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Abstract. Axiomatic modeling is ensued to provide a family of models that
describe bacterial growth in the presence of phagocytes, or, more generally,

prey dynamics in a large spatially homogenous eco-system. A classification of

the possible bifurcation diagrams that arise in such models is presented. It is
shown that other commonly used models that do not belong to this class may

miss important features that are associated with the limited growth curve of

the bacteria (prey) and the saturation associated with the phagocytosis (preda-
tor kill) term. Notably, these features appear at relatively low concentrations,

much below the saturation range. Finally, combining this model with a model
of neutrophil dynamics in the blood after chemotherapy treatments we ob-

tain new insights regarding the development of infections under neutropenic

conditions.

1. Introduction. The continuous fight between bacteria and the white blood cells
that belong to the innate immune system occurs in a large class of animal species
(from insects to humans1 [1]). Indeed, this process is of tremendous clinical impor-
tance as these white blood cells provide the main defence against bacterial infections
in the acute stage [2, 3]. Yet, there are very few mathematical models that describe
its basic properties. As a first step for exploring the very involved in-vivo fight,
where normally the phagocyte2 concentration is strongly coupled to the bacterial
load, one needs to understand the in-vitro dynamics where the phagocyte con-
centration is fixed. In [6] a model for the bacterial growth in the presence of a
constant concentration of neutrophils (white blood cells that eliminate bacteria by
phagocytosis) was proposed, and its clinical implications were explored. We focus
on neutrophils as they are the most abundant type of phagocytes (about 70% of
the white cell blood count in an adult) and hereafter phagocytes and neutrophils
are used interchangeably. Notably, beyond being a basic building block to other
in-vivo models, this model may be relevant to some specific medically important
conditions under which it is reasonable to assume that the phagocyte concentration
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remains constant. These conditions are characterised by either insufficient sup-
ply of phagocytic cells by the bone-marrow or by ample supply of malfunctioning
phagocytic cells (for details, see [3, 6] and the references therein). Such conditions
are associated with high risk of infection [7, 8]. Another natural setting for con-
sidering constant phagocyte models are in-vitro tests that are performed to detect
phagocyte malfunction (e.g., [9]). Therefore, understanding the bacteria-phagocyte
interaction at constant phagocyte concentration is important clinically. Biologi-
cally, similar conclusions apply to population modeling of prey dynamics in a well
mixed environment with approximately constant predator concentration. Mathe-
matically, we view this very simple model as a carefully constructed building block
to other models. Indeed, the bacteria-phagocyte interaction is a basic ingredient in
the complex innate immune response to bacterial infection (see e.g. [10, 11, 12]).

Medically, the blood neutrophil concentration is viewed as a defining measure for
assessing the risk of infection. Patients having concentrations below the threshold
value of 5× 105 neutrophils/mL in the blood (called neutropenic patients) exhibit
high risk of infection, with a sharply increased risk associated with both the duration
and the severity of the neutropenia [7, 8]. Mathematically one may argue with
the use of the term “threshold” here, as there is no single critical value below
which all patients become sick and above which all remain healthy (and we will
later on see that there is a mathematical reasoning that explains this observed
variability). Yet, we use this term here as it reflects the common view by the medical
community: severe neutropenia is medically defined by this single threshold value.
Recently, it was proposed in [13, 14] that in-vitro bacteria-phagocyte experiments
explain this threshold effect. The authors conclude from their experiments that a
single critical neutrophils concentration is required to predict the final outcome of
the bacteria-neutrophil interaction, regardless of the initial bacteria concentration.
Moreover, they showed that their fitted in-vitro critical neutrophil concentration is
comparable to the medically defined one. Here, to better explain the meaning of
this in-vivo threshold level we construct a model that presents a simplified view of
the in-vivo dynamics under neutropenic conditions. To this aim, we introduce into
the model [6] a typical externally controlled variation of the neutrophils dynamics
after chemotherapeutical treatments as described in [15]. By combining these two
models we gain some new insights into the phenomenon of sharp transition to fast
development of acute infection as the neutrophil levels are decreased.

In [6] we argued that by modeling the bacteria-neutrophil interaction using the
axiomatic approach a more adequate model to the bacteria-phagocyte interaction
at constant phagocyte concentration may be constructed. Here, we provide the
mathematical formulation and justification of the main claim made in [6]. Under
reasonable biological assumptions on such models there are exactly two simplest
possible robust bifurcation diagrams (monostable and bistable dynamics). The
model is constructed in the most general form that is consistent with the biologi-
cal theory, so that its predictions are not form- and parameter- specific. Notably,
predictions are viewed here in the broad sense of qualitative analysis of dynamical
systems. Concretely, as pointed out in general biological terms in [6] and mathe-
matically defined and proved here, we are able to classify all the possible robust
sequences of bifurcations that occur when the key parameter, the phagocytic cell
concentration, is varied. Surprisingly, we show that at low bacteria concentrations
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there are exactly two such sequences: forward and backward transcritical bifurca-
tions. These results provide new predictions that are somewhat counter-intuitive
for experimental biologists working in the field.

This axiomatic model construction fits within the general dynamical-system
mathematical framework of obtaining robust qualitative predictions regarding bio-
logical phenomena by constructing families of models with certain properties [16,
17, 18, 19, 20]. For example, symmetries of the interaction terms (group theo-
retic constraints) have been often used to predict dynamical properties of biological
systems, see e.g. [21]. Similarly, the class of monotone systems [22] and its general-
ization e.g, [23, 24, 25] were utilized to analyze some models of biological processes
and of reaction networks [26]. Other qualitative properties, from the existence of
robust homoclinic cycles [27] to characterizations of partial derivatives [28] have
been utilized in a similar manner. This modeling approach has been successfully
applied to specific medically-relevant biological problems that are related to the
innate immune system [15, 29].

The axiomatic model construction begins in Section 2 with the selection of the rel-
evant dependent variables (here the bacteria concentration, all other key ingredients
including phagocytes, nutrients, opsonins, cytokines etc are assumed to be of con-
stant concentration), independent variables (here time, spatial effects are neglected)
and the evolution law type (here, deterministic ordinary differential equation, ne-
glecting, for example the bacteria and phagocyte age distribution, stochastic effects,
memory effects, delays etc.). We postulate that these assumptions are adequate for
the relevant in-vitro setting, as in [13, 14]. Then the model is formulated in terms
of the type of the biological interactions that govern the evolution of the dependent
variables (here, the birth, influx, and elimination of bacteria) and the dependence
of these interactions on the variables and on the key parameters. To ensure gen-
erality, these dependencies are formulated in terms of monotonicity properties of
the various interaction terms and by assuming a form of these terms for sufficiently
large and small values of the variables.

In Section 3 we analyse the dynamical properties of the resulting class of models.
We classify all possible types of bifurcation diagrams and establish that at small
bacterial concentrations only two types of behaviour are possible. In Section 4
several explicit models are presented. Some important properties of the model of
[6] are listed and this model is parameterized by using the data from [14]. We then
discuss two other classes of commonly used models for prey-predator dynamics that
do not satisfy some of our axioms. Section 5 describes a new model, in which we
combine the bacteria-neutrophil in-vitro model with a previously published model of
the neutrophils blood dynamics after chemotherapy [15]. Finally, Section 6 presents
the summary of our findings and discussion of their implications.

2. The model axiomatic construction. We postulate that the rate of change
of the bacteria concentration b = [#bacteria/ml], (b ∈ Ω ⊂ R+) in a well mixed
chemostat may be described for a sufficiently large population by an ODE model:

db

dt
= B(b; s)−D(b)−DK(b;n) =: F (b;n, s) (1)
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where the terms B,D represent the “birth” and “death” processes3 that depend
on two parameters, the predator/killer concentration n and the bacterial flux4 s
into the region. Here n may represent the neutrophils concentration as in [6], or
concentration of other entity that destroys the bacteria (such as antibiotics and an-
timicrobial peptides [30]). The first two terms f(b; s) := B(b; s)−D(b) correspond
to the net rate of change of bacteria in the absence of neutrophils (natural bacteria
dynamics) under the given chemostat conditions. The third term DK(b;n) corre-
sponds to the kill term of the bacteria in a unit volume per unit time. Chemostat
means here an ideal dish in which the bacteria environment remains unchanged
forever. In reality, in-vitro bacteria-phagocyte interactions are tested in small vi-
brating tubes at body temperature and last about 60-90 minutes - a time scale at
which the bacteria environment is almost unchanged and the bacteria can main-
tain exponential growth [31]. At longer time scales it is known that the phagocytic
function is reduced and the assumption of constant environmental conditions is not
applicable to the common experimental setting. Nonetheless, we propose that the
above model is adequate for describing these experiments that are stopped before
a significant change in the environment is observed.

2.1. Empirical properties of the rate functions. There are several robust bi-
ological observations regarding the growth of bacteria: the natural (no phagocytes)
bacteria growth model always leads to a limited growth curve. Away from the max-
imum capacity regime the growth curve is monotone and is well-described by one
dimensional dynamics [31]. The kill term typically monotonically increases with
the bacteria and the phagocyte concentrations up to some saturated value. These
robust observations imply specific mathematical properties for the birth and death
terms of the bacteria model that we summarize by Assumption A1-A6:

A 1. The functions B(b; s), D(b), DK(b;n) are sufficiently smooth (Cr, r > 2) and
all the birth and death rates5 are bounded.

Indeed, since the time scale of the current model is comparable to the time scale
associated with the division and the natural death/kill processes, the birth and
death rates per bacteria must be finite.

A 2. When there is no external source of bacteria and no bacteria are present in
the body, there is no spontaneous growth or natural death of bacteria

B(0; 0) = 0, D(0) = 0. (2)

Similarly, killing occurs only when both the bacteria and the neutrophils are present

DK(0;n) = DK(b; 0) = 0. (3)

A 3. The natural bacteria dynamics obey a limited growth model [31]; The birth
term is monotonically increasing with b, s

∂B(b; s)

∂b
> 0;

∂B(b; s)

∂s
> 0. (4)

The net bacterial growth rate changes sign at the maximal capacity concentration
bf (s)

3“Birth” includes hereafter all forms of production, including incoming migration and reproduc-
tion. Similarly, “death” includes all forms of elimination including consumption and senescence.

4bacterial concentration per unit time.
5rates means the corresponding terms divided by b.



BACTERIA-PHAGOCYTE DYNAMICS VIA AXIOMATIC MODELLING 479

There exists bf (s) > bf > 0 (with bf := bf (0)) such that:

B(b; s)−D(b) > 0, for all 0 < b < bf (s),
B(b; s)−D(b) < 0, for all b > bf (s).

(5)

Standard growth models such as the logistic or Gompertz models [31] satisfy A3.

A 4. The bacteria killing term is monotonically increasing with b and n [32, 33]:

For all n > 0,
∂DK(b;n)

∂b
> 0; For all b > 0,

∂DK(b;n)

∂n
> 0, (6)

and the local killing rate (i.e. the killing term slope) is monotonically increasing
with n:

∂2

∂n∂b
DK(b;n) > 0. (7)

This monotonicity assumption is expected to be widely valid in the predator-prey
context up to moderate concentrations, at which, for example, spatial effects may
become significant and may lead to non-monotonic effects on the population level.

A 5. A sufficiently large neutrophil level can overcome limited bacterial challenge
[32, 33, 34, 35]. Namely, there exist positive bmax, smax values such that for all
(bl, sl) ∈ (0, bmax) × (0, smax) there exists n0(bl, sl) > 0 such that for all n >
n0(bl, sl) the bacteria die whenever its concentration and influx are below bl and sl
respectively

For all n > n0(bl, sl), for all (b, s) ∈ (0, bl)× (0, sl)

B(b; s)−D(b) < DK(b;n).
(8)

This assumption reflects the clinically and experimentally established efficiency
of the phagocytes in overcoming limited bacterial challenge. In section 4 we provide
concrete examples for interaction terms that satisfy these assumptions.

A 6. Apart from the specific properties listed in A2-A5, the functions (B(b, s) −
D(b)), DK(b, n) are in “general position”. In particular, the following conditions
are satisfied

∂b(B(b; 0)−D(b))
∣∣
b=0
6= 0 (9)

∂b(B(b; 0)−D(b))
∣∣
b=bf (0)

6= 0 (10)

∂2

∂b2
(B(b; s)−D(b))|(b,s)=(0,0) 6=

∂2

∂b2
DK(b;n)|(b,n)=(0,ntrc) (11)

∂2

∂b2
DK(b;n)|(b,n)=(0,ntrc) 6= 0 (12)

This last assumption states that there are no additional constraints apart from
A1-A5 and hence that there should be no accidental cancellations between higher
order derivatives. Put differently, assumptions A1-A5 mean that we may write
B(b; s) − D(b) = bB̂1(b; s) + sB̂2(b; s) − bD̂(b), DK(b;n) = bnD̂K(b;n) where the
hatted functions satisfy various inequality conditions. Assumption A6 says that for
finite arguments the hatted functions are “generic” smooth functions, namely, they
do not satisfy any additional specific constraints. Thus, we conclude that the class
of the corresponding hatted functions is a residual set, i.e. it is the complement of
a meager set in the sense of Baire category [36].
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Even though the non-degeneracy assumptions that are listed in A6 arise from
mathematical reasoning, we do expect that concrete models that adequately reflect
the biology will satisfy these conditions. It simply reflects the belief that degen-
eracies should not be created incidently, and in any case can be removed by small
changes in the model.

3. Dynamical properties. The main mathematical results of the manuscript are
formulated below. Roughly, these imply that models of the form of equation (1) have
exactly two possible behaviors at small b: a single transcritical bifurcation either
supercritical or subcritical (sometimes called forward or backward bifurcation [37,
38, 39]) and quite simple behavior at higher b values (see Appendix for additional
insights).

Theorem 3.1. The zero flux bacterial growth model, namely equation (1) with
F (b;n, s = 0) satisfying assumptions A1-A6, has a transcritical bifurcation at b = 0,
at some unique value n = ntrc > 0. All other bifurcation points (if exist) are saddle-
node bifurcation points, and occur at b > 0. Moreover,

1. ∂2F
∂b2 (0;ntrc, 0) < 0 implies that the transcritical bifurcation is supercritical
(forward) in (ntrc − n) and that there are additional even number (possibly
zero) of saddle-node bifurcation points.

2. ∂2F
∂b2 (0;ntrc, 0) > 0 implies that the transcritical bifurcation is subcritical (back-
ward) in (ntrc − n) and that there are additional odd number of saddle-node
bifurcation points (in particular at least one such bifurcation point exists).

See the Appendix for details of the proof. The main idea of the proof is that
under assumptions A1-A6, the nontrivial equilibria set may be represented as a
graph n = n∗(b) that intersects the b axis at b = bf and the n-axis at n = ntcr.

The sign of ∂2F
∂b2 (0;ntrc, 0) determines the slope of this curve at the intersection

with the n axis. The inequality (12) implies that this slope also depends on the
kill term parameters. Finally, the equilibrium point (b, n∗(b)) is stable (respectively
unstable) when n∗(b) is decreasing (respectively increasing) with b, and the segment
emanating from n = 0 at b = bf is always stable and decreasing.

When the bacteria influx s is positive and small, by assumptions A3-A4 and
by utilizing the Implicit Function Theorem (IFT), the stable and unstable equilib-
rium branches of F (b;n, 0) may be continued in s to the corresponding branches of
F (b;n, s) with the same stability type. Moreover, the direction of the shift in the
position of these branches with s is determined by their stability:

Lemma 3.2. A zero flux stable (respectively unstable) equilibrium point (b∗(0);n∗)
is pushed upward: for a fixed n∗, for sufficiently small influx s, b∗(s) > b∗(0)
(respectively downward, so b∗(s) < b∗(0)). Similarly, the equilibrium point curve
is pushed to the right: for a fixed b∗ belonging to the equilibria curve, for sufficiently
small influx s, n∗(s) > n∗(0).

Proof. Notice that by implicit differentiation of F (b∗(s);n∗, s) of (1) at a fixed
n∗ satisfying F (b∗(0);n∗, 0) = 0, we obtain dF (b∗(s);n∗, s) = ∂sFds + ∂bFdb.
Thus, when (b∗(0);n∗, 0) is not a bifurcation point of the zero-flux model (so
∂bF (b∗(0);n∗, 0) 6= 0 ) we get by the implicit function theorem that for small s,
db∗(s)
ds = −∂sF∂bF

= − ∂sB(b,s)
∂bF (b,n,s) |(b∗(s),n∗,s). Therefore, by equation (4) of A3, db∗(s)

ds is

positive at a stable fixed point (where ∂bF (b, n, s) < 0) and similarly it is negative
at an unstable fixed point. Thus for a non-bifurcation point, for small s, b∗(s) is a
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Figure 1. The bifurcation diagram presents the bacteria equi-
librium dependence on the neutrophils. The red region indicate
prosperity for initial bacterial population, and blue region indicate
a decrease in the initial bacterial population. Solid lines indicate a
branch of stable fixed points, and dashed lines indicate a branch of
unstable ones. (a) Monostable: in this model, if n < ntrc, regard-
less of the initial concentration of the bacteria (other than zero),
the bacteria concentration converges to a positive bacteria equilib-
rium. For n > ntrc the bacteria concentration always converges to
the origin. (b) Bistable: in this case there are two critical points,
ntrc and nsn. For n < ntrc the bacteria concentration converges
to the positive stable branch. For n > nsn the bacteria concen-
tration converges to the origin. When ntrc < n < nsn we have bi-
stability, so the final state of b depends on whether the initial bacte-
ria concentration is above or below the unstable fixed point (dashed
line). The presented bifurcation curves correspond to the explicit
model (13) at (ρ, δ, α, γ, η, s) = (10−2, 10−3, 10−8, 10−8, 10−10, 0)
with β = 9 · 10−9 (a) and β = 10−9(b).

monotonic function as claimed. Similarly, by A3-A4, fixing b = b∗ > 0 and looking
for a solution of the form F (b∗;n∗(s), s) where F (b∗;n∗(0), 0) = 0, we obtain that
dn∗(s)
ds = − ∂sF

∂nF
= ∂sB(b;n,s)

∂nDK(b,n)
> 0. This inequality holds for all positive equilibria

solutions of the zero flux model (b∗;n∗(0)), including the bifurcation points.

See Figure 2 for the resulting two types of bifurcation diagrams that appear at small
influx s. Notice that the trivial zero-flux solution b = 0 is pushed by the bacterial
influx to negative values for n < ntrc and to positive values for n > ntrc. Thus,
in the subcritical case, the transcritical bifurcation splits to two saddle nodes, only
one of which appears at the biologically relevant positive quadrant regime.

Theorem 3.3. For sufficiently small bacterial influx s > 0, the bacterial growth
model (1) satisfying assumptions A1-A6 has an even number of saddle-node bifurca-

tion points and no other bifurcations in the positive quadrant. If ∂2F
∂b2 (0;ntrc, 0) > 0

then there are at least two saddle-node bifurcation points.
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Figure 2. Bifurcation diagrams with zero and small positive bac-
terial influx. Bifurcations curves of (13) at s = 0, 2 · 105, 4 · 105

are shown in black, magenta and green, respectively (all other pa-
rameters are as in Fig 1). The bifurcation curves are shifted to the
right as s is increased. (a) Monostable: the zero s transcritical
bifurcation point at ntrc disappears when s > 0. (b) Bistable: the
zero s transcritical bifurcation becomes a saddle-node bifurcation
that appears at a distance O(

√
s) from the transcritical bifurcation

point. (Insert) A close-up around the transcritical bifurcation of
(b), which shows that when s > 0, the transcritical bifurcation
becomes a saddle-node bifurcation.

See Appendix for details of the proof. This theorem essentially follows from Theo-
rem 1, the Implicit Function Theorem, Lemma 3.2, and the observation regarding
the specific form of the breakup of the transcritical bifurcation by positive bacterial
influx.

The above two theorems lead us to the following main conclusion. There are
exactly two “simplest” type of behaviors, where “simplest” models are those that
have the least number of bifurcation points:

Corollary 1. The simplest model of the form (1) satisfying A1-A6, with s = 0
(respectively s > 0) has exactly two possible bifurcation diagrams:

1. If ∂2F
∂b2 (0;ntrc, 0) < 0 it is Monostable as in Fig. 1a (respectively Fig. 2a).

2. If ∂2F
∂b2 (0;ntrc, 0) > 0 it is Bistable as in Fig. 1b (respectively Fig. 2b).

The dependence on s of the bifurcation point near (b, n) = (0, ntrc) has the typical
square-root singularity that arises when the transcritical bifurcation symmetry is
broken. Indeed, the saddle-node bifurcation point of the perturbed transcritical
normal form6 ẋ = x2−µx+s, is (xsn(s), µsn(s)) = (

√
s, 2
√
s). Thus, small changes

in the bacteria influx s change the location of the bifurcation point dramatically
(since x′sn(s) = O( 1√

s
)).

4. Several explicit models. We present three models - the first is a model that
was introduced in [6]. It is a valid model (hereafter, a model that satisfies assump-
tions A1-A6) that is derived phenomenologically and presents the above simplest

6So (x, µ) stand here for the shifted and rescaled (b, n) values near the bifurcation point.
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form of dynamics. The other two models correspond to commonly used models
that are not valid (violate A5 and A6). Interestingly, these models indeed miss
biologically important behaviors. The first non-valid model utilizes a quadratic
“mass-action” kill term [13, 14]. We show that when the bacteria natural growth
rate function is monotonically decreasing in b such a model cannot exhibit bista-
bility, a phenomenon that is experimentally observable and has tremendous clinical
and biological implications [6]. The other non-valid class of models are the ratio-
dependent models. Such models miss the important biological effect of the existence
of a minimal phagocyte concentration threshold [13, 14, 40].

4.1. A valid phenomenological model. In [6] the following model was intro-
duced and analyzed

db

dt
=

ρb

1 + βb
− δb+ s − αnb

1 + γb+ ηn
. (13)

where the first two terms are the natural bacterial growth while the last term is the
killing term, see e.g.,[41, 42, 17] for a discussion of models with similar algebraic
structure). It is easy to show that this model satisfies assumptions A1-A6 for
sufficiently small bacterial influx ( 0 ≤ s � ρ/β) provided the six parameters
(ρ, δ, β, α, γ, η) are all positive and satisfy ρ > δ (to get positive maximal capacity at

n = s = 0 since bf = 1
β

(
ρ
δ − 1

)
) and α > (ρ− δ)η (to get positive ntrc = ρ−δ

α−(ρ−δ)η ).

The first three parameters govern the natural dynamics of the bacteria: ρ and δ
control the natural linear growth/death rates of the bacteria and β controls the
natural saturation of the bacterial growth rate at high concentrations. The other
three parameters control the killing of the bacteria by the neutrophils: α is the
neutrophils’ bacterial killing rate at low concentrations, and γ and η control the
saturation and interference in the killing rate as the concentrations of b and n are
increased (see A4). All of these parameters depend on both the bacterial strain
and the environmental setting. For example, in an experimental set-up, the serum
content and the form of the toxic clearance affect them. In fact, these parameters
represent global effective responses to a large complex network of molecular and
cellular processes that are associated with the bacteria natural growth and with the
capture and killing of the bacteria by neutrophils. A calibration of these parameters
with extensive experimental data and with the corresponding molecular markers
may be important for identifying the main effect of these cellular processes on the
bacteria-neutrophil population dynamics in health and in disease.

This model exhibits the simplest type of dynamics as listed in Corollary 1. At
s = 0, for the parameter regime

β

γ
>

(
1− δ

ρ

)(
1− (ρ− δ) η

α

)
(14)

it is monostable whereas when the opposite inequality occur it is bistable [6] (to

establish the above condition, one finds when ∂2F (b,n,s)
∂b2 |(0,ntrc,0) < 0, namely when

the transcritical bifurcation point is non-linearly stable). Lemma 3.2 implies that
for sufficiently small non-zero flux s the same conclusion holds.

The inequality demonstrates that if one fixes the parameters (ρ, δ, η, α) to the
biological regime (so the right hand side of the inequality is positive), then, for
sufficiently small7 β and/or for sufficiently large γ bi-stability emerges. Smaller β

7In particular the unstable branch always exits for β = 0
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corresponds to saturation at higher levels in the bacteria growth, namely, a situa-
tion by which there is more space and nutrients supply to the bacteria. Larger γ
corresponds to saturation at lower bacteria levels in the kill term, meaning that the
neutrophils reach their maximal killing capacity at a lower bacterial concentrations.
The inequality shows that more favorable growth conditions for the bacteria and/or
less efficient phagocytosis at high bacterial concentrations lead to bi-stability. In-
deed, Figure 1 and 2 compare the bifurcation diagrams of (13) at two parameter sets
that differ only in their β values: when β = 9 ·10−9 (Figures 1a,2a) we see monosta-
bility whereas at the lower β = 10−9 (Figures 1b,2b) bi-stability emerges. In fact,
Figure 3 of [6] shows that for relevant parameter regimes the bistable scenario is
expected to be more common than the mono-stable one.

Indeed, we propose that the experimental results of the in vitro S. epidermidis-
neutrophil interaction in [14] are consistent with the bistable behavior. Since the
growth rate data for this experiment are not available to us, we fix the natural
linear bacterial growth rate to be as in [14] and choose the elimination rate to be
considerably slower (by two orders of magnitude) and the growth rate saturation
to be 10−8 [1/#bac/ml] (namely, we assume that the bacterial population capacity
is 1010 [#bac/ml] see e.g., [31, 43]). We then fit solutions of the ordinary differ-
ential equation to the data by adjusting the killing term parameters of (13) using
a least square cost function with multiplicative measurement model [44] and the
Matlab implementation of the multidimensional downhill simplex method for the
minimization (see e.g., [45, 46]). We find that the fitted kill-term parameters are
well within the bistable regime (and this conclusion is independent of the particu-
lar choice for the natural bacterial growth parameters as long as β ≤ 10−8). For
example, for these parameters, condition (14) implies that to achieve monostability
γ needs to be decreased by a factor larger than 8. In fact, the 95% confidence
interval for the estimated γ, evaluated using the bootstrap percentile method [47]
with 1000 samples, lies entirely in the bistable region. This is true for the entire
cube defined by the confidence intervals of α, η, and γ. These conclusions hold
for β ≤ 10−8. They fail for higher values of β, namely for population capacity
smaller than 1010 [#bac/ml]. Figure 3 shows the bifurcation diagram for the fitted
parameters at s = 0.01, 100, 400, 1500 [#bac/ml min] (see caption for the parameter
values).

Let us note several important properties of this model at the positive small influx
case that will be used in section 5. First we recall that by Theorem 3.3, for the sub-
critical (backward) bifurcaion case, the bifurcation point (b, n) = (0, ntrc) becomes
a saddle-node bifurcation point. Asymptotic expansion for this point yields:

bsn(s) ≈ √sy +O

(
s

y
[β(1 + yδγ) + (ηγ/α)(ρ− δ)(1− yδβ)]

)
, (15)

nsn(s) ≈ ntrc
(

1 +
2

ρ− δ
α

α− η(ρ− δ)
√
s/y +O(sy

ρβ2

ρ− δ
, s

ηγ

α− η(ρ− δ)
, s

γ

ρ− δ
)

)
y :=

α

γ(ρ− δ)(α− η(ρ− δ))− ραβ
=

1

ρβ

1
γ
β (1− δ/ρ)(1− η(ρ− δ)/α)− 1

.

Notice that y is positive for bistable parameter sets (see Eq. (14)). In particular,
for the fitted parameter values, y v 1.13 · 109, so nsn(s) ≈ ntrc + 5 · 103

√
s and the

critical bacterial load at this point rapidly increases as
√

109s. Figure 3 shows that
for the fitted model the asymptotic expansion accurately predicts the bifurcation
point location up to s = 400 [#bac/ml/min], whereas for s > 500 the higher order
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terms contribute. At s = 1500 [#bac/ml/min] there is a marked difference between
nsn(s) and ntrc.

Figure 3. The bifurcation diagrams of equation (13) near
the bifurcation point ntrc for several bacterial influxes (s =
0.01, 100, 400, 1500 [#bac/ml/min]). All other parameters are the
fitted parameters to the [14] data: ρ = 0.013 [1/min], β = 10−8

[1/#bac/ml],δ = 10−4 [1/(min #bac/ml)] α = 1.773 × 10−8

[1/(min #neutrophils/ml)], γ = 8.625 × 10−8 [1/# bacteria/ml],

η = 1.232× 10−7 [1/# neutrophils/ml] (so here ntrc = ρ−δ
α−(ρ−δ)η =

7.99 × 105 # [neutrophils/ml], the red vertical line). Blue curves:
bifurcation curves at increasing s values. Red squares: the asymp-
totic approximation (15) to the saddle node bifurcation points.

Notice that for a given n value there is a critical bacterial influx sc(n), such that
for s > sc the neutrophil level n is beneath the threshold (n < nsn(s)) and thus
infections develop to the acute stage. Using the above asymptotic expansion we
find the asymptotic expansion for sc(n) (valid for n & ntrc)

sc(n) ≈ y
(

n

ntrc
− 1

)2(
ρ− δ

2

α− η(ρ− δ)
α

)2

+O

((
n

ntrc
− 1

)3

y3β2ρ4

)
. (16)

For the parameters corresponding to [14], and for n
ntrc

= O(1), the error terms are

of order O(10−9s). These findings are important for understanding the development
of infections under neutropenic conditions, see section 5.

4.2. Models with simple mass-action kill term are not valid. Many predator-
prey models use as a building block a quadratic kill term of the form DK(b, n) = αbn
(“mass-action kinetics” assumption) where the natural bacteria dynamics is taken
to be either linear or of limited growth. Such a kill term, which is linear in b, is
considered to be a reasonable approximation to mimic competition and/or preda-
tion between species when the concentrations are much smaller than the saturation
regime. For example, the classical SIR models [48] employ such quadratic interac-
tion terms. While it is well established by now that saturation effects are important
for large concentrations of populations [32, 13, 14], we show next that even for small
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concentrations these terms play an important role in preserving the robustness of
such models.

Indeed, notice that with a quadratic kill term, the nontrivial fixed point may be
simply found from

n∗(b) =
B(b, s)−D(b)

αb
=

1

α
R(b; s). (17)

In particular, if the bacteria natural growth rate function R(b; s) is monotonically
decreasing with b (as expected, as is the case for the logistic and other common
models for the bacteria natural growth) then so does n∗(b). By the same arguments
as in Lemma 6.4 we conclude that this branch must be stable. We conclude that
when the natural bacterial growth rate is monotonically decreasing with b, a mass
action kill term always results in a single monotonically decreasing stable branch
of equilibrium. In particular, bistability is not possible. Such models violate only
one of our assumptions in the axiomatic formulation: the inequality (12) of the
“general position” assumption A6 is not satisfied. Thus, models with quadratic
kill term correspond to a restricted class of models satisfying assumptions A1-A5,
and for this restricted class, when R(b; s) is monotonically decreasing with b, only
monostability is possible.

In experiments it is often further assumed that the bacteria are in a phase of
exponential-growth, which means that the natural bacteria growth term is well
approximated by a linear term B(b, 0)−D(b) = rb [13, 14]. Combining this linear
growth with a mass action kill term (so db/dt = (r − nα)b) results in a degenerate
bifurcation diagram. Indeed, this bifurcation diagram consists of a single vertical
line emanating from nc = r/α (where the right hand side identically vanishes), and
a single horizontal line - the n axis- that corresponds to the trivial solution b = 0.
Such a diagram does not appear in textbooks and rightly so. It corresponds to a
linear truncation of a model with a bifurcation, where we know that higher order
terms must be included to determine the stability near the bifurcation point. In
particular, the addition of a non-linear term of the form α̂nb2 changes the qualitative
behavior of the bacteria dynamics near ntrc for arbitrarily small b (see Lemma 6.5
of Appendix 1). Put differently, near a bifurcation point non-linear terms that
contribute to the normal form must be included. Neglecting the saturation in the
kill term amounts to neglecting such non-linear corrections, and these corrections
are the leading order terms at the bifurcation point.

We have thus shown that approximating the kill term of, for example, (13), by
its leading order behavior, the quadratic term αbn, may lead to erroneous results
near the bifurcation point (0, ntrc). In particular, we showed that if the bacteria
natural growth rate function R(b; s) is either constant or monotonically decreasing
with b, models with mass-action kill term are not bistable. Finally, we pointed out
that the over-simplified model that combines a linear bacterial growth and a mass
action kill term is highly degenerate violating both A3 and A6.

4.3. Ratio-dependent models are non-valid. In the experimental practice of
phagocyte-bacteria interactions only ratios were considered to be important [32,
34, 33, 35]. A ratio-dependent model for the kill term assumes that the bacteria
population depends only on the initial ratio between the bacteria and the neutrophils
concentration, namely, it consists of models of the form (here we take s = 0)

db

dt
:= F (b;n) = b[R(b)−K(b/n)]. (18)
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When the kill term DK(b, n) = bK(b/n) is a rational function of the form αnkb
γbk+ηnk

we indeed get that K(b/n) = α
γ(b/nk+η

= α(n/b)k

γ+η(n/b)k
is ratio dependent whereas the

kill term of (13) is not ratio dependent (see e.g., [16, 49] for predator-prey model
with such ratio-dependent kill terms).

We first note that the ratio-dependent models have a non smooth (not C2) kill
term at n = b = 0, and thus violate assumption A1. Indeed, at n = 0 the kill term
vanishes, and the origin is unstable (since R(0) > 0). On the other hand, for all
n > 0, provided R(0) 6= K(0), the origin is hyperbolic with an attraction/repulsion
rate (R(0)−K(0)). Thus, if K(0) 6= 0 these models are not smooth (taking K(0) = 0
solves this smoothness problem but leaves the origin unstable for all n, violating
A5).

We also notice the following peculiarity of such models. When8 R(0) < K(0) A5
is formally satisfied. Yet, we notice that the origin attraction rate is independent
of n, a property which defies biological intuition by which the bacteria eradication
is faster as n is increased. In fact, as Theorem 3.1 shows, combining assumptions
A1 and A5 imply that any valid model must have a positive threshold neutrophil
concentration below which the origin is unstable and above which it is stable. As
a consequence of the non-smoothness of the ratio-dependent models, these models
do not have such a positive threshold neutrophil concentration.

The above considerations show that ratio-dependent models are inadequate for
describing the behavior at small bacterial concentrations.

5. A model of the in-vivo dynamics in neutropenic patients. To better
explain the potential medical implication of the bistable behavior, we consider a
clinical situation by which the neutrophil dynamics is externally controlled. In par-
ticular, we examine when an acute infection develops as a result of a neutropenic
“cycle” - an event of temporary reduction in the neutrophil level. To this aim, we
use the parameterised model (13) (fitted to the in-vitro data from [14] of S. epi-
dermidis-neutrophil interaction experiments as in Fig. 3) and combine it with a
model that faithfully describes the neutrophils blood levels, N , of patients undergo-
ing chemotherapy with supportive treatments of Granulocyte Colony Stimulating
Factor (G-CSF) injections [29, 15]. Our model for the in-vivo dynamics is defined
by equating the neutrophils level in the tissue to their level in the blood and by
taking a positive constant9 bacterial influx s.

Before continuing in describing the model and its predictions, we should stress
that this combined model does not mimic the true in-vivo dynamics even under
neutropenic conditions. Instead, we argue below that usually, starting a couple
of days after the onset of the neutropenia, the neutrophils concentration in the
tissue is smaller than their blood concentration. Therefore, this model provides
an over optimistic scenario with regards to the development of infection for such
patients. While this model is not realistic, it does provide important information
- it shows the most optimistic plausible outcome of the infection development for
a given prolonged neutropenia profile and thus highlights the key parameters that
determine when acute infection definitely develops.

8The other case R(0) > K(0) by which the origin is unstable for all n clearly contradicts A5.
9The effect of temporary bacterial influx (an “infection episode”) may be analyzed by consid-

ering the initial value problem with zero influx and a large b(0) that corresponds to the integrated
influx.



488 ROY MALKA AND VERED ROM-KEDAR

Parameter Meaning Value Units

G(0) G initial value 50 pg/ml

N(0) N initial value 3 · 106 #cells/ml

Bmax
G G max production rate 4.861 pg/ml/minute

kN N dissociation constant 0.5 · 106 cells/ml
kG G MM constant 5 · 103 pg/ml

Dn
G G elimination (by N) 0.0048 1/minute

Dr
G G elimination (renal) 0.0042 1/day

BN Basic normal flux of N 15 · 106 #cells/ml/day

kNEF Enhancement of N flux by G 10 −
DN N clearance rate 0.0021 1/minute

T0 Start of CT effect 2880 (day 2) minute
Tstop Stop of CT effect 23040 (day 16) minute
β1 Marrow depletion rate 5.2 × 10−4 1/minute

β2 Marrow recovery rate 5.2 × 10−4 1/minute
AMC Acute Marrow capacity 0.2 −
Bnadir Marrow N flux 208.3 #cells/ml/minute

at nadir=AMC·N∗DN
kNEF

λ G absorption rate 0.0028 1/minute

vd volume of G distribution 2300 ml
w Weight 70 Kg

doseG G-CSF dose in a single shot 5 × 106 pg/Kg

Tgstart G-CSF injections start time T0 + 2880 minute
Tf G-CSF injections period 1440(daily) or 720 (bi-daily) minute

Table 1. The chosen Neutrophils-G-CSF model parameters. The duration

of the chemotherapy, the AMC value and the starting day of the G-CSF therapy

are slightly altered from the [15] values, all the other parameters are as in [15]

(notice that we divide the daily rates of table 2 of the supplement of [15] by

1440 to obtain rates per minute). N∗ = 5 · 106cells/ml is a fixed scaling

parameter.

The model for the G-CSF and the neutrophils blood levels was derived and
analysed in [29, 15] (see Table 1 for the parameters, dimensions and values), here
it is combined with equation (13) to form the in vivo model

db
dt = ρb

1+βb − δb+ s − αNb
1+γb+ηN

dG
dt = inG(t) +

Bmax
G

1 + N/kN
−Dr

G ·G−
Dn

G·N
kN + N ·G

dN
dt = BNF (t)kG + kNEF G

kG + G −DN ·N.
(19)

The neutrophils (N), as discussed extensively in this paper, are the main defense of
the body against bacterial and fungal infections. G-CSF (G) is naturally produced
by the body and is also available for injections as a supporting medical treatment.
It is known to control the neutrophils production in the bone marrow and the
neutrophils delivery into the blood. It is commonly administrated to neutropenic
patients by either 10 daily standard subcutaneous G-CSF injections (Filgrastim 5
µg/kg/day), by a single pegilated - pegG injection (Pegfilgrastim 100 g/kg), or,
in special cases by a continuous infusion (Filgrastim 10 µg/kg/day). In [15] it
was suggested that bi-daily G-CSF injections, that are commonly used in blood
harvesting protocols [50], may be also beneficial to a certain class of patients.

The functions inG(t) (G-CSF injections) and BNF (t) (neutrophils influx from
the bone marrow) in this model are external forcing functions that are induced by
the medical treatments. In [15] it was demonstrated that the following functional
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forms for these forcing terms adequately represent several different clinical data
sets that correspond to different chemotherapy treatment protocols with Ngshots
subcutaneous G-CSF injections, given at a Tf period (here, either daily or bi-daily,
i.e., Ngshots is either 10 or 20)

inG(t) =

Ngshots∑
j=1

λ
doseG
vd

e−λmax{0,(t−Tgstart−jTf )}, t ≥ Tgstart (20)

BNF (t) = Bnadir + (BN −Bnadir)
(

1− tanh(β1(t− T0))− tanh(β2(t− Tstop))
2

)
.

The term inG(t) corresponds to the pharmokinetics absorption of the G-CSF in-
jections into the blood, so with no treatment and for t < Tgstart, inG(t) = 0. The
term BNF (t) mimics the influence of the chemotherapy and the G-CSF treatment
protocol on the bone marrow capacity to produce and deliver neutrophils to the
blood. Normally, with no treatments, BNF (t) = BN is a positive constant that
reflects the normally constant influx of neutrophils from the bone-marrow into the
blood. This term is multiplied in the GN model (19) by an increasing saturable
function of G, reflecting the observation that under normal conditions this influx is
enhanced when the G-CSF blood concentrations are high (as a result, for example,
of an infection). The chemotherapy damages the bone marrow and thus makes
the basic influx of the neutrophils into the blood plummet to low values (Bnadir)
for a few days till its recovery. Fitting the form (20) of the BNF (t) to several
clinical data sets shows that its parameters are treatment specific as they reflect
the severity and character of the chemotherapy protocol [15] (one may suspect that
these are also patient specific, but so far there are no clinical studies examining the
inter-patient variability of these parameters).

Here, we employ a realistic set of parameters (see Table 1) of a patient undergo-
ing chemotherapy treatment and experiencing as a result of it a prolonged severe
neutropenia. The control parameter AMC = kNEF · BNadir

N∗·DN
denotes the acute

marrow capacity of the patient. This non-dimensional parameter controls the neu-
tropenic response to G-CSF treatments, and with maximal G-CSF adminstration,
N ≈ N∗AMC. Therefore, AMC values above 0.2 correspond to cases by which
G-CSF treatments suffice to keep the patient away from the neutropenic regime,
while AMC < 0.1 corresponds to cases in which even with intensive G-CSF treat-
ments the patient will suffer from sever neutropenia (see [15] for details). Here
the AMC is set to 0.2. With no G-CSF support, this patient would suffer from
approximately 10 days of severe neutropenia whereas standard daily injections (a
standard injection consists of a dose of 5 µg/kg of Filgrastim) or bi-daily standard
injections (a therapy advocated in [15] for patients at risk) both lift this patient’s
neutrophil counts to above the critical level. Figure 4a-c shows the bacteria, neu-
trophil and G-CSF dynamics of this patient with no G-CSF support (cyan curves),
with 10 daily standard G-CSF injections (blue curves) and with bi-daily standard
injections (green curves). A rough estimate for the achieved neutrophil levels at
the nadir may be found by noticing that the injections bring the G−CSF value to
around 30, 000pg/ml, so, by setting this value ofG in the second equation of (19) and
plugging in the parameter values of Table 1, the quasi-steady state neutrophils levels
become Nnadir ≈ 0.87 ·N∗ ·AMC ≈ 8.7× 105 . Figure 4b shows that with the bi-
daily injections the neutrophil levels at the nadir indeed stabilizes to around Nnadir
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(oscillates between (8.5−8.8)×105neutrophils/ml) whereas with the daily injections
the neutrophil levels are lower, oscillating between (5.7− 7.7)× 105neutrophils/ml.

The red line in Figure 4b denotes the commonly used medical threshold level of
Nc = 500× 103#neutrophils/ml, demonstrating that according to current medical
wisdom the standard G-CSF therapy of daily injections should suffice to abrogate
the severe neutropenia for this patient. On the other hand, both the daily and
bi-daily injections leave the patient below the 1, 000× 103#neutrophils/ml line for
about 10 days, and according to [51], with such an extended period of neutropenia,
patients have 20% risk to develop an infection. Such statistical statements imply
that there exists inter-patient variability and that, as alluded in the introduction,
the value Nc is not really a strict universal threshold value.

Figure 4. Bacterial dynamics during a neutropenic cycle ac-
cording to equation (19). The dynamics of (a) bacteria, (b)
neutrophils, and (c) G-CSF for patients with bacterial influx of
s = 100 [#bac/ml/min], undergoing chemotherapy treatment with
3 different G-CSF support protocols. No treatment -cyan curves,
daily injections -blue curves and bi-daily injections -green curves.
In (d) these trajectories are projected onto the neutrophils-bacteria
plane. In (e) the response of the patient receiving bi-daily injec-
tions to an increased bacterial influx is demonstrated. When the
influx is increased from s = 100 (green, as in (a)) to s = 400 (red)
acute infection develops. When the kill term parameter α is in-
creased by 20%, a bacterial influx as large as s = 3500 [#bac/ml/
min] results in an infection that is under control (magenta curve).

Here, we propose that the bistable model of the bacteria-neutrophil interaction
may explain this variability and supply a more accurate, patient and infection spe-
cific interpretation of the threshold effect. Indeed, we assert that the value of
nsn(s) ≈ ntrc +O(

√
s), see equation (15), provides a good working threshold value

for the onset of infection. If, for all time, n(t) > nsn(s) and b(0) < bsn(s), then
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the combined model predicts that no acute infection will develop. On the other
hand, when n(t) drops below nsn(s) the bacteria concentration increases, and, if it
crosses bsn(s) the infection will usually increase to the acute phase (defined here as
b > 108, the horizontal black lines in Figure 4 (a) and (e) ). In particular, if n(t)
drops below ntrc for some non-negligible time10 even the tiniest bacterial influx will
cause acute infection.

To demonstrate these claims, Figure 4a shows the resulting bacteria dynam-
ics for the three G-CSF treatment profiles with a small bacterial influx of s =
100 [#bac/minute]. We see that to overcome an infection of the S. epidermidis
bacteria with the neutrophils having a kill-rate as in the experiments of [14], the
patient needs to receive bi-daily injections, while the standard daily injections are
insufficient. Indeed, we find that with these parameter values and with the in-
flux parameter s = 100 [#bac/ml/min], the neutrophil threshold parameter is
nsn(100) ≈ 8.4 × 105 [#neutrophils/ml], and since both the untreated patient
and the patient receiving daily injections have substantial periods at which their
neutrophil counts are below this value and in fact even below ntrc, both will def-
initely develop acute infections. We see that here the bi-daily injections keep the
patient very close to the border of instability, meaning that to provide a better as-
sessment of the infection outcome for this patient a more realistic model is needed.
Figure 4d shows the phase-space plots of these three profiles with the corresponding
bifurcation curve (black dashed line).

Increasing the bacterial influx for this patient to s = 400 [#bac/ml/min] in-
creases the neutrophil threshold value to nsn(400) ≈ 8.8 × 105 [#neutrophils/ml,
and the bi-daily injections are indeed no longer sufficient to overcome such an in-
vasion of bacteria - the red curve in Fig 4c shows that the bacteria population
increases to the acute stage with this larger bacterial influx.

We conclude that for a given patient profile (the profile consists of the neutrophil
dynamics with treatment and the neutrophils kill rate parameters) there exists some
critical value of bacterial influx sc(n(t)) above which acute bacterial infection def-
initely ensues. This value of sc provides an important information: potentially
(after more clinical data is gathered regarding the common values of s), it can
tell us whether the patient is able to overcome the internal bacterial population in
the body and whether it can withstand contact with non-sterile environment. For
the above hypothetical patient, we see that with no G-CSF support, or with daily
injections, n(t) < ntrc for substantial periods. Hence, even the tiniest bacterial con-
tamination can cause acute infection. For the patient receiving bi-daily injections,
having nadir neutrophil values of Nnadir ≈ 8.7 × 105, we find from equation (16)
that the critical bacterial influx sustained by this patient is sc ≈ 306#bac/minute
whereas numerically we find that sc ≈ 400#bac/minute.

Notably, this critical influx value depends sensitively not only on the neutrophil
counts at the nadir, but also on the neutrophils ability to defeat the bacteria, namely
the kill term parameters. Indeed, when we increase the kill parameter α by 20% this
patient does not develop acute infection under the optimistic model even when the
bacterial flux is increased to s = 3500#bac/minute (magenta curve in Figure 4e).
The estimated asymptotic critical bacterial influx for this patient that has more
efficient neutrophil kill rate is sc ≈ 4250#bac/minute whereas numerically we find
that actually sc ≈ 3750#bac/minute.

10For the parameters fitted to the data of [14], ntrc = 7.99 × 105neutrophils/ml.
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Figure 5 shows how this critical bacterial influx value depends on each of the
parameters of the model (13) (when all others are held fixed). Numerically, we
define sc as the smallest influx value for which acute infection (b exceeds 108bac/ml)
develops during the 21 days of the chemotherapy cycle. We see that the critical
influx value depends very sensitively on α, quite sensitively on ρ,Nnadir and η and
less so on the other parameters β, δ, γ (notice the different scales on the y axis of
Figure 5). Notice that the analytic asymptotic expression for sc (equation (16),
blue dashed lines in Figure 4d) and the numerics provide similar behavior yet do
not agree even for small s values. The main reason for this discrepancy is that
the numerical definition of sc (which is the medically relevant definition) does not
coincide with the bifurcation value that is approximated by equation (16). In this
definition we purposely limit the integration time to 21 days whereas close to the
bifurcation point this time is not sufficiently long to get to the 108 threshold (this
discrepancy indeed persists even when n is fixed, and becomes smaller when the
integration time is increased or the acute infection threshold level is decreased).

Notably, similar behavior appears when the constant bacterial influx is replaced
by a two-day infection episode at the nadir. On the other hand, infection episode at
the onset of the treatment or after the neutrophil recover do not induce infections
in this simplified model.

A few remarks regarding this model are in order.
First, we should remark regarding the choice of the parameters in Table 1. These

are the parameters presented in [15] supplement (Tables 1 and mean values of
Table 2), with the following three modifications that were employed to obtain non-
trivial results as explained next. First, we set the control parameter, AMC, to 0.2.
This choice was made so that with the bi-daily G-CSF treatments, the neutrophils
level do exceed the S. epidermidis bacteria critical value ntrc = 7.99 × 105. A
smaller AMC value leads to the trivial result that no G-CSF treatment may help
to avoid the development of acute infection. Notably, this value is larger than the
standard medical threshold level Nc. Second, the starting day of the G-CSF therapy
are slightly altered from those appearing in [15]. Instead of starting the G-CSF
injections 6 days after the neutrophils decline we begin the treatment 2 days after
the first decline. Third, the neutropenia duration is shorter by one day from that
appearing in [15]. These two last changes are made so that with the 10 days bi-daily
injections the patient neutrophil levels do not drop below ntrc = 7.99× 105. Other
choices (of a later start of the injections or of more sever or of longer neutropenia
with the same AMC value and without additional injections) always lead to the
development of an acute infection for very small influx parameter even with the
bi-daily injections.

As mentioned before, this combined model neglects many effects. Most of the
neglected effects are negative, in the sense that the actual bacterial killing is ex-
pected to be lower than the killing accounted by in the model, hence this model can
be viewed as optimistic. We list next some examples for such negative effects. The
cumulative effect of the phagocytosis leads to an increase in the tissue neutrophils
death rate; The neutrophils rate of migration to the infected sites is not immediate;
In-vivo chemotaxis may slow down the phagocytosis; The damage caused by the
neutrophils influences the function of the incoming ones; Anti-inflammation factors
cause a decrease of the neutrophil recruitment into the tissue. On the other hand,
three positive effects are neglected as well. The existence of other phagocytes, killer
cells and the complement system in the tissues; The natural longer life-span the
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Figure 5. Sensitivity of the critical bacteria influx of a patient
receiving bi-daily G-CSF injections to parameter variations (neu-
trophil counts are as in the green curve of Fig 4a). Red curve:
numerical values of the critical flux by day 21, Blue curves: the as-
ymptotic expression for sc (Eq. (16)). Black points: the parameter
values used in Fig 4.

neutrophils have in the tissue [52]; The recruitment of the adaptive immune re-
sponse after about a week from the onset of an infection. The two first positive
effects may be especially important in the first days of the neutropenia and may
help to overcome minor bacterial influx: these other defence mechanisms and older
tissue neutrophils may remain on guard even when the blood neutrophils are al-
ready at very low levels. The last positive effect may be relevant for slowly evolving
long lasting infections of rare bacteria strains and less so for the common bacterial
infections of neutropenic patients [53, 54].

6. Discussion. We first discuss the modeling issues that arise from the mathemat-
ical formulation of the one dimensional model of the bacteria-neutrophil interaction
(sections 2-4). We then discuss some of the possible medical implications of the
new model that is introduced here, the neutropenic in-vivo model (section 5).

The axiomatic approach for modelling the bacteria-phagocyte interaction results
in a precise mathematical classification of all possible bifurcation diagrams that may
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emerge from the very general class of models that describe this interaction. The
different types of bifurcation diagrams (in particular the simplest monostable vs
bistable diagrams) correspond to different biological behaviors that can be tested in
in-vitro experiments. Notably, these behaviors have not been detected prior to the
derivation of this simple class of models, yet, retrospectively, as pointed out in [6],
the bistable behavior does appear in the previously published data [14]. Another
prediction of the model is that some bacteria strains should also exhibit a monos-
table regime (e.g. when the nutrient supply is decreased below some threshold).
This behavior may correspond to the non-pathogenic bacteria strains that reside
in our bodies. While we believe both types of behaviours should indeed exist, the
bi-stable one is probably more common in bacteria strains studied in the medical
context, as they can produce infections more easily [6].

Our systematic study of the bacteria-phagocyte interaction lead to new ob-
servations regarding two models that are often employed as a building block in
population-dynamics: models with quadratic kill terms and models with ratio-
dependent kill terms. In Section 4.2 we showed that one dimensional models with
a reasonable natural growth term and a quadratic mass-action kill term cannot
admit bistability. This omission occurs even though a formal linearization of the
valid model of Section 4.1 at small b produces a model with a mass-action kill term.
Mathematically, this is clear. Linearization in b of the kill term amounts to neglect-
ing nonlinear terms of the form nb2. Away from the bifurcation point ntrc, at small
concentrations, one can certainly neglect such terms. However, near the bifurcation,
the magnitude of these terms determines which type of bifurcation occurs. In Sec-
tion 4.3 we showed that models that use ratio-dependent kill term have a peculiar
behavior at small bacterial-concentration values. In particular, these models are
incompatible with the well established biological notion of having a finite positive
critical neutrophil concentration that is sufficient to defeat small bacterial infection.
Notably, the ratio-dependent point of view was employed by several experimental-
ists [32, 34, 33, 35]. In the ecological modeling community, their is a long standing
controversy when these modes are appropriate, see e.g. [55, 56, 57]. Summarizing,
these two families of models do not adequately describe the behavior near ntrc. For
neutropenic patients, the behavior near this bifurcation point is, from a medical
point of view, the most important regime.

The implications of this observation regarding higher dimensional models that
use mass-action kinetics should be carefully examined. In these multi-dimensional
models, the above observations regarding the bifurcation diagrams of the 1d system
simply provide the form of the b-nullcline. If the multi-dimensional system has some
time separation so that the b dynamics is much faster than the slow phagocytes
(or more generally the predator) dynamics11, this nullcline serves as a backbone
for inducing the slow-fast dynamics. Models that employ quadratic mass-action
kinetics produce a monotonically decreasing nullcline that corresponds to a stable
manifold of the larger system - namely - in such models the dynamics in b hardly
plays a role. On the other hand general models with time separation that admit
bistable behavior are expected to have much richer multi-dimensional dynamics.

As a first step for studying this complex in-vivo multi-dimensional dynamics, we
introduced a new intermediate model which we call the optimistic model (section
5). This model provides a simplified view on how a neutropenic patient fights a

11Otherwise our 1D observations are not interesting: the nullclines in the other variables may
produce all the bifurcations.
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constant invasion of S. epidermidis bacteria. Here, the neutrophil levels of the
parameterised model (13) are taken to be the neutrophil levels in the blood of
a chemotherapy patient, as described by equation (19) (following [15]). We note
again that many effects are neglected by such a naive model. We expect that these
effects will mainly reduce the neutrophils ability to fight the bacteria. Namely, we
believe that typically the neutrophils blood level exceeds the tissue level and the
kill parameters (α, 1/γ, 1/η) slowly decrease with the time of the infection. Thus,
when this combined model predicts the development of an acute infection within
a couple of days, we expect that the patient will be indeed in a great danger of
developing such an infection in 4-5 days. On the other hand, when this simplified
over-optimistic model predicts slower development of an infection or a recovery we
cannot rely on it with regards to the true in-vivo dynamics.

This model demonstrates that the bistability of the bacteria-neutrophil dynamics
leads to large variability in the response of neutropenic patients to the degradation
of their barriers. It also demonstrates that the medical notion of a threshold neu-
trophil level is sensible, though the universal value of Nc needs to be individualized.
For a given parameter set and a given bacterial influx level, this threshold corre-
sponds to the saddle node bifurcation value nsn(s). When the neutrophils plummet
below this value for too long acute infection develops. In particular, if n drops below
ntrc even the tiniest bacterial influx causes an infection. Notably, for the S. epider-
midis bacteria, this critical value is larger than Nc, the medically accepted averaged
threshold. This finding may perhaps be reconciled by introducing additional tissue
kill mechanisms into the model.

Put differently, we have seen that for a given neutropenic profile with a minimal
neutrophil value n = Nnadir, there is a critical bacterial influx sc(n) so that beyond
this value the patient develops acute infection. We demonstrated that this threshold
bacterial influx depends most sensitively on the kill term parameter α and also quite
sensitively on ρ,Nnadir and η, whereas its dependence on the other parameters is
rather mild. While the dependence on ρ and Nnadir is not surprising and is indeed
in line with current treatment protocols (ρ can be decreased by antibiotics and
Nnadir is increased by G-CSF injections) the extremely sensitive dependence on α
is a new finding that may have new implications on diagnostics and treatments.
We believe that further exploring the value of sc in this model and in its extensions
may provide important medical information. Potentially, after more clinical data is
gathered regarding the common values of s and of the kill term parameters, it can
tell us whether, for a given treatment protocol, a patient will be able to overcome
the body’s internal bacterial population and whether the patient can withstand
contact with non-sterile environment.
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Appendix 1: Proof of Theorems 3.1 and 3.3. Below, we present the proofs of
Theorems 3.1 and 3.3 and some more details regarding the structure of the bifurca-
tion diagram of equation (1), namely the structure of the solutions to the implicit
equation F (b, n, s) = 0. For simplicity of the statements, we assume throughout the
appendix that assumptions A1-A6 hold (though, as can be seen from the proofs,
for some of the lemmas we use only a subset of these assumptions).



496 ROY MALKA AND VERED ROM-KEDAR

First, notice that with no bacteria influx there is a unique bifurcation point on
the n-axis:

Lemma 6.1. For s = 0, the origin is a fixed point for all n, and there exists
ntrc > 0 such that b = 0 is unstable for n < ntrc and stable for n > ntrc.

Proof. By A2 b = 0 is a fixed point for all n. By A3, equation(5), for small b
F (b,0,0)−F (0,0,0)

b > 0 thus, ∂bF (b, 0, 0) ≥ 0. By the assumption that the functions
are in general position (A6, equation (9)), ∂bF (0, 0, 0) > 0 and therefore b = 0 is an
unstable fixed point for n = 0.

By A1 F is Cr, r > 2, and we showed that ∂bF (0, 0) > 0, for sufficiently small n
∂bF (0, n) > 0. However, by equation (8) of assumption A5, for small b > 0 and for

ñ > n0, F (b,ñ)−F (0,ñ)
b < 0 and hence ∂bF (0, ñ) ≤ 0. Moreover, the monotonicity of

the local kill rate in n (equation (7) of assumption A4) implies that for all n > ñ we
have ∂bF (0, n) < 0. Therefore, by the Intermediate Value Theorem, there exists a
point (ntrc), such that ∂bF (0, ntrc) = 0. Moreover, by the monotonicity condition
of Eq. (7) this bifurcation point is indeed unique, dividing the positive n axis to
unstable and stable regimes.

Lemma 6.2. At n = 0, at sufficiently small s, equation (1) has a unique positive
equilibrium solution and it is stable.

Proof. From the limited growth model (assumption A3), and in particular from
equation (5), it follows directly that at n = 0 there is a unique positive fixed point,
b = bf (s).

Moreover, (5) implies that for all ε > 0,
F (bf (s)+ε,0,s)−F (bf (s)−ε,0,s)

2ε < 0, thus
∂bF (bf (s), 0, s) ≤ 0, and thus, generically (specifically, using equation (10) of A6),
we get that ∂bF (bf (0), 0, 0) < 0. Therefore, for sufficiently small s this strict in-
equality persists and bf (s) is stable.

Lemma 6.3. For any fixed s ∈ [0, smax), the set of positive fixed points of (1),
{(b, n, s)|F (b, n, s) = 0, b > 0}, contains the connected set {(b, n, s)|n = n∗(b; s), b >
0} where n∗(b; s) is the unique solution of the equation F (b, n∗(b; s), s) = 0 that
passes through the positive b axis (satisfying n∗(bf (s); s) = 0). Moreover, the only
points at which the function n = n∗(b; s) is not locally invertible with respect to b
are the bifurcation points of (1).

Proof. By A4, for all b > 0, ∂nF (b, n, s) = ∂nD
K(b, n) > 0, and thus near any

fixed point of (1) n∗(b; s) may be uniquely found by the Implicit Function Theo-
rem. In particular, since by A3 for any fixed s there is a unique point bf (s) such
that F (bf (s), 0, s) = 0, we obtain that indeed the intersection of the curve n∗(b; s)
with the positive b axis must occur at bf (s) and that the branch emanating from
n∗(bf (s); s) = 0 is uniquely defined and finite for all b ∈ (0, bf (s)] (recall that
∂bF (b, n, s) is finite in the domain Ω). Similarly, the function b∗(n; s) that solves
F (b∗(n; s), n, s) = 0 is defined by the implicit function theorem near any fixed point
(b, n, s) s.t. ∂bF (b, n, s) 6= 0 (i.e., at all fixed points that are not bifurcation points).
Moreover, at such points, by the inverse function theorem, the inverse with respect
to b of the function n = n∗(b; s) is simply b∗(n; s).

This Lemma shows that while there is a single branch of positive solutions em-
anating from ((bf (s), 0, s) when n is found as a function of b (i.e. this branch
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(b, n∗(b; s), s) is unique for b > 0), there can be several branches of positive solu-
tions (b∗(n; s), n, s) that may meet at the bifurcation points. Next we establish that
the stability of the fixed points along such a branch and its monotonicity property
are directly related.

Lemma 6.4. If b∗(n; s) > 0 is a branch of fixed point of (1) which maintains its
linear stability for all n ∈ [n−, n+], then it is monotone in n; If b∗(n; s) is stable in
this interval then it is decreasing in n and if b∗(n; s) is unstable then it is increasing
in n.

Proof. By assumption F (b∗(n; s), n, s) = 0 and ∂bF (b, n, s)|b∗(n;s),n,s 6= 0 for all

n ∈ [n−, n+], therefore, by implicit differentiation ∂b∗(n;s)
∂n = −∂nF (b∗(n;s),n,s)

∂bF (b∗(n;s),n,s) =

∂nD
K(b∗(n;s),n)

∂bF (b∗(n;s),n,s) . Thus, by A4 and since ∂bF (b∗(n; s), n, s) has a fixed sign here,

b∗(n; s) is indeed monotone on this segment. Moreover, since the numerator is
positive (by A4) it is decreasing in n for stable branches (where ∂bF (b∗(n; s), n, s) <
0) and increasing for unstable branches (∂bF (b∗(n; s), n, s) > 0).

Corollary 2. For a positive equilibrium solution of equation (1), only two bifur-
cation schemas are possible. Both correspond to a saddle-node bifurcation with an
increasing stable branch and a decreasing unstable branch (with increasing n), see
Figure. 6.

Figure 6. The model assumption exclude bifurcations leading to
an increasing stable branch or decreasing unstable branch.

Corollary 3. For sufficiently small n the branch of equilibrium solution of equation
(1), b∗(n; s), with b∗(0; s) = bf (s) is monotonically decreasing.
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Lemma 6.5. Let ∆ be a sufficiently small positive number. Then, at s = 0, for
b < ∆ the model (1) has one of the following normal forms of the transcritical
bifurcation at (b, n) = (0, ntrc)

ẋ = ±x2 − µx. (21)

Proof. Based on a theorem due to Sotomayor [58] (see also,[59]), we need to show
that the following four conditions are satisfied. The fixed point condition (n ≥
0, F (0, n, 0) = 0), and the bifurcation condition (∂bF (0, ntrc, 0) = 0), both hold by

Lemma 6.1. The transversality condition ∂2

∂n∂bF (0, ntrc, 0) = ∂2

∂n∂bD
K(0, ntrc) > 0

follows from A4 (7). Finally, equation (11) of A6 guarantees that ∂2

∂b2F (0, ntrc, 0)
does not vanish. The sign of this second order derivative distinguishes between the
two normal forms.

Notice that in models with mass action kill term (see section 4.2)

∂2

∂b2
F (0, ntrc, 0) =

∂2

∂b2
(B(b, s)−D(b))|(b,s)=(0,0).

The above is negative in commonly used models of the natural bacterial growth like
the logistic and the Gompertz [31] models. We conclude that when such natural
bacterial growth models (with negative second derivative at the origin) are combined
with the mass-action kill term, only the supercritical normal form (minus sign in
(21)) can be realized.

Let n∗(b; 0) denote the unique solution of equation (1) at s = 0 that emanates
from (bf , 0, 0) (recall lemma 6.3). We next show that this branch connects to the n
axis exactly at the bifurcation point:

Lemma 6.6. The function n∗(b; 0) (defined by Lemma 6.3) intersects the n-axis at
ntrc.

Proof. Since, by Lemma 6.1, there is a unique bifurcation point on the b = 0 solution
branch, it follows that there exists some finite ∆ > 0 such that for all b < ∆ there
exists a unique curve (b, n+(b)) satisfying F (b, n+(b), s = 0) = 0, n+(b)

∣∣
b>0

> 0,

(and for this curve n+(0) = ntrc). Now, since F (bf , n = 0, s = 0) = 0 and by
lemma 6.3 the curve n∗(b; 0) for which F (b, n∗(b; 0, 0) = 0, with n∗(bf ) = 0 is
uniquely defined for all b > ∆/2 > 0 (since ∂nF = ∂nD

K > 0 for all (b, n) such that
b > 0), we establish that near b = 0, n = ntrc the non-trivial branch of fixed points
n∗(b; 0) must coincide with the nontrivial branch of the transcritical bifurcation
n+(b).

With the above preparation we are now ready to prove the first theorem:

Proof. [of Theorem 3.1] By Lemma 6.6 the only intersection of n∗(b) with b = 0 is

at n = ntrc. If ∂2F
∂b2 (0;ntrc, 0) < 0 by Lemma 6.5, the intersecting branch is stable,

thus, starting from the stable branch at n = 0 there must be an even number of
generic bifurcation points to get a stable branch intersecting the b = 0 branch. If
∂2F
∂b2 (0;ntrc, 0) > 0, by Lemma 6.5, the intersecting branch is unstable, thus, starting
from the stable branch, there must be an odd number of generic bifurcation points
to get an unstable branch intersecting the b = 0 branch.

Finally, we note that there cannot be any additional branch of fixed points,
namely the equation F (b, n, 0) = 0 cannot have any additional non-trivial (non-zero
b) solution curves. By Corollary 2 there cannot be any closed fixed point solution
curves. We now show that any other option will lead to a contradiction to one of
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the observations regarding the solution curves properties. Additional intersections
of the solution curves with the n-axis (respectively b-axis) contradict Lemma 6.1
(respectively 6.2). Asymptotic branch to the n axis is impossible since it implies
that either a stable branch (by Lemma 6.4) asymptotes a stable branch or that an
infinite sequence of bifurcations occur as b→ 0, contradicting Lemma 6.5. Finally,
asymptotic branch or an infinite sequence of bifurcations that occur as n → 0 are
ruled out by A3 and continuity (A1).

Proof. [of Theorem 3.3] We first note that for sufficiently small s, all the zero flux
saddle node bifurcation points that occur at positive bacteria concentrations persist
(beyond the general persistence arguments for the saddle node bifurcation, we notice
that (4) implies that ∂F

∂s (b, n, 0) > 0 at these bifurcation points so for small s these
bifurcation points simply shift to the right, see also Lemma 3.2). Thus to complete
the proof we only need to examine the behavior near the zero flux transcritical
bifurcation point.

By lemma 6.5 for s = 0 the model is diffeomorphic to the normal form ẋ =
±x2−µx, at (b∗, n∗) = (0, ntrc) where the bifurcation point is shifted in the normal
form to the origin. Removing the constraint that b = 0 is a solution by introducing
a small influx s is equivalent to introducing a symmetry breaking parameter ε into
the normal form: ẋ = ±x2 − µx+ ε , where, by equation (4), ε > 0.

In particular, case (1) of Theorem 3.1 corresponds, for sufficiently small s and
for (b, n) values near (0, ntrc), to the transcritical unfolded normal form ẋ = −x2−
µx + ε, ε > 0. This unfolded form has no bifurcation point near (x, µ) = (0, 0).
Instead, it has a monotone decreasing stable positive branch, namely, the transcrit-
ical bifurcation dissolves into a regular point. Thus, by Theorem 3.1(1) and the
above remark we indeed have here an even number (possibly zero) of saddle node
bifurcations.

Similarly, in case (2) of Theorem 3.1, for small positive s the model is diffeomor-
phic to the unfolded normal form ẋ = x2−µx+ ε, ε > 0. This normal form has two
saddle-node bifurcations near (x, µ) = (0, 0), yet only one of these corresponds to
positive x (and thus b) values. Thus, the transcritical bifurcation point transforms
to a single additional saddle node bifurcation point. Therefore, by Theorem 3.1(2)
and the above remark, for sufficiently small s there is again an even number of
saddle-node bifurcations and no other types of bifurcations may emerge. In partic-
ular, by corollary 1, at s = 0 we have here at least one saddle-node bifurcation at
positive b value. Thus, for small s, there are at least two saddle-node bifurcation
points.
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