inner’(dnoidal) unperturbed
solutions with multiplicity �2 are linearly unstable is presented. Then, to study
the global phase-space structure, an energy–momentum bifurcation diagram
(PDE-EMBD) that consists of projections of the unperturbed standing and
travelling waves solutions to the energy–power plane and includes information
regarding their linear stability is constructed. The PDE-EMBD helps us to
classify the behaviour near the plane wave solutions: the diagram demonstrates
that below some known threshold amplitude, precisely three distinct observable
chaotic mechanisms arise: homoclinic chaos, homoclinic resonance and, for
some parameter values, parabolic-resonance. Moreover, it appears that the
dynamics of the PDE chaotic solutions that exhibit the parabolic-resonance
instability may be qualitatively predicted: these exhibit the same dynamics
as a recently derived parabolic-resonance low-dimensional normal form. In
particular, these solutions undergo adiabatic chaos: they follow the level lines
of an adiabatic invariant till they reach the separatrix set at which the adiabatic
invariant undergoes essentially random jumps.

Mathematics Subject Classification: 35Q55, 70H11, 37Kxx

(Some figures in this article are in colour only in the electronic version)

0951-7715/10/092183+36$30.00 © 2010 IOP Publishing Ltd & London Mathematical Society Printed in the UK & the USA 2183

http://dx.doi.org/10.1088/0951-7715/23/9/008
mailto: eli.shlizerman@weizmann.ac.il
mailto: vered.rom-kedar@weizmann.ac.il
http://stacks.iop.org/no/23/2183


2184 E Shlizerman and V Rom-Kedar

1. Introduction

The one-dimensional nonlinear Schrödinger (NLS) equation is an integrable partial differential
equation possessing an infinite number of symmetries corresponding to infinite number of
conserved quantities. Indeed, utilizing the inverse scattering theory the one-dimensional
NLS [1, 17, 42, 45] (on the line R or the circle T

1) is solvable as an initial value problem.
In the physical context, the NLS equation is a first order nonlinear model for the propagation
of dispersive waves that interact nonlinearly and thus arises in various applications such as
propagation of laser beams in optical fibres, surface waves and Bose–Einstein condensates.
The role of the nonlinear terms has become especially significant in recent years, as high
intensity laser beams [45] and Bose–Einstein condensates are realized experimentally [21].
The common nonlinearity for the NLS equation is the cubic nonlinearity and the sign of the
nonlinearity (sign (g) in equation (1.1)) determines its nature3: a defocusing equation for g < 0
and a focusing equation for g > 0:

iϕt − ϕxx − g|ϕ|2ϕ = 0. (1.1)

From the variety of solutions of the integrable one-dimensional NLS equation the solutions
that attracted much attention of analytical, numerical and experimental studies are the standing
waves or their generalization—the travelling waves (on R, the famous solitary waves solutions
correspond to the subclass of such waves having a finite ‘power’, namely a finite L2 norm)
[3, 45]. The standing waves are solutions that are stationary in the spatial domain and periodic
in time. The travelling waves have a fixed spatial profile that periodically oscillates in time and
moves with a constant velocity in the spatial domain. The existence of stable standing/travelling
waves is of high practical importance, for example for encoding and transmitting data in optical
fibres [2, 44].

The linearization of the NLS equation about a standing wave solution boils down to
solving the eigenvalue problem of a matrix operator N (see [55] and section 2.2). Although
the linearized operator consists of two self-adjoint operators L+ and L−, it is not self-adjoint
and determining its eigenvalues is not a straightforward task. The linearized problem near the
quiescent and the plane wave solutions is explicitly solvable by modulation stability analysis.
In particular, as the amplitude of the plane wave grows, more modes become unstable, and
the number of linearly unstable modes (LUMs) for a given plane wave amplitude may be
explicitly computed (see [17] and section 2.2). The ground state standing waves on R

N were
proved to be nonlinearly stable by utilizing the framework developed by [9, 16] for the KdV
equation and by [57] for the NLS equation. To deal with the other standing waves, a theoretical
framework for proving linear instability was developed in [28–30, 36]. In this framework one
deduces instability when the number of positive eigenvalues of the operator L+ exceeds the
number of positive eigenvalues of the operator L− by more than one (see section 2.2). Recently,
these theories were applied to the one-pulse and two-pulse dnoidal standing waves of the one-
dimensional NLS with periodic boundary conditions [6] and extended to provide counting of
the number of unstable eigenvalues [33].

Here we consider this latter case of the focusing cubic one-dimensional NLS equation
with periodic boundary conditions. The infinite-dimensional phase space is composed of level
sets of the constants of motion. A level set corresponds generically to one or several infinite-
dimensional tori. A solution of the NLS equation belonging to a generic regular level set
is a quasi-periodic solution winding on a torus and can be decomposed into infinite set of
action-angle coordinates. Each action-angle pair (a degree of freedom) can be considered as

3 We keep the parameter g, which may be scaled out, to ease the comparison with previous works on the focusing
equation in which g is taken to be either 1 or 2.
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an oscillator and corresponds to an invariant of the integrable equation. The non-generic
singular level sets may be composed of finite-dimensional tori (these may be viewed as
degenerate infinite-dimensional tori) and possibly their stable and unstable manifolds (the
linearized operator at the degenerate tori determines their linear stability). An example for
such a singular level set is the one corresponding to standing/travelling wave solutions: then the
degenerate torus is a circle. Indeed, standing and travelling waves were shown to exist in the
focusing cubic NLS with periodic boundary conditions. In fact, these solutions can be found
analytically, since they correspond to periodic solutions of the Duffing equation (see [6, 55]
and section 2.1). These solutions become unstable as their amplitude increases and additional
standing/travelling waves bifurcate from them (see [6, 24, 25, 33] and section 2.2). Note that
due to integrability, even in the unstable cases, the solutions near the unstable waves are regular,
namely quasi-periodic (see section 2.3).

In applications, the one-dimensional NLS appears only as a leading order approximation,
and thus it is natural to consider the effect of small correction terms and forcing. The inclusion
of such terms typically breaks the integrable structure [14]. If the forcing and correction
terms are small, one may hope to be able to analyse the near-integrable PDE by perturbative
methods. To study such systems, it was proposed to consider the simplest possible prototypical
perturbations—spatially independent time-periodic forcing and damping [15, 17]:

iϕt − ϕxx − g|ϕ|2ϕ = ε exp(−i�2t + iα) − iδϕ, ϕ0(x) = ϕ(x, 0). (1.2)

Here ε is the small forcing amplitude, δ is the small damping coefficient (so, hereafter,
ε, δ � 1), �2 is the forcing frequency and α is an arbitrary phase. Following [55], it is
easy to show that for all ϕ0 ∈ H1(T) there exist a unique ϕ ∈ C([0, ∞), H1(T)) that solves
the initial value problem of equation (1.2).

A natural question that arises is how to characterize the solutions of the perturbed equation.
Obtaining a complete infinite-dimensional phase space description of a non-integrable PDE
which is not strongly dissipative appears to be too difficult. Traditionally, the structure of the
phase space had been interpreted only near special solutions, usually only near the quiescent
solution. For the near-integrable NLS equation, utilizing the known integrable phase-space
structure near finite amplitude solutions such as standing/travelling waves, one may explore
larger regions in the infinite-dimensional phase space. Indeed it was proposed that in the
near-integrable setting, solutions with initial data near unstable standing wave solutions of the
integrable equation may become irregular [13].

To gain intuition regarding the different mechanisms of irregularities in the near-integrable
system when the plane wave has at most one LUM, a two-mode Galerkin truncation of the
perturbed NLS was introduced [10–12, 17]. The unperturbed truncated system turned out to
be a two degrees of freedom Hamiltonian system, with an additional integral of motion. These
two integrals of motion were found to correspond to the first two invariants of the unperturbed
PDE: the energy and the power (the L2 norm) of the solutions. As usual, most level sets
of the two degree of freedom Hamiltonian correspond to one or two invariant two-tori. The
spatial independent solutions of the NLS, the plane waves, appear as singular level sets, namely
invariant circles of both the truncated and full PDE model. As their amplitudes increase these
circles become normally unstable, and families of homoclinic orbits are created in both the ODE
and the PDE models, leading to the creation of homoclinic chaos in the perturbed equation [23].
When the plane wave is both unstable and resonant, a novel mechanism of instability emerges—
the hyperbolic resonance [31, 38]. New methodologies and tools introduced to this PDE–ODE
study had finally led to a proof that the homoclinic resonance dynamics has analogous behaviour
in the PDE setting [17, 32, 43]. To fully classify the near-integrable structure of the truncated
model for all parameters k, �, the hierarchy of bifurcations framework was developed [51].
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The analysis showed that when the spatial box length and the frequency are close to the
particular relation �2 = �2

pr = k2/2 where k = 2π/L, the truncated NLS admits a new type
of chaotic dynamics—parabolic resonant solutions (see [49] and section 3.3). In [52] it was
demonstrated that analogous chaotic trajectories appear in the PDE setting.

Going beyond the two degrees of freedom regime, it was shown that in the dissipative case,
when the resonant plane wave amplitude is increased so it has two or more LUMs, solutions with
initial data near the plane wave evolve chaotically in both time and space so that their spatial
coherence is lost—such solutions were called spatio-temporal chaotic (STC) [18]. Recently,
we demonstrated that in the Hamiltonian case, the parabolic-resonance mechanism enables to
drive solutions with small initial data (near the unperturbed stable plane wave) into STC with
smaller forcing amplitude than the forcing amplitude needed to drive such data to STC in the
elliptic or hyperbolic resonance cases [53].

In this paper, we propose that a specific bifurcation diagram, the PDE-EMBD is beneficial
in studying how the infinite-dimensional integrable phase-space structure deforms when small
perturbations are applied. The first part of the paper is devoted to constructing the diagram,
namely studying the integrable structure (including some new results regarding the stability of
some of the standing waves) whereas the second part is devoted to studying the near-integrable
dynamics (including some new results regarding the parabolic-resonance mechanism). More
specifically, in section 2 we review the relevant properties of the integrable periodic one-
dimensional NLS, provide the analytic expressions for the standing and travelling waves
solutions and study their stability. These results are then used for constructing the PDE-EMBD.
In section 3 we employ this construction to analyse the dynamics near-plane waves of the near-
integrable forced NLS. We review the known properties of such perturbed solutions and analyse
the parabolic-resonance mechanism that was identified in the PDE in [52] and was described
as a route from stability to spatio-temporal chaos in [53].

2. The unperturbed problem

2.1. Standing and travelling wave solutions

2.1.1. General properties. Consider the autonomous one-dimensional NLS equation with
periodic boundary conditions (substituting in (1.2) ϕ = ψ exp(−i�2t + iα), and setting
ε = δ = 0):

i�t = �xx + (g|�|2 − �2)�, (2.1)

�(x, 0) = �0(x),

where �(x, t) = �(x + L, t), x ∈ R, g = 2 and �0(x) ∈ Hr (T), r � 3 (we will mostly
consider the two-mode analytic initial data, see section 3) denotes the initial data profile. The
NLS equation is integrable: it is completely solvable by the inverse scattering technique [42]
and, for smooth initial data, it has an infinite number of constants of motion. The first three
conserved quantities, ordered by the required number of spatial derivatives are

Particle number : I (�) = 1

L

∫ L/2

−L/2
|�|2 dx, (2.2)

Linear momentum : P(�) = 1

2iL

∫ L/2

−L/2
�∂x�

∗ − �∗∂x� dx, (2.3)

Hamiltonian : H0(�) = 1

L

∫ L/2

−L/2

(
−|∂x�|2 +

g

2
|�|4 − �2|�|2

)
dx. (2.4)
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These correspond to the conservation of mass, linear momentum and energy and can be easily
shown to be invariants of the equation. Other conserved quantities involve higher spatial
derivatives of the solution. The corresponding symmetries to equations (2.2)–(2.4) are phase
translation, space translation and time translation (the Galilean transformation).

Thus if �(x, t) is a solution of the NLS then so is the three-parameter family of solutions
� ′(x, t; v, s, θ):

x ′ = x − vt + s, (2.5)

� ′(x, t; v, s, θ) = �(x ′, t) exp

[
i

(
−v

2
x +

v2

4
t + θ

)]
. (2.6)

The same transformation applies to the periodic case, yet the periodic boundary conditions
impose a quantization on the values of v

vj = 4π

L
j, j ∈ Z,

whereas s, θ remains arbitrary.

2.1.2. Standing waves. The standing waves are oscillatory in time separable solutions of the
integrable NLS equation

�sw(x, t) = e−iEλt+iE0�Eλ
(x), (2.7)

where Eλ, �Eλ
(x) are eigenvalues and eigenfunctions of the nonlinear operator N :

N (�Eλ
)�Eλ

= (∂xx + g|�Eλ
|2 − �2)�Eλ

= Eλ�Eλ
, (2.8)

�Eλ
(x + L) = �Eλ

(x). (2.9)

Multiplying by �∗
Eλ

and integrating, the eigenvalue Eλ and the integral K , are defined by

Eλ = K(�Eλ
)/I (�Eλ

), (2.10)

K(�) = 1

L

∫ L/2

−L/2
(−|∂x�|2 + g|�|4 − �2|�|2) dx. (2.11)

The linear momentum of the standing waves always vanishes, P(�sw) = 0. In general, the
calculation of eigenvalues and eigenfunctions of nonlinear operators is a formidable task.
However, for real �Eλ

(x), equation (2.8) corresponds to the Duffing equation:

∂xx�Eλ
+ g�3

Eλ
− (Eλ + �2)�Eλ

= 0, (2.12)

and its general solutions are explicitly given by Jacobi-elliptic functions (see [6] and below).
Figure 1 shows the corresponding phase-portrait (�Eλ

, ∂x�Eλ
) of the Duffing equation for

a fixed Eλ. There are different families of solutions: stable and unstable fixed points,
homoclinic orbits4, solutions inside the homoclinic orbit—inner solutions and solutions outside
of the homoclinic orbit—outer solutions. Next we show that imposing the periodic boundary
conditions selects a discrete set of Duffing solutions that are either fixed points, periodic inner
solutions or periodic outer solutions.

The quiescent fixed point (black), (�Eλ
, ∂x�Eλ

) = (0, 0), is a saddle (center) when
Eλ > −�2 (respectively when Eλ < −�2). In the first case, the saddle has two homoclinic
orbits that enclose the two stable fixed points (blue), (�Eλ

, ∂x�Eλ
) = (±

√
Eλ + �2/g, 0).

4 these are the celebrated soliton solutions on the infinite line.
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Figure 1. Phase space of the Duffing equation for g = 1, �2 = 1, L = 2π and Eλ = 3. The fixed
points on the x-axis (blue) correspond to the NLS plane wave solutions (±

√
(Eλ + �2)/g, 0). The

NLS L-periodic inner solutions �int
j (x) and outer solutions �out

j (x) are marked in bold green and
bold red, respectively.

These two centres correspond to the plane wave solutions of the NLS equation: they are
spatially independent solutions, having a constant amplitude, �

pw
Eλ

(x) = |c|, and thus

�pw(x, t) = |c|eiγ (t) = |c|e−iEpw
λ t+iE0 (2.13)

where from (2.2), (2.4) and (2.10) the phase velocity and the constants of motion of the plane
wave are

E
pw
λ (|c|; g, �2) = −�2 + g|c|2, I pw = |c|2 = (E + �2)

g
, H

pw
0 = g

2
I 2 − �2I.

(2.14)

The general outer solutions of the Duffing equation are found in terms of the Jacobi-elliptic
functions:

�out
Eλ,κ

(x) = a2

√
2κ2

g
cn(a2x, κ), a2 = 2π

L

√
Eλ + �2

2κ2 − 1
, (2.15)

∂x�
out
Eλ,κ

(x) = −a2
2

√
2

g

κ2L

2π
sn(a2x, κ) dn(a2x, κ),

and their (spatial) period is

Lout(κ, Eλ + �2) = 4

√
2κ2 − 1

Eλ + �2
K(κ),

where K(κ) is the Jacobi complete elliptic integral of the first kind. Since the standing wave
solutions must be L-periodic, the condition

Lout(κ, Eλ + �2)

∣∣∣∣
κ=κj

= L

j
, j ∈ N (2.16)

leads to a selection, for any given Eλ, of a finite number of values κj (Eλ) at which the spatial-
period satisfies this ‘quantization’ rule, see bold (red) curves outside the homoclinic orbit in
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Φ

x

Figure 2. Three different types of standing waves profiles. Solutions of equation (2.12) at �2 = 1,
with Lint,out(k, Eλ) = L and I (�pw,int,out) = 1 are shown. The flat plane wave profile �pw(x) is
marked by a dashed (blue) line. The standing wave profile �int

1 (x) is marked by a solid (green)
line and the profile �out

1 (x) is marked by a dashed–dotted (red) line.

figure 1 and the dotted dashed (red) curve in figure 2. Since ∂Lout/∂k �= 0 by the implicit
function theorem the elliptic modulus κj (Eλ) is a function of the variable Eλ and can be found
by solving the equation Lout = L/j .

For small κ and negative Eλ + �2, �out
Eλ,κ

(x) is well approximated by the solutions to the
linearized equation near the quiescent solution:

�out
Eλ,κ

(x) −−−→
κ → 0

�lin
Eλ

(x) = cos (
√

−(Eλ + �2)x + θ), (2.17)

where �lin
Eλ

(x) solves the ‘linear standing wave’ equation

∂xx�
lin
Eλ

− (Eλ + �2)�lin
Eλ

= 0. (2.18)

These linear solutions are L (in fact L/j ) periodic when Eλ = Eout
λ,j :

Eout
λ,j = −�2 −

(
2πj

L

)2

(2.19)

and the discrete set of outer j oscillatory solutions asymptotes to these linear solutions in the
small amplitude limit:

�out
j (x; Eλ) := �out

Eλ,κj (Eλ)
(x) −−−−−−−−−−−−−→

κj → 0, Eλ → Eλ,j
�lin

Eλ,j
(x). (2.20)

Similarly, the inner Lint periodic solutions (bold (green) curves inside the homoclinic orbit in
figure 1 and solid (green) curve in figure 2) are

�int
Eλ,κ

(x) = a1

√
2

g
dn(a1x, κ), a1 = 2π

L

√
Eλ + �2

(2 − κ2)
, (2.21)

∂x�
int
Eλ,κ

(x) = −a2
1

√
2

g

κ2L

2π
sn(a1x, κ) cn(a1x, κ),

where κ = κ(Eλ) is the elliptic modulus of the solution, with period Lint(κ, Eλ + �2)

Lint(κ, Eλ + �2) = 2

√
2 − κ2

Eλ + �2
K(κ). (2.22)
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As for the outer solutions, the elliptic modulus is determined by solving the equation
Lint = L/j . As κ → 0, the inner solutions �int

Eλ,κ
(x) asymptote to the linear solution around

the plane wave solution. Requiring Lint(κj (Eλ), Eλ + �2) = L/j , the j -pulse branches are
defined as

�int
j (x; Eλ) := �int

Eλ,κj (Eλ)
(x) −−−−−−−−−−−−−→

κj → 0, Eλ → Ẽλ,j

�
pw
Ẽλ,j

(x) + �̃lin
Ẽλ,j

(x), (2.23)

where �̃lin
Ẽλ,j

(x) = �lin
E

pw
λ

(x) so the L/j periodicity implies

Ẽλ,j = −�2 +
1

2

(
2πj

L

)2

. (2.24)

Summarizing, there are two sets of families of L periodic j -oscillatory solutions: the outer
families �out

j (x; Eλ) that have 2j zeroes in a period, and the inner solutions, �int
j (x; Eλ) that do

not change their sign (hereafter, when there is no ambiguity, we omit the explicit dependence
of these solutions on Eλ and denote �

int,out
j (x) = �

int,out
j (x; ·)).

2.1.3. Travelling waves. Applying the symmetry group transformation (equation (2.6)) to
the standing waves solutions �(x, t) = �Eλ

(x)e−iEλt , where �Eλ
is either a plane wave, an

interior or an exterior L-periodic solution) produces three-parameter families of travelling
waves solutions where the parameter v, the speed of the travelling wave, is discrete, and s and
θ , its space and phase shifts, are continuous. To determine the corresponding eigenvalues of
the travelling waves, we note that if one defines � ′(x, t; vj , s, θ) = �′

E′
λ
(x ′)e−iE′

λt where

E′
λ = Eλ − v2

j

4
. (2.25)

then �′ satisfies equation (2.8) with x ′ and E′
λ replacing x and Eλ. Regarding the other

constants of motion, the transformation preserves the L2-norm

I (� ′(x, t; vj , s)) = I (�(x, t)) (2.26)

yet changes the Hamiltonian

H0(�
′(x, t; vj , s)) = H0(�(x, t)) − vj

2

4
I (�(x, t)), (2.27)

and the linear momentum

P(� ′(x, t; vj , s)) = −vj

2
I (�(x, t)). (2.28)

2.2. Stability

Linearization about the standing wave solutions leads to the equation

iξt = ξxx − (Eλ + �2)ξ + g(2�2
Eλ

(x)ξ + �2
Eλ

(x)ξ ∗), (2.29)

where ξ is the perturbation and ξ ∗ denotes the complex conjugate of ξ . The dependence of
ξ on time (oscillatory, exponentially increasing/decreasing) determines the linear stability of
�Eλ

. For a general standing wave solution, equation (2.29) can be rewritten as [30, 35, 36]

i(ξ − ξ ∗)t = L+(ξ + ξ ∗), (2.30)

i(ξ + ξ ∗)t = L−(ξ − ξ ∗).
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The operators L+ and L− are of Hill’s type—these are second order differential operators with
periodic potential and periodic boundary conditions

L+ : L+[x, �Eλ
(x)]u = (∂xx − (Eλ + �2) + 3g�2

Eλ
(x))u,

u(−L/2) = u(L/2), u′(−L/2) = u′(L/2),

L− : L−[x, �Eλ
(x)]v = (∂xx − (Eλ + �2) + g�2

Eλ
(x))v,

v(−L/2) = v(L/2), v′(−L/2) = v′(L/2).

The transformation ξ = u + iv brings equation (2.30) to a matrix form:(
u

v

)
t

=
(

0 L−
−L+ 0

) (
u

v

)
= N

(
u

v

)
. (2.31)

This system is a Hamiltonian system that can be written in the form(
u

v

)
t

=
(

0 1
−1 0

) (
L+ 0
0 L−

) (
u

v

)
= JH ′′

Eλ

(
u

v

)
, (2.32)

where for a functional F(u, v) the notation F ′′(�Eλ
) denotes the Hessian matrix D2F(u, v) at

u = �Eλ
and v = 0. Then H ′′

Eλ
(�Eλ

) = H ′′
0 (�Eλ

) − EλI
′′(�Eλ

) is defined as the Hessian of
the energy or the ‘linearized Hamiltonian’, where I and H0 are defined by equations (2.2) and
(2.4), respectively.

The eigenvalues iωj of the operator N ,

N

(
u

v

)
= iω

(
u

v

)
, (2.33)

determine the stability of the particular standing wave. Since the spectrum of N is symmetric5

the existence of a non-trivial eigenvalue with a real part (i.e. Im(ωj ) �= 0) implies that the
standing wave is unstable. Next we repeat, for completeness, the standard calculation of the
eigenvalues and the eigenfunctions of N for the spatially independent quiescent and plane wave
solutions. For the other, spatially dependent standing waves, this calculation is too difficult and
the explicit solution of the eigenvalue problem is not known. For the inner solutions family,
the theory of linear instability [30, 36] and orbital stability of [9, 16, 57] has recently been
extended to the periodic problem to establish when they are linearly stable/unstable without
explicitly calculating the spectrum of N [5, 6]. The main steps for establishing these results
are included. The stability of the outer solutions family is found by numerical methods as
explained below.

2.2.1. Stability of the quiescent solution. The linearization (2.30) around the quiescent
solution �0(x) = 0, Eλ = 0,

iξt = ξxx − �2ξ (2.34)

is solved by ξ(x, t) = ξ̂ (2πj/L)ei( 2πj

L
x+ωt) where j ∈ Z. The eigenvalue problem (2.31) for

the operator N is

det(N − iωI) =


−iω −�2 −

(
2πj

L

)2

�2 +

(
2πj

L

)2

−iω

 = 0 (2.35)

5 The complex (respectively real) eigenvalues of N come in quadruples (respectively pairs when b = 0): iω1,2,3,4 =
±a ± ib.
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and together with (2.34) leads to the dispersion relation

ω2
j =

((
2πj

L

)2

+ �2

)
. (2.36)

The eigenvalues iωj are always pure imaginary and thus the quiescent solution is linearly

stable. The corresponding resonant eigenfunctions �(x, t) = ξ̂ (2πj/L)ei( 2πj

L
x+ωj t)+iE0 are

exactly the linear modes �lin
Eλ,j

that solve equation (2.18) and satisfy Eλ,j = −ωj . From these
countable infinity linear eigenmodes that are associated with the discrete negative eigenvalues
Eλ,j emanate the plane wave branch at j = 0 and, for j �= 0, the discrete set of the outer
solutions �out

Eλ,κj (x) −−−−→
κj → 0

�lin
Eλ,j

(x), see figure 4.

2.2.2. Stability of the plane wave solution. The linearization (2.30) around the plane wave
solution �pw = |c|e−iEpw

λ t+iE0

iξt = ξxx + 2g|c|2ξ + g|c|2ξ ∗ (2.37)

leads to the eigenvalue problem (2.31) for the operator N :

det(N − iωI) =


−iω −(E

pw
λ + �2) −

(
2πj

L

)2

+ g|c|2

(E
pw
λ + �2) +

(
2πj

L

)2

− 3g|c|2 −iω


(2.38)

=


−iω −

(
2πj

L

)2

(
2πj

L

)2

− 2g|c|2 −iω

 = 0, (2.39)

which in turn leads to the dispersion relation:

ω2
j =

(
2πj

L

)2
((

2πj

L

)2

− 2g|c|2
)

. (2.40)

Hence, for (2πj/L)2 < 2g|c|2 the plane wave solution is unstable. More generally, plane
waves with amplitude |c|2 in the range

Ipw = |c|2 ∈ 1

2g

(
2π

L

)2

(j 2, (j + 1)2) = (IjLUM, I(j+1)LUM) (2.41)

have j LUM. Namely, the number of linear unstable modes grows linearly with the amplitude.
Such instability is called ‘Benjamin–Feir instability’ in the dispersive wave community [8] and
‘modulation instability’ in the plasma physics community [34]. In particular, we will see that
for studying the perturbed dynamics it is important to note that for Ipw ∈ (0, I1LUM) the plane
wave is linearly stable, for Ipw ∈ (I1LUM, I2LUM) the plane wave has only one unstable mode,
whereas for Ipw > I2LUM the plane wave has at least two unstable modes. Numerically, the
linearly stable plane wave solution in the region Ipw ∈ (0, I1LUM) appears to be also nonlinearly
stable. Analytically, the study of nonlinear stability is beyond the scope of this work; however,
it may be studied using methods similar to methods used in the proof of proposition 3.1 in [4],
where nonlinear stability of plane wave solutions for the KdV equation was established.

At the bifurcation values IjLUM = (1/2g)(2π/L)2j 2, where E
pw
λ,j = −�2 + 1

2

(
2π
L

)2
j 2,

two important structural changes occur in the vicinity of the plane wave branch; first, the interior
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linear modes bifurcate from the plane wave family and become the discrete set of the inner
solutions branches: �int

j (x; Eλ) −−−−−−−→
Eλ → Eλ, j

�
pw
Eλ,j

(x) + �̃lin
Eλ,j

(x). Second, homoclinic orbits

to the plane wave are created. These orbits are solutions, �hom(x, t), of the integrable NLS
equation such that �hom(x, t) → �pw(t) exponentially as t → ±∞. The analytic expression
for these homoclinic orbits may be found via Bäcklund transformation [17, 23], and their
form becomes more and more complex as j , the number of LUMs, increases. Numerically,
the structure of these orbits may be observed by computing quasi-periodic trajectories that are
initialized sufficiently close to the plane wave and thus ‘shadow’ the homoclinic structure [17].
Figure 8(c) presents a quasi-periodic solution that shadows a 1-pulse homoclinc orbit of a
1-LUM plane wave solution.

2.2.3. Stability of the inner (dnoidal) solutions. It was recently established that the inner
standing wave solutions �int

j (x) (solutions with j multiplicity such that their period Lint = L/j ,
j ∈ N) are stable when j = 1 and are unstable when j = 2:

Theorem 1 ([6]). The inner standing wave solution �int
j (x) with multiplicity j = 1 is orbitally

stable, i.e. the orbit O�int
1

= ‖eiθ�int
1 (· + y) : (y, θ) ∈ R × [0, 2π)‖ is nonlinearly stable. On

the other hand, �int
2 (x) is linearly unstable.

Below, the instability of �int
2 (x) is established in a slightly different way: instead of solving

explicitly the eigenvalue problem for the operator L+[x, �int
j (x)] (as in theorem 3.1 of [6]) we

establish the instability by invoking the oscillation theorem, the methods introduced in [30] and
some intermediate results that are established in [6]. As pointed out also in [6], an immediate
consequence of this result is that �int

j (x) are unstable for all j > 2:

Theorem 2. The inner solutions �int
j (x) with multiplicity j � 2 are linearly unstable.

Proof. Since the spectrum of the operator N is symmetric with respect to the Z2 × Z2 group,
proving the existence of a real eigenvalue implies the existence of a positive real eigenvalue
and hence implies instability. In [30] it was shown that it is possible to establish the existence
of a real eigenvalue of the operator N by studying the properties of the eigenvalues of L−, L+.
Next we list the conditions for instability derived in [30] and show that these conditions are
satisfied for the periodic inner standing wave solution with multiplicity j � 2.

The eigenvalue problem for the operators L−u = λu, L+v = λv with L-periodic boundary
conditions may be viewed as the periodic Hill’s equation

y ′′ + [−λ + Q(x)]y = 0 (2.42)

depending on a parameter −λ and on a real L-periodic function Q(x). By the Oscillation
Theorem (which is based on Floquet theory) for such an equation there are two monotonically
decreasing infinite sequences of real numbers [41]

λ0, λ1, λ2, ..., λ′
0, λ′

1, λ′
2, ... (2.43)

where for n ∈ N, λn and λ′
n are the eigenvalues of problem (2.42) with the period L and period

2L, respectively. The λn and λ′
n satisfy the inequalities

... < λ4 � λ3 < λ′
4 � λ′

3 < λ2 � λ1 < λ′
2 � λ′

1 < λ0 (2.44)

and the eigenfunctions y2n and y2n−1, that correspond to the eigenvalues λ2n and λ2n−1, have
exactly 2n zeros in the semi-open interval x ∈ [−L/2, L/2). The largest eigenvalue λ0 is
always a simple eigenvalue. Its corresponding eigenfunction y0 has no zeros in the semi-open
interval x ∈ [−L/2, L/2). These ordering properties of the eigenvalues and correspondingly
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the eigenfunctions with increasing number of zeros are used in lemma 1 to determine the
number of positive eigenvalues of the operators L±.

Lemma 1. Define Pj and Qj as the number of positive eigenvalues of L+[x, �int
j (x)] and

L−[x, �int
j (x)] with j � 2 and with periodic b.c. in [−L/2, L/2),

Pj : # of positive eigenvalues of L+,

Qj : # of positive eigenvalues of L−.

The numbers Qj and Pj are determined by counting the zeros and the nodes of the standing
wave �int

j (x), respectively, in particular

(a) Qj = 0,
(b) Pj = 2j or 2j − 1.

Proof.

(a) Note that �int
j (x) on x ∈ [−L/2, L/2] satisfies the equation L−[x, �int

j (x)]�int
j (x) = 0.

Therefore �int
j (x) is an eigenfunction of L−[x, �int

j (x)] with eigenvalue zero. Since
�int

j (x) is always positive, by the oscillation theorem the zero eigenvalue must be λ0 and
therefore ∀j, Qj = 0.

(b) The operator L+[x, �int
j (x)] is actually the equation of variations of the standing wave

equation—it carries the tangent vectors under the flow and therefore the number of nodes
of �int

j (x) is the number of zeros of �′ int
j (x) that satisfies L+[x, �int

j (x)]�′ int
j (x) = 0.

Since the number of nodes of �int
j (x) in the semi-open interval [−L/2, L/2) is 2j , by the

oscillation theorem, the eigenvalues that can correspond to the zero eigenvalue are λ2j or
λ2j−1. Therefore, it follows that Pj = 2j or 2j − 1. �

Next we state the parts of the instability theorems [30] that are needed for the proof
of theorem 2. The instability theorems connect between Pj , Qj and the existence of real
eigenvalues of N . First, define (the dependence on j enters since L± = L±[x, �int

j (x)]):

Kj —the orthogonal projection on (ker L−)⊥

Rj —the operator Rj = KjL+Kj ,
Mj —the number of positive eigenvalues of Rj ,
Ireal(Nj )—the number of pairs of real eigenvalues of Nj .

Theorem 3 ([30, 36]). If |Mj −Qj | = nj > 0, then Ireal(Nj ) � nj and thus �int
j (x) is linearly

unstable.

Define the scalar function d(Eλ) = H0(�Eλ
) − EλI (�Eλ

). Differentiating d(Eλ) twice with
respect to Eλ, we receive that the first derivative is (d d(Eλ)/dEλ) = d′(Eλ) = −I (�Eλ

) and
the second is (d2 d(Eλ)/dE2

λ) = d′′(Eλ) = −(d/dEλ)[I (�Eλ
)].

Theorem 4 ([30]). If −d′′(Eλ) = (d/dEλ)
1
L

∫
�2

Eλ
dx > 0 along a solution branch �Eλ

then
M = P − 1.

Lemma 2. For all j , −d′′(Eλ,j ) > 0 along the inner solutions branches �Eλ
= �int

j (x; Eλ,j ).
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Proof. The proof follows from the derivations and arguments that are presented in [6].
Substituting the expression of �int

j (x; Eλ,j ) (2.21) into the above integral we obtain

− d
′′(Eλ) = d

dEλ,j

1

L

∫ L/2

−L/2
�2

Eλ,j
dx = 2

gL

∫ L/2

−L/2

d

dEλ,j

[a2
1 dn2(a1x, κj ) dx] (2.45)

= 2a1

gL

[
2

∂a1

∂Eλ,j

∫ L/2

−L/2
dn2(a1x, κj ) dx + a1

d

dEλ,j

∫ L/2

−L/2
dn2(a1x, κj ) dx

]
,

(2.46)

for a2
1(Eλ,j ) = 4π2(Eλ,j + �2)

L2(2 − κ2
j )

. (2.47)

Since a1 > 0 for Eλ > −�2 and the Jacobi-elliptic function dn is even and strictly positive
the first term is strictly positive. For the second term, it is known that the integral of dn2 over
its period is expressed by E(κj )K(κj ) where E and K are elliptic integrals of the second and
first kind, respectively. Then the second term becomes (d/dκj )[E(κj )K(κj )](dκj/dEλ,j ) and
consists of two derivative terms. The first derivative is strictly increasing since it is a derivative
with respect to κj of a multiplication of two strictly increasing functions for κj ∈ (0, 1). The
second term dκj/dEλ,j can be shown to be positive as follows. Define a variable η2

η2
2 = 2ω(1 − κ2)

2 − κ2
, ω = Eλ + �2

Note that η2 > 0 for all κ ∈ (0, 1). It is shown in [6] that dη2/dω < 0 and a straightforward
calculation yields that

0 >
dη2

dω
− 1

2η2

∂η2

∂ω
= 1

2η2

( −4ωκ

(2 − κ2)2

dκ

dω

)
from which we conclude that dκ/dω is positive and hence −d′′(Eλ) is strictly positive. For
more details, see [6, equation 3.17].
We conclude that the difference nj = |Mj − Qj | = 2j − 2 or 2j − 1 must be positive for
j � 2 and therefore the standing wave solutions �int

j�2(x) are linearly unstable. �

2.2.4. Outer (cnoidal) solutions. The linear stability of the outer solutions cannot be
determined by the above theoretical techniques (see [6] for discussion). In [25] nonlinear
(orbital) stability of the small amplitude travelling waves (outer standing and travelling waves)
was studied. It was shown that these waves are orbitally stable with respect to perturbations
that have the same period and the same Floquet exponent as the original wave, whereas the
linearized operator has unstable eigenvalues when general bounded perturbations that are
defined on the whole real line and in L2 or in a real Banach space are considered. The
instability is detected for perturbations with wave-numbers that are close to that of the original
wave (side-band instability). In [24] the above results are extended to finite amplitude solutions
provided a non-degeneracy condition is satisfied (the Hessian matrix needs to have a negative
determinant). It is unknown whether this non-degeneracy condition always holds for the outer
waves. Here, we determine numerically the linear stability of finite amplitude outer waves in
the periodic context, namely with respect to L-periodic perturbations:

Conjecture 1. The outer solution with a unique oscillation, �out
1 (x), is linearly stable for

arbitrarily large amplitude, i.e. all eigenvalues of the operator N lie on the pure imaginary
axis.
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Numerical support. We calculated the eigenvalues of the operator N by discretizing the second
derivative operator in N with 4th order Richardson central difference scheme, i.e. O(h8), where
h = 1

256 (2π/L) is the spatial discretization. The �2 parameter was set to �2 = 1 and several
L values were chosen. We computed the eigenvalues of the discretized matrix Nd(�out

1 (x))

for up to Eλ = 15 and verified that all the eigenvalues of Nd(�out
1 (x)) are pure imaginary or

zero.
These numerical results are consistent with recent theorems that relate the number of
eigenvalues with non-negative real part of the operator N to the number of positive eigenvalues
of the self-adjoint symmetric periodic operators L±(γ ), where the operator L(γ ) is formed
by replacing ∂x in the operator by ∂x + iγ /L, and γ ∈ (0, π) (see [33, 37] and references
therein). In particular, divide such eigenvalues to three sets:

σr := {λ ∈ σ(N) : Re(λ) > 0, Im(λ) = 0},
σc := {λ ∈ σ(N) : Re(λ) > 0, Im(λ) �= 0},
σi := {λ ∈ σ(N) : Re(λ) = 0}

and denote by kl the number of eigenvalues belonging to σl . Let P γ

j and Q
γ

j denote the number
of positive eigenvalues of the operators L+(γ ) and L−(γ ). Theorem 3.4 in [33] implies that if
dim[Ker (L±(γ ))] = 0 then

kr + kc + ki = P
γ

j + Q
γ

j ,

kc and ki are always even, and that kr � |P γ

j − Q
γ

j |.

For the outer solutions with j = 1 the above relations become kr + kc + ki = 1 + 1, kr = 0
(as shown in [33]). This relation is inconclusive in terms of determining whether there is a
pair of unstable eigenvalues in σc or a pair of pure imaginary eigenvalues in σi . It does imply
that at most one pair can bifurcate from being purely imaginary to the complex spectrum. The
numerical results demonstrate that such a bifurcation does not occur at least up to Eλ = 15.

Conjecture 2. The outer solutions �out
j (x) with multiplicity j � 2 are linearly stable for

sufficiently small amplitude, yet, as their amplitude is increased, they lose their stability
via a sequence of j − 1 Hamiltonian–Hopf bifurcations; at each such bifurcating solution
�out

j,m(x), m = 1, ..., j − 1, two distinct purely imaginary pairs (with opposite Krein’s
signature) collide, creating a double quadruplet of complex eigenvalues. The amplitude
of the m-th bifurcating solution �out

j,m(x) increases linearly with both k = 2π/L and m:
Im

bif(�
out
j (x)) = (m2/g)k2.

Numerical support. See figure 3. For each �out
j (x), j = 2, 3, 4 we computed the eigenvalues

of Nd(�out
1 (x)) for up to Eλ = 15 and verified that �out

j (x) undergoes m = 1, ..., j − 1
Hamiltonian–Hopf bifurcations as described above. We then explored the dependence of the
bifurcations on the parameter L and �2. While the bifurcations do not depend on �2 their
dependence on L is Im

bif(�
out
j (x)) = (m2/g)(2π/L)2.

These results are again consistent with the theory presented in [33]. Indeed, as j increases,
the sum of positive eigenvalues P

γ

j + Q
γ

j also increases. For outer solutions with multiplicity
j the above relation becomes kr + kc + ki = j + j, kr = 0. While the relation remains
inconclusive with respect to the actual number of unstable eigenvalues, it indeed demonstrates
that the number of pairs that may bifurcate to the complex plane increases by one with each
increment of j . Our results show that as j increases, kr remains 0, but the one additional pair
of eigenvalues that is added to σr ∪ σi bifurcates to the complex plane, i.e. we propose that
for I > I

j−1
bif , kc = 2j − 2, ki = 2.
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Figure 3. The mth Hamiltonian–Hopf bifurcation. Im
bif (�

out
j (x)), the m-bifurcating amplitudes

along the outer solution branches, are shown for increasing wave length k, at m = {1 (blue), 2
(black), 3 (red)} and g = 2. The graph suggests that Im

bif (�
out
j (x)) = (m2/g)k2.

2.2.5. Travelling waves solutions. The linear stability of the travelling waves with respect to
perturbations that are moving with it (i.e. taking �(x, t) = [�′

E′
λ
(x ′, t)e−iE′

λt +δξ(x ′, t)e−iE′
λt ])

is analogous to that of the corresponding standing wave. Indeed, such a linearization of the
travelling wave solution yields a linear system as in equation (2.29) where x is replaced by
x ′ = x − vt + s and Eλ is replaced by E′

λ. Therefore, the number of zeros and nodes does not
change and all the above stability theorems and propositions should apply. It follows that when
this travelling-perturbation analysis yields instability, the travelling wave solution is unstable.
Establishing stability with respect to arbitrary periodic perturbation is a more subtle issue and
is beyond the scope of this work; the linear system becomes

iξt = ξxx − ivξx − (Eλ + �2)ξ + g(2�2
Eλ

(x − vt + s)ξ + �2
Eλ

(x − vt + s)ξ ∗),

which is non-autonomous and other techniques must be employed.

2.3. Bifurcation diagrams—the PDE-EMBD

The stability and bifurcations analysis of the standing and the travelling waves solutions of
the unperturbed NLS may be geometrically presented by projecting the solution branches
onto various observable functionals of the solutions. A common projection is the ‘spectral
bifurcation diagram’ by which these solutions are projected to the L2 and eigenvalue space—
the (E, I (�E)) plane [35]. Here we propose that the projection of these solutions to the
two primary constants of motion space, the (H0, I ) plane, provides a geometric skeleton that
is beneficial for studying the structure of nearby integrable solutions and for studying the
near-integrable dynamics (see also [58]). We call this projection the PDE-energy–momentum
bifurcation diagram (PDE-EMBD). We view it as a natural extension of the traditional EMBDs
for finite-dimensional integrable Hamiltonians [7, 20] to the integrable PDE set up.

2.3.1. Construction of the bifurcation diagram. The PDE-EMBD is defined as the collection
of the special state curves (SSCs), namely the curves (h(I ), I ) = (H0(�E), I (�E)) created
by the projections of the standing waves and travelling waves families onto the (H0, I ) plane.
The spectral diagram consists of the projection of these curves onto the (E, I (�E)) plane.
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Figure 4. The bifurcation diagrams near the quiescent solution. The special solutions curves (SSC)
emanate from the quiescent solution (see section 2.2.1): blue—the plane wave mode (j = 0), red—
all the other outer modes: �lin

Eλ,j (x) with j �= 0. (a) The spectral bifurcation diagram (the lines are
slanted with a slope g). (b) The PDE-EMBD.
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Figure 5. The bifurcation diagrams at the plane wave vicinity. The SSC of the plane wave solution
(blue) and the bifurcating inner solutions (green) are plotted, with the conventional notation of
stability (solid curves—stable, dashed—unstable). The numbers denote the number of families of
LUMs. The black dots correspond to parabolic plane waves. (a) The spectral bifurcation diagram.
(b) The PDE-EMBD.

The quiescent solution projection onto the PDE-EMBD is the point (H0, I ) = (0, 0).
Its projection onto the spectral diagram is the full horizontal axis, as E is arbitrary for the
trivial solution. From this quiescent solution a countable set of SSC emerges: the branch
of the plane wave and the branches of the outer solutions. In the small amplitude limit,
these solutions are well approximated by the linear modes �lin

Eλ,j
(section 2.1), and from (2.4)

H0(�
lin
Eλ,j

) = Eλ,j

∥∥∥�lin
Eλ,j

∥∥∥ = Eλ,j I (�lin
Eλ,j

), so these branches appear as a fan emanating

from the origin, see figure 4. The projection of the linearized modes to the spectral diagram is
(Eλ, I ) = (−j 2(2π/L)2 − �2 + gI, I ), j ∈ Z, see figure 4.

The projections of the plane wave branch onto the two different bifurcation diagrams
are shown in figure 5 (dark (blue) curve). In the PDE-EMBD it corresponds to the parabola
(hpw(I ) = (g/2)I 2 − �2I, I ) for I � 0 (see equation (2.14)) with an extremum point at
I = �2/g. In the spectral diagram it corresponds to the line (E, I ) = (−�2 + gI, I ), for
I � 0. For I < I1LUM the plane wave is stable, and thus its projection appears as a solid curve.
For larger I it is unstable and thus appears as a dashed curve. This dashed curve represents
both the plane wave and the homoclinic orbits to it as all these solutions must have the same
constants of motion. The plane wave undergoes saddle-center bifurcations at Ij = IjLUM

(black dots) and from these points the families of inner solutions, bright curves, (in green) are
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Figure 6. Bifurcation diagram of the standing waves solutions up to multiplicity j = 3. The SSC
of the plane wave (blue), outer (red) and inner (green) families of solutions are projected with the
conventional notation of stability (solid curves—stable, dashed—unstable). The points at which
the outer solutions undergo the Hamiltonian–Hopf bifurcation are marked by ‘H’. (a) The SSC
intersections with the vertical line E = 0 in the spectral diagram corresponds to resonant waves.
(b) These resonant waves appear as folds of the SSC in the PDE-EMBD and are marked by ‘�’.

emanating. Repeating the same procedure for the outer standing waves and incorporating the
stability results of section 2.2 leads to the construction of the full bifurcation diagram shown
in figure 6.

Similarly, the travelling waves solutions can be projected to the bifurcation diagrams.
Recall that each standing wave solution �sw

Eλ
(x; vm = 0) produces a discrete family of travelling

wave solutions �′sw
E′

λ
(x ′; vm) parametrized by vm, m ∈ N. These families are projected to

the PDE-EMBD (figure 7) by transforming the projections of the standing wave solution
(H ′

0, I
′, E′

λ) to (H0, I, Eλ) according to equations (2.25)–(2.27).

2.3.2. Resonances. The standing wave �sw(x, t) = e−iEλt+iE0�Eλ
(x) is oscillatory in time

for Eλ �= 0 and stationary—namely strongly resonant—when Eλ = 0. In general, such
resonant solutions are known to produce, even under small perturbations, solutions that have
a new structure which is incompatible with the unperturbed dynamics: in section 3 we mainly
describe the dynamics near such solutions. Here we note that the resonant standing waves
can be easily identified both on the spectral bifurcation diagram and on the PDE-EMBD. In
the spectral diagram they simply correspond to the intersection of the standing waves and the
vertical line E = 0 as seen in figure 6(a). We next establish that in the PDE-EMBD the
resonant standing and travelling waves correspond exactly to the folds of the SSC (marked by
an ‘�’ in figure 6(b)):

Theorem 5. Extrema of the SSC (hj (I ), I ) of a standing (respectively travelling) wave family
corresponds to the strongest resonance E = 0 (respectively E′ = 0).

Proof. We prove the theorem first for the standing wave families. We need to show that if
there exists an I ∗ = I (�Eλ

) such that dhj (I )/dI |I=I ∗ = 0 then E = 0. Indeed, by the chain
rule for the standing wave family

dhj (I )

dI
= dH0[φ]

dI

∣∣∣∣
φ(x)=φj (x)

= H ′
0[φ]

∣∣∣∣
φ(x)=φj (x)

δφ

δI

∣∣∣∣
φ(x)=φj (x)

,

where for integral functionals F = 1/L
∫ L

0 G[x, f (x), fx(x)], F ′[x, f (x), fx(x)] is defined
as the functional derivative δF [...]/δf w.r.t to f . The rhs vanishes iff H ′

0[φ] = 0, since φj
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Figure 7. Bifurcation diagrams for the standing and travelling waves solutions up to multiplicity
j = 2. Here �2 = 1 and k = 2π/L = 0.9. The standing waves curves are marked with bold
colours and the corresponding travelling waves are marked with opaque colours.

are bounded and for bounded solution φ the functional derivative of δI [φ]/δφ is finite. Since
φj ∈ C∞, H ′

0[φ] is zero iff the Euler–Lagrange equation

φxx − gφ3 − �2φ = 0

is satisfied. This equation is exactly the standing wave equation (equation (2.8)) with E = 0.
Therefore, for the standing wave solutions, dhj (I )/dI = 0 corresponds to E = 0.

Similarly, for the SSC hj,vk
(I ) that corresponds to the travelling wave solution φj,vk

(x ′),
the Euler–Lagrange equation is

φx ′x ′ − gφ3 − �2φ = 0

that is exactly the travelling waves equation with E′ = 0. Therefore, for the travelling wave
solutions, dhj,vk

(I )/dI = 0 corresponds to E′ = 0. �

In particular, observe that the plane wave solution is resonant at

Ipw-res = �2/g. (2.48)

2.3.3. Integrable solutions: quasi-periodic solutions. The main advantage of the PDE-EMBD
is that the projection of any solution onto this diagram is simple and natural: the functionals
I and H0 are well defined6 at any time t for any function �(·, t) belonging to the space
H1. Moreover, since the unperturbed equation is integrable and I and H0 are conserved, any
unperturbed solution �(x, t) projects to the PDE-EMBD as a single point. If this point is
bounded away from an SSC then its corresponding profile is distinct from the profiles of the
solutions belonging to this family. The key observation here is that for the periodic 1D NLS,
the diagram consists of SSCs that are typically well separated (only a few projection-produced
overlaps and intersections appear). Hence, it enables to distinguish between neighbourhoods
of the different standing waves (and similarly of the travelling waves) solutions. In figure 8
we show different quasi-periodic solutions with the same power (same value of I ) projected
onto the bifurcation diagram.

For most initial profiles, the unperturbed solutions correspond to quasi-periodic motion—
these project to a point in the PDE-EMBD. The structure of the quasi-periodic solutions in

6 In contrast, the projection onto the spectral bifurcation diagram is not well defined for general time-dependent
solutions, even in the integrable case, since there is no adequate definition for the nonlinear eigenvalue E. For
example, defining E(t) as K(�(x, t))/I (�(x, t)) (see equation (2.10)) for the quasi-periodic solutions leads to a
time dependent E(t).
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Figure 8. Solutions of the integrable equation: surface plots (right) and projections to the
PDE-EMBD (H0, I ) (left). I = 0.7 for all profiles. A, B lie near the outer 1, 2 multiplicity
standing waves, C lies near the homoclinic orbit of the plane wave and D lies near the 1 multiplicity
inner standing wave.

the neighbourhood of the three types of periodic standing and travelling waves families of
solutions (the plane waves, the inner-dnoidal and the outer-cnoidal waves) is nicely organized
by the PDE-EMBD skeleton. Quasi-periodic solutions near the stable branches of these SSCs
oscillate around them. Quasi-periodic solutions that are located near unstable branches shadow
their homoclinic orbits.

Moreover, we show next that the plane wave SSC splits the integrable solutions in its
neighbourhood into two distinct families. Consider the near-plane wave family of solutions
�ini-2(x, t) with two-mode initial data: �ini-2(x, 0) = �ini-2(x) = [ 1√

2
|c| + (q + ip) cos(kx +

θ)]eiγ (0), where q, p ∈ R, 0 < |q| + |p| � 1, and qp = 0. Denote by |c′| the amplitude of the
plane wave solution that has the same power I as �ini-2(x), and let δ2 := q2 + p2:

I = 1
2 |c′|2 = 1

2 (|c|2 + q2 + p2) = 1
2 (|c|2 + δ2). (2.49)

We call such solutions with δ � 1 ‘exterior’ if either 1
2 |c′|2 � I1LUM or { 1

2 |c′|2 > I1LUM

and p �= 0}, and ‘interior’ if { 1
2 |c′|2 > I1LUM and q �= 0} (this definition is motivated by the

structure of the truncated model, see section 3.1). We now establish:

Theorem 6. The projections of ‘exterior’ (respectively ‘interior’) solutions to the PDE-EMBD
are to the left (respectively to the right) of the plane wave SSC.

Proof. Since we consider the integrable dynamics the constants of motion are preserved and
hence I (�ini-2(x, t)) = I2(|c|, q, p) := 1

2 (|c|2 + q2 + p2) and similarly H0(�ini-2(x, t)) =
H0,2(|c|, q, p) where

H0,2(|c|2, q, p) = −k2

2
(q2 + p2) +

g

8
|c|4 +

3g|c|2q2

4
+

g|c|2p2

4
+

3g(q2 + p2)2

16

− �2|c|2
2

− �2(q2 + p2)

2
.

To prove the theorem, we need to show that for the exterior solutions H0,2(|c|2, q, p) <

H0(|c′|2, 0, 0) whereas for the interior solutions the opposite inequality holds. First, note that

H0,2(|c′|2, 0, 0) = g

2
(I )2 − �2I = g

8
|c|4 +

g|c|2δ2

4
− �2|c|2

2
− �2δ2

2
+

g

8
δ4.
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Now, for the exterior orbits with p �= 0 we have

H0,2(|c|2, 0, δ) = −k2δ2

2
+

g|c|2δ2

4
+

g

8
|c|4 − �2|c|2

2
− �2δ2

2
+

3gδ4

16

= H0,2(|c′|2, 0, 0) − k2δ2

2
+

gδ4

16
< H0,2(|c′|2, 0, 0),

where the last inequality holds for sufficiently small δ (δ2 < (8k2/g)), so the theorem is
established for such solutions. The exterior orbits with q �= 0 also satisfy, by definition,
1
2 |c|2 + 1

2δ2 � (k2/2g) = I1LUM and thus

H0,2(|c|2, δ, 0) = −k2δ2

2
+

3g|c|2δ2

4
+

g

8
|c|4 − �2|c|2

2
− �2δ2

2
+

3gδ4

16

= H0,2(|c′|2, 0, 0) + δ2

(
−k2

2
+

g|c|2
2

)
+

gδ4

16

� H0,2(|c′|2, 0, 0) − 7gδ4

16
< H0,2(|c′|2, 0, 0),

as claimed. Finally, this last inequality is reversed for interior orbits; Indeed, the above calcu-
lation shows that H0,2(|c|2, δ, 0) > H0,2(|c′|2, 0, 0) provided δ2 > (16/g)((k2/2)−(g|c|2/2)).
Utilizing the definition of c′ (equation (2.49)) we obtain that this inequality is satisfied when
δ2 < 16

7 ((|c′|2/2) − (k2/2g)), namely that for (|c′|2/2) > I1LUM and sufficiently small δ the
reverse inequality indeed holds. �

3. The near-integrable dynamics

Consider now the perturbed NLS equation, namely equation (1.2). In the autonomous frame
(� = ϕei�2t−iα) the equation becomes

i�t − �xx − (g|�|2 − �2)� = ε − iδ�, (3.1)

where ε is the forcing amplitude, δ is the damping coefficient and ε, δ � 1. We will mostly
concentrate here on the forced (undamped) equation (δ = 0, ε �= 0). This equation is
conservative, as the total Hamiltonian

HT (�) = H0(�) + εH1(�), H1(�) = 1

L

∫
(�∗ + �) dx (3.2)

is preserved (whereas the damping term dissipates the energy).
The forced system is chaotic and exhibits rich behaviour. Since there is no dissipation of

energy, regular, temporal chaotic and spatio-temporal chaotic solutions co-exist. We propose
that there are three useful projections of the solutions that are helpful in distinguishing between
distinct solutions: projections onto the PDE-EMBD, the phase–power projection and the qp

projection. These projections are motivated by the study of a two-mode truncation of the
forced NLS, a model that turned out to contribute much to our understanding of the evolution
of solutions with the initial nearly flat low-amplitude profile [51, 52]. We thus review next
the construction of the two-mode model and explain what are the phase–power and the qp

projections. We then use these projections to explain the phase-space structure of the perturbed
PDE dynamics near the plane waves, demonstrating that the projections allow us to distinguish
between various types of solutions. We end this section by analysing one of the recently
discovered chaotic solutions—the parabolic resonant type: we show that the truncated model
may be used to predict the extent of the instabilities associated with this solution.
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3.1. The two degrees of freedom model

The two degrees of freedom (d.o.f) truncated model of the forced NLS was proposed
in [10, 12, 38] as a simplified phenomenological model to characterize some of the observed
near-integrable dynamics of the NLS PDE and was studied in [31, 38, 51]. The model is derived
by substituting in the forced NLS the finite expansion7,

�N+1(x, t) = 1√
2
|c(t)|eiγ (t) + b(t)eiγ (t) cos(kx) + a1(t)e

iγ (t) sin(kx)

+
N∑

n=2

(an(t)e
iγ (t) sin(knx) + bn(t)e

iγ (t) cos(knx)),

truncating the equations at N = 1, and considering only symmetric initial profiles (setting
a1(t) = 0), see [32, 38, 51]. While there is not yet a rigorous justification for this crude
truncation, it appears to provide a fairly accurate description of the PDE dynamics near
the plane waves as long as I , the L2 norm of the solution, satisfies I < I2LUM [10–
12, 17, 52]. Indeed, near the plane wave, linear stability (equation (2.40)) shows that
the higher modes cos (nkx), sin(nkx), n = 2, .., ∞ are stable with frequency ωn =√

(2πn/L)4 − 2g(2πn/L)2|c|2 = O(n2), and thus, in the non-resonant case, can be treated
as stable oscillators. Since these modes are much faster than the first and the second modes
(the frequency increases as n2), one expects that resonances will be rear and that the slow
dynamics will essentially decouple from the fast modes (see [22, 26] for related results). The
resulting truncated system is a near-integrable two d.o.f Hamiltonian of the form H̄ (b, c) =
H̄0(b, c) + εH̄1(b, c), where, in the integrable limit (ε = 0), Ī = 1

2 (|c|2 + |b|2) = ||�2(x)||L2

is preserved.

3.1.1. The integrable system. The first main step in the analysis of the truncated integrable
dynamics (ε = 0) is a transformation from the Fourier mode amplitudes (c, b) to the generalized
action-angle coordinates (q, p, Ī , γ ) [38]:

c = |c| exp(iγ ), b = (q + ip) exp(iγ ), (3.3)

Ī = 1
2 (|c|2 + q2 + p2). (3.4)

The transformation brings the Hamiltonian H̄0(b, c) to the form

H̄0(q, p, Ī ; �2, k2, g) = g

2
(Ī )2 − �2Ī +

(
gĪ − 1

2
k2

)
q2 − 7g

16
q4 − 3g

8
q2p2

+
g

16
p4 − 1

2
k2p2,

where

(Ī , γ ) ∈ (R+ × T ), (q, p) ∈ BI = {(q, p)|q2 + p2 < 2Ī }
and the truncated model depends on the two parameters �2 and k = 2π/L. The two truncated
integrals of motion H̄0 and Ī are analogous to H0 and I of the PDE.

Once these coordinates are introduced8, the structure of the unperturbed solutions and the
structure of the unperturbed energy surfaces may be easily found. Since Ī is a constant of
motion and H̄0 is independent of γ , for any given Ī (0) the Hamiltonian H̄0(q, p, Ī (0)) may be
viewed as a one-degree of freedom Hamiltonian (we refer to it as the reduced Hamiltonian) that

7 Here c(t), b(t), bn(t), an(t) are complex functions and γ (t) is the phase of c(t).
8 Notice though that, as opposed to regular action-angle coordinates, the velocity of γ along the unperturbed quasi-
periodic trajectories is usually non-constant.
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Figure 9. The structure of the two d.o.f model (k = 1, �2 = 1, g = 2). (a) The EMBD: the grey
area denotes the allowed region of motion, the coloured curves denote the families of the singular
circles. (b) The (q, p) phase plane at I = 0.75 (the horizontal line in the EMBD). The projections
of perturbed regular interior (magenta) and regular exterior (black) solutions onto the EMBD and
onto the qp plane are shown.

controls the motion in the (q, p) plane, namely, the motion occurs along the closed qp-level9

sets of H̄0(q, p, Ī ). The topology of the level sets of the truncated two d.o.f. system may
be easily found: for (q, p) ∈ BI , each qp-level set is crossed with a circle of phases γ . For
Ī < I1LUM, the reduced Hamiltonian has a single elliptic fixed point at the origin (corresponding
to the plane wave solution and denoted by (q

pw
f , p

pw
f ) = (0, 0)) and all the other qp-level sets

of H̄0(q, p, Ī ) are regular and diffeomorphic to circles that encircle it. Thus for Ī < I1LUM,
the level sets of the two d.o.f. system correspond to a single torus, with only two exceptions of
singular level sets that correspond to a circle: the qp origin multiplied by a circle of phases γ

and the boundary of BI (namely, the circle q2 +p2 = 2Ī , where c(t) = 0 and γ is not defined).
At I1LUM the origin undergoes a pitchfork bifurcation, so that for Ī ∈ (I1LUM, I2LUM) the

reduced Hamiltonian has a figure eight structure (see figure 9(b)). The regular level sets of the
two d.o.f. system correspond to either a single torus (for exterior qp-orbits, namely orbits in
the qp plane that encircle the figure eight) or to two disconnected tori (for interior qp-orbits,
one in each of the figure eight loops, see figure 9(b). These qp plots motivated the PDE
definition of interior and exterior orbits that appear in theorem 6. For these values of Ī there
are four singular level sets: the circle corresponding to the boundary of BI , the two circles
corresponding to the elliptic points inside the figure eight, and the two-dimensional level set
that corresponds to a circle in γ crossed with the qp-figure eight.

The above description provides a full characterization of the level sets of the Hamiltonian
for any fixed Ī < I2LUM. To obtain from it the structure of the energy surfaces, which is
instrumental for providing a qualitative prediction of the perturbed dynamics as explained
next, we construct the energy–momentum bifurcation diagram (EMBD) [7, 20, 39, 40, 51, 54].
In this bifurcation diagram we plot, in the plane of (H̄0, Ī ), the singular curves—the curves
that correspond to the singular level sets. Namely, we plot hs(Ī ) = (H̄0(qf (Ī ), pf (Ī ), Ī ), Ī ),
where (qf (Ī ), pf (Ī )) stand for either one of the three fixed points in the (q, p) plane or to the
boundary of BI . The region of allowed motion is the region bounded between the stable curves
in the EMBD (grey region in figure 9(a)). Every point that belongs to the allowed region of
motion corresponds to a single level set, which may have either one or two components. The
energy surface H̄0(q, p, Ī , γ ; �2, k2, g) = h corresponds to the intersection of a vertical line
H̄0 = h with the grey region in this diagram.

9 i.e. the level set of H̄0(q, p, Ī (0)) in the (q, p) plane.
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Points along this energy surface line that do not belong to the singular curves correspond
to regular level sets. The motion on these level sets is generically quasi-periodic, yet there
are dense set of points on which the motion is resonant (namely, there exist n, m ∈ Z with
|n| + |m| �= 0, so that the two frequencies that arise obey nw1 + mω2 = 0). Similarly, the
motion on the singular level sets, which are composed of circles, is called resonant if the normal
frequency (the imaginary eigenvalues of the linearized reduced Hamiltonian at the qp-fixed
points) and the frequency of the motion along the circle (γ̇ |{qf ,pf,Ī }) are resonant. The strongest

resonant circle10 thus appears when γ̇ |{qf ,pf ,Ī res} = 0. Then, (qf , pf , Ī res, γ ) is a circle of fixed
points (see [38, 51]). In fact, such a circle of fixed points always corresponds to an extremum
of the singular curves, namely dhs(Ī )/dĪ = 0 exactly at such a resonant circle (and therefore
the foliation of the energy surface changes at such points, see [48, 51]). For the plane wave
solution, such a circle of fixed points appears at

Ī res = �2

g
, (3.5)

the same power at which the PDE plane wave is resonant, see equation (2.48).
Finally, note that the singular plane wave curve (hpw

s (Ī ) = (H̄0(0, 0, Ī ), Ī )) splits the
neighbourhood of the plane wave into two distinct regions: to the right of the plane wave the
quasi-periodic solutions follow the ‘interior’ part of the homoclinic solution in the (q, p) plane
and each level set is composed of two-tori. The solutions to the left of the plane wave curve
follow the ‘exterior’ part of the homoclinic orbit and the level set corresponds to a single torus.
Theorem 6 shows that provided the initial profile has all of its power in the first two modes
(so �(x, 0) = �ini-2(x)), the PDE-EMBD inherits this property as well (similar property is
expected to hold for initial data with sufficiently rapid decay of higher modes).

3.1.2. The near-integrable system. Now consider the perturbed truncated system:

H̄ (q, p, Ī , γ ) = H̄0(q, p, Ī ) + εH̄1(q, p, Ī , γ ), (3.6)

where

H̄1(q, p, Ī , γ ) =
√

2
√

2Ī − q2 − p2 sin γ. (3.7)

The solution structure of the resulting two d.o.f near-integrable system depends on the
parameters (L, �; g), the energy level, and the phase-space region (we consider here only the
PDE relevant region, I � I2LUM) and are roughly divided into regular and chaotic solutions.

Regular solutions. In the limit of small ε, by the KAM theorem, most initial conditions
evolve as quasi-periodic solutions. We call such solutions regular solutions. The regular
quasi-periodic solutions are either ε-close to some unperturbed solutions (the non-resonant
case) or may correspond to quasi-periodic motion surrounding resonant periodic solutions
with Ī variations of order

√
ε (KAM tori of the partially averaged system near resonances).

These solutions appear for typical initial data (qi, pi, Īi , γi) belonging to the regions of the
EMBD that are at least ε away from the unstable part of the singular plane wave curve (i.e. for
all Īi ∈ (I1LUM, I2LUM), we take |H̄0(qi, pi, Īi) − h

pw
s (Īi)| > O(ε)):

Non-resonant elliptic solutions. The EMBD region to the left of the plane wave curve h
pw
s (Ī )

at small Ī values (Ī < I1LUM), corresponds, in the unperturbed case, to elliptic orbits: qp orbits
that encircle the origin and appear as horizontal lines in the (γ, Ī ) plane. The non-resonant
perturbed trajectories follow ε-closely such integrable trajectories in both (q, p) and (γ, Ī )

10 The smaller is |n| + |m|, the stronger is the resonance.
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planes. On the EMBD, such perturbed solutions cover, in a regular pattern, a square of width
O(ε) to the left of the plane wave curve.

Non-resonant exterior solutions. The EMBD region to the left of the plane wave curve h
pw
s (Ī )

with Ī in the unstable regime (I1LUM < Ī < I2LUM), corresponds, in the unperturbed case, to
exterior orbits: qp orbits that encircle the figure eight homoclinic orbit associated with Ī and
appear as horizontal lines in the (γ, Ī ) plane. The typical perturbed solutions with initial data
in this region (that is ε-away in H0 from h

pw
s (Ī )), follow the unperturbed dynamics exactly as

in the elliptic case, see, e.g. the outer to the homoclinic orbit (black) trajectory in figure 9(b).

Non-resonant interior solutions. The EMBD region to the right of the plane wave curve h
pw
s (Ī )

with Ī in the unstable regime (I1LUM < Ī < I2LUM), corresponds, in the unperturbed case,
to interior orbits: qp orbits that are inside the right or left part of the figure eight homoclinic
orbit associated with Ī . The corresponding regular perturbed solutions (namely solutions with
initial data that project to the same region of the EMBD) follow the unperturbed dynamics,
see, e.g. the interior to the homoclinic orbit (magenta) trajectory in figure 9(b).

Regular resonant solutions. When a resonance occurs at a regular level set, namely an
unperturbed two torus is resonant, a resonance region of O(

√
ε) is created in the (γ̃ , Ī )

plane, where γ̃ denotes the resonant phase angle. The perturbed solutions follow the level
lines of the partially averaged Hamiltonian in the (γ̃ , Ī ) plane (slow pendulum-like dynamics)
while encircling (fast dynamics) the corresponding qp-level set. By the KAM theorem for
the partially averaged Hamiltonian, most solutions in this region are quasi-periodic, and the
exceptional set is exponentially small (we disregard this exceptional set in our classification).
Projecting such solutions to the EMBD produces a rectangle of H -width of O(ε) and I -height
of O(

√
ε). In particular, the resonant solutions in the flat plane, where b(0) = b(t) = 0, may

be easily found; On this invariant plane:

H̄ (0, 0, Ī , γ ) = g

2
(Ī )2 − �2Ī + 2ε

√
Ī sin γ, (3.8)

so the half-width of the resonance zone near Ī res, in which regular oscillatory motion in γ

occurs, is

�Ī = 2√
g

√
�ε√

g
. (3.9)

Chaotic solutions. Solutions with typical initial data (qi, pi, Īi , γi) near the unstable branch
of the plane wave exhibit chaotic behaviour. Three observable11 chaotic mechanisms associated
with the appearance of homoclinic orbits at I � I1LUM (see figure 3 in [52] and figure 11 of
section 3.2 for the similar PDE projections to the PDE-EMBD) appear:

Homoclinic chaos. For any given δ, for sufficiently small ε, solutions with typical initial data
chosen close to the homoclinic orbits with Īi ∈ (I1LUM, I2LUM) \ [Ī res − δ, Ī res + δ] evolve
chaotically in the (q, p) plane as in periodically forced one d.o.f systems. Since γ̇(0,0,Ī (t)) �= 0
for such solutions, the section γ = γ0 provides a local Poincaré map near the corresponding
hyperbolic circle, and thus transverse intersections of the circles’ stable and unstable manifolds
with O(ε) splitting angle may be established by standard methods. Thus, we say that such
chaotic solutions are created by the standard homoclinic chaos mechanism. Away from the
singular circle the motion in γ may be non-monotone, yet, in the non-resonant cases, the

11 We disregard here the complicated behaviour which includes chaotic motion in the exponentially small regions near
resonances boundaries.
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distribution of γ values along chaotic trajectories appears to be uniform (islands of stability
in the homoclinic region may destroy this uniformity in γ ). The projection of such solutions
onto the EMBD appears as almost horizontal lines (with slope of O(ε)) that occasionally cross
the plane wave curve h

pw
s (Ī ). Eventually, the projection covers, in an irregular way, a square

of width O(ε) near the initial data projected point (H0(qi, pi, Īi , γi), Īi).

Hyperbolic resonance. Solutions with typical initial data chosen close to the homoclinic orbit
of a resonant hyperbolic circle, namely, with Īi = Ī res + O(

√
ε) exhibit chaotic behaviour

which is of essential different characters than the standard homoclinic chaos [31, 32, 38]. Note
that such solutions appear only when the resonant plane wave is unstable (Ī res > I1LUM),
namely, when �2 > �2

PR = k2/2. Away from the q = p = 0 invariant plane, such orbits
follow the homoclinic loop, whereas near this plane they shadow the resonant slow pendulum-
like dynamics in the (γ, I ) plane. Thus, in this case the variations in Ī are of O(

√
ε). On

the EMBD, the projection of such solutions appears as almost horizontal lines with occasional
fast O(

√
ε) drops in Ī , covering eventually a rectangle of width O(ε) and height O(

√
ε) near

(H0(qi, pi, Īi , γi), Īi).

Parabolic resonance. Near the critical parameters value �2 ≈ (k2/2) (where Ī res ≈ I1LUM),
typical solution with initial data in the neighbourhood of the nearly parabolic and nearly
resonant plane wave exhibit intermittent chaotic behaviour. The projection of such solutions
to the EMBD appears to oscillate along the parabola-shaped lines, changing their fidelity
as these lines cross the plane wave curve h

pw
s (Ī ). These projections cover eventually an arched

shape region of width O(ε) and height O(
√

ε) near (H0(qi, pi, Īi , γi), Īi). Following [50],
we show in section 3.3 that the parabola-like level lines correspond to an adiabatic invariant
that is preserved by the perturbed trajectories as long as they are away from the plane wave
separatrices, namely their projection is away from the curve h

pw
s (Ī ).

3.2. The perturbed PDE phase-space structure near the plane waves

The nonlinear chaotic nature of the truncated system suggests that a standard comparison
between perturbed and unperturbed solutions of the PDE (e.g. plotting time integral of
the L2 norm of the difference between the solutions) will not be informative. Instead,
we seek qualitative comparison between the solutions. These are achieved by comparing
the three projections that were introduced in the two d.o.f analysis, where the generalized
action-angle coordinates (q, p, Ī , γ ) were naturally defined. Denote by Cn�(x, t) =
�̂(n, t) the nth complex coefficient of the Cosine tranform of the solutions (Cn�(x, t) =
1
L

∫ L/2
−L/2 �(x, t) cos(nkx) dx), and define the following three projections of the PDE

solutions:

(P1) Projection onto the PDE-EMBD. We plot the parametric curve {ζt }t∈[0,τ ] where ζt =
(H0(�(x, t)), I (�(x, t))) (recall equations (2.2) and (2.4)) on top of the skeleton of the
projections of the unperturbed standing and travelling wave solutions. Note that by (3.2)
the curve {ζt }t∈[0,τ ] always (for all τ ) projects into a strip of width O(ε) in H0 around
the initial energy H0(�0(x)).

(P2) Projection onto the phase–power plane. We plot the parametric curve {ρt }t∈[0,τ ] in the
(γ, I ) plane, namely we plot ρt = (γ (t), I (�(x, t))). Here γ (t) = arg C0�(x, t) is the
phase of the flat part of the solution.

(P3) Projection onto the (q, p) plane. We plot the parametric curve {ξt }t∈[0,τ ] in the (q, p)

plane, where (q, p) are defined as the real and imaginary parts of the first mode of the
solution (phase shifted to match the flat phase):

ξt = (Re[C1�(x, t)e−iγ (t)], Im[C1�(x, t)e−iγ (t)]). (3.10)
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We show that these projections reveal, on the one hand, the analogy between the ODE and
the PDE solutions, and on the other hand, enable to detect when the PDE behaviour is distinct
from the ODE. A few notes are in order:

1. These projections hide the explicit time dependence of the solutions, as appropriate for
the qualitative comparison between perturbed and unperturbed solutions.

2. Note that the first projection uses the integrable PDE structure as an underlying skeleton
for the motion, thus providing accurate division of the projected PDE space to interior
and exterior solutions for initial data that is located near the plane wave and has only two
modes (recall theorem 6).

3. Below, we utilize our understanding of the dynamics associated with the family of two-
mode initial data:

�0(x) = �ini-2(x) =
[

1√
2
|c| + b(0) cos(kx)

]
eiγ (0). (3.11)

It appears that adding to such initial profiles higher modes that decay rapidly does not
change the qualitative statements regarding the dynamics (yet may shift the SCC curves).

4. Note that two-mode initial data, namely a flat mode and a first harmonic are necessarily
symmetric, hence, with no loss of generality, for such initial data we may take the symmetry
axis to be at x = 0, and thus the projection of such solutions to the (q, p) plane utilizing
the cosine transform C1 (centred at the origin) is natural.

5. We expect that in the two-mode zone, namely when I (t) < I2LUM and the initial data
have sufficiently fast decay of the high modes, the ODE and the PDE systems will behave
similarly. Indeed, we demonstrate below that all the near-integrable ODE behaviours
appear in the PDE as well. When solutions that are initialized in this zone leave it,
possibly by two d.o.f. instability mechanisms that ramp I beyond the I2LUM threshold,
other modes of the solution become active and, as explained in section 3.3, intermittent
spatial–temporal chaos emerges.

Regular solutions. Solutions with initial profiles that are bounded away from the unstable
branch of the plane wave and its homoclinic orbits and satisfy I (0) < I2LUM are observed
to execute, for sufficiently small ε (e.g. for ε ≈ 10−3 for the initial conditions shown in
figure 10), quasi-periodic motion (up to the numerical accuracy). Note that the solutions that
appear in figure 10 are far from the quiescent solution, namely, they have a finite power. In
fact, figure 10 shows KAM like solutions with I > I1LUM, demonstrating that away from the
unstable branches of the special solutions, the perturbed PDE phase space may indeed have
many regular orbits. We conclude that an infinite-dimensional KAM theorem may hold here
even for large amplitude solutions (see [22] for related rigorous results in the small amplitude
regime).
The projection ζt of such regular non-resonant orbits (respectively, resonant) to the
PDE-EMBDs appears as an ordered covering of a confined rectangular region of width O(ε)

and height O(ε) (respectively O(
√

ε)).
The projection of the non-resonant regular perturbed solution onto the phase–power plane

appears as a band of height O(ε) around I (�0(x)) that covers uniformly all values of γ (yet
γ (t) may be non-monotone), similar to the corresponding unperturbed trajectories. Resonant
regular quasi-periodic motion projects to the phase–power plane as a band of height O(

√
ε)

that is distinct from the projection of the integrable solutions, and, in particular it is non-
uniform in γ . The projection to the qp-plane of both the unperturbed and perturbed solutions
is non-trivial as the true second mode is composed of many Fourier components. Nonetheless,
it provides information regarding exterior and interior type of dynamics.
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Figure 10. Three perturbed regular PDE solutions. The magenta/black/cyan orbits are the P1
(a) and P3 (b), (c) projections of the near-integrable regular interior/exterior/elliptic solutions
(with ε = 10−3, k = 1, �2 = 1, g = 2). Some of the integrable solutions (blue—the
plane wave and its homoclinic orbits, green—the inner solution with multiplicity 1, red—the
outer solutions) are shown. (a) The PDE-EMBD for I < I2LUM, with the three P1 projections
of the solutions. (b) P3-projection (to the qp-plane) of an elliptic solution with initial data

�0(x) = [
√

0.1√
2

+
√

0.1 cos(kx)]eiγ (0) (so I (t = 0) = 0.15). The origin (blue point) is

the P3-projection of the stable plane wave at I = 0.15. (c) P3-projection of the exterior

(�0(x) = [
√

1.1√
2

|c| +
√

0.4i cos(kx)]eiγ (0)) and interior (�0(x) = [
√

0.9√
2

|c| − √
0.6 cos(kx)]eiγ (0))

solutions at I (t = 0) = 0.75 (the horizontal line in the PDE-EMBD). The dashed blue curves
(respectively green points) are the P3-projections of the symmetric unperturbed homoclinic orbits
to the plane wave (of the symmetric unperturbed inner-dnoidal solutions with multiplicity 1).

We can now classify the typical PDE quasi-periodic motion near the plane waves to four
classes of solutions that are similar to the ODE classes. Yet, the classification here is non-
rigorous (in particular, note that in the ODE case each point on the EMBD corresponds to
a unique level set of the integrable motion, whereas the PDE-EMBD does not preserve this
property). Thus, we present numerical evidence for its validity for the two-mode initial data of
the form (3.11) that was considered in theorem 6. We emphasize that here only the initial data
are taken in the truncated form—the forced NLS equations are integrated with an 8th order
finite-difference in space and 4th order Runge–Kutta in time scheme (similar results appear
when a spectral code with 512 modes is utilized), and for all t > 0 we do observe that some
small power is spread to the higher Fourier modes.

Non-resonant elliptic solutions. Solutions with initial profiles (3.11) satisfying I (�0(x)) <

I1LUM are typically, for sufficiently small ε, quasi-periodic and remain ε-close to a nearby
integrable solution. Their projection to the PDE-EMBD lies to the left of the plane wave SSC
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curve (see figure 10(a) and theorem 6). Their projection to the qp-plane, ξt , results with orbits
encircling the origin, see figure 10(b). Their projection ρt onto the phase–power plane appears
as ε-deformed horizontal lines (not shown).

Non-resonant exterior solutions. Similarly, for most initial profiles of the form (3.11) satisfying
Re[b(0)] = 0, Im[b(0)] �= 0 and I (�0(x)) ∈ (I1LUM, I2LUM), the perturbed solutions are
quasi-periodic and remain ε-close to an exterior integrable solution oscillating around the
outer-cnoidal like solutions (figure 10(c)). Their projection onto the PDE-EMBD is to the left
of the plane wave SSC, see figure 10(a) and theorem 6.

Non-resonant interior solutions. Solutions with initial profiles of the form (3.11) satisfying
Re[b(0)] �= 0, Im[b(0)] = 0 and I (�0(x)) ∈ (I1LUM, I2LUM) are typically quasi-periodic
and remain ε-close to an integrable solution which oscillates about the inner-dnoidal standing
wave in the interior of the homoclinic orbit, see figure 10(c). The sign of Re[b(0)] determines
whether the solution oscillated about the right (Re[b(0)] > 0) or left (Re[b(0)] < 0) dnoidal
standing wave. In contrast to the two d.o.f case, the projected interior integrable orbits to the
qp-plane may have a complicated shape, see figure 10(c). The projection of such perturbed
solutions onto the PDE-EMBD is to the right of the plane wave SSC, see figure 10(a) and
theorem 6.

Resonant solutions. Resonant elliptic, interior and exterior solutions appear for a ‘small
fraction’ of the above listed initial profiles12. Their projections onto the PDE-EMBD and
the qp-plane, extends to variation of O(

√
ε) in I . Their projection to the (γ, I ) plane, in

the rotational resonant frame, is pendulum-like. The strongest resonances, namely those
that appear at the folds of the different SSC in the PDE-EMBD (theorem 5), produce the
largest resonance zones. In particular, if �2 < �2

PR, then the plane wave SSC has a fold at
Ipw-res < I1LUM and thus, for most initial profiles �0(x) in the rectangle of height O(

√
ε) near

this fold (with ε sufficiently small so that
√

ε � (I1LUM − Ipw-res)) the perturbed solutions are
resonant yet regular. Their projection onto the phase–power plane is pendulum-like and these
are easily observable even for ε ≈ 10−3. See figure 1(a) in [53] for such trajectories in the
case of relatively large ε, where the resonant zone exceeds the I1LUM bound.

Temporally chaotic solutions. Perturbed solutions that visit the neighbourhood of the plane
wave in its unstable regime (I ∈ (I1LUM, I2LUM)) yet do not invade the region I > I2LUM

exhibit temporal chaos that follow closely the two d.o.f orbits. As in the two d.o.f. case,
three observable chaotic scenarios arise, and their projections P1–P3 to the three planes—the
PDE-EMBD, the (γ, I ) plane and the (q, p) plane follow closely those of the ODE;

Homoclinic chaos. Given a δ > 0, for sufficiently small ε, solutions with initial profiles of
the form (3.11) satisfying 0 < |b(0)| = O(ε) and I (�0(x)) ∈ (I1LUM, I2LUM) \ [Ipw-res −
δ, Ipw-res + δ], will typically exhibits homoclinic chaos. Such initial profiles project onto the
PDE-EMBD in an O(ε) neighbourhood of the SSC in the interior of the interval (I1LUM, I2LUM),
at a point which is bounded away from the resonant plane wave solution, the SSC extrema
point Ipw-res = �2/g (= 0.4 in figure 11(HC)). The projected curve is composed of nearly
horizontal lines (corresponding to the homoclinic excursions along which I changes by O(ε))
and occasional crossing of the SSC curve (see figure 11).

Hyperbolic resonance. For �2 ∈ (k2/2, 2k2), for sufficiently small ε, solutions
with initial profiles of the form (3.11) satisfying 0 < |b(0)| = O(ε) and

12 The initial profile (3.11) depends on four real parameters, {|c|, γ (0), Re[b(0)], Im[b(0)}, and since we take
I < I2LUM these parameters belong to a bounded domain. Thus the notion of typical initial condition of this
family may be precisely defined.
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Figure 11. Three different types of temporal chaos in the forced NLS equation. The periodic
length is fixed to k = 2π/L = 0.9 and the initial profile is near the unstable plane wave:
�0 = √

Aeiγ0 + 10−5 cos kx, ε = 10−3, with the values (HC) Homoclinic chaos: �2 = 0.8, A =
0.5, γ0 = 1/4π (HR) Hyperbolic resonance: �2 = 0.8, A = 0.4, γ0 = 1/4π and (PR) Parabolic
resonance: �2 = 0.405, A = 0.2, γ0 = 3/4π .

I (�0(x)) ∈ [Ipw-res − O(
√

ε), Ipw-res + O(
√

ε)], typically exhibit hyperbolic resonance chaos.
The initial profile projects onto the PDE-EMBD in a rectangle of height O(

√
ε) that

crosses the SSC in the interior of the interval (I1LUM, I2LUM) near the SSC extremal point
Ipw-res, see figure 11(HR). The projected curve is composed, as in the truncated case, from
almost horizontal lines (homoclinic excursions) and abrupt O(

√
ε) excursions in I that

correspond to some shadowing of the resonance zone dynamics (see [32, 38] for related
analysis).

Parabolic resonance. Near the critical parameters’ values �2 ≈ �2
PR = (k2/2) (where

Ipw-res ≈ I1LUM), for sufficiently small ε, solutions with initial profiles of the form (3.11)
satisfying 0 < |b(0)| = O(ε) and I (�0(x)) ∈ [Ipw-res − O(

√
ε), Ipw-res + O(

√
ε)], typically

exhibit the parabolic-resonance chaos, see figure 11(PR). The shape and form of these parabolic
resonant solutions are similar to that of the parabolic resonant solutions of the truncated system
as long as I (t) < I2LUM [52]. This latter condition is satisfied in the limit of sufficiently small
ε. In section 3.3 we show that these solutions actually follow the level lines of an adiabatic
invariant of a simplified two d.o.f. normal form, thus finding the scaling for the observed
intermittent chaotic motion.

Spatio-temporal chaotic solutions. When solutions are either initialized or evolve to the
region near the plane wave with I > I2LUM, spatio-temporal dynamics arise. Then, at least
two spatially non-trivial modes evolve chaotically in time, typically with chaotic relative
phase, and thus their spatial profile becomes uncorrelated [18, 53]. Since the perturbed
system preserves the space of spatially symmetric functions (see [17]), such a behaviour
is possible only when asymmetric initial data are introduced (yet, we find that even the
slightest asymmetry in the initial data or in the numerical code is sufficient to induce the
appearance of STC when I (t) > I2LUM). We can thus conclude that if a typical (asymmetric)
solution projection to the PDE-EMBD crosses the I = I2LUM line near the plane wave SSC,
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it exhibits STC13. Auto-correlation plots, amplitude plots or even Fourier mode phase plots
support this observation [53]. Can a nearly quiescent initial profile (with small I (0)) evolve
to reach the temporal-chaos region (with I (t) > I1LUM) or even the spatial–temporal region
(I (t) > I2LUM)? We propose that for sufficiently small ε the answer is negative: the numerical
indications are that for small ε the nearly quiescent solutions of the forced NLS behave as
the solutions of the truncated model, where, by KAM theory, they cannot increase their initial
power by more than O(

√
ε) and thus remain forever in the small I region (for the forced

NLS—these are finite-time numerical results).
On the other hand, for sufficiently large ε it is always possible to ramp I up to I2LUM on a time
scale of order O(1/

√
ε) by the plane wave resonance mechanism; Indeed, note that on this

flat invariant plane the dynamics is governed by the Hamiltonian (3.8). Indeed, equation (3.9)
implies that when �Ī � Ī res nearly quiescent solutions are swept into the resonances zone.
Hence, for any given �, there is a critical ε0(�):

ε0(�) = �3

4
√

g
(3.12)

beyond which the resonance zone extends from the origin to Ī res+�Ī . Similarly, this resonance
zone extends beyond I2LUM when Ī res + �Ī � I2LUM, and another critical value, ε2LUM(�, k),
emerges:

ε2LUM(�, k) = 1

�
√

g

(
k2 − �2

2

)2

. (3.13)

Thus, for ε > εc-flat(�, k) = max {ε0(�), ε2LUM(�, k)}, the L2 norm of typical nearly
quiescent flat solutions is ramped up beyond I2LUM. Note that εc-flat(�, k) is minimal at
�2 = k2. For example, for the parameters (g, k) that are chosen in [53], k = 0.9 and g = 2,
εc-flat(0.9, 0.9) = (0.9)3

4
√

2
≈ 0.129. Non-flat nearly quiescent initial data evolve to STC when

ε > εc(�, k), where clearly εc(�, k) � εc-flat(�, k). In [53] we find numerically that εc(�, k)

is actually minimal at parabolic resonance (namely the minimum shifts to �2 = k2/2) and
that εc(

0.9√
2
, 0.9) ≈ 0.05.

3.3. The parabolic-resonance phenomena

The appearance of parabolic resonance in the truncated two d.o.f system (equation (3.6))
may be fully analysed by transforming the truncated model into the symmetric parabolic-
resonance normal form that has recently been constructed and analysed [50]. We provide the
transformation to the normal form below and show that for small ε the projection of the PDE
solution onto the first two Fourier modes (projections P2, P3 to (xp(t), yp(t), Ip(t), γ p(t)))

follow the same adiabatic invariants as the two d.o.f model.
To analyse the truncated system, we introduce below a change of coordinates that brings

the truncated model, in the leading order term, to the parabolic-resonance slow-fast normal
form:

H̄ (q, p, Ī , γ ; g, k, �2, ε) → εnf [H nf(qnf , pnf , I nf , ϕnf; β, λ)

+ (εnf)
1
2 Hp(qnf , pnf , I nf , ϕnf; εnf)],

13 So far, there is no indication that such solutions may lead to weak turbulence: it appears that even-though the
dynamics are chaotic and involve several modes, the energy remains concentrated only in the lowest Fourier modes
(see [18, 53] and figures therein).
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where (hereafter we drop the nf superscripts when unambiguous)

H nf(q, p, I, ϕ) = p2

2
− I

q2

2
+

q4

4
+ β

(λ + I )2

2
+ cos ϕ (3.14)

is equipped with the slow-fast symplectic form dq ∧ dp + ε−1/4(dϕ ∧ dI ) so that the
velocities in the fast (q, p) variables are of O(1) and those in the slow (I, ϕ) variables are of
O(ε1/4).
Most importantly, the parameters λ, β, ε that appear in the normal form are

λ = 128

49
√

εnf

(
1

2
− �2

k2

)
, β = − 7

16
, εnf = 45√2g

73k3
ε ≈ 4.22

√
g

k3
ε (3.15)

Note, in particular, that β is independent of the forced NLS parameters, that λ is tunable by
changing � and that εnf has non-trivial dependence on k.
The transformation to the normal form is given by (with a = (

√
7k/4

√
g), b = 2(

√
7

4 )3 k√
g

):

q = a
4
√

εnfqnf , p = b
√

εnfpnf , Ī = ab
√

εnfI nf +
1

2g
k2, γ = ϕnf − π/2

H̄ = −k2b2εnfH nf − �4

2g
, t̄ = − tnf

4
√

εnfk2b2
.

So that the perturbation near the parabolic-resonance region becomes
√

εnfHp(qnf , pnf , I nf , ϕnf; εnf) =
√

εnf
3

8

7

16
(qnf)2(pnf)2 − εnf 73

47
(pnf)4

+

(√
1 +

7

16

√
εnf

(
7

4
I nf − (qnf)2

)
− εnf

73

45
(pnf)2 − 1

)
cos ϕ

=
√

εnf

(
3

8

7

16
(qnf)2(pnf)2 +

7

32

(
7

4
I nf − (qnf)2

)
cos ϕ

)
+ O(εnf).

Note that for any fixed (I, ϕ) the Hamiltonian H nf(q, p, I, ϕ; β, λ) corresponds to the
classical Duffing oscillator; for negative I this Hamiltonian has a single stable fixed point at
the origin, whereas for positive I the system has a figure eight separatrix emanating from the
origin with two elliptic fixed points at (q, p) = (±√

I , 0). The motion in the (q, p) plane is
fast as long as the qp orbit is bounded away from the separatrix. Thus, on each energy surface
H nf(·) = h, we define the separatrix set Sqp(h) as the set of (I, ϕ) values that correspond to
the (q, p) separatrix level set

Sqp(h) =
{
(I, ϕ)|I > 0 and h = H nf(0, 0, I, ϕ) = β

(λ + I )2

2
+ cos ϕ

}
. (3.16)

It follows that for values of (I, ϕ) that are bounded away from Sqp(h) the motion in the (q, p)

plane is fast, and hence, by the adiabatic theorem, it preserves an adiabatic invariant [50]. To
first order in ε1/4, the adiabatic invariant is given by the qp-area that is enclosed by the fast
trajectories, namely the action J (I, ϕ; h):

J (I, ϕ; h) = 2
∫ q+

q−
p dq = 2

√
2

∫ q+

q−

√
z(ϕ; h) +

q2

2
I − q4

4
− β

(λ + I )2

2
dq, (3.17)

z(ϕ; h) = h − cos ϕ, (3.18)

where q+ and q− are properly defined to make J (I, ϕ; h) continuous across the separatrix set.
The perturbed motion projected to the (I, ϕ) plane follows the level lines of J (I, ϕ; h) up to
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Figure 12. Adiabatic chaos in the forced NLS. Trajectories of the forced truncated model equation
(ODE-1, ODE-2 columns) and of the forced NLS PDE (PDE column) with initial conditions near
the plane wave solution are projected (red) on top of the level sets of the adiabatic invariant of the

normal form J (I, ϕ; h). The sets corresponding to the stable plane wave (Sqp

∣∣∣{Inf <0,(q,p)=(0,0)}
)

and ground state (Sqp

∣∣∣{Inf >0,(q,p)=(±
√

Inf ,0)}
) circles and are marked by solid blue and green curves,

respectively, and the separatrix set (Sqp

∣∣∣{Inf >0,(q,p)=(0,0)}
) is indicated by a dashed blue curve. First

row: the trajectories are projected to the (ϕnf , I nf ) plane. Second row: the trajectories are projected
to the (z, I nf ) plane. The vertical lines show the energy surface boundaries. In all figures h = 0.695,
ε = 10−3. The initial conditions for ODE-1 and PDE are: (q, p, I, ϕ) = (10−5, 0, 0.2, 5

4 π), for

ODE-2 the initial conditions are (x, y, I, ϕ) = (5 × 10−5, 0, 0.2, 5
4 π).

the separatrix set, where it undergoes a jump. This quasi-regular behaviour is called adiabatic
chaos: such a behaviour has been extensively studied theoretically and in the context of various
applications [7, 19, 27, 46, 47, 56].

The level lines of J (I, ϕ; h) change their shape and even their topology for different ener-
gies, thus a full description of the dynamics for all energies appears to be formidable. However,
since J (I, ϕ; h) = J (z(ϕ; h), I ) and since the dependence of z on ϕ and h is so simple to
decipher (see equation (3.18)), projecting the J level lines to the (z, I ) plane provides a full
description of the perturbed dynamics at any energy level; Up to the

√
εHp corrections, the

perturbed motion at the energy level h is confined to the strip z ∈ [h−1, h+1], and thus occurs
along the J level lines in that strip. The separatrix set projection to the (z, I ) plane is simply
the upper part of the parabola β((λ + I )2/2) (see equation (3.16)). Hence, at any energy, the
J level lines that intersect the separatrix set in the strip z ∈ [h − 1, h + 1] correspond exactly
to the chaotic set.

In figure 12 trajectories of the forced truncated model equation (marked as ODE-1, ODE-2)
and of the forced NLS (marked as PDE) transformed to the normal form coordinate system
are shown. These trajectories (red) are compared with the level sets of the adiabatic invariant
J (I, ϕ; h) (grey) of the normal form system in the (I, ϕ) plane (first row) and in the (z, I )

plane (second row). It is clearly observed that both the PDE and the ODE perturbed trajectories
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follow the level sets of the adiabatic invariant except near the separatrix set (dashed blue line).
In the second row of figure 12 the trajectories are projected to the (z, I ) plane, where the
energy surface bounds on z are shown. We observe numerically that the adiabatic invariant is
preserved away from the separatrices for εnf � 0.001. For such values, the region of chaotic
behaviour is of order

√
εnf , and thus, in particular the instability in I values is limited to

O(
√

εnf). Notably, for k = 0.9, g = 2 we get εnf = 8.19ε. The critical value of εc = 0.05
that was found numerically to produce the transition of nearly quiescent initial data to STC
solutions in [53] corresponds to εnf = 0.41, where the leading order adiabatic chaos analysis
is clearly invalid.

4. Conclusions and discussion

By constructing the PDE-EMBD, we show that the standing and the travelling waves solutions
of the periodic one-dimensional NLS equation may serve as organizing skeleton for the PDE
phase-space structure near these special solutions. We find that these families of solutions
project as distinct curves (called SSC) in the PDE-EMBD. We proved that the folds of these
curves correspond to resonances of the standing/travelling waves solutions. We completed the
PDE-EMBD by including the information regarding the stability of the three families of the
standing waves. We provided a modified proof for the linear instability of the inner standing
waves solutions with multiplicity j � 2. We studied the linear stability of the outer standing
waves solutions numerically and found that these waves undergo a sequence of Hamiltonian–
Hopf bifurcations. The Hopf bifurcations appear at Im

bif(�
out
j (x)) = (m2/g)k2, with similar

scaling to that of the plane wave modulation instability. A proof of this numerical result should
complete the rigorous study of linear stability/instability of all the standing waves solutions in
the one-dimensional periodic NLS. The stability analysis of the travelling wave solutions is
still open.

The PDE-EMBD provides a convenient way to classify the solutions of the perturbed
problem near the SSCs. In an O(ε)-neighbourhood of unstable branches of the SSC, one
expects to find chaotic solutions, whereas away from such branches, infinite-dimensional
KAM type solutions are expected to arise. Near folds of the SSC resonances are created. We
use these observations to classify the type of solutions that appear near the plane wave, thus
providing a phase-space analysis for the PDE in the SSC neighbourhood.

For a stable KAM like solution, all constants of motion must remain in an O(ε)

neighbourhood of their initial value, and thus it projects to an ε-square in the PDE-EMBD
that is typically bounded away from any unstable SSC, see figure 10. Notably, such a solution
must be bounded away from all other families of degenerate unstable solutions of the integrable
NLS. While the PDE-EMBD that includes both the standing and the travelling waves of many
multiplicities is already rather complicated to grasp (figure 7), the full diagram should include
the bifurcating modes from the Hamiltonian–Hopf bifurcations and other finite-dimensional
quasi-periodic solutions of the integrable system. Gaps in such a diagram may indicate the
stability region in which KAM like solutions reign.

When �2 ≈ k2/2 the plane wave solution has an amplitude at which it is both resonant
and parabolic. In [51, 52] we showed that perturbed solutions that are initialized near the plane
wave exhibit instabilities that are similar to those arising in the truncated NLS equation. Here
we showed that the emerging parabolic-resonance mechanism in the truncated model may be
analysed by the adiabatic-chaos methodology. In particular, we showed that there exists an
adiabatic invariant that is approximately preserved away from the separatrix set. We showed
that the PDE solutions also preserve the same invariant as long as their L2 norm does not
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exceed 2k2/g. We observed that the transition to STC that was reported in [53] appears at ε

values for which the leading order approximation of the adiabatic invariant level lines is not
followed. Since the PDE and the truncated model solutions exhibit similar behaviour at these
ε values, we believe that higher order approximation of the adiabatic invariant may explain
this phenomena.

We have provided a phase-space description of the PDE solutions near the plane wave
when it has a limited power. Clearly, the classification of perturbed motion for general
initial data is far from being complete. Other chaotic mechanisms, for example, near
the newly discovered Hopf bifurcations of the unperturbed outer solutions, are yet to be
studied.
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