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A Saddle in a Corner—A Model of Collinear Triatomic Chemical Reactions∗

L. Lerman† and V. Rom-Kedar‡

Abstract. A geometrical model which captures the main ingredients governing atom-diatom collinear chemical
reactions is proposed. This model is neither near-integrable nor hyperbolic, yet it is amenable
to analysis using a combination of the recently developed tools for studying systems with steep
potentials and the study of the phase space structure near a center-saddle equilibrium. The nontrivial
dependence of the reaction rates on parameters, initial conditions, and energy is thus qualitatively
explained. Conditions under which the phase space transition state theory assumptions are satisfied
and conditions under which they fail are derived.
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1. Introduction. The study of classical, semiclassical, and quantum chemical reactions
on a molecular level has a rich history [1, 2, 3, 4, 5, 6, 7, 8, 9]. In these models, the full
Hamiltonian is averaged over the fast motion of the electrons, where each electron is assumed
to be fixed at a specific quantum energy level (the adiabatic approximation) [1, 2, 3]. Such
computations produce effective potential energy surfaces (PESs) that govern the slow motion
of the nuclei. The resulting Hamiltonians correspond to the “Born–Oppenheimer” approxi-
mation. Quasi-classical computations1 that employ these Hamiltonians provide surprisingly
good approximations to the quantum calculations, and hence classical models are extensively
studied by chemists; see [1, 2, 3] and the references therein.

Dishearteningly, the resulting nuclei motion of even the most basic, classical “elementary”
(bimolecular) reactions, which are “at the heart of chemistry” [3], is not well understood.
Numerical simulations of the nuclei dynamics exhibit sensitive dependence of the trajectories
on initial conditions and parameters. Moreover, one finds that macroscopic observables, like
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reaction rates, have an intricate dependence on the parameters and energy; see, e.g., [1, 2, 3,
5, 8].

In contrast, the popular transition state theory provides an appealing intuitive view of this
motion and leads to explicit formulae relating the microscopic nuclei kinetics to the macro-
scopic reaction rates. This theory assumes that the PES is separable to a one-dimensional
potential (“along the reaction path”) and a potential well in all the other modes of motion (the
bath of oscillators). Hence, the reaction according to this theory is described by a product of a
one degree of freedom (thus integrable) system and oscillators. This appealing phenomenolog-
ical model is too simple: it does not describe the observed complex dependence of the nuclei
motion on initial conditions and energy [1, 2, 3, 4, 5, 6, 7, 8, 9].

The next level of approximation, by which the nonoscillatory part of the potential is two-
dimensional, is the subject of our paper. Here, the translational and vibrational energies of the
atom and diatom are coupled to each other yet are separable from all the other modes of motion
(e.g., of those associated with the bending and the rotational energies). Such a decoupling
occurs, for example, when the initial configuration is collinear and the angular momentum is
zero [4, 5]. This separability assumption is widely used in theoretical investigations of chemical
reactions [1, 2, 3, 4, 5, 6, 7, 8, 9]. Indeed, the first examinations of the principles underlying
the transition state theory were conducted by investigating such models [4, 5].

Employing such a restrictive reduction2 still leaves us with a two degrees of freedom
system which may admit chaotic behavior (in contrast with the transition state theory reduc-
tion which leaves us with integrable dynamics). One source for such complicated behavior
is associated with the existence of a reaction barrier—a saddle point of the PES.3 The ex-
istence of such a barrier is the main ingredient needed for relating the classical transition
state theory to the analysis of the phase space structure of two degrees of freedom systems
[5, 12, 13, 14, 15, 16]. Normal form analysis of the local phase space structure near the PES
bottlenecks (local unstable extremal points of the PES) relates these two approaches and leads
to accurate calculations of the minimal flux through them [12, 10, 11]. The local picture near
the bottlenecks does not reveal the complexity of the motion. This complexity is revealed only
when the global structure of the reaction tubes—the phase space regions that pass through
the bottlenecks—is calculated [5, 6, 12, 13, 14, 17, 18, 19].

Previous works on the global features of these tubes have either employed near-integrable
techniques [8, 20, 14, 21] or numerical integrations [5, 6, 12, 13, 14, 17, 18, 19]. In these works
it is demonstrated that the structure of the stable and unstable manifolds of unstable periodic
orbits (the periodic orbits dividing surfaces (PODSs) [5] or, similarly, the stable and unstable
manifolds of the normally hyperbolic invariant manifolds (NHIMs) [12, 18]) determines the
reaction rates. In particular, when these asymptotic surfaces intersect each other the reaction
rates depend on both the intersection pattern and the local flux near the saddles. In such
cases the predictions of the transition state theory (and its local minimal flux variants) must
be modified. These insights are employed to study numerically the asymptotic surfaces to

2By which the bath of oscillators is considered to be separable from the reaction dynamics.
3Some reactions have potentials that also admit stable triatomic states (indirect reactions), many reactions

have a single steady unstable triatomic configuration (direct reactions), and in some exceptional cases there are
no steady triatomic configurations at all [5, 3]. Most recently, models with rank-k saddles have been considered
as well [10, 11].
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NHIMs of high-dimensional problems [12, 17].
Here we introduce a new geometrical model for the two-dimensional PES. The PES in

the reaction region is approximated by a sum of a quadratic form with a saddle point and a
smooth potential which is close to zero within a corner region and increases sharply at the
corners’ boundaries (see Figures 1(b) and 2). We analyze this model by combining the theory
of smooth Hamiltonians with impacts [22, 23, 24, 25], the recent generalization of [26, 27]
to the impact case [28], and the theory of homoclinic loops to a saddle-center [29, 30, 31].
The analysis provides qualitative understanding regarding the global structure of the dividing
surfaces in reactions with one rank-1 saddle point. Indeed, we identify a basic mechanism
which explains why and when the dividing surfaces of the periodic orbits that have energies
slightly above the barrier energy are especially complicated or especially simple (namely, they
do not intersect each other). Moreover, we provide a mechanism for the emergence of stable
triatomic cyclic motion. The applicability of these geometrical insights to more accurate
models of the PES and to higher-dimensional settings (e.g., when the two degrees of freedom
dynamics are weakly coupled to a bath of oscillators) is under current study.

The paper is ordered as follows. In section 2 we recall that mass-scaled Jacobi coordinates
bring the collinear triatomic reaction’s Hamiltonian to a two degrees of freedom Hamiltonian
in the standard mechanical form. In section 3 we introduce the geometrical potential function,
and in section 4 we provide some basic observations regarding its properties and its relation to
other potentials. In section 5 we analyze the dynamics in this model under specific geometrical
conditions, proving that both chaotic and stable periodic triatomic motions emerge. In section
6 we show that complicated dynamics appear at some parameter ranges and simple dynamics
at others. In section 7 we discuss the relation of these results to transition state theory and
propose some possible extensions.

2. Collinear atom-diatom reactions. Some of the geometrical characteristics of the PES
describing collinear triatomic reactions may be inferred from general considerations that are
common to all such reactions. These characteristics, as described next, motivate our construc-
tion of the simplified geometrical model for the PES.

Consider the triatomic reaction A+BC → AB+C. Namely, here we always consider the
atom-diatom case. We denote this reaction by the standard shorthand notation AB +C. An
effective Hamiltonian for the molecular interaction is of the form

H(r, p) =
∑

i∈{A,B,C}

1

Mi

p2i
2

+ V (r),

where r = (rA, rB , rC) denotes the positions of the atoms A,B,C in a given inertial frame
and {Mi}i∈{A,B,C} denote the masses of the atoms. Under standard conditions V depends
only on the relative positions of these atoms. This nine degrees of freedom system simplifies
when collinearity is assumed [4, 5]. This assumption implies that the relative positions may
be expressed in terms of two scalars r1 = (rA − rB) · ê, r2 = (rB − rC) · ê, where ê is a
unit vector aligned with the molecules, namely V (r) = V (r1, r2). Moreover, since at small
distances the atoms are strongly repelling, V becomes large along the rays ri = 0; see Figure
1(a). The kinetic energy term in these new coordinates is nondiagonal and has a mass-
dependent quadratic form. A mass-weighted coordinate system (the Jacobi coordinates; see
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Figure 1. Contour lines of the effective potential for the H2 + H reaction in the (a) relative positions
coordinates V (r1, r2) and (b) mass scaled coordinates Vr(q1, q2). The allowed region of motion lies within the
dense contour lines (red lines) that correspond to the strong diatomic repulsion at small distances. In the
(r1, r2) plane this region is essentially the positive quadrant, whereas in the (q1, q2) plane it is confined to a
β-wedge/corner: a two-dimensional wedge with a corner angle β = 60◦. The appearance of a single saddle point
in the corner region is apparent. The plotted potential is of the LEPS form; see [1, 2, 3] and the references
therein. Notably, the β-wedge feature always appears in the mass scaled coordinates, independent of the exact
form of the potential.

[2] for formulation and references) brings the system to the standard mechanical Hamiltonian
form of a unit mass particle moving in the potential field Vr(q1, q2):

(2.1) H(qi, pi) =
p21
2

+
p22
2

+ Vr(q1, q2).

Here, (q1, q2) are the reaction coordinates

(2.2) q1(r1, r2) = â r1 + b̂ r2 cos β, q2(r2) = b̂ r2 sinβ,

the scaling coefficients â, b̂ depend only on the mass of the atoms

(2.3) â =

√
MA(MB +MC)

MA +MB +MC
, b̂ =

√
MC(MB +MA)

MA +MB +MC
,

and the mass-dependent “skew-angle” β is defined by

(2.4) β = arccos

√
MAMC

(MA +MB)(MB +MC)
.

For the H2 + H reaction, β = 60◦ (see Figure 1(b)); for heavy-light-heavy interactions, β
is small (e.g., for IH + I, one finds β = 7◦), whereas light-heavy-light interactions lead to
β ≈ 90◦ (see [7, 5, 6, 2] for the corresponding figures and the references therein).

The short range repulsion of the atoms implies that the motion in the configuration space is
confined by the rays r1 = 0, r2 > 0 (namely, q2 = q1 tan β, q2 > 0) and r2 = 0, r1 > 0 (namely,
q2 = 0, q1 > 0). This region, a two-dimensional wedge in the (q1, q2) plane, is hereafter called
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the corner region or the β-wedge; see Figure 1(b). The dynamics within the β-wedge depend
on the particular form of the potential Vr(q1, q2). We will mostly be considering potentials
that have a single extremal point which is a saddle.

In the scaled coordinates, chemical reactions are represented by trajectories of the Hamil-
tonian (2.1). Reactant states (BC molecules and far away A atoms) correspond to configu-
rations with a large q1 and bounded q2. We thus say that such configurations belong to the
reactant channel. Similarly, product states (AB molecules and far away C atoms) correspond
to configurations in the product channel with bounded (q1 tan β − q2) and large q1, q2. In the
reactant (product) channel the potential is well approximated by a one-dimensional BC (AB)
diatomic potential. The corner region, where both q1 and q2 are bounded and where all the
potential saddle points are located, is called the reaction region. In symmetric cases with a
single saddle point the saddle point is located on the bisector—the potential symmetry line.
In nonsymmetric cases, the barrier location is called “early” (respectively, “late”) if it is closer
to the reactant (respectively, product) channel.

3. The geometrical potential function. The above description of the geometrical proper-
ties of the potential Vr(q1, q2) is independent of the details of the reaction. Below, we propose
a specific form for a potential Vr(q1, q2) with parameters that have a transparent geometrical
meaning. This potential may be viewed as a local geometrical approximation in the interac-
tion zone to any other potential surface. The advantage of using this new formulation becomes
apparent: It allows for rigorous analysis of the model and for qualitative understanding of the
dynamics.

Consider Hamiltonians with geometrical potentials of the form

(3.1) H(q, p; a, b, c, ε) =
p2

2
+ aVa(q) + bVb(q, ε) + cVfarfield (q).

Here Hb = H(q, p; b, a = c = 0) is a billiard-like system limiting to a billiard in a β-wedge (see
more details below). Hint = H(q, p; a, b = c = 0) is an integrable system where the potential
Va(q) has a single saddle point in the corner region (we will soon fix Va(q) to be a quadratic
potential and remark on the effects of higher order terms when applicable). The far-field
potential cVfarfield (q) and its derivatives are small in the reaction region (yet are large away
from the corner region). All together, aVa(q) corresponds to the normal form of the potential
near the saddle point, bVb(q, ε) corresponds to the diatomic repulsion terms, and cVfarfield (q)
handles the remainder terms near the saddle and the reactant and product channels away
from the corner region.

By billiard-like system we mean that the potential Vb(q, ε) is a steep potential [32]: the
level set of this potential at, say, Vb = 1/2 limits, as ε → 0, to some billiard-like domain and
Vb(q, ε) → 0 for all q in the interior of this domain (see [27] for a precise definition and (3.4),
(3.5) for examples). Here, the β-wedge is the billiard domain. For example, in Figure 1(b),
the red level curves are identified with the level curves of Vb(q, ε). For small a values (or,
equivalently, at energy levels that are much larger than a), the smooth part of the potential
at the corner region may be neglected and the motion in the β-wedge is billiard-like [26, 27].

For nonnegligible4 a, for sufficiently small (ε, c), at a fixed positive energy level, the system

4Yet bounded, so that along the corner boundaries the diatomic repulsion dominates.
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Hε = H(q, p; a, b, c, ε) has trajectories that closely follow the smooth integrable dynamics
Hint until they reach the walls defined by Vb(q, ε), reflect according to the billiard law, and
continue with the smooth dynamics. Indeed, in the limit ε → 0, the motion is described by
a Hamiltonian system with impacts [22, 23, 24, 25]. Here, we study the dynamics of such
impact systems when their smooth integrable part (Hint) has invariant hyperbolic subsets
(here, Lyapunov periodic orbits near a saddle-center [33, 29, 30]). We prove that for a range
of parameter values the reflections of the stable and unstable manifolds of this set from the
billiards’ boundaries give rise to complicated homoclinic behavior (Theorem 5.2) and to stable,
recurrent triatomic states (Theorem 5.5). We also show that at a different range of parameter
values the manifolds reflect to infinity via the reactant and product channels and no recurrent
motion near the saddle is possible (Theorem 6.1 and Conjecture 6.5). For this latter range of
parameters, transition state theory is expected to be valid.

Finally, the results established for the limiting impact flow at ε = c = 0 are shown to
be valid at small ε, c. The persistence for small c values follows, as usual, from the robust
character of these results under smooth perturbations. The persistence for small ε follows
from the recent extension of [27] to smooth Hamiltonians that limit to impact systems [28].

3.1. The simplest form of the geometrical model. The assumption that the potential
has a single saddle point in the corner region implies that the potential aVa of (3.1) is of the
form

(3.2) aVa(q) =
1

2
(q − qs)

TA(q − qs) +O((q − qs)
3),

where A is a symmetric 2×2 matrix (AT = A) with eigenvalues (ω2,−λ2). Additionally, since
the potential saddle point qs = (q1,s, q2,s) is assumed to be located within the corner region,
it satisfies q1,s > 0, q2,s < q1,s tan β. Consequently (see section 4), the Hamiltonian flow has a
saddle-center equilibrium at P = (q, p) = (qs, 0).

Replacing aVa(q) in (3.1) by its quadratic approximation we obtain the simplest form of
the geometrical model:

(3.3) H(q, p; b, c, ε) =
p2

2
+

1

2
(q − qs)

TA(q − qs) + bVb(q; ε) + cVfarfield (q).

Recall that the bVb term corresponds to a billiard-like potential in the corner; namely, it
satisfies conditions I–IV of [27]. We may, for example, consider here either an exponential
potential (as in the repulsion associated with a Morse potential) or a power-law potential (as
in the Pauli repulsion term of a Lennard-Jones interaction):

(3.4) bVb(q, ε) = bVexp(q, ε) = b exp(−q2/ε) + b exp((q2 − q1 tan β)/ε)

or

(3.5) bVb(q, ε) = bVpow(q, ε/b) =
ε

qk2
+

ε

(q1 tan β − q2)k
, k ∈ Z

+.

We study (3.3) in the small c regime; namely, we assume that the far-field term is small.
We expect this approximation to be valid only in the reaction region. We thus study the
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dynamics in a bounded corner region of the configuration space. The simplest model provides
adequate approximation to (3.1) in this bounded region if the far-field potential and all its
derivatives are small there and, additionally, aVa(q) is well approximated by its quadratic
approximation. This latter part of the assumption may be relaxed in the future by including
higher order terms of the normal form near the saddle-center point of the Hamiltonian.

The motion for a, b �= 0 is found by analyzing first the singular impact limit (i.e., when
ε → +0), hereafter called the limit system. Then, the recent persistence results of [28]
(generalizing [26, 27]) and standard perturbation theory allow us to establish that similar
behavior persists for sufficiently small ε and c.

4. The phase space structure of the limit system and its dependence on parameters.
In the limit ε → +0 the behavior of (3.3) in the interior of the corner region is governed by
the linear integrable system corresponding to the quadratic Hamiltonian. The limit system is
defined as this smooth integrable motion inside the corner together with reflections from the
corners’ boundaries.

In section 4.1 we recall the integrable phase space structure of the quadratic Hamiltonian in
the saddle-center case. In section 4.2 we recall the reflection law from the corners’ boundaries.
In section 4.3 we explain how the parameters of the simplest geometrical model (3.3) may
be extracted from a general PES and motivate our choice of particular ranges of geometrical
parameter values in sections 5–6.

4.1. The integrable structure near the saddle-center. Below, we first rotate the (q, p)
coordinate system so that the quadratic Hamiltonian in (3.3) becomes separable (more gener-
ally, one brings the integrable part of (3.1) to its normal form near the saddle-center point).
We then define the corner region in the rotated coordinate system (u, v); see Figure 2. We show
that in the rotated system the projections of the stable and unstable manifolds of the saddle-
center fixed point and of the nearby periodic orbits are easily found. We end this subsection
by defining two constants of motion and identifying reacting and nonreacting trajectories near
the saddle-center point in terms of the values of these constants of motion.

Denote the normalized eigenvector of A which corresponds to ω2 (respectively, (−λ2)) by
U1 (respectively, U2). Recall that U1⊥U2. A small computation shows that the eigenvalues
of the saddle-center point of the Hamiltonian flow, P = (qs, 0), are ±iω,±λ. The Hamilto-
nian flow has a two-dimensional real invariant subspace Ec (center plane) corresponding to
the eigenvalues ±iω : Ec = {(q̂, p̂)|(q̂, p̂) = (rU1, sU1), r, s ∈ R}. The center plane projec-
tion onto the configuration space is one-dimensional, along the eigenvector5 U1. Similarly,
the Hamiltonian stable and unstable subspaces corresponding to the real eigenvalues ±λ are
expressed in terms of the matrix eigenvector U2: E

u = {(q̂, p̂)|(q̂, p̂) = r(U2, λU2), r ∈ R},
Es = {(q̂, p̂)|(q̂, p̂) = r(U2,−λU2), r ∈ R}. Thus, the projection of both the stable and unsta-
ble subspaces onto the configuration space is along U2—the eigenvector of A corresponding
to the negative eigenvalue (−λ2). The eigenvectors directions should not be confused6 with

5If higher order terms of the normal form are included in aVa, these statements apply to the tangent planes
of the corresponding manifolds.

6These simple observations are the source of much confusion, as we wrongly tend to confuse the level sets
of Va in the configuration space q with the phase space plots in the space spanned by the stable and unstable
directions (see Figures 2 and 3).
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(a) (b)

(c) (d)

Figure 2. The saddle in a corner geometry in the configuration space. The potential level sets near the
saddle are schematically drawn. The zero level lines are the thick black lines, whereas the thin black curves are
the nearly zero potential level lines. The projection of the center eigenspace is denoted by the red line, and that
of the stable and unstable eigenspaces is denoted by the green line. The top (bottom) panels show the geometry
when θ is positive (negative). The left (right) panels show the geometry in the mass scaled (q1, q2) (the rotated
(u1, u2)) coordinates. The region AL is indicated by grey shading.

the zero level lines of Va. Since the potential Va has a saddle point at q = qs, there are two
directions, Q± = U1 + α±U2, along which Va vanishes Va(qs + tQ±) = 0 for all t, and α± are
finite and nonvanishing (see Figure 2).

To simplify further calculations it is convenient to transform the Hamiltonian to its linear
normal form. Let us denote by (cos θ,− sin θ)T the unitary eigenvector U1, assuming, with
no loss of generality, that −π/2 < θ ≤ π/2. Then (sin θ, cos θ)T is the unitary eigenvector
U2. A useful standard observation for natural mechanical Hamiltonians is that rotations of
the configuration space can be easily incorporated into the Hamiltonian. Indeed, defining the
standard rotation matrix

(4.1) Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
and making the symplectic transformation (q, p) → (u, v) = (Rθq,Rθp), the Hamiltonian (3.3)
becomes

(4.2) H(u, v; b, c, ε) =
v2

2
+
1

2
(u−Rθqs)

TRθAR−θ(u−Rθqs)+bVb(R−θu, ε)+cVfarfield (R−θu),
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where the quadratic part is diagonal:

(4.3) RθAR−θ =

(
ω2 0
0 −λ2

)
.

The integrable part of the Hamiltonian (3.3) becomes (where us = Rθqs)

(4.4) Hlin =
v21 + v22

2
+
ω2

2
(u1 − u1,s)

2 − λ2

2
(u2 − u2,s)

2.

Recall that the quadratic (or, more generally, the integrable) approximation inside the
corner is expected to hold only in the reaction zone where the far-field contribution is small.
We thus define a bounded corner region in the (u1, u2) plane, AL, and study the dynamics
in this region (see Figure 2). The lower and upper boundaries of AL are the two rays that
emanate from the origin and are aligned with the vectors (cos θ, sin θ) (lower boundary) and
(cos(β + θ), sin(β + θ)) (upper boundary). This β-wedge is then intersected by the square
[−L,L] × [−L,L], where L > max(u1,s, u2,s). Since β ∈ (0, π/2), we have β + θ ∈ (−π/2, π)
and two cases appear. For β + θ < π/2 (see Figure 2(d))

(4.5) AL = {u1 ∈ [0, L], u2 ∈ [u1 tan θ,min{u1 tan(β + θ), L}]},

whereas for β + θ > π/2 (see Figure 2(b))

(4.6) AL = {u1 ∈ [0, L], u2 ∈ [u1 tan θ, L]} ∪ {u1 ∈ [cotan(β + θ), L], u2 ∈ [0, L]}.

Finally, we describe in geometrical terms the well-known structure of the linear flow in
AL. The motion under this linear flow occurs on surfaces defined by the joint levels of Hlin

and the action I1:

(4.7) I1(u1, v1) =
v21
2

+
ω2

2
(u1 − u1,s)

2.

The action I1 is the constant of motion associated with the oscillatory motion. The other
constant of motion

(4.8) D2(u2, v2) =
v22
2

− λ2

2
(u2 − u2,s)

2 = Hlin − I1

determines the hyperbolic motion in the (u2, v2) plane. The surface on which the motion
occurs, {(u, v)|Hlin(u, v) = h, I1(u, v) = k}, is composed, for k > 0 and h �= k, of two
disconnected two-dimensional cylinders: the direct product of an ellipse in the (u1, v1) plane
and two branches of a hyperbola in the (u2, v2) plane. The sign of D2 = h − k determines
the nature of the hyperbolic motion. For negative D2 the hyperbola branches are directed
sideways, one having positive u2−u2,s and the other having negative u2−u2,s; see the shaded
region in Figure 3. Trajectories belonging to level sets with D2 < 0 do not cross the 3-plane
u2 = u2,s: they approach it and then return to the same side. Keeping in mind the chemical
origin of our model, we shall say that the motion corresponding to such trajectories occurs
“without reaction.” On the other hand, if D2 is positive, branches of the hyperbola extend
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Figure 3. The phase space structure of the linear system. Shaded region with dashed level curves correspond
to nonreacting orbits having D2 < 0 (these trajectories cannot pass the dividing configuration-space section
u2 = u2,s).

horizontally along the full u2 axis. All the trajectories that belong to level sets with D2 > 0
cross the surface u2 = u2,s. The upper branch of the hyperbola corresponds to orbits with
a monotonically increasing u2 (“reactants to products”), whereas the lower one corresponds
to monotonically decreasing u2 (“products to reactants”). We thus say that such trajectories
“realize the reaction.”

The level sets on which Hlin = h = k = I1 (so D2 = 0) are the singular level sets. These
sets separate the two types of motion (with vs. without reaction). Each such singular level set
contains a normally hyperbolic Lyapunov periodic orbit γh = {I1 = h > 0, u2 = u2,s, v2 = 0}
belonging to the center plane Ec along with its stable and unstable manifolds W s,u(γh) (each
being a straight cylinder). At h = 0 this singular level set contains only the saddle-center
point P and its stable and unstable manifolds W s,u(P = γ0) (each being a straight line).
The projection of these local stable and unstable manifolds (W s,u(P )) onto the configuration
space is a straight line, aligned with the vector U2. This projected line is divided by the saddle
point us into two rays: the extension of the lower ray, the projection of W s,u

− (P ), intersects
the lower boundary of the corner, whereas the extension of the upper ray, the projection of
W s,u

+ (P ), intersects (if tan(θ + β) > 0) the upper boundary of the corner (see right panels of
Figure 2). The projection onto the configuration space of the stable and unstable manifolds
of a Lyapunov orbit γh with h > 0 appears as a collection of many oscillatory orbits that are
centered around this line. The projection of the Lyapunov periodic orbit γh lies within the
corner region, provided h is smaller than hcrit−γ :

(4.9) hcrit−γ = min

{
ω2

2
(u2,s/ tan(β + θ)− u1,s)

2,
ω2

2
(u2,s/ tan θ − u1,s)

2

}
.

For large h values, the impacts destroy these periodic orbits. Hereafter we always consider
energies that are close to the saddle point energy and are thus strictly smaller than hcrit−γ .

Summarizing, for any given h, the energy surface Hlin = h is foliated by the levels of I1
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into the level sets on which the motion occurs. For h < 0, all these level sets have negative
D2; hence, they do not cross the surface u2 = u2,s and no reaction may occur there. When
h > 0 the energy surface contains, additionally, a Lyapunov saddle periodic orbit with action
I1(γh) = h and level sets with 0 ≤ I1 < I1(γh). These level sets have positive D2, and thus
orbits belonging to them correspond to reacting trajectories; namely, these orbits belong to
the reaction tubes.

See [34] for a detailed explanation of the very similar analogous geometry of the energy
surfaces near saddle-center-center-..-center points in the higher-dimensional settings and when
higher order terms of the nonresonant normal forms are incorporated. Here we concentrate on
the two degrees of freedom case: the higher-dimensional saddle-multicenter case with impacts
may be studied similarly, leading to more complicated dynamics (involving, for example,
homoclinic orbits to invariant tori as in [35]).

4.2. The impacts. In the rest of this paper we study how the standard integrable behavior
changes when the trajectories of the linear system are reflected from the walls of the billiard
corner. Here we recall the reflection law from the lower and upper boundaries of the corner
region.

The unit vector defining the upper boundary of the corner in the (u1, u2) plane is sβ+θ =
(cos(β + θ), sin(β + θ))T , and its inward normal is nβ+θ = (sin(β + θ), − cos(β + θ))T . The
resulting reflection law is

(4.10)
v = (v1, v2)
	→ (v1 cos 2(β + θ) + v2 sin 2(β + θ), v1 sin 2(β + θ)− v2 cos 2(β + θ)).

It is defined for velocities that exit the corner region, namely those satisfying 〈v,nβ+θ〉 < 0.
Similarly, for the lower ray, sθ = (cos θ, sin θ)T and nθ = (− sin θ, cos θ)T , so the reflection law
becomes

(4.11)
v = (v1, v2)
	→ (v1 cos(2θ) + v2 sin(2θ), v1 sin(2θ)− v2 cos(2θ)).

Remark 4.1. The reflection law preserves energy, namely the integral H. However, reflec-
tions from the lower boundary (respectively, upper boundary) do not preserve the integrals I1
and D2 whenever θ �= 0, π/2 (respectively, whenever β + θ �= 0, π/2).

The change in the integrals by the reflections leads to the nontrivial behavior of the impact
system.

4.3. The geometrical parameters. We show in sections 5–6 that the dynamics of the
limiting system depend in an essential way on the location and orientation of the saddle point
with respect to the corner. The coordinates of the saddle point us = Rθqs, the angle β of the
corner, the ratio ω/λ, and the angle θ between the eigenvector U1 and the q1-axis all matter
in an essential way in determining the dynamics.

These geometrical parameters, (β, us, L, θ, ω, λ, b, ε), may be extracted numerically from
any potential surface describing triatomic reactions. First, one finds the saddle point location
qs and linearizes the vector field at this point to obtain the matrix A. The angle θ may be
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calculated via A’s entries aij:

tan θ = − 2a12√
(a11 − a22)2 + 4a212 + a11 − a22

.

The location of the saddle point in the normal coordinates is then found via us = Rθqs (see
(4.1)). The estimates of b, ε may be extracted from the diatomic potentials: these parameters
are determined by the form of the strong atomic repulsion at short distances. Estimating
the linear zone range L may be more delicate. In principle, comparing the approximation
(4.4) to the numerical potential energy surface provides the range of validity of the linear
approximation. If it appears to be too small, it is possible to extend our theory by including
higher order terms of the integrable normal form near the saddle-center (as explained in
detail, in another context, for the high-dimensional chemical reaction settings in [34]). The
application of this scheme to concrete reactions is currently under study.

A detailed classification of all possible dynamical behaviors for various (β, us, L, θ, ω, λ, b, ε)
and h in the symmetric and asymmetric cases is beyond the scope of the current paper
(moreover, it is hardly possible at all). In section 5 we analyze the nearly perpendicular
behavior (θ nearly zero or, equivalently, θ + β close to zero). In section 6 we provide a rough
classification for the dependence of the manifolds’ geometry on ω/λ.

5. The nearly perpendicular dynamics. Recall that the projections ofW s,u
− (P ), the lower

branches of the local stable and unstable manifolds of the saddle-center point P , onto the
configuration space are directed downward along the vector U2. We show next that when U2

is close to being perpendicular to the lower boundary of the corner (so θ is nearly zero), near-
integrable behavior occurs. We establish first that when θ = ε = c = 0 the limit motion in some
region containing the saddle-center point is integrable. We then prove that when θ �= 0 the
picture changes dramatically, sometimes leading to chaotic dynamics and sometimes to stable
triatomic periodic motion. The same results apply to the upper branches of the manifolds
when (β + θ) is small. These two cases may arise, for example, in light-heavy-light reactions
(β is close to π/2) with late (small θ) or early (small (β + θ)) barriers.

5.1. Integrable behavior of the perpendicular limit system. When θ = ε = c = 0 and
the energy h is smaller than hcrit−γ (see (4.9)), homoclinic loops are created by W s,u

− (γh).
Indeed, as shown below, the projection of the stable and unstable manifolds of the center-
saddle point P (respectively, of the Lyapunov orbit γh) is a straight line (a cylinder) which
is perpendicular to the lower boundary of the billiard corner. Thus, after one reflection these
manifolds coincide; see Figure 4.

Proposition 5.1. Consider the limit system (ε = c = 0) at θ = 0 at an energy level h ∈
[0, hcrit−γ). The lower branch of the unstable manifold of γh coincides after reflection with the
lower branch of its stable manifold, forming a family of homoclinic orbits to γh. The flow of
this limit system near the surface of homoclinic orbits is locally integrable: all nearby orbits
belonging to the same energy surface h either belong to invariant tori or leave the homoclinic
loop region after one round to the u2 > u2,s region.

Proof. We first prove the existence of a homoclinic orbit for h = 0, where γh=0 = P . For
the case θ = 0 the projection of the stable/unstable manifolds of P onto the configuration
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space (u1, u2) is a line perpendicular to the line u2 = 0. Indeed, the linear system

(5.1) u̇1 = v1, u̇2 = v2, v̇1 = −ω2(u1 − u1,s), v̇2 = λ2(u2 − u2,s)

has the flow

(5.2)

u1(t)− u1,s = (u01 − u1,s) cos(ωt) +
v01
ω

sin(ωt),

v1(t) = −ω(u01 − u1,s) sin(ωt) + v01 cos(ωt),

u2(t)− u2,s = (u02 − u2,s) cosh(λt) +
v02
λ

sinh(λt),

v2(t) = λ(u02 − u2,s) sinh(λt) + v02 cosh(λt).

So, the stableW s(P ) and unstableW u(P ) one-dimensional manifolds of the equilibrium P are
the straight lines {u1 = u1,s, v1 = 0, u2 = u2,s−v2/λ} and {u1 = u1,s, v1 = 0, u2 = u2,s+v2/λ},
respectively. Each straight line is divided by the point P into two rays W u,s

+ (P ) and W u,s
− (P ).

The lower rays W u,s
− (P ) intersect the wall u2 = 0 (and the other rays intersect either the

upper box boundary or the upper corner boundary). The stable and unstable rays that hit
the lower wall intersect it at two different phase space points ms = (u1,s, 0, 0, λu2,s) and
mu = (u1,s, 0, 0,−λu2,s), respectively (recall that u1,s, u2,s are both positive for sufficiently
small θ). We choose, near each of these two points, sufficiently small three-dimensional cross-
sections to trajectories in the phase space N s,u = {(u, v)|u2 = 0, ||(u, v) −ms,u|| < δ}. Each
of these cross-sections is foliated into 2-disks N s

h = N s ∩ {H = h}, Nu
h = Nu ∩ {H = h}. As

coordinates on the disk N s
h we take (u1, v1), since the third coordinate v2 on N s is expressed

from H : v2 =
√

2h− (v21 + ω2(u1 − u1,s)2) + λ2(u2,s)2 =
√

2h− 2I1 + λ2(u2,s)2. The same
coordinates (û1, v̂1) work for Nu

h , where the v̂2-coordinate has the same form as v2 but with
a “−” sign in front of the root. If a trajectory of the linear flow hits Nu

h , it is transformed
to N s

h due to the reflection law (see (4.11)): the coordinates u1, u2, v1 at the incidence point
remain the same, but v2 = u̇2 changes its sign. This means that the reflection law defines the
symplectic global map (gluing map) Sh : Nu

h → N s
h as follows: u1 = û1, v1 = v̂1. In particular,

mu is transformed to ms: we get a homoclinic orbit Γ to P .
More generally, since θ = 0, for any trajectory hitting7 the 3-plane u2 = 0, Sh simply

changes the sign of v2. In particular, Sh preserves the energy and the integrals of motion
Î1 = I1(û1, v̂1) = I1(u1, v1) = k and D2(u2, v2) = h− k = D̂2. Thus, trajectories belonging to
the level set Î1(û, v̂) = k, Hlin(û, v̂) = h that hit the lower boundary remain, after reflection,
on the same level set with I1(u, v) = Î1 = k and D2 = h− k = D̂2: the reflection just changes
its relative position along the same level set of the integrable linear system (see Figure 4).

Thus, for h ∈ (0, hcrit−γ), the stable (I1 = h, D2 = 0) and unstable (Î1 = h, D̂2 = 0)
manifolds of the Lyapunov periodic orbit γh are cylinders that coincide after one reflection.
Moreover, since β < π/2, these cylinders hit the 3-plane u2 = 0 at u1 values that are bounded
away from 0, namely bounded away from the corner.

The dynamics for trajectories near the homoclinic loops are also fairly simple. In par-
ticular, trajectories lying on the given level set H = h, I1 = k are projected onto the plane

7In other words, trajectories arriving to this section with v̂2 < 0.
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Figure 4. The return map for θ = 0. The green triangle on Ns is mapped by the smooth flow to the green
triangle on Nu. Its reflection (the Sh image) is the black triangle belonging to Ns. Here, it belongs to the same
level sets I1, D2, yet its velocity v2 changes sign.

(u2, v2) into one of the two hyperbola branches of D2 = h−k. If h−k < 0 and u2 < u2,s, then
trajectories starting on N s move towards P and then return to the cross-section Nu. In other
words, the reflection law glues this hyperbola-like branch into a closed curve (see Figure 4: the
green triangle on N s is mapped by the flow to the green triangle on Nu and then reflects to
the black triangle, namely, back to N s). Since such orbits also belong, in the (u1, v1) plane, to
the closed curve I1 = k, these orbits belong, topologically, to an invariant torus in the phase
space. Similarly, trajectories for which D2 = h−k > 0 belong to two disjoint cylinders (direct
product of the circle I1 = k in the (u1, v1) plane and the two branches of the corresponding
hyperbola in the (u2, v2) plane). Here, the gluing map defined by the reflection law glues the
two end circles (those intersecting the section u2 = 0) of these cylinders. Trajectories move
along one of the cylinders towards the section u2 = 0 and after the first reflection escape along
the second cylinder to the region u2 > u2,s. Their global dynamics, after they pass the saddle
point, depend on (β, us, ω, λ) as discussed in section 6.

We conclude that for θ = ε = c = 0 the motion near Γ in the region u2 < u2,s is indeed
simple. For negative energy h, the motion near8 the homoclinic loop occurs within the solid
torus 0 ≤ I1 ≤ I∗1 , D2 = h − I1 ≤ 0. The motion is quasi-periodic if the rotation number on
the related invariant 2-torus is irrational, and it is periodic if this number is rational.9 Inside

8Namely, for small enough I∗1 ,−h.
9The same behavior extends to all energies in −λ2

2
(u2,s)

2 < h ≤ 0, but here we are concerned with the near
saddle-center behavior.
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this solid torus there is also a unique elliptic periodic orbit I1 = 0, D2 = h. For h = 0, this
periodic orbit is replaced by the homoclinic orbit Γ. When h > 0, the orbits with negative D2

are again periodic or quasi-periodic. On the other hand, the orbits with positive D2 cross into
the u2 > u2,s region. Their behavior may be rather complicated since they may hit the upper
boundary of the billiard which is slanted. For sufficiently small h, such trajectories closely
follow W u,s

+ (P ), the upper branches of the stable and unstable manifolds of P . Hence, the
global structure of W u,s

+ (P ) determines their behavior.
We say thatW u,s

+ (P ) exhibit simple dynamics if these manifolds intersect the upper bound-
ary at a monotonically increasing sequence of u until exiting the corner region; see Figure 6
and the first column of Figure 7. Otherwise, we say that their behavior is complicated; see
the second and third columns of Figure 7. We see that in the complicated cases the mani-
folds return to the corner region, possibly hitting both boundaries and possibly hitting the
boundaries at some u1 < u1s. We describe next the behavior of W u,s

− (P ) and of trajectories
in their neighborhood near a slightly slanted lower boundary, and we discuss the behavior of
the trajectories at u2 > u2,s in section 6.

We should note that the behavior of trajectories with a larger oscillatory component
(e.g., trajectories starting near u2,s with I1 > hcrit−γ) is expected to be complicated as well:
almost always such trajectories eventually hit the upper ray, and we expect that this reflection
would, almost always, destroy the integrability. Notice that such reflections, induced by the
geometry, supply an alternative route for the creation of reactions which is unrelated to the
local structure near P . We will return to this point in the discussion.

5.2. Nonintegrable behavior. We establish next that for small enough nonzero θ the
motion in the limit system is chaotic for a range of energies. We then prove that similar
behavior occurs for sufficiently small ε, c. More precisely, we prove below the existence of
transverse homoclinic orbits to a saddle periodic orbit (Poincaré homoclinic orbits). To this
aim we use some of the ideas developed in [30, 31], where the center-saddle case was analyzed
(the first discussion of the problem was in [29]). The chaotic nature of the motion follows
from this result: it is well known that near such homoclinic orbits there is an invariant subset
which is described on some cross-section by a transitive Markov chain, so in particular, this
set contains a countable set of saddle periodic orbits, almost periodic orbits, etc. [36, 37].

Theorem 5.2 (complicated dynamics I). If |θ| is nonzero and sufficiently small, then, for
ε = c = 0, the system (3.3) admits the following properties:

1. The lower branches of the stable and unstable separatrices of P are split.
2. There is a critical energy value h0, depending on the geometrical parameters (θ, us, λ, ω),

satisfying 0 < h0 < hcrit−γ , such that at energies h ∈ (h0, hcrit−γ) the Lyapunov peri-
odic orbit γh has two transverse homoclinic orbits.

3. At the energy level H = h0(θ, us, λ, ω) the flow has a tangent homoclinic orbit to the
related Lyapunov periodic orbit.

4. For 0 < h < h0 the lower branches of the separatrices do not admit simple10 homoclinic
orbits to γh.

Proof. 1. We construct, as in the proof of Proposition 5.1, the global map that is
defined by the reflection law from the slightly slanted bottom wall. Let μ = tan θ and

10Orbits that reflect only once from the corner boundaries.
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Figure 5. The return map for small θ. As in Figure 4, the image of the green triangle of Ns under the flow
and the gluing map is the black triangle. Here, the velocities (v1, v2) and the corresponding level sets I1, D2 are
changed due to the reflection.

s = (1/
√

1 + μ2 = cos θ, μ/
√

1 + μ2 = sin θ)T be, as above, a unit vector defining the lower
boundary of the corner. Then, for sufficiently small θ, the 3-plane given by u2 = μu1 pro-
vides a cross-section to the linear flow. Recall that the projections of the lower branches
of the local stable and unstable manifolds of P , W u,s

− (P ), are straight lines. Their ex-
tensions intersect the bottom wall11 at the points ms = (u1,s, μu1,s, 0, λ(u2,s − μu1,s)) and
mu = (u1,s, μu1,s, 0,−λ(u2,s − μu1,s)). As before, we consider some small cross-sections N s,
Nu near these points; see Figure 5. They are again foliated into 2-disks N s

h, N
u
h . The coor-

dinates on these cross-sections are (u1, v1), where here u2 = μu1, and v2 is expressed from
H : v2 = ±√

2h− 2I1 + λ2(μu1 − u2,s)2. The sign “+” corresponds to N s
h and the sign “−”

to Nu
h . The restriction of the 2-form dv1∧du1+dv2∧du2 to N s

h (and similarly for Nu
h ) is now

given as dv1 ∧ du1 + μdv2 ∧ du1, where v2 is taken from H. Applying the reflection law from
the slanted wall boundary (4.11) to values (û1, v̂1) ∈ Nu

h , we obtain the gluing symplectic map
Sh : Nu

h → N s
h (with respect to the nontrivial symplectic form; see the appendix):

(5.3) Sh : (û1, v̂1) 	→
(
û1,

(1− μ2)v̂1 + 2μv̂2
1 + μ2

)
= (û1, v̂1 cos 2θ + v̂2 sin 2θ).

This gluing map is defined for trajectories pointing down so that −μv̂1 + v̂2 < 0. Namely, for
sufficiently small |μ| we require that v̂2 < 0, so the sign in front of the radical for v̂2 should
be negative.

11Recall that since θ is small, u1,s and u2,s are positive.
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We now prove the first assertion of the theorem. We show that the reflection of the
unstable branch (W u−(P )) from the lower boundary (the S0-image of the point mu) does not
coincide with the stable branch (W s−(P )) intersection with this boundary (the point ms). For
S0 we should set û1 = u1,s, v̂1 = 0, v̂2 = −λ(u2,s − μu1,s). Then we get for μ �= 0

u1 = u1,s, v1 =
−2μλ(u2,s − μu1,s)

1 + μ2
= −2μλu2,s(1 +O(μ)) �= 0,

and therefore the stable and unstable manifolds of P are split: They are of order μ apart.
2–3. Now, let us fix h > 0. We first show that the intersection of W s−(γh) (the lower

branch of the stable manifold of the Lyapunov periodic orbit γh) with N s
h is an ellipse. We

then show that the Sh-image of the intersection of the unstable manifold branch W u−(γh) with
Nu

h is another ellipse. We then prove that these two ellipses intersect as the energy is increased
beyond a critical energy. Recall that for 0 < h < hcrit−γ the intersections of W s,u

− (γh) with
N s,u are bounded away from the corner12 and occur, for sufficiently small |μ|, with a vertical
velocity which is strictly bounded away from 0. We consider here only such h values.

First, note that the two-dimensional cylinders W s,u
− (γh) are given by solutions of the

two equations I1(u1, v1) = v21/2 + ω2(u1 − u1,s)
2/2 = h, v2 = ±λ(u2,s − u2), where the

+/− signs correspond to the stable/unstable manifolds. The intersection of W s−(γh) with
N s (with coordinates (u1, v1, v2)) is the closed curve I1(u1, v1) = h, v2 = λ(u2,s − μu1), and
its projection onto the (u1, v1) plane is an ellipse. Similarly, W u(γh) intersects Nu (with
coordinates (û1, v̂1, v̂2)) along the closed curve I1(û1, v̂1) = h, v̂2 = −λ(u2,s − μû1), and its
projection onto the (û1, v̂1) plane is an ellipse as well.

To find the intersection of the Sh-image of the trace of W u−(γh) with the trace of W s−(γh),
it is convenient to use the action-angle (here simply polar) coordinates (I1, ϕ) on N s

h and

(Î1, ψ) on Nu
h : v1 =

√
2I1 cosϕ, u1 = u1,s +

√
2I1/ω2 sinϕ, v̂1 =

√
2Î1 cosψ, û1 = u1,s +√

2Î1/ω2 sinψ. Using (5.3), the equation Sh(û1, v̂1) = (u1, v1) becomes

u1,s +
√

2h/ω2 sinϕ = u1,s +
√

2h/ω2 sinψ,
√
2h cosϕ =

(1− μ2)
√
2h cosψ − 2μλ[u2,s − μ(u1,s +

√
2h/ω2 sinψ)]

1 + μ2
.

The first equation implies that either ϕ = ψ or ϕ = π − ψ. In the first case we obtain the
following equation for ϕ:

μ
√
2h

(
cosϕ− λ

ω
sinϕ

)
= −λ(u2,s − μu1,s),

which has no solutions for sufficiently small |μ|. In the second case the equation for ϕ becomes

(5.4)
√
2h

(
cosϕ− μ2

λ

ω
sinϕ

)
= −μλ(u2,s − μu1,s).

12More precisely, these are bounded away from the 2-plane (u1 = 0, u2 = μu1 = 0, v1, v2) which corresponds
to the corner in the phase space.
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Defining

σ =
ω2λ2(u2,s − μu1,s)

2

2(ω2 + μ4λ2)
=

(λu2,s)
2

2
+O(μ),

we see that for a fixed μ (5.4) has no solutions for 0 < h < σμ2, has a unique solution at σμ2,
and has two solutions for h ∈ (σμ2, hcrit−γ). Indeed, notice that the Sh-image of the trace of
W u−(γh) is given in the (u1, v1) coordinates by

(5.5)
u1 = û1,
v1 = v̂1 cos 2θ + v̂2 sin 2θ = −λu2,s sin 2θ + v̂1 cos 2θ + μλû1 sin 2θ;

that is, it is a linear transformation of the ellipse, so it is also an ellipse. It follows from
the geometry of intersecting ellipses that for h > σμ2 these two solutions correspond to two
transversal homoclinic orbits to the Lyapunov periodic orbit γh, and that at the intermediate
case

(5.6) h0 = h0(θ, us, λ, ω) = σμ2 =
(λu2,s tan θ)

2

2
+O((tan θ)3)

the unique solution corresponds to a tangent homoclinic orbit of γh (it corresponds to the
outer tangency of the ellipses).

4. Since for h < h0 the two ellipses do not intersect, and since in the corner interior the
flow is integrable, the lower branches do not admit simple homoclinic orbits at such energies.
In general, it is still possible that consequent reflections of the extensions of W s,u

− (γh) from
the corner boundaries will produce homoclinic orbits.

Next, we assert that similar behavior appears when c and ε are sufficiently small and the
billiard-like potential indeed limits to the impact flow. More precisely, in [28] we prove that
away from a small boundary layer near the billiard boundary, regular reflections of impact flows
are Cr close to the corresponding reflection-like segments of the smooth Hamiltonians. The
smooth Hamiltonians are assumed to be in the standard mechanical form with potentials that
are a sum of a smooth potential and a family of billiard-like potentials (satisfying assumptions
I–IV of [27]). Additionally, to obtain the correct impact limit, it is assumed that the value of
the full potential along the billiard boundary is strictly positive. Then, for positive ε the Hill
region of the smooth flow lies within the billiard region and, near regular impacts, limits to it
as ε→ 0+. Under these conditions it is proved in [28] that for sufficiently small ε the smooth
reflection from the Hill region boundary limits to the billiard reflection law. Here, to comply
with this latter condition, we assume hereafter that the potential along the corner rays in AL

(5.7) Rβ,L = {(u1, u2)| (u2 = u1 tan θ) ∪ (u2 = u1 tan(β + θ)) ∩ (|u1,2| ≤ L)}
is strictly positive. Namely, we assume that there exist positive constants ε0, B1 such that for
all 0 < ε < ε0

(5.8)

(
bVb(R−θu, ε) +

ω2

2
(u1 − u1,s)

2 − λ2

2
(u2 − u2,s)

2

)
(u1,u2)∈Rβ,L

> B1.

For the power law repulsion law (3.5), the first term is infinite, so the inequality is satisfied
for any b > 0. When the diatomic repulsion is modeled by a bounded potential (e.g., (3.4)),
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b should be taken to be sufficiently large so that (5.8) holds. Such an assumption is natural
in the chemical-reaction context: the nuclear potential energy associated with small diatomic
distances is much larger than the barrier energy. Thus, such an assumption is satisfied by
adequate models of the PES of triatomic reactions. Then, by [28], we can establish the
following.

Theorem 5.3 (complicated dynamics I: smooth case). Assume that Vb(q; ε) is a billiard-like
potential family limiting to the billiard in the β-wedge, Vfarfield (q) is bounded in the Cr topology
in the corner region, and (5.8) is satisfied. Then, for sufficiently small ε, c, and θmax, for all
0 < |θ| < θmax, the system (3.3) admits the same properties as listed in Theorem 5.2. There,
the critical energy levels h0, hcrit−γ need to be replaced by a family of (ε, c) dependent critical
energies hε,c and by hθmax

crit−γ . Moreover, the critical values at which the tangent homoclinic
bifurcation occurs depend smoothly on (ε, c) and approach the limiting bifurcation energy as
(ε, c) are decreased to zero: hε,c → h0.

Proof. Notice that in the proof of Theorem 5.2 for the limit system we may replace the
cross-sections N s with any other locally transverse cross-section to W u−(P ) in the interior
of the domain. Consider, for example, such a local cross-section at Σū2 = {(u, v) : u2 =
ū2 < (u2,s + u1,s tan θ)/2}. The first intersection of the extensions of W u,s

− (γh) with Σū2 are
always transverse for the limit system. Σū2 also provides, under specified conditions, a locally
transverse cross-section to the image of the first reflection of the extension of W u−(γh) from
the lower boundary. Indeed, for any fixed ū2 one can choose sufficiently small |θ| and fix an
energy level hū2(θ) so that for all h ∈ [0, hū2(θ)] this section is transverse to these orbits.
Moreover, hū2(θ) → hcrit−γ monotonically as |θ| → 0. Thus, the proof of Theorem 5.2 applies,
in the limit system, to the traces of W u,s

− (γh) on Σū2 for all h ∈ [0, hū2(θ)]. Namely, for
small |θ|, the trace which corresponds to the first intersection of the extension of W s−(γh)
with Σū2 and the image of the corresponding trace of W u−(γh) after its first reflection from
the lower boundary intersect transversely at h > h0, do not intersect at h < h0, and are
tangent at h = h0. Notice that for sufficiently small |θ|, hū2(θ) is of order one, whereas the
θ-dependent homoclinic bifurcation value h0 is small (see (5.6)); namely, h0 ∈ (0, hū2(θ)).
Also, recall that in the proof of Theorem 5.2 |θ| is assumed to be sufficiently small so that
the reflection of W u−(γh) from the lower boundary is a regular reflection: it occurs with
strictly negative v2. Let θmax be sufficiently small so that (a) Theorem 5.2 applies, (b) at
θmax the homoclinic bifurcation occurs at an energy at which Σū2 is transverse as explained
above, and (c) this energy is smaller than the nuclear diatomic repulsion energy. Namely, at
±θmax, h

0 < hθmax
crit−γ := min(hū2(±θmax), B1). This last condition implies that for sufficiently

small (c, ε), the Hill region of (3.3) near the impact point (u1,s, u1,s tan θ) limits to the lower
ray boundary of the corner for all h ∈ [0, hθmax

crit−γ ]. Thus, by [28], for all |θ| < θmax and

h ∈ [0, hθmax
crit−γ ], for sufficiently small (c, ε), the stable trace and the image of the unstable

trace under the smooth flow are Cr close to the corresponding traces of the impact flow.
Hence, the result is established.

Figure 6 demonstrates that for small |θ| and small ε (at c = 0) the lower branch of the
unstable manifold of P indeed exhibits complicated behavior.

5.3. Elliptic islands. Theorem 5.2 implies that for any small fixed μ = tan θ, the stable
and the unstable manifolds of the Lyapunov periodic orbit γh with h0 = σμ2 ≈ (λu2,s tan θ)

2/2
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Figure 6. Projections of the unstable manifold of P onto the configuration space at small θ values. (a)
θ = 0.1. (b) θ = 0.01. (c) θ = −0.1. (d) Zoom-in of (b). Thick blue (red) line: W u

+(P ) (W u
−(P )). Thin

colored lines are the level sets of the geometric potential, with the exponential repulsion form (see (3.4)). Here,
b = 10, ε = 0.01, us = (2.5, 1.5), β = π/3, ω2 = 1, λ2 = 3.

undergo a nondegenerate tangent homoclinic bifurcation. Such a bifurcation leads, in partic-
ular, to the creation of elliptic periodic orbits near the tangent homoclinic orbit.

Theorem 5.4 (complicated dynamics II). At the semi-interval h > h0, for sufficiently small
θ, the limit system (3.3)ε=c=0 has a countable set of h-intervals Δn accumulating at h = h0+

such that for h ∈ Δn the limit flow has generic elliptic periodic orbits with their period tending
to infinity as n→ ∞.

Proof. We show that at ε = 0 one may construct a smooth symplectic return map to a
section close to the Lyapunov periodic orbit γh0 . Then, the classical results regarding the
emergence of elliptic islands near homoclinic tangencies are applicable.

In order to formulate the classical results precisely, let us recall some details [38, 39, 40,
41, 42]. Suppose a family of smooth symplectic diffeomorphisms fc̄ acts on a symplectic two-
dimensional manifold (M,ω). Let p be a saddle fixed point for any parameter value c̄ near
c̄ = 0 with eigenvalues 0 < Λ(c̄) < 1,Λ−1(c̄). Assume that fc̄ undergoes a generic homoclinic
bifurcation; at c̄ = 0 the stable and unstable manifolds of p have a quadratic intersection
at some point q (different from p), creating a tangent homoclinic orbit Γ. Furthermore, the
unfolding fc̄ is generic; namely, in a small neighborhood of Γ there are no simple homoclinic
orbits to p at c̄ < 0 and there are two transversal homoclinic orbits at c̄ > 0 (or vice versa).
Near p one can choose symplectic Darboux coordinates (x, y) in which the 2-form ω casts as
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ω = dx ∧ dy. The local representation of the maps for any sufficiently small c̄ is

x1 = [Λ + f1(x, y)]x, y1 = [Λ−1 + g1(x, y)]y,

with f1, g1 being of the first order at (0, 0). Recall that points of Γ tend to p as n → ±∞ (n
is the iteration number of f). Choose two points q+, q− of Γ such that q+ = (x+, 0) belongs
to the segment x > 0, y = 0 (a piece of W s) and q− = (0, y−) belongs to the segment of
W u, which we assume to be y > 0. Then one may take two small neighborhoods Vs of q+
and Vu of q− that both belong to the coordinate chart. Then it is clear that points from the
semi-neighborhood y > 0 of Vs can reach under iterations of f a semi-neighborhood x > 0 of
Vu for all iterations n ≥ n0 ≥ 1 (n0 depends on f , on the locations of q+, q−, and on the size
of Vs, Vu). The quadratic tangency of W s and W u along Γ means in these coordinates that
there is some positive integer N such that the global map fN : Vu → Vs can be written in Vu
in the form x̄−x+ = āx+ b̄(y−y−)+ · · · , ȳ = −b̄−1x+ 1

2Ax
2+Bx(y−y−)+ 1

2C(y−y−)2+ · · ·
with nonzero C. It is known that if b̄ > 0, C < 0, then, at c̄ = 0, there are no orbits that stay
forever in Vs ∪ Vu under the action of the first return maps fn ◦ fN (except of Γ). Suppose,
to be definite, that two homoclinic orbits to p appear for small c̄ > 0.

Theorem 5.5 (see [38, 39, 40, 41, 42]). In the semi-interval c̄ > 0 there is a countable set
of c̄-intervals Δn accumulating at c̄ = 0+ such that for c̄ ∈ Δn the map fc̄ has generic elliptic
periodic orbits and their periods tend to infinity as n→ ∞.

Recall that the genericity of an elliptic fixed point or a periodic orbit means that some of
its Birkhoff coefficients in the related normal form do not vanish.

For our case, the local map fc̄ is obtained as follows. Let (I1, ϕ) denote the symplectic
polar coordinates on the (u1, v1) plane (see above). The semi-interval ϕ = 0, 0 < I1 ≤ I01 is
a transverse cross-section. We fix h = h0 = σμ2 and choose, for sufficiently small δ, ζ, the
3-disk Q : ϕ = 0, |I1 − I(θ)| < δ, |u2 − u2,s| < ζ, |v2| < ζ, where I(θ) = h0 is the I1 action of
the periodic orbit γh0 . This Q is a cross-section to orbits that are close to the periodic orbit
γh0 . The generic family of symplectic maps in the 2-disks Qh is defined by fixing the levels
H = h in Q and by defining the bifurcation parameter c = h − h0. The coordinates on Qh

are (u2, v2), and the map in these coordinates is linear in u02 − u2,s, v
0
2 : it is obtained from

(5.2) if we set t = 2π
ω in u2(t), v2(t). The quarter D2 ≤ 0, u2 ≤ u2,s (recall that u2,s > 0 for

the case under consideration) corresponds to those orbits of the flow which go from N s
h to Nu

h

for positive t. The tangent homoclinic orbit Γ cuts Qh0 transversely, when t increases, along
an infinite sequence of points that lie on the semi-interval D2 = 0, u2 < u2,s, v2 > 0 and
accumulate to (u2,s, 0)—the trace of γh0 in Qh0 . We fix some point q+ of this sequence. This
orbit also cuts transversely the cross-section N s

h0 at some point qs+ on the trace of W s(γh0).
Since the time of passage between these two points of transverse intersections is finite, the
flow defines a local symplectic map T+ : N s

h0 → Qh0 in some small neighborhoods of qs+ and
q+, respectively.

Similarly, the map T− is constructed. T− acts from some neighborhood of q− on the
unstable semi-interval D2 = 0, u2 < u2,s, v2 < 0 to a neighborhood of the trace of Γ on Nu

h0 .
Thus, we have an analytic symplectic map (global map) Th = T+ ◦Sh ◦T− acting from a small
neighborhood of q− to a small neighborhood of q+. The global map Th0 transforms a small
segment of the unstable manifold of the saddle fixed point (u2,s, 0) near q− ∈ Qh0 to its image
in the neighborhood of q+. Since Γ is a nondegenerate tangent homoclinic orbit, this image



A SADDLE IN A CORNER 437

is quadratically tangent to the stable manifold of the saddle fixed point. Moreover, as the
mutual position of the two ellipses shows, this segment belongs to the quarter D2 > 0, v2 > 0,
and u2 < u2,s for it. It means that we realize the case b̄ > 0, C < 0 of the above mentioned
theorem, and we get an infinite sequence of intervals in h > h0 corresponding to the existence
of elliptic periodic orbits of the system.

Theorem 5.6 (complicated dynamics II: smooth). Under the same conditions of Theorem
5.3, for sufficiently small |θ| < θmax, ε, and c, at the semi-interval h > hε,c(θ), the sys-
tem (3.3) has a countable set of h-intervals Δn accumulating at h = hε,c(θ)+ such that for
h ∈ Δn the limit flow has generic elliptic periodic orbits with their period tending to infinity
as n→ ∞.

Proof. For sufficiently small |θ|, near h0, the gluing map Sh corresponds to a regular
reflection. Thus, under the same conditions as in Theorem 5.3, by [28], for sufficiently small
(ε, c), the smooth version of the return map to Qh, T

ε,c
h is Cr close to Th for all |θ| < θmax and

h ∈ [0, hθmax
crit−γ ]. Hence, by Theorem 5.3, for h > hε,c(θ), where hε,c(θ) denotes the energy of

the homoclinic tangent bifurcation of the smooth system, Theorem 5.5 may be applied to the
return map T ε,c

h . Moreover, this return map depends smoothly on (ε, c); hence the theorem
follows. Notice that the classical results are clearly applicable for finite ε values for which
the homoclinic tangency persists. Here, we see that one may change the order of the limits;
namely, even for arbitrarily small ε the stability islands appear.

6. Criteria for simple dynamics. The behavior near the lower branches of the stable and
unstable manifolds of P was shown to be integrable when θ = ε = c = 0 and nonintegrable for
small nonzero θ. Indeed, we proved that the stable and unstable manifolds of γh intersect for

a range of energy values, h ∈ (h0 ≈ (λu2,s tan θ)2

2 , hcrit−γ). Similar results apply for the upper
branches when (β + θ) is small.

Proving analogous results regarding integrability or nonintegrability of the dynamics near
P for general (β, us, L, θ, ω, λ) is a difficult problem. Rather than seeking the general solution,
we identify cases in which the nature of the dynamics can be roughly predicted. More precisely,
we classify the behavior of the upper/lower branches of the manifolds as follows.

SD (simple dynamics). For small h, the upper (respectively, lower) branches of the unstable
and stable manifolds are reflected to the regions of “no-return” monotonically (with a mono-
tone sequence of reflecting points exiting the corner region), and thus near these branches
there are no recurrent trajectories in the neighborhood of P ; see the first columns of Figures
7 and 9.

PCBD (possibly complicated bounded dynamics). For small h values, the upper (respectively,
lower) branches of the manifolds are trapped in the upper (respectively, lower) corner region:
these manifolds cannot exit the corner region from the product (respectively, reactant) channel;
see the third columns of Figures 7 and 9.

CD (chaotic dynamics). The branches of the manifolds intersect each other for a range of
energy levels that are close to the barrier energy.

The first and second rough criteria check whether the manifolds reflect in a simple, mono-
tone way out of the corner region or whether they are trapped. Clearly SD imply that no
chaotic behavior is possible for the corresponding branches. Folding back of the manifolds is
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Figure 7. SD and PCBD for the limit system (ε = c = 0). The projections of W u
+(P ) (blue) and W u

−(P )
(red) to the configuration space (top), (u1, v1) space (middle), and (u2, v2) space (bottom) are presented for
three different λ values: the left, middle, and right columns have λ2 = 2, 1.4, 0.5, respectively. In all figures
ω2 = 1, us = (2.5, 0.3), β = π/3, θ = −π/6, and L = 6. The colored lines show the level curves of the quadratic
potential Va(u) (top), the center constant I1(u1, v1) (middle), and the hyperbolic constant D2(u2, v2) (bottom).
The magenta rays on the top panel indicate the impact surfaces, and the magenta squares indicate the location
of the stagnation point (us, vs = 0).

a necessary criterion for the creation of homoclinic tangles,13 yet it is not sufficient, as the
special case ε = θ = 0 shows. Hence we call this behavior possibly complicated.

Notice that when both the upper and the lower branches exhibit SD the linear structure
near the saddle point governs the motion. On the other hand, when one set has CD and the
other SD we have the “open chaos” scenario in the reaction region. In particular, then the
reactant/product region is strongly asymmetric. When both branches intersect we have the
classical double loop homoclinic tangles. If additionally the PCBD conditions are satisfied,
the chaotic motion associated with this homoclinic tangle is limited to the reaction region
(and then the implications regarding scattering have yet to be explored).

Next, we show that there are some regions in the parameter space where we are able
to determine that SD occurs and others where PCBD occurs. Figure 8 summarizes some of

13Trapping of the manifolds implies the folding back of them, but the opposite implication is not true in
general: The lobes of homoclinic tangles may extend to infinity.
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Figure 8. The dependence of the critical values of ω/λ on θ and L. The critical values δ±c (see Theorems 6.2
and 6.3) for the upper (blue) and lower (red) branches of the manifolds are plotted for increasing L values. When
ω/λ > δ± the upper/lower branches of P are trapped in the corner region. Here, β = π/3, L = 6, 26, 46, . . . , 206,
us = (2.5, 0.3). The convergence at large L values is apparent. Simple behavior is expected to appear at small
ω/λ, below both critical curves. The values of ω/λ for the three λ values of Figure 7 are indicated by squares
(lowest, middle, upper squares correspond to left, middle, right columns of Figure 7).

these results graphically, whereas Figures 7 and 9 demonstrate the SD and PCBD for specific
parameter values.

First, we notice that independent of the saddle eigenvalues (i.e., of ω, λ), when the upper
and/or lower branches ofW u,s

± (P ) do not reflect from the upper (respectively, lower) boundary
ray we have SD.

Theorem 6.1 (SD I). For sufficiently small ε, c, if β + θ ≥ π/2 or if u1,s tan(β + θ) > L,
there exists h∗∗(u1,s, β + θ, L; ε, c) > 0 such that for h ∈ [0, h∗∗), W u,s

+ (γh) the upper branches
of the stable and unstable manifolds of the Lyapunov orbit γh exit the corner region without
intersecting each other. If u1,s tan(θ) < −L, for h < h∗∗(u1,s,−θ, L; ε, c) the same statement
applies to the lower branches, W u,s

− (γh).
Proof. Consider the ε = c = 0 case. Here the projection onto the configuration space of the

extensions of W u,s
+ (P ) is a straight vertical segment that intersects the upper boundary of AL

at (u1, u2) = (u1,s, L). The corresponding phase space intersection points of W u,s
+ (P ) with the

three-dimensional cross-section Q = {(u, v)|u2 = L} are (u1, v1, u2, v
u,s
2 ) = (u1,s, 0, L,±λ|L −

u2,s|), so these points are well separated in phase space. Similarly, if h is not too large (see
below), the traces of the stable and unstable manifolds of γh on Q are two planar ellipses,
parallel to the (u1, v1) plane and separated by the finite distance 2λ|L − u2,s| along the v2
axis, so they do not intersect (this is simply the linear behavior). The restriction on h
appears from the requirement that the manifolds should not hit the upper ray of the corner
for any u2 � L. An explicit bound on h may thus be easily found from setting I1 = h and
v1 = 0 in (4.7). If β + θ ≥ π/2, then h < h∗∗obt = ω2

2 (u1,s)
2 (so that γh does not hit the

upper ray). If u1,s tan(β + θ) > L, we require u1(t) < L/ tan(β + θ) for all t, and hence

h < h∗∗acute = ω2

2 ( L
tan(β+θ) − u1,s)

2. The same arguments apply to the lower branches when

θ < 0 (replacing L by −L and (β+θ) by θ). These results are concerned with robust properties
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of trajectories within the corner region (with no impacts); hence, by the smooth dependence
of trajectories within the corner region on parameters, they are clearly true for sufficiently
small ε, c.

The second geometrical observation is that the projection of W u,s
+ (γh) onto the configura-

tion space lies within the Hill region of the energy level h. In particular, for P = γ0, the Hill
region boundaries are the zero potential level lines Va(u) = 0 together with the corresponding
boundaries of the corner region AL (see below). We then notice that for sufficiently large ω

λ
these zero potential level lines always intersect the corners’ boundaries at u1 < L, namely,
that W u,s

+ (γh) must fold back inside AL. We thus find the critical value of ω
λ above which the

folding occurs.
Theorem 6.2 (PCBD I). For any given geometrical parameters (us, β + θ, L) with L >

tan(β + θ)u1,s and β + θ < π/2, there exists δ+c > tan(θ + β) as specified below such that
for all ω

λ > δ+c , for sufficiently small h and (ε, c), the upper branches of the stable and un-
stable manifolds of the Lyapunov periodic orbit γh (W u,s

+ (γh)) do not exit the corner region
through the product channel (i.e., with u2 > u2,s).

Proof. Consider the region bounded by the corner and the upper segments of the zero
level lines of the quadratic potential:

(6.1) C+ = AL ∩
{
(u1, u2)|(u2 − us,2) ≥ ω

λ
|u1 − us,1|

}
.

C+ is the Hill region for the energy level h = 0 for orbits of the limit system belonging to
W u,s

+ (γ0 = P ); since the kinetic energy must be nonnegative, orbits belonging to the energy
surface h = 0 must satisfy for all times V (u(t)) ≤ 0. Hence, at ε = c = 0, W u,s

+ (P ) is indeed
trapped in C+. Similarly, orbits belonging to W u,s

+ (γh) for h > 0 are restricted to residing in
the configuration space region C+

h at which V (u(t)) ≤ h and initially (eventually for the stable
manifold) also satisfy u2 > u2,s.

The shape of the region C+ depends on the geometrical parameters. When tan(θ+β) < ω
λ ,

the upper ray of the corner u2 = u1 tan(β+ θ) intersects the upper zero potential energy level
line {(u1, u2)|u2 − u2,s =

ω
λ (u1 − u1,s), u2 > u2,s} at the vertex point (u+1 , u

+
2 ) with

u+1 =
u2,s − ω

λu1,s

tan(β + θ)− ω
λ

= u1,s +
tan(β + θ)u1,s − u2,s

ω
λ − tan(β + θ)

, u+2 = u+1 tan(β + θ).

Let δ+c = ω
λ be the eigenvalue ratio for which L = max(u+1 , u

+
2 ):

(6.2) δ+c (L, us, tan(β + θ)) =

{
tan(β + θ) +

tan(β+θ)u1,s−u2,s

L−u1,s
for β + θ < π/4,

tan(β + θ) +
tan(β+θ)u1,s−u2,s

L/ tan(β+θ)−u1,s
for β + θ > π/4.

Notice that for ω
λ > δ+c the vertex is inside the corner region, (max(u+1 , u

+
2 ) < L). Figure 8

presents the typical dependence of δ+c on θ and L (blue curves).
Similarly, for sufficiently small h > 0, when ω

λ > δ+c , the right boundary of the region
C+
h (the upper part of the h Hill region) intersects the upper corner boundary at some finite

value (u∗1(h), u∗2(h) = u∗1(h) tan(β + θ)). Then, the shape of the upper part of the Hill region
is triangular like, and orbits in its upper part have u1(t) < u∗1(h) < L. Thus, for small h,
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trajectories belonging to W u,s
+ (γh) cannot escape the corner region with u2 > u2,s; namely,

generically, the behavior is not simple. Finally, for sufficiently small (ε, c), the restricted
Hill regions are deformed into Hill regions with the same basic property: when ω

λ > δ+c ,
for sufficiently small h � 0, for u2 > u2,s, the u1 coordinate is limited by some u1(t) <
u∗1(h, ε, c) < L.

Note that the assumption that c is small is equivalent to requiring that the far-field terms
remain small in AL; otherwise, these far-field terms may indeed change the shape of the Hill
regions in AL.

A similar statement for the lower branches is the following.
Theorem 6.3 (PCBD II). For any given geometrical parameters (us, θ < 0, L), there exists

δ−c > − tan θ as specified below such that for all ω
λ > δ−c , for sufficiently small h and (ε, c),

the lower branches of the stable and unstable manifolds of the Lyapunov periodic orbit γh
(W u,s

− (γh)) do not exit the corner region through the reactant channel (i.e., with u2 < u2,s).
Proof. As in Theorem 6.2, we find the lower part of the Hill region for h = ε = c = 0:

(6.3) C− = A ∩
{
(u1, u2)|(u2 − us,2) ≤ ω

λ
|u1 − us,1|

}
.

If tan θ > −ω
λ , the lower ray of the corner u2 = u1 tan θ intersects the lower-right zero potential

energy level line {(u1, u2)|u2 − u2,s = −ω
λ (u1 − u1,s), u2 < u2,s} at the point (u−1 , u

−
2 ) with

u−1 =
u2,s +

ω
λu1,s

tan θ + ω
λ

= u1,s +
u2,s − u1,s tan θ

tan θ + ω
λ

, u−2 = u−1 tan θ.

Setting, for θ < 0,

(6.4) δ−c (L, us, tan θ) =

{
− tan θ +

u2,s−tan θu1,s

L−u1,s
for −θ < π/4,

− tan θ +
u2,s−tan θu1,s

−L/ tan θ−u1,s
for −θ > π/4,

we obtain that for all ω
λ > δ−(L, us, tan θ) the lower branches are trapped in the corner region;

see Figure 8 for the typical dependence of δ−c on θ and L (red curves). Repeating the same
arguments as for the upper branches (Theorem 6.2), the theorem is established.

Notice that for θ > 0, for all ω
λ , u

−
1 <

u2,s

tan θ , namely the Hill region is always bounded.
Moreover, the manifolds in this case are reflected towards the corner region. Recall that the
first hit of the lower boundary of trajectories belonging to W u−(P ) is with v−1 = 0, v−2 < 0;
hence, by (4.11), v+1 < 0. We conclude that these trajectories reflect towards the corner
region, and hence the flow is not simple for ε = c = h = 0. Using continuity and the regular
ε limit at regular reflection, we see that a similar statement applies to the small h, ε, c case.
Hence, we conclude the following.

Corollary 6.4 (PCBD III). When θ > 0, the lower branches of the manifolds fold back and
the flow is possibly complicated.



442 L. LERMAN AND V. ROM-KEDAR

Notice that when ε > 0, the appearance of closed level sets of the potential function (as
established in the above theorems and corollary) implies that these regions also contain a
minimum point of the smooth potential. Thus, we see that for large ω/λ, even though the
limit system has a single saddle fixed point in the corner, the smooth system has several fixed
points and some of them are stable.

Finally, Figures 7, 9, and 10 suggest that for θ < 0 and sufficiently large λ SD are realized.
Conjecture 6.5 (SD II). For any fixed geometrical parameter (us, θ, β, L) satisfying −β <

θ < 0, for a fixed ω and sufficiently large λ (small δ = ω
λ ), for small h and sufficiently small

(ε, c), both the upper and lower branches of the stable and unstable manifolds of the Lyapunov
orbit γh (W u,s

± (γh)) have simple behavior: They exit the corner region through the product
(respectively, reactant) channel without intersecting each other in the corner domain.

Supporting evidence. One may start by proving the claim for h = ε = c = 0, proving
that trajectories belonging toW u,s

+ (P ) reflect only a finite number of regular reflections before
exiting the corner region through the right side of a box of size L. Then, the claim follows
by the smooth dependence of the manifolds on parameters (for sufficiently small h, c) and by
the closeness of the limit system to the smooth system at regular reflections (for sufficiently
small ε). Let (u(t), v(t)) ∈W u

+(P ) hit the upper corner ray at times ti, i ≥ 1, so that t1 is its
first hit. Numerical simulations show that as λ is increased the sequence of u1(ti) is indeed
monotonically increasing. Moreover, they suggest that the gaps u1(ti+1) − u1(ti) approach
a constant value: in between hits the v1 velocity remains essentially constant since the time
between reflections is roughly of order 1/λ2, whereas the changes in v1 are on the much longer
time scale 1/ω2. Proving the above statements requires quite elaborate calculations of the
asymptotic behavior at small δ, calculations that go beyond the scope of this manuscript.

Figures 7 and 9 demonstrate that the three different behaviors may be realized in the
singular limit (ε = 0 in Figure 7) and in a smooth case (ε = 0.01 in Figure 9) when we
change λ and keep all other parameters fixed. The left columns show SD in both the upper
and the lower branches, the middle ones show SD in the upper branch and PCBD in the
lower branch, and the right panels show PCBD in both branches. Figure 8 shows that these
findings are consistent with the δ±c bounds for ω

λ . Figure 10 shows the regularization effect
that is achieved when ε is increased. Notice that even without introducing far-field potential
terms, the geometrical potential level curves are reminiscent of Figure 1(b) and are similar to
other PESs appearing in the chemistry literature [1, 2, 3, 4, 5, 6, 7, 8, 9].

7. Discussion. The stable and unstable manifolds of unstable periodic orbits with energies
that are slightly above the barriers’ energies divide the initial isoenergetic phase space region
of incoming trajectories to reacting vs. nonreacting regions [7, 8, 12]. The structure of the
manifolds is called simple if these manifolds do not intersect each other and simply extend to
the reactant and product channels. Then, the phase space transition state theory provides an
accurate description of the transition rates from reactants to products. On the other hand,
if the manifolds intersect each other or fold back into the reaction region, there is no cross-
section which is crossed only once by all incoming trajectories. Then, the main assumption
underlying the transition state theory fails [7, 8, 12, 18].

By introducing a geometrical model for the reaction dynamics we find conditions under
which the manifolds structure is simple and conditions under which it is complicated. Three
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Figure 9. SD and PCBD for the smooth system. The same parameters, initial conditions, and projections
of Figure 7 are used, yet the impact flow is replaced by a smooth exponential potential along the rays ( (3.3), (3.4)
with b = 10, ε = 0.01). The colored lines on the top are the level curves of the smooth potential Va(q)+bVb(q, ε).
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Figure 10. SD for the smooth system: the effect of smoothing. The same parameters, initial conditions,
and projection of Figure 6(a) are used with the smoothing parameter increased to ε = 0.05 (left) and ε = 0.1
(right). The smooth potential level curves still follow those of the linear potential quite closely in the region
explored by W u

±(P ).
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qualitative observations emerge. First, we proved that a homoclinic bifurcation occurs when
the manifolds are close to being perpendicular to one of the corner rays. Then, there are
intervals of energies at which stable periodic triatomic configurations emerge. In particular,
in this case, transition state theory fails. Second, we found that when the projection of the
unstable eigenspace to the configuration space intersects the lower corner ray in an obtuse angle
(so θ < 0) and the saddle-center expansion rate is much larger than the oscillation frequency,
the manifolds’ geometry is simple (Conjecture 6.5). Third, we established that provided
the unstable eigenspace direction intersects the corner rays, the manifolds are trapped for
sufficiently large oscillation frequency (Theorems 6.2 and 6.3).

We expect that similar qualitative statements may be formulated when nonlinear normal
form and higher-dimensional extensions are included. Namely, we expect that conditions
under which phase space transition state theory is adequate for describing the reaction for
energies that are close to the saddle energy may be found by a similar methodology. More
generally, while the effects of nonlinear terms in the reaction region have been suppressed here
for simplicity of presentation (by taking only quadratic terms of the integrable normal form
and by considering small c), we trust that the main principles that were discovered hold for
the nonlinear case as well. Indeed, once the fixed point P has the saddle-center structure, its
stable and unstable manifolds may be computed. With a general nonlinear smooth potential
their projection to the configuration space will appear as curved lines that may or may not
intersect the corner region boundary. The analysis presented here applies to the case where, in
the limit system, the manifolds do hit the boundary and reflect back. Then, we expect to find
similar behavior in terms of the Hill region dependence on the ratio between the oscillatory
and the hyperbolic eigenvalues.

Finding the implications of the above observations for specific chemical reactions is an
interesting and challenging endeavor. We believe the tools developed here may shed some
light regarding the governing parameters.

Finally, we note that the analysis presented here applies to the traditional energy regime
in which the behavior near the barrier is examined. The behavior for larger energies, or,
equivalently, for reactions that do not have a barrier, is expected to be quite different and
will be described elsewhere. Indeed, we hold that there are two distinct mechanisms that give
rise to the observed sensitive dependence of the reaction rates on the energy and the initial
conditions: those associated with the complicated structure of the manifolds as discussed here
and those associated with the corner geometry of the nearly billiard Hamiltonian.

Appendix: The gluing map is symplectic. Let us check, for the reader’s convenience,
that the map Sh : Nu

h → N s
h defined by the reflection law is a symplectic map with respect to

restrictions of the main 2-form on Nu
h and N s

h, respectively. We shall verify it for the lower
wall supposing μ = tan θ is finite. We work in small neighborhoods of the points mu and ms

being the intersection points for the lower branches of unstable and stable manifolds of the
equilibrium P . These cross-sections belong to the 3-plane given by the relation u2 = μu1, and
the restrictions of 2-form dv1 ∧ du1 + dv2 ∧ du2 to Nu

h , N
s
h are the following:

ω̂ = dv̂1 ∧ dû1 + tan θdv̂2 ∧ dû1 = (1− tan θ v̂1v̂2 )dv̂1 ∧ dû1,
ω = dv1 ∧ du1 + tan θdv2 ∧ du1 = (1− tan θ v1v2 )dv1 ∧ du1.
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The symplecticity condition for Sh means, as is known, S∗
hω = ω̂ [43]. Using the relations

u1 = û1, v1 = v̂1 cos 2θ + v̂2 sin 2θ and the expression for v̂2 on Nu
h one gets

S∗
hω =

(
1− tan θ

v̂1 cos 2θ + v̂2 sin 2θ

v̂1 sin 2θ − v̂2 cos 2θ

)
[dv̂1 cos 2θ + dv̂2 sin 2θ] ∧ dû1

=

(
1− tan θ

v̂1 cos 2θ + v̂2 sin 2θ

v̂1 sin 2θ − v̂2 cos 2θ

)[
cos 2θ − sin 2θ

v̂1
v̂2

]
dv̂1 ∧ dû1

=

(
1− tan θ

v̂1
v̂2

)
dv̂1 ∧ dû1 = ω̂.

Thus we get that the Poincaré map Th ◦ Sh is also symplectic.
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