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Smooth Hamiltonian Systems with Soft Impacts∗

M. Kloc† and V. Rom-Kedar‡

Abstract. In a Hamiltonian system with impacts (or “billiard with potential”), a point particle moves about the
interior of a bounded domain according to a background potential and undergoes elastic collisions
at the boundaries. When the background potential is identically zero, this is the hard-wall billiard
model. Previous results on smooth billiard models (where the hard-wall boundary is replaced by a
steep smooth billiard-like potential) have clarified how a smooth billiard may be rigorously approxi-
mated using a hard-wall billiard. These results are extended here to models with smooth background
potential satisfying some natural conditions. This generalization is then applied to geometric models
of collinear triatomic chemical reactions. (The models are far from integrable n-degree-of-freedom
systems with n ≥ 2.) The application demonstrates that the simpler analytical calculations for the
hard-wall system may be used to obtain qualitative information with regard to the solution structure
of the smooth system and to quantitatively assist in finding solutions of the soft impact system by
continuation methods. In particular, stable periodic triatomic configurations are easily located for
the smooth highly nonlinear two- and three-degree-of-freedom geometric models.
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1. Introduction. The theory of smooth Hamiltonian systems with soft impacts concerns
a point particle that travels inside a domain with some given (usually integrable) dynamics,
and is repelled from the boundary by a steep smooth potential, essentially as if undergoing
an elastic collision with this boundary segment [5, 8]. It is sometimes beneficial to think of
the impact system as the limit of smooth soft impact systems. This approach is particularly
useful when studying billiards with inelastic collisions and weak energy dissipation; it is also
used as a regularization tool, leading to important persistence results [8]. The limiting case,
in which the soft impacts are replaced by elastic collisions, has been utilized as a model
for various physical systems (e.g., a particle moving in a linear gravitational potential or a
constant magnetic field [1, 2, 5], and chemical reactions [11]). The dynamics of such systems
is nontrivial even in the one-dimensional case [6]; in higher dimensions, only partial results
exist. An extensive theoretical investigation of such systems is presented in [5].

Notably, all of the applications mentioned above involve a steep repulsion term, which is
replaced in these works by a hard-wall potential for simplicity. Here, we provide conditions
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under which this approximation is justified and examples in which it is utilized as a com-
putational tool via continuation methods. The main results here are Theorems 1 and 2. In
Theorem 1 it is proved, similarly to the corresponding theorems in [13, 16] for the billiard-
like potentials, that regular reflections of the smooth impact system are close to those of the
hard-wall impact system. In Theorem 2, we show that the impact Hill region (which is easily
found) may be used to approximate the smooth Hill region.

Until recently, the soft impact problem was predominantly studied numerically, with no
specific attention paid to the nearly elastic reflections that emerge (for example, classical
molecular dynamics simulations involve soft impact problems; see [10]). In [11] it was sug-
gested that the techniques developed for steep billiard-like potentials [13, 16] could be extended
to the soft impact case. Moreover, relying on the current work (i.e., on Theorem 1) and the
study of the impact system, qualitative results regarding the behavior of the corresponding
soft impact systems were established (such as the existence of homoclinic tangent bifurcations,
stable triatomic periodic motion, and, in some cases, simple behavior near the saddle-center
point; see [11] for details). Specifically, this theorem provides the foundation for analyzing
soft impact systems by utilizing the impact limit, as demonstrated in [11] and in section 3
here.

We note that impact systems belong to the more general field of piecewise smooth dynam-
ical systems, in which the smooth dynamics changes course, possibly undergoing impacts, at
some surface. This field has seen rapid development in the past decade, with particular at-
tention to the new bifurcations that may occur in such systems; see [4, 12] for review, details,
and references.

The paper is organized as follows: in section 2 we first recall a theorem from [13, 16]
about approximating smooth billiards by hard-wall billiards and then provide its modified
formulation for the soft impact case. This theorem can now be applied to any impact system
with a smooth background potential satisfying some natural conditions. Additionally, we
discuss the important appearance of nontrivial Hill regions in the new formulation. In section 3
we present the application of this theorem to a model of collinear triatomic chemical reactions,
which was presented in [11]. We further establish that similar results apply to several (more
realistic) extensions of this model, and provide numerical simulations of a 3-degree-of-freedom
(d.o.f.) generalization of this model. Section 4 provides the proofs of Theorems 1 and 2, and
section 5 the summary and discussion.

2. Formulation of the main result. We first recall the setup and main relevant results of
[13] for the smooth billiard-like dynamics, and then modify this setup in order to formulate
the new results regarding the smooth impact-like dynamics.

2.1. Billiards and smooth billiard-like potentials. Let D be an open bounded subset of
R
d or Td with boundary ∂D = Γ1 ∪ · · · ∪ Γn, where Γi are Cr+1-smooth (d − 1)-dimensional

manifolds of finite area and Γ∗ = ∂Γ1 ∪ · · · ∪ ∂Γn is the corner set. The billiard flow on D
is the motion of a point mass in D with position q ∈ D and momentum p ∈ R

d, moving

with constant velocity inside D (according to the Hamiltonian H(q, p) = p2

2 ) and undergoing
elastic reflections at ∂D \ Γ∗. These reflections occur according to the reflection law pout =
pin − 2〈pin, n(q)〉n(q), where pin and pout are the incoming and outgoing velocity vectors and
n(q) is the inward unit normal vector to ∂D at q. The billiard flow can be formally considered
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as a Hamiltonian system of the form

Hb(q, p) =
p2

2
+ Vb(q), where Vb(q) =

{
0, q ∈ D,
E , q /∈ D,

(1)

for some E > 0, and the motion occurs on an energy level Hb = H∗ ∈ (0, E).
Let V (q; ε) be a Cr+1-smooth billiard-like potential: a potential satisfying conditions I–IV

listed in Appendix A. The smooth billiard flow is defined by the Hamiltonian

H(q, p) =
p2

2
+ V (q; ε), q(0) ∈ D, H(q(0), p(0)) = H∗ < E .(2)

Roughly, V (q; ε) is assumed to tend to zero inside D as ε → 0 and to grow steeply to energies
equal to or larger than E on ∂D, thus creating the repulsion from the boundary. Consider
a collision point qc ∈ ∂D \ Γ∗ belonging to a smooth part of the billiard boundary. Denote
by Q(q; ε) a pattern function, a function that has a regular limit as ε → 0 and has the same
level sets as the potential V (q; ε). Choose the coordinates (x, y) so that the hyperplane x is
tangent to the potential level surface Q(q; ε) = Q(qc; ε) (see Conditions I and IIa in Appendix
A) and the y-axis is the inward normal to this surface at q = qc.

Definition 1. A reflection at a point qc ∈ ∂D \ Γ∗ is called a regular billiard reflection if
py �= 0, and a nondegenerate tangent billiard reflection if py = 0 and pTxQxxpx > 0.

In particular, nondegenerate tangent billiard reflections always satisfy ‖px‖ �= 0.
Under a particular set of conditions (Conditions I–IV, Appendix A), the billiard flow

approximates the smooth billiard flow in the Cr-topology for regular reflections and in the
C0-topology for nondegenerate tangent reflections (see [16] and [13] for the two-dimensional
and n-dimensional cases, respectively), as given next.

Smooth billiards theorem (see [13]). Let the potential V (q; ε) in the equation

H =
p2

2
+ V (q; ε)

satisfy conditions I–IV (Appendix A). Let hεb,t be the smooth billiard flow defined by this equa-
tion on an energy surface H = H∗ < E, and bt be the billiard flow in D. Let ρ0 and ρT = bTρ0
be two inner phase points. Assume that on the time interval [0, T ] the billiard trajectory of ρ0
has a finite number of collisions, and that all of them are either regular reflections or nonde-
generate tangencies. Then hεb,tρ →

ε→0
btρ in the C0 topology for all ρ close to ρ0 and all t close

to T . Finally, if the billiard trajectory of ρ0 has no tangencies to the boundary on the time
interval [0, T ], then hεb,t →

ε→0
bt in the Cr topology in a small neighborhood of ρ0 and for all t

close to T .

2.2. The soft impact system. Our main results are (a) extending the above theorem to
the soft impact case and (b) providing insights regarding the structure of the Hill region for
the soft impact system.

Let U(q) be a Cr+1-smooth potential bounded in the Cr+1-topology on an open set D,
where D ⊂ D, and let Û = minq∈∂D U(q). In particular, since |∂D| is finite, Û is finite. Let
V (q; ε) be a billiard-like potential, as defined in the previous section. Recall that the minimal
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Figure 1. Tangent reflections at concave (left) and convex (right) boundaries.

barrier height of the billiard-like potential is denoted by E . To ensure that the particle cannot
escape from D, we consider energy levels H = H∗ < E + Û , and to have motion, we require
that Û > −E ; see condition V in Appendix A.

Condition V. U(q) is a Cr+1-smooth potential bounded in the Cr+1 topology on an open
set D where D ⊂ D. The minimum Û of U on the boundary ∂D satisfies Û > −E .

The impact flow ωt is formally defined as the Hamiltonian flow at an energy level H =
H∗ < E + Û ,

Himpact(q, p) =
p2

2
+ Vb(q) + U(q), q(0) ∈ D,(3)

and similarly, the smooth impact flow hεt is the Hamiltonian flow defined by

H(q, p) =
p2

2
+ V (q; ε) + U(q), q(0) ∈ D,(4)

on an energy level H = H∗ < E + Û .

2.2.1. Closeness of impact and smooth trajectories. We now formulate the extension of
the smooth billiards theorem to the smooth impact setting. In order to do this, the definition of
“nondegenerate tangent reflection” needs to be modified, to account for the curved trajectories
under the impact flows; we do this as follows.

Definition 2. A reflection at a point qc ∈ ∂D \ Γ∗ is called a regular reflection if py �= 0,
and a nondegenerate tangent reflection if py = 0, px �= 0, and pTxQxxpx > Uy.

When U(q) ≡ 0, this definition coincides with the definition in the billiard systems. In the
billiard case, the nondegeneracy condition excludes nearly tangent collisions with a concave
boundary, whereas here, if Uy is sufficiently negative, such collisions are allowed; see Figure
1. Notice that regular and nondegenerate tangent collisions must be bounded away from
∂DHill(H

∗) ∩ ∂D, where the velocity vanishes.
Theorem 1 (smooth impacts theorem). Consider smooth impact systems associated with

H(q, p) =
p2

2
+ V (q; ε) + U(q),
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and assume that V (q; ε) and U(q) satisfy conditions I–V (see Appendix A). Let ρ0 and ρT =
ωTρ0 be two inner phase points belonging to the energy level H∗ < E + Û , where T is a finite
value. Provided that on the time interval [0, T ] the impact trajectory {ωtρ0 : t ∈ (0, T ]} has
a finite number of collisions, and all of them are either regular reflections or nondegenerate
tangent reflections, then hεtρ →

ε→0
ωtρ in the C0 topology for all ρ close to ρ0 and all t close to

T . Moreover, if all collision points are nontangent, then the above statement is true in the Cr

topology.
The proof is similar to the proof of the soft billiard theorem of [13] and is presented in

section 4.

2.2.2. The Hill region. The Hill region of a mechanical Hamiltonian system at a given
energy level H∗ is defined as the region of allowed motion in the configuration space. This
is the region in which the kinetic energy is nonnegative, namely, the region in which the
potential energy is less than or equal to H∗. The qualitative dependence of the Hill region
on H∗ provides a crude insight into the highly nontrivial behavior of the flow. Here, we are
interested in characterizing

Dε
Hill(H

∗) = {q| U(q) + V (q; ε) ≤ H∗, q ∈ D}
for small ε by utilizing the impact limit. In the steep billiard-like potential framework (i.e.,
when U(q) ≡ 0), for any H∗ ∈ (0, E) the Hill region of the smooth flow limits, as ε → 0, to
the billiard domain D. The appearance of the smooth potential U(q) in the impact system
leads to the emergence of energy-dependent Hill regions of the limiting impact system. Let

(5) DU
Hill(H

∗) = {q| U(q) ≤ H∗, q ∈ D}
denote the Hill region of the smooth Hamiltonian H = p2

2 + U(q), and let us define the Hill
region of the impact system as

DHill(H
∗) = {q| U(q) ≤ H∗, q ∈ D} = DU

Hill(H
∗) ∩D.

Notice that if the potential attains its global minimum inside D and H∗ ∈ (minq∈D U(q), Û ),
the region of allowed motion is strictly inside D (so its boundary is bounded away from ∂D),
and DHill(H

∗) = DU
Hill(H

∗). Then, no impacts occur at the energy level H∗, and the smooth
system trivially limits to the impact system as ε → 0 by condition I of Appendix A. Thus, we
consider here only the cases when H∗ ∈ (Û , E + Û).1

For this range of energies, the boundary of DHill(H
∗) is a union of smooth surfaces, some

belonging to ∂D (denoted by ∂Dbndry(H
∗)) and some belonging to DU

Hill(H
∗) (denoted by

∂Dint(H
∗)):

(6) ∂DHill(H
∗) =

{
(∂D ∩ DU

Hill(H
∗)) ∪ (∂DU

Hill(H
∗) ∩D)

}
:= ∂Dbndry(H

∗) ∪ ∂Dint(H
∗).

These boundary surfaces meet at the Hill region corner set ΓHill(H
∗) = ∂Dbndry(H

∗) ∩
∂Dint(H

∗). Define the problematic set as the points near the billiard boundary which are

1The limit cases where H∗ = Û or H∗ = Û + E may have interesting behavior. These require further
analysis of collisions with speeds that asymptotically vanish or with escaping orbits. These delicate cases will
not be considered here.
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also near the Hill region boundary or in N(Γ∗), the set of small neighborhoods around the
billiard corners: PHill(H

∗) = {q| |U(q)−H∗| < ς and |q − ∂D| < ξ}∪N(Γ∗) for some small ς
and ξ; see Figure 8 below. If all of the intersections in the Hill region corner set are transverse,
PHill(H

∗) is simply an open neighborhood of the two sets ΓHill(H
∗) and Γ∗, the Hill region

corner set and the billiard corner set.
The main observation here is that, away from the problematic set, for sufficiently small ε,

the boundary of the impact Hill region DHill(H
∗) provides a good smooth approximation to

the boundary of the smooth Hill region Dε
Hill(H

∗). Near transverse intersections of the corner
set, the boundaries are C0-close.

At nontransverse intersections, we define two types of nontransverse boundary points, as
follows. Consider a nontransverse intersection of the corner set at a point qc. Let (x̄, ȳ) be
a fixed local coordinate system with qc = (x∗, 0), so that the hyperplane x̄ is tangent to the
billiard boundary at qc and the ȳ-axis is the inward normal to this boundary at qc. The
point qc is called the interior nontransverse boundary point if ∂U

∂ȳ

∣∣
(x∗,0) < 0, and a bifurcating

boundary point if ∂U
∂ȳ

∣∣
(x∗,0) ≥ 0.

At nontransverse boundary points, the boundaries are also C0-close. At bifurcating bound-
ary points, one expects more complex behavior, for which bifurcation sequences in (H, ε) space
need to be considered.

Theorem 2. Assume that the Hill corner region is bounded away from the billiard corner
region. Then, for sufficiently small ε the following hold:
(i) Away from the problematic set PHill(H

∗), the boundary of Dε
Hill(H

∗) is Cr-close to the
boundary of DHill(H

∗).
(ii) Near transverse intersections of the corner set, the smooth Hill region boundary is C0-

close to the corresponding corner region of ∂DHill(H
∗).

(iii) Near interior nontransverse boundary points, the smooth Hill region boundary is C0-close
to ∂DHill(H

∗).
Proof. See section 4.

3. Collinear triatomic reaction model. In this section, we present an example of a smooth
impact system for which the computationally faster hard-wall calculations can be used as a
first approximation to the smooth dynamics. This approach allows us, for example, to use
the impact flow solutions as first guesses for solutions of the smooth system in continuation
methods.

In [11], collinear triatomic chemical reactions are modeled as smooth impact systems.
First, we briefly describe the model. Then we present its generalization and detect a new type
of stable periodic motion in the generalized system.

For the triatomic collinear reaction A+BC → AB+C, let ri andMi (i ∈ {A,B,C}) denote
the positions and masses, respectively, of the three atoms. Let ê be the unit vector aligned
with the molecules. Since the reaction is collinear, let r1 = (rA− rB) · ê and r2 = (rB − rC) · ê.
Passing to mass-weighted Jacobi coordinates leads to the Hamiltonian [15]

(7) H(q, p) =
p21
2

+
p22
2

+ Vr(q1, q2),
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where Vr(q1, q2) is the potential field,

q1(r1, r2) = âr1 + b̂r2 cos β, q2(r2) = b̂r2 sin β,

â =

√
MA(MB +Mc)

MA +MB +MC
, b̂ =

√
Mc(MB +MA)

MA +MB +MC
,

and

β = arccos

√
MAMC

(MA +MB)(MB +MC)
.

The potential Vr(q1, q2) of (7) is just the potential energy surface (PES) at the collinear
configuration. Much effort has been dedicated in recent years to finding a good form for the
PES [9].

The reaction region is defined to be the region where both r1,2 are bounded, whereas
large r1 and bounded r2 (respectively, large r2 and bounded r1) correspond to the reactant
(respectively, product) channel. A trajectory with initial conditions in the reactant channel
enters the reaction region and then may exit through either channel. If it exits through the
product channel, the reaction is realized. Finding the reaction rates analytically, even in
this highly simplified model, is practically impossible, as it is typically chaotic. Transition
state theory attempts to approximate these rates by examining the local dynamics near a
saddle point of the potential and is known to be problematic. One should also note that
relating the numerically calculated reaction rates of such a single molecular reaction model
(classical, semiclassical, or quantum, for collinear or for the three-dimensional reaction model)
to the kinematic reaction rates is also an open problem [17]. Nonetheless, understanding the
qualitative features of the collinear model may help to shed light on these challenging open
problems.

Thus, here, as in [11], we concentrate on qualitative features of the dynamics, without
addressing the practical aspects of reaction rate calculations. In [11] it was suggested that
in triatomic collinear reactions in which there is a single unstable triatomic configuration,
the level sets of Vr(q1, q2) may be modeled by the following potential form, which has three
components, each having a distinct geometrical meaning:

(8) H(q, p; ε) =
p2

2
+ bVb(q) + aVa(q) + cVfarfield(q).

The first term, bVb, corresponds to the strong nuclear repulsion of the diatoms at small
distances (at very small ri, i = 1, 2) and is thus modeled by a smooth billiard-like potential.
The second term, aVa, represents the local interactions near the transition state (the unstable
triatomic configuration) and is modeled in [11] by the quadratic potential

aVa(q) =
1

2
(q − qs)

TA(q − qs),(9)

where A is a symmetric 2×2 matrix with negative determinant. Then, the unstable triatomic
configuration corresponds to a saddle-center fixed point in the phase space. The last term,
cVfarfield, is assumed to be small in the reaction region and is chosen to have the correct
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Figure 2. Demonstration of the Hill regions’ convergence (Theorem 2): The impact Hill region DHill(H
∗)

is shown in yellow. The corresponding Hill region boundaries (where U(q) + V (q; ε) = H∗) are shown for
ε = 0.1 (black), ε = 0.2 (blue), ε = 0.3 (green). For ε = .001 and ε = .01, the smooth and impact regions are
indistinguishable. The C0 convergence at the corners is apparent. Parameters: H∗ = 0.5, ω = 1, λ =

√
2,

β = π/3, u1s = 2.5, u2s = 0, b = 10.

asymptotic form at the reactant and product channels (large r1 or large r2). Since the main
interest here and in [11] is in studying the dynamics in the reaction region, no specific form
for this term is needed here.

The Hamiltonian (8) is put into normal form by rotating the (q, p) coordinates into the
coordinates that are aligned with the center and the saddle subspaces, so that in these co-
ordinates the saddle-center (the reaction barrier) linear part is diagonal. Then, the smooth
Hamiltonian model is of the form

Hsmooth(u1, u2, v1, v2) =
v21
2

+
v22
2

+ U(u1, u2) + Vb(u1, u2; ε)

with quadratic background potential

U(u1, u2) =
ω2

2
(u1 − u1s)

2 − λ2

2
(u2 − u2s)

2,

and the billiard-like potential is taken here to be symmetric in the wedge and of the form

Vb(u1, u2; ε) = b·exp
(−(u1 sin(β/2) + u2 cos(β/2))

ε

)
+ b·exp

(−(u1 sin(β/2) − u2 cos(β/2))

ε

)
.

In [11] this geometrical model (in a generalized asymmetric form) was introduced, and several
results regarding the motion at energies close to the barrier energy (such as the existence of
homoclinic bifurcations and, consequently, of elliptic islands near some asymmetric configura-
tions) were established by utilizing the impact limit and relying on the smooth impact theorem
(Theorem 1 of section 2). Figure 2 demonstrates the validity of Theorem 2. In particular, it is
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Figure 3. A 2-periodic trajectory for ε = 0 (with the level lines of the background potential U(q)) and
ε = 0.1 (with the level lines of the full potential U(q) + V (q; ε)). Parameters: ω = 1, λ =

√
2, β = π/3,

u1s = 2.5, u2s = 0, b = 10. The trajectory shown with ε = 0 has u10 = 9.23, v20 = 4.89, and corresponding
energy H = 35.064, whereas at ε = 0.1 we set u10 = 9.23, v20 = 4.91, with corresponding energy H = 34.695.

seen that when DHill(H
∗) has corners, the smooth Hill region converges towards the singular

domain in the C0-topology.
Here we consider the behavior near a particular type of symmetric periodic orbit (see

Figure 3) which is far from the saddle-center point. The existence and stability of such an
orbit is established first in the impact system and then, by continuation, in the smooth case.
In fact, we consider here a higher-dimensional version of the geometric model by adding a
“group of oscillators”—a standard extension used in chemistry to reflect the effect of small
oscillatory modes [3]. Specifically, we add n − 2 separable nonlinear oscillators and a weak
coupling term:

Hsmooth(u1, . . . , un, v1, . . . , vn) =
v21
2

+
v22
2

+ U(u1, u2) + Vb(u1, u2; ε)

+

n∑
k=3

(
v2k
2

+ Uk(uk)

)
+ δUcoup(u1, ..., un).

In the numerical computations we let n = 3, take a quartic symmetric potential

U3(u3) =
(κω)2

2
(u3 − u3s)

2 +
1

4
(u3 − u3s)

4

with κ chosen to be irrational, and define

Ucoup(u1, u2, u3) = sin(u1 − u2) + sin(u2 − u3) + sin(u3 − u1).

First let δ = 0. In this case, u3 and v3 do not affect the behavior of the system, so we
consider only u1, u2, v1, and v2. By the smooth impact theorem, we can approximate this
system by the impact flow, where the steep smooth billiard-like potential is replaced by a hard-
wall billiard in a wedge with upper (respectively, lower) boundary defined by the unit vector
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[cos β/2, sin β/2]T (respectively, [cos β/2, − sin β/2]T ). The particle undergoes elastic col-
lisions at the upper billiard boundary according to the reflection law

v1 �→ v1 cosβ + v2 sin β,

v2 �→ v1 sinβ − v2 cos β,

and at the lower billiard boundary according to

v1 �→ v1 cos β − v2 sinβ,

v2 �→ −v1 sin β − v2 cos β.

In the interior, the integrable linear system

du1
dt

= v1,
du2
dt

= v2,
dv1
dt

= −ω2(u1 − u1s),
dv2
dt

= λ2(u2 − u2s)

can be solved analytically. Here we consider the symmetric case, where the saddle point lies
on the u1-axis, so u2s = 0. Then the linear flow is

u1(t) = u1s + (u10 − u1s) cos(ωt) +
v10
ω

sin(ωt),

u2(t) = u20 cosh(λt) +
v20
λ

sinh(λt),

v1(t) = −ω(u10 − u1s) sin(ωt) + v10 cos(ωt),

v2(t) = λu20 sinh(λt) + v20 cosh(λt).

Consider initial conditions on the u1-axis, to the right of the saddle point, with positive
initial velocity only in the perpendicular u2-direction (i.e., u10 > u1s, u20 = 0, v10 = 0,
v20 > 0). For every such initial position (u10, 0) we propose that, by the symmetry of the
problem, there is some v20 such that the trajectory with initial conditions (u10, 0, 0, v20) is
2-periodic: it hits the upper boundary at a right angle.2 Below, we find such orbits for ε = 0,
show that these orbits can be continued for ε > 0, and determine their stability. An example
of such an orbit for ε = 0 and ε = 0.1 is shown in Figure 3.

We can now analytically calculate the linearized Poincaré map at the periodic orbits for
this hard-wall case. By Theorem 1, this will approximate the map for the smooth impact
system. Clearly, for the smooth case, finding the periodic orbit and its stability is computa-
tionally expensive, whereas here (the hard-wall case), everything can be done analytically up
to some Newton iterations. Let the Poincaré section Σ be the positive u1-axis. By computing
the eigenvalues of the return map to this section (see Appendix B for detailed calculations),
we can now study the stability of the periodic orbit of the impact system for a variety of
parameter values and conclude that, for sufficiently small ε, hyperbolic and elliptic periodic
orbits will persist. For the impact system, we find numerically that for a fixed ω/λ the periodic

2In fact, using tc as a parameter, one can find an implicit equation for the v20 for which such a trajectory
is 2-periodic. It is not difficult to see that a discrete family of tc values may be defined in this way; however,
we expect that these solutions correspond to a period-two orbit only for values of u10 that are exponentially
close to u1s.
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Figure 4. Bifurcation diagram for ε = 0 (blue), ε = 0.0001 (yellow), ε = 0.001 (green), ε = 0.01 (black),
ε = 0.1 (red), ε = 0.2 (magenta), and ε = 0.3 (cyan); where ω = 1, b = 50, β = π/3, u1s = 2.5, and u2s = 0.

orbit is hyperbolic if u10 ∈ (u1s, uc(ω/λ, β, u1s)) and is elliptic if u10 > uc(ω/λ, β, u1s) (we
did not detect another change of stability as u10 is increased further); see Figure 4 for a typ-
ical bifurcation diagram of the impact system in the (ω/λ, u10) space and the corresponding
diagram for the smooth system with ε = .0001, .001, .01, .1, .2, .3.

The hyperbolic or elliptic impact trajectory may be used as an initial condition for finding
the corresponding periodic orbit of the smooth impact flow by a continuation scheme in ε.
In the continuation scheme one may choose to fix either u10, the energy, or the Floquet
multiplier Λ of the periodic orbit. Figures 5 and 6 show the Poincaré maps at Σ = {u2 =
0, v2 > 0,H = H((u, v)periodic)} for different values of ε. In Figure 5 the Floquet multiplier Λ
of the linearized Poincaré map is kept fixed for all ε, and one observes that the map structure
around the periodic orbit is preserved—the orbit simply shifts to the right. In Figure 6 the
energy h is kept fixed for all ε values. We see that here, for some ε ∈ (0.1, 0.2), the periodic
orbit undergoes a bifurcation, in accordance with Figure 4.

Finally, we demonstrate that the construction works also for the 3-d.o.f. system. In the
coupled 3-d.o.f. case (δ > 0), the return map is four-dimensional. We project the Poincaré
return map to the two-dimensional plane by restricting to the slab

Σ = {(u1, u2, u3, v1, v2, v3) : u2 = 0, u3 ∈ [−ξ, ξ], v2 > 0, v3 > 0,H = H((u, v)periodic)},

where ξ = 0.1. The projections of the Poincaré return maps for δ = 0 and δ = 0.1 are shown in
Figure 7. Note that the blurriness in the plot for δ = 0.1 is due to projecting the u3 ∈ [−ξ, ξ].
The analytical calculations for the hard-wall system were used to find an initial guess for the
computations of the smooth system, leading to a dramatic decrease in computation time.
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Figure 5. Vicinity of periodic orbits at fixed Floquet multipliers. Poincaré return maps for ε =
0, .001, .01, .1, .2, .3, with the periodic orbit (and thus h) chosen so that the real part of eigenvalues Λ and
1/Λ of the linearized Poincaré map is 0.8, using the parameters λ =

√
2, ω = 1, b = 50, β = π/3, u1s = 2.5,

u2s = 0. In each plot, the energy is fixed according to the energy of the central periodic orbit.
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Figure 6. Vicinity of periodic orbits at a fixed energy level. Poincaré return maps for ε =
0, .001, .01, .1, .2, .3, with the periodic orbit chosen so that the energy is constant h = 35, using the parame-
ters λ =

√
2, ω = 1, b = 50, β = π/3, u1s = 2.5, u2s = 0. At large ε, a change in stability is observed.
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u3s = 0, ξ = 0.1, 300 returns.

Finally, we note that in this example, a linear background potential is used. However,
a similar structure would emerge if we replaced this potential with any smooth bounded
separable potential having a single saddle-center fixed point (satisfying the conditions of The-
orem 1) (U(u1, u2) = U1(u1) + U2(u2), with U ′

1(u1s) = 0, U ′′
1 (u1s) > 0, U ′

2(u2s) = 0, and
U ′′
2 (u2s) < 0). This approximation can now be applied to a much wider class of problems,

many of which are relevant to chemistry and physics, greatly reducing computation times for
standard calculations such as finding periodic orbits and Poincaré return maps.

4. Proofs of Theorems 1 and 2.
Proof of Theorem 1. The proof is similar to that in [13], with modifications arising when

dealing with the potential term U . For any given compact region K ⊂ D, the Hamiltonian
flow is Cr-close to the impact flow, by condition I. Since T is finite, we need only consider the
behavior of the Hamiltonian flow inside a boundary layer that is close to ∂D. Note that, by
choosing H∗ < E + Û and by condition V, we ensure that the point mass cannot escape over
the barrier at ∂D. Indeed, to cross the barrier H∗ − U(q) − V (q; ε)|∂D must be positive at
some point on the boundary, but H∗ − U(q)− V (q; ε)|∂D < E + Û − Û − E < 0.

Consider an impact orbit with collision point qc ∈ Γi \Γ∗. Define the boundary layer near
Γi (where Q(q; 0) = Qi by condition IIa) as Nδ = {|Q(q; ε) −Qi| ≤ δ}, where δ tends to zero
sufficiently slowly as ε → 0+. Take ε sufficiently small. Hence, by the assumption on ρT ,
all collisions with the boundary occur with nonzero velocity. The smooth impact trajectory
enters Nδ at some time tin(δ, ε) at a point qin(δ, ε) close to qc with velocity pin(δ, ε) close to
p0 �= 0, and then exits Nδ at the time tout(δ, ε) at a point qout(δ, ε) with velocity pout(δ, ε).
Now, proving the theorem is equivalent to proving the following statements (where k = 0 for
nondegenerate tangent collisions and k = r for regular collisions):

lim
δ→0

lim
ε→0+

‖(qout(δ, ε), tout(δ, ε)) − (qin(δ, ε), tin(δ, ε))‖Ck = 0,(10)
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which guarantees that the trajectory does not travel along the boundary, and

lim
δ→0

lim
ε→0+

‖pout(δ, ε) − pin(δ, ε) + 2n(qin)〈pin(δ, ε), n(qin)〉‖Ck = 0,(11)

where pout = pin − 2〈pin, n(q)〉n(q) and n(q) is the unit inward normal to the level surface of
Q at the point q.

Without loss of generality, assume that Q(q; 0) increases as q moves from ∂D towards
int(D). The partial derivatives of Q satisfy

Qx|(qc;ε) = 0, Qy|(qc;ε) = 1.(12)

By (4) and condition II, near the boundary the equations of motion have the form

ẋ =
∂H

∂px
= px, ṗx = −∂H

∂x
= −W ′(Q; ε)Qx − Ux(x, y),(13)

ẏ =
∂H

∂py
= py, ṗy = −∂H

∂y
= −W ′(Q; ε)Qy − Uy(x, y).(14)

First, we prove (10) and (11) for k = 0 (i.e., the C0 part of the theorem, for regular or
nondegenerate tangent reflections). Suppose that ξ(ε) → 0 sufficiently slowly, and that the
orbit remains in Nδ for all t ∈ I = [tin, tin + ξ]. Then for all t ∈ I,

q(t) = qin(δ, ε) +O(ξ).(15)

This follows from p being uniformly bounded by p2

2 = H −W (Q; ε)− U ≤ H∗ − Û and from
(13) and (14). By (15) and the smoothness of U , we have that for all t ∈ I,

U(q(t)) = U(qin(δ, ε)) +O(ξ).(16)

And for ξ(ε) → 0 sufficiently slowly, (15) also implies that

q(t) = qc +O(ξ),(17)

since qin − qc tends to zero as O(δ) for regular trajectories and as O(
√
δ) for nondegenerate

tangent trajectories.
In addition, assuming ξ(ε) → 0 sufficiently slowly, we claim that,3 for some α ∈ (0, 1),

px(t) = px(tin(δ, ε)) +O(ξα)(18)

and

py(t)
2

2
+W (Q(q(t); ε); ε) =

py(tin(δ, ε))
2

2
+W (δ, ε) +O(ξα)(19)

3This differs from [13], in which α = 1.
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for all t ∈ I. First consider (18). Note that (12) and (17) imply that

Qx(q(t); ε) = O(ξ), Qy(q(t); ε) = 1 +O(ξ)(20)

for all t ∈ I. Given a sufficiently small ε0, where ξ(ε0) � 1, choose α = α(ε0, Uy(qc)) ∈
(0, 1) such that ξ(ε0)

−α = 2Uy(qc). Let K = ξ(ε)−α. It follows from the smoothness of U
and (17) that as ε → 0, K � 2Uy(q(t)), t ∈ I. Divide the interval I into two sets: I<,
where |W ′(Q; ε)| < K = K(ε), and I>, where |W ′(Q; ε)| ≥ K = K(ε). In I< we have
ṗx = −Ux + O(ξ1−α), by (13), (15), and (20). In I>, since |W ′(Q; ε)| ≥ K and Qy �= 0, we
have that ṗy is bounded away from zero, so we can divide ṗx in (13) by ṗy in (14):

dpx
dpy

=
−W ′Qx − Ux

−W ′Qy − Uy
=

Qx +
1
W ′Ux

Qy +
1
W ′Uy

= O

(
1

K

)
= O(ξα).

The change in px on I can be estimated from above as the sum of an O(ξ) term (the contribu-
tion from I<) plus a term of O(ξα) times the total variation in py (the contribution from I>).
Recall that py is uniformly bounded (|py| ≤ 2H∗ from the energy constraint) and monotone
(as W ′(Q) < −K, Qy ≈ 1, and K > maxUy, we have ṗy > 0; see (14)) everywhere on I>, so
its total variation is indeed uniformly bounded. This implies that the total variation in py is
uniformly bounded on I>, completing the proof of (18).

Now consider (19). From (18) and the conservation of H = p2x
2 +

p2y
2 +W (Q(q; ε); ε)+U(q),

we have

py(t)
2

2
+W (Q(q(t); ε); ε) + U(q(t)) =

py(tin(δ, ε))
2

2
+W (δ, ε) + U(qin(δ, ε)) +O(ξα).(21)

Equation (19) follows from (16) and (21).
Now we claim that the time τδ that the trajectory spends in the boundary layer Nδ tends

to zero as ε → 0. We treat the nontangent and nondegenerate tangent cases separately. First,
consider the nontangent trajectories (so py(tin) is bounded away from zero). The value of
Win = Wout = W (Q = δ; ε) goes to zero as ε → 0+, by condition III; thus, (19) implies that if

t ∈ I and W (Q; ε) < ν � p2y(tin)

2 , then py(t) is bounded away from zero. Divide Nδ into two
parts: N< := {W : W (Q; ε) ≤ ν} and N> := {W : W (Q; ε) > ν}. First, the trajectory enters
N<. Since the value of

d
dtQ(q) = pxQx+ pyQy is negative and bounded away from zero in N<

(because Qx is small, py < 0, and Qy ≈ 1), the trajectory must reach the inner part N> by a
time proportional to the width of N<, which is O(δ). And if the trajectory leaves N> after
some time t>, it must have py > 0; thus, tout − tin = O(δ) + t>.

We claim that t> → 0 as ε → 0+. We showed already that the total variation on py is
uniformly bounded. This, along with (14) and condition IV (which implies that, for small ε,
Q′(W ≥ ν) → 0 as ε → 0, so −W ′(Q) is large in N> and, in particular, −W ′ − Uy > 0),
implies

|t>| ≤ C

minN> |W ′(Q; ε) + Uy| ≤ C̄max
N>

|Q′(W ; ε)| → 0 as ε → +0

for some constants C and C̄. Thus, τδ tends to zero as ε → 0 in the nontangent case.
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Now consider the nondegenerate tangent trajectories. First we note that the proof for the
nontangent case holds for py,in tending to zero sufficiently slowly, meaning here that 1

Q′(W=ν)

is sufficiently large with respect to |Uy|. So we now prove the result for nearly tangent
trajectories, for which py,in tends to zero as ε → 0. First, we claim that, while the trajectory
is in the boundary layer Nδ and t − tin is small, py(t) remains small. This follows from (19)
since W (Q; ε) > Win = W (δ, ε) (since W is monotone by condition IIc). Using this and (18),
we get that px(t) is bounded away from zero as long as q(t) ∈ Nδ and t− tin is small.

Next we claim that, for an interval of time bounded away from zero and starting with tin,
d2

dt2
Q(q(t); ε) is positive and remains bounded away from zero. Q̇ is small, since

Q̇ :=
d

dt
Q(q(t); ε) = Qxpx + pyQy,(22)

by (13), (14). Recall that, by the definition of nondegenerate tangency, pTxQxxpx > Uy and is
bounded away from zero. We also know that py is small, W ′(Q; ε) is negative, Qy ≈ 1, and
Qx is small. Thus,

d2

dt2
Q(q(t); ε) = pTxQxxpx + 2Qxypxpy +Qyyp

2
y −W ′(Q; ε)(Q2

x +Q2
y)− UyQy − UxQx(23)

is positive and bounded away from zero for a time interval bounded away from zero and
starting with tin.

This gives, for some constant C1 > 0, on this time interval,

Q(q(t); ε) ≥ Q(qin; ε) + Q̇(tin)(t− tin) + C1(t− tin)
2.(24)

We now claim that the maximum time that the nearly tangent trajectory spends in Nδ =
{|Q(q; ε)−Qi| ≤ δ = |Q(qin; ε)−Qi|} is O(

√
δ+py,in) (which tends to zero). This follows from

(24) (which implies that this time is O(Q̇(tin)) = O(Qx(qin))+O(py,in) = O(qin−qc)+O(py,in))
and from the fact that qin − qc = O(

√
δ).

We have shown that, in both the nontangent and nondegenerate tangent cases, the time
that the trajectory spends in the boundary layer tends to zero as ε goes to zero. Thus, the
proof of the theorem in the C0 case is completed by substituting the time τδ → 0 for ξ in the
right-hand sides of (15), (18), and (19) to get (10) and (11) for k = 0.

For nontangent trajectories, we need to prove convergence in the Cr topology. Define N>

and N< for small ν, as in the proof of the C0-convergence. Since Q̇ �= 0 in N<, we can divide
(13) and (14) by Q̇:

dq

dQ
=

p

Qxpx + pyQy
,(25)

dp

dQ
=

−W ′(Q; ε)∇Q−∇U

Qxpx + pyQy
,(26)

dt

dQ
=

1

Qxpx + pyQy
.(27)
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Rewrite (25), (26), and (27) in integral form:

q(Q2)− q(Q1) =

∫ Q2

Q1

Fq(q, p)dQ,(28)

p(Q2)− p(Q1) = −
∫ W (Q2)

W (Q1)
Fp(q, p)dW (Q) +

∫ Q2

Q1

Fs(q, p)dQ,(29)

t(Q2)− t(Q1) =

∫ Q2

Q1

Ft(q, p)dQ,(30)

where Fq, Fp, Fs, and Ft denote some functions of (q, p) which are uniformly bounded in the

Cr-topology. In (29), the first term corresponds to the integral of −W ′(Q)∇Q
Qxpx+pyQy

, for which the

change of variables is needed since W ′ may be large, whereas the second term associated with
the potential has regular behavior. Note that the integrals are small in N<, since the change
in Q is bounded by δ and the change in W is bounded by ν.

Applying the successive approximation method, the Poincaré map (the solution to (28),
(29), and (30)) from Q = Q1 to Q = Q2 limits to the identity map (along with all derivatives
with respect to initial conditions) as δ, ν → 0. Thus, to prove (10) and (11) for k = r, we need
to prove

lim
ν→0

lim
ε→0+

‖(qout, tout)− (qin, tin)‖Cr = 0,(31)

lim
ν→0

lim
ε→0+

‖pout − pin + 2n(qin)〈pin, n(qin)〉‖Cr = 0,(32)

where (qin, pin, tin) and (qout, pout, tout) now correspond to the intersections of the orbit with
the cross section W (Q(q; ε), ε) = ν.

Now we claim that ṗy is bounded away from zero. For any ν bounded away from zero,
Q(Q; ε) tends to zero uniformly in the Cr-topology as ε → 0 for ν ≤ W ≤ H∗ (condition IV).
This is also true if ν → 0 sufficiently slowly. W ′(Q; ε) = (Q′(W ; ε)−1) is bounded away from
K = 2Uy(qc) in N>, so by (14), the claim follows. Dividing (13) and (14) by

dpy
dt

= −W ′(Q; ε)Qy − Uy(x, y) = −(Q′(W ; ε))−1Qy − Uy(x, y),

we obtain

dq

dpy
=

p

−(Q′(W ; ε))−1Qy − Uy(x, y)
=

Q′(W ; ε)p

−Qy −Q′(W ; ε)Uy(x, y)
,(33)

dt

dpy
=

1

−(Q′(W ; ε))−1Qy − Uy(x, y)
=

Q′(W ; ε)

−Qy −Q′(W ; ε)Uy(x, y)
,(34)

dpx
dpy

=
−(Q′(W ; ε))−1Qx − Ux(x, y)

−(Q′(W ; ε))−1Qy − Uy(x, y)
=

−Qx −Q′(W ; ε)Ux(x, y)

−Qy −Q′(W ; ε)Uy(x, y)
,(35)

where W = H − 1
2p

2 − U(x, y).
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By condition IV, the Cr-limits as ε → 0 of (33), (34), and (35) are

dq

dpy
= 0,

dt

dpy
= 0,

dpx
dpy

=
Qx

Qy
.(36)

Note that (33), (34), and (35) are all bounded. Therefore, the solution to (36) is the Cr-limit
of the solution of the system (33), (34), and (35), since the change in py is finite. Equation
(36) implies that

(qin, tin) = (qout, tout)(37)

when ε → 0, completing the proof of (31). Also,

(px,out − px,in)Qy(qin; ε) = (py,out − py,in)Qx(qin; ε)

when ε → 0, by (36), which is equivalent to

py = 〈n(q), p〉, px = p− pyn(q).(38)

Now (37) completes the proof.
Proof of Theorem 2. (i) Recall that in the neighborhood Ñi of the billiard boundary

component Γi we defined the pattern and barrier functions Qi(q; ε) and Wi(Q; ε) and assumed
(condition II) that there exists ε0 such that for all ε ∈ (0, ε0], V (q; ε)|q∈Ñi

≡ Wi(Q(q; ε)−Qi; ε),
where Wi(Q; ε) is monotone in this boundary layer. In particular, there exists a δ > 0
such that the thick and thin boundary layers N2δ

i (ε) =
{
q|Q(q; ε)−Qi < 2δ, q ∈ D̄

}
and

N δ
i (ε) =

{
q|Q(q; ε)−Qi < δ, q ∈ D̄

} ⊂ N2δ
i (ε) are contained inside Ñi for all ε ∈ (0, ε0]; see

Figure 8. Notice that the boundary layers N2δ
i (ε), N δ

i (ε) are each of finite width for all ε
since the pattern functions have regular dependence on ε. Define the closed set Kδ(ε) =
{q|q ∈ D\(∪iN

δ
i (ε) ∪N(Γ∗))}, and let ρ(ε) = maxq∈Kδ(ε) |V (q; ε)|Cr+1 . It follows from condi-

tion I that ρ(ε) → 0 when ε → 0. Hence, in Kδ(ε),4 |V (q; ε)| ≤ ρ(ε) in the Cr+1-topology, and
thus in Kδ(ε) the level sets of U + V are Cr+1-close to those of U , as claimed.

In each of the thick neighborhoods N2δ
i (ε), for ε ≤ ε0, the level sets of Qi(q; ε) may be

viewed locally as graphs of the billiard boundary: one may set normal coordinates (x, y) in each
of the boundary layers, where x parameterizes the billiard boundary and y aligns with ∇Q.
(Hereafter we suppress the dependence on i for brevity.) In particular, we set y(ε) = Q(q; ε).
In these coordinates, V (x, y; ε) = W (Q(x, y; ε), ε) = W (y(ε); ε) for all y ∈ [0, 2δ]. Notice that
W (y; ε) are monotone decreasing functions, satisfying W (0; ε) > E (where W (0; ε) may be
infinite), and, by condition I, |W (δ; ε)|, |W (2δ; ε)| → 0 when ε → 0.5

In N2δ(ε) ∩ DU
Hill(H

∗), away from the problematic set PHill(H
∗), U(x, 0) < H∗ (see (5)).

Thus, by the monotonicity and the above observations regarding the boundary values of W,
for such x value there exists a unique ŷ(ε) ∈ (0, 2δ) such that W (ŷ(x, ε); ε) = H∗ − U(x, 0).
Indeed, recall that in the boundary layer Ni, for positive values of W , W has an inverse
Q(W ; ε) which converges to zero along with all of its derivatives (see condition IV). Thus,

4This interior region does not include any of the problematic points, by definition.
5The values of W at the outer boundary may be negative, yet must converge to zero.
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Figure 8. Illustration of the setup for the proof of Theorem 2. The top panel shows the global structure
of the Hill region, whereas the bottom panel shows the detailed structure near a corner region. The black
boundary is ∂D, the yellow is DU

Hill(H
∗), the red is the boundary of DHill(H

∗), and the orange is the boundary
of Dε

Hill(H
∗). The solid orange line ∂Dε

Hill(H
∗) is Cr-close to ∂DHill(H

∗) (in red), while the dotted orange
line (inside the blue neighborhoods) is C0-close.
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ŷ(x, ε) = Q(H∗ − U(x, 0); ε) and ŷ(x, ε) → 0 as ε → 0. Expanding y = ŷ(x, ε) + ỹ, and
recalling that U(x, y) is Cr+1 near the boundary of D, we need to find ỹ(x; ε) such that

W (ŷ + ỹ) = H∗ − U(x, ŷ + ỹ) = W (ŷ)− Uy(x, 0)(ŷ + ỹ) +O((ŷ + ỹ)2).

Since Q′(W (ŷ))Uy(x, 0)(ŷ+ỹ) is small, we may solve this equation by the method of successive
approximation:

ỹj+1 = Q(W (ŷ)−Uy(x, 0)(ŷ+ ỹj); ε)− ŷ = −Q′(W (ŷ); ε)Uy(x, 0)(ŷ+ ỹj)+O((ŷ+ ỹj)
2), ỹ0 = 0.

Thus, for any x value for which H∗ − U(x, 0) > ξ, the smooth and impact boundaries of the
Hill region are Cr+1-close, and, in particular, there exists ε1(ξ) such that for every such x
and ε ∈ (0, ε1] there exists a unique y(x; ε) < δ with U(x, y(x; ε)) + W (y(x; ε); ε) = H∗ and
y(x; ε) → 0 as ε → 0.

(ii) Here we address the behavior near transverse intersections of the Hill region corner
set. Let (x∗, 0) ∈ ΣH∗ ⊂ Γ∗

Hill(H
∗); namely, the level set ΣU(H

∗) = {(x, y)|U(x, y) = H∗}
intersects ∂D transversely at the manifold ΣH∗ parameterized by (x∗, 0). It follows from the
transversality assumption that |∇xU(x, y)| �= 0 in a neighborhood of ΣH∗. Hence, the level set
y = δ (namely, Q(q; ε) = δ) intersects ΣU transversely along Σδ

H∗ parameterized by (x∗, y = δ).
The transversality condition on U also guarantees that on one of the sides of Σδ

H∗ the potential
U becomes strictly smaller than H∗ at some finite distance from Σδ

H∗ . By the convergence of V
to zero in Kδ, we know that for y ∈ [δ, 2δ] the smooth Hill region boundary is ρ(ε)-close to ΣU

for these y values, so in particular, the smooth Hill region boundary divides the surface y = δ
along Σδ,ε

H∗ (which is ρ(ε)-close to Σδ
H∗) into an interior part where U(x, δ) + W (δ; ε) < H∗

and an exterior part where the opposite inequality holds. This interior part, which extends
to a finite neighborhood of Σδ

H∗ by the above arguments, bounds the smooth Hill region
boundary near ΣH∗ from the interior part of the Hill region. The zero level set of Q (the
billiard boundary, where U(x, 0) + W (0; ε) > Û + E > H∗), together with the exterior part
of the surface y = δ and the surface ΣU(H

∗ + |W (δ; ε0)|), bounds it from its exterior side.
Altogether, letting δ(ε) slowly converge to zero (so that W (δ(ε); ε) → 0), we obtain that near
a transverse corner of ∂DHill(H

∗), the smooth Hill region boundary is confined to be C0-close
to the corner; see Figure 8.

(iii) Now consider the case where the intersection of ΣU (H
∗) with ∂D at ΣH∗ is non-

transverse with ∂U
∂ȳ

∣∣
(x∗,0) < 0. Here it is more convenient to use a local Cartesian coordinate

system centered at the intersection point, so that qb = (x̄, ȳb(x̄)) denotes the billiard bound-
ary near (x∗, 0). Let ȳη(x̄; ε) denote ȳ(x̄;ε) such that Q(x̄, ȳ(x̄; ε), ε) = η. Fix ε0 > 0, c > 0,
ξ > 0, and ν > 0 such that for all ε < ε0, H∗ < ν + U(x̄, ȳQ(ν;ε)(x̄; ε)) < E + Û for all
|x̄ − x∗| < ξ. Such a choice is possible: indeed, notice that Q(x̄, ȳQ(ν;ε)(x̄; ε)) = W−1(ν, ε);
hence, for fixed ν this level set of Q approaches the billiard boundary: ȳQ(ν;ε) → ȳb(x̄). Thus,
at a small neighborhood of qc, namely for sufficiently small ξ, as ε → 0, U(x̄, ȳQ(ν;ε)(x̄; ε)) =
U(x∗, 0) + O(ξ2, ȳQ(ν;ε)), and thus for a fixed positive ν one can always make ξ sufficiently
small that above inequality holds.

We show below that near qc the level set Q(x, y) = W−1(ν, ε), which approaches the
billiard boundary, bounds the Hill region from the outside (on it, the energy is larger than
H∗), whereas the level set Q(x, y; ε) = δ(ε) bounds it from the inside (energy below H∗).
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Choosing δ(ε) → 0 sufficiently slowly such that δ(ε) > W−1(ν; ε) and W (δ(ε); ε) → 0, one
obtains that these two level sets approach each other with the smooth Hill region boundary
in between.

Fix γ1 > 0 such that sgn(ȳb(x̄)) is constant (or ȳb(x̄) = 0) and ȳδ(x̄) >
δ
2 for all x̄ such

that |x̄− x∗| < γ1. Choose γ2 such that ȳδ(x̄; ε) < γ2 for all |x̄− x∗| < γ1 and all ε < ε0.
Let

γ̂1 =

⎧⎪⎪⎨
⎪⎪⎩

√
δ

√√√√ ∣∣ ∂U
∂ȳ

∣
∣
∣
(x∗,0)

∣∣∣∣ ∂2U
∂x̄2

∣
∣
∣
(x∗,0)

∣∣ if
∣∣∣∂2U
∂x̄2

∣∣
(x∗,0)

∣∣∣ > c > 0,

ξ otherwise,

and let γ1 = min(γ1, γ̂1, ξ).
For (x̄, ȳQ(ν;ε)(x̄; ε)) ∈ Bγ1,γ2 ,

V (x̄, ȳQ(ν;ε)(x̄; ε); ε) = Vb(x̄, ȳQ(ν;ε); ε) + U(x̄, ȳQ(ν;ε))

= ν + U(x̄, ȳQ(ν;ε))

> H∗,

by our choice of ν.
For (x̄, ȳδ(x̄)) ∈ Bγ1,γ2 , recall that γ2 ≥ ȳδ(x̄) >

δ
2 . Then

V (x̄, ȳδ(x̄); ε) = Vb(x̄, ȳδ(x̄); ε)︸ ︷︷ ︸
→0

+U(x̄, ȳδ(x̄)),

U(x̄, ȳδ(x̄)) = U(x∗, 0)︸ ︷︷ ︸
=H∗

+
∂U

∂ȳ

∣∣∣∣
(x∗,0)

ȳδ(x̄) +
1

2

∂2U

∂x̄2

∣∣∣∣
(x∗,0)

(x̄− x∗)2 + h.o.t.

If ∂2U
∂x̄2

∣∣
(x∗,0) goes to zero, then U(x̄, ȳδ(x̄)) < H∗.

Now let ∂2U
∂x̄2

∣∣
(x∗,0) be bounded away from zero. Clearly, if ∂2U

∂x̄2

∣∣
(x∗,0) < 0, then U(x̄, ȳδ(x̄)) ≤

H∗.
Now suppose ∂2U

∂x̄2

∣∣
(x∗,0) > 0. Then

U(x̄, ȳδ(x̄)) = H∗ +
∂U

∂ȳ

∣∣∣∣
(x∗,0)

ȳδ(x̄) +
1

2

∂2U

∂x̄2

∣∣∣∣
(x∗,0)

(x̄− x∗)2

≤ H∗ +
∂U

∂ȳ

∣∣∣∣
(x∗,0)

ȳδ(x̄) +
1

2

∂2U

∂x̄2

∣∣∣∣
(x∗,0)

γ̂1
2

= H∗ +
∂U

∂ȳ

∣∣∣∣
(x∗,0)

(
ȳδ(x̄)− δ

2

)
︸ ︷︷ ︸

>0
< H∗.

Letting ε → 0 and δ(ε) → 0 sufficiently slowly, we obtain that the Hill region boundary
approaches the billiard boundary at qc, C

0-close to the singular billiard boundary.
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Notice that, near an interior boundary point, the topology of the singular Hill region
DHill(H) does not change as H is varied through H∗, whereas the topology does change near
a bifurcating boundary point. Thus, we expect that in the latter case a full description of the
bifurcation sequence of the Hill region boundary needs to be carried out in the (H, ε) plane.
We leave this description to future work.

5. Discussion. We have extended a theorem on approximating smooth billiards with hard-
wall billiards [13] to the smooth impact case, in which free motion in the interior of the domain
is replaced by motion according to a smooth bounded background potential satisfying some
natural conditions. Roughly, the theorem states that regular reflections of the smooth impact
system are close to those of the hard-wall impact system. The result allows us to, under
certain conditions, approximate a smooth impact system using the limit impact system. This
is particularly useful, given the relative ease of computation for the hard-wall case. We have
applied this theorem to a geometric model for collinear triatomic chemical reactions [11],
demonstrating that the simpler hard impact calculations can be used both to get qualitative
information about the behavior of the smooth system and as a tool to reduce the computation
time required to find solutions in the smooth system using continuation methods. The results
presented here suggest two main future directions: singular-like results for general smooth
impact systems (to be compared with those for the smooth billiard systems [13]) and specific
physical applications.

Notably, the results regarding the smooth billiard-like potentials are divided into two types:
persistence-like results and singular-like results; see the recent review [14], which summarizes
these works. The persistence-like results show that near regular reflections, the billiard limit
and the soft steep potential are close in the Cr-topology; hence their local behavior near
hyperbolic trajectories is similar. On the other hand, the singular-like results show that near
billiard orbits which are tangent to the boundary or go to corners, the system with the soft
potential may have very different behavior than does the limit system. Nonetheless, techniques
for studying this singular limit by utilizing the billiard limit have been developed. Using these
techniques, it was established, for example, that the soft system may have elliptic periodic
orbits for arbitrarily steep potential, even in cases where the hard-wall billiard is hyperbolic
[13]. Here, we explored only the persistence-like results in the soft-impact case. It turns out
that this extension by itself is quite rich. Further exploration of the singular-like results for
the soft impact case may provide new insights with regard to the validity and applicability of
the naive impact-like system.

In applications where the Hamiltonian is of the form (4) and the steep potential is un-
bounded (or E � |U |) [11], one expects that at very high energies the billiard model will
provide a good approximation to the dynamics [13, 14]. Here, we extend this methodology to
lower energies, where the background potential is nonnegligible, yet the reflection from some
boundaries is well approximated by impacts. We expect that this approach will be particu-
larly relevant to molecular dynamics problems. There, the Pauli repulsion term is very steep
and is dominant at short range at all energy levels, whereas the van der Waals or dispersion
forces are smoother and contribute to a background potential that affects the motion only at
energies that are of the order of the barrier energies. In [11] we provided one example for
this general approach, and here, in section 3, we have further explored some of the possibil-
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ities for utilizing it. We believe that this direction may provide qualitative insights into the
dynamics in other molecular dynamics problems that are inherently nonlinear and far from
being integrable. Moreover, as demonstrated, the results for the limit systems may be used
to reduce computation time for calculations of various entities such as stable periodic orbits
of the smooth system and, possibly, stable and unstable manifolds.

Finally, Theorem 1 could possibly be extended to other important cases, for example,
cases in which the potential and the billiard boundary move in time and cases in which the
kinetic energy depends on the position, as when the particles are charges and are subjected
to a magnetic field (see [1, 2, 5]). Such extensions will further enhance the applicability of
this methodology to additional fields of physics and chemistry.

Appendix A. Conditions for the Cr- and C0-closeness theorems. There are five con-
ditions needed for proving Theorem 1. Conditions I–IV are concerned with the billiard-like
potential V (q; ε) and its limiting behavior and are identical to those formulated in [13, 16]
(repeated here in order to set up the notation for the proof). The last condition, concerned
with the smooth potential U(q), is new.

Condition I. For any fixed compact region K ⊂ D, the potential V (q; ε) diminishes along
with all its derivatives as ε → 0:

lim
ε→0

‖V (q; ε)|q∈K‖Cr+1 = 0.

We assume that the level sets of V may be realized by some finite function near the
boundary. Let N(Γ∗) denote the fixed (independent of ε) neighborhood of the corner set,
and N(Γi) denote the fixed neighborhood of the boundary component Γi in the R

d-topology.
Define Ñi = N(Γi) \N(Γ∗), and assume that Ñi ∩ Ñj = ∅ when i �= j.

Assume that for all small ε ≥ 0 there exists a pattern function

Q(q; ε) :
⋃
i

Ñi → R1,

which is Cr+1 with respect to q in each of the neighborhoods Ñi and depends continuously
on ε (in the Cr+1-topology, so it has, along with all its derivatives, a proper limit as ε → 0).

Further assume that in each of the neighborhoods Ñi the following is fulfilled.
Condition IIa. The billiard boundary is composed of level surfaces of Q(q; 0):

Q(q; ε = 0)|q∈Γi∩Ñi
≡ Qi = constant.

In the neighborhood Ñi of the boundary component Γi (so Q(q; ε) is close to Qi), define a
barrier function Wi(Q; ε), which is Cr+1-smooth in Q, is continuous in ε, and does not depend
explicitly on q. Also assume that there exists ε0 such that conditions IIb–c are satisfied.

Condition IIb. For all ε ∈ (0, ε0] the potential level sets in Ñi are identical to the pattern
function level sets, and thus

V (q; ε)|q∈Ñi
≡ Wi(Q(q; ε) −Qi; ε).

Condition IIc. For all ε ∈ (0, ε0], ∇V does not vanish in the finite neighborhoods of the
boundary surfaces Ñi; thus

∇Q|q∈Ñi
�= 0,
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and, for all Q(q; ε)|q∈Ñi
,

d

dQ
Wi(Q−Qi; ε) �= 0.

Adopt the convention that Q > Qi corresponds to the points near Γi inside D.
Condition III. There exists a constant Ei > 0 (Ei may be infinite) such that as ε → +0

the barrier function increases from zero to Ei across the boundary Γi:

lim
ε→+0

W (Q; ε) =

{
0, Q > Qi,
Ei, Q < Qi.

Condition IV. As ε → +0, for any fixed W1 and W2 such that 0 < W1 < W2 < c, for
each boundary component Γi, the function Qi(W ; ε) tends to zero uniformly on the interval
[W1,W2] along with all of its (r + 1) derivatives.

The last condition is concerned with the addition of the smooth component of the potential
U(q), assuring that together with the billiard-like potential, particles that are initially in D
cannot escape. Denote the minimal barrier height by E ,
(39) E = min

i
Ei,

and the minimal value of U on the billiard boundary by Û ,

(40) Û = min
q∈∂D

U(q).

To ensure that particles cannot escape from D, we require that Û > −E . We thus impose the
following condition on U(q).

Condition V. U(q) is a Cr+1-smooth potential bounded in the Cr+1-topology on an open
set D, where D ⊂ D. The minimum of U on the boundary ∂D satisfies −E < Û .

Appendix B. Calculation of the linearized return map. Let the Poincaré section Σ be
the positive u1-axis. Let f be the flow from Σ to the upper billiard boundary, and let tc be
the collision time (which is found using a shooting method):

fu1 := u1(tc) = u1s + (u10 − u1s) cos(ωtc) +
v10
ω

sin(ωtc),

fu2 := u2(tc) = u20 cosh(λtc) +
v20
λ

sinh(λtc),

fv1 := v1(tc) = −ω(u10 − u1s) sin(ωtc) + v10 cos(ωtc),

fv2 := v2(tc) = λu20 sinh(λtc) + v20 cosh(λtc).

The choice of initial conditions fixed the energy,

H =
v210
2

+
v220
2

+
ω2

2
(u10 − u1s)

2 − λ2

2
(u20 − u2s)

2,

so

v20 =
√

2H − v210 − ω2(u10 − u1s)2 + λ2u220

=
√

2H − v210 − ω2(u10 − u1s)2.
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At tc (at the upper boundary),

fu2 = fu1 tan(β/2),

fv2 =
√

2H − f2
v1 − ω2(fu1 − u1s)2 + λ2f2

u2

=
√

2H − f2
v1 − ω2(fu1 − u1s)2 + λ2f2

u1
tan(β/2)2.

Thus, we can consider instead the 2× 2 system

fu1 := u1(tc) = u1s + (u10 − u1s) cos(ωtc) +
v10
ω

sin(ωtc),

fv1 := v1(tc) = −ω(u10 − u1s) sin(ωtc) + v10 cos(ωtc).

We calculate

Df |(u,v)periodic = D(u0,v0)f +
∂f

∂tc
· ∇(u0,v0)tc,

where

D(u0,v0)f |(u,v)periodic =
[

cos(ωtc)
1
ω sin(ωtc)

−ω sin(ωtc) cos(ωtc)

]
and

∂f

∂tc
=

[ −ω(u10 − u1s) sin(ωtc) + v10 cos(ωtc)
−ω2(u10 − u1s) cos(ωtc)− ωv10 sin(ωtc)

]
.

To calculate the last matrix,

∇z0tc =
[

∂tc
∂u10

∂tc
∂v10

]
,

we use

fu1 := u1(tc) = u1s + (u10 − u1s) cos(ωtc) +
v10
ω

sin(ωtc),

fu2 := u2(tc) = u20 cosh(λtc) +
v20
λ

sinh(λtc)

=

√
2H − v210 − ω2(u10 − u1s)2

λ
sinh(λtc).

Now

0 = F (z0 + dz0, tc + dtc) = tan

(
β

2

)
− fu2(z0 + dz0, tc + dtc)

fu1(z0 + dz0, tc + dtc)

= tan

(
β

2

)
−

[
fu2(z0, tc)

fu1(z0, tc)
− fu2

f2
u1

(
∇zfu1dz0 +

∂fu1

∂tc
dtc

)
+

∇zfu2dz0 +
∂fu2
∂tc

dtc

fu1

]

= tan

(
β

2

)
− fu2(z0, tc)

fu1(z0, tc)︸ ︷︷ ︸
=0

+
fu2

f2
u1

(
∇zfu1dz0 +

∂fu1

∂tc
dtc

)
− ∇zfu2dz0 +

∂fu2
∂tc

dtc

fu1

,
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so

fu2

f2
u1

(
∇zfu1dz0 +

∂fu1

∂tc
dtc

)
=

∇zfu2dz0 +
∂fu2
∂tc

dtc

fu1

and hence

tan

(
β

2

)(
∇zfu1dz0 +

∂fu1

∂tc
dtc

)
= ∇zfu2dz0 +

∂fu2

∂tc
dtc.

Taking derivatives,

∇zfu1dz0 = du10 cos(ωtc) + dv10
1

ω
sin(ωtc),

∂fu1

∂tc
dtc = dtc [−(u10 − u1s)ω sin(ωtc) + v10 cos(ωtc)] ,

∇zfu2dz0 = du10

[
−ω2 sinh(λtc)(u10 − u1s)

λ
√

2H − ω2(u10 − u1s)2 − v210

]
+ dv10

[
−v10 sinh(λtc)

λ
√

2H − v210 − ω2(u10 − u1s)2

]
,

∂fu2

∂tc
dtc = dtc cosh(λtc)

√
2H − v210 − ω2(u10 − u1s)2,

and substituting, we get

∂tc
∂u10

=

∂fu2
∂u10

− tan(β2 )
∂fu1
u10

tan(β2 )
∂fu1
∂tc

− ∂fu2
∂tc

=

−ω2 sinh(λtc)(u10−u1s)

λ
√

2H−ω2(u10−u1s)2−v210
− tan(β2 ) cos(ωtc)

tan(β2 )) [−(u10 − u1s)ω sin(ωtc) + v10 cos(ωtc)]− cosh(λtc)
√

2H − v210 − ω2(u10 − u1s)2
,

∂tc
∂v10

=

∂fu2
∂v10

− tan(β2 )
∂fu1
v10

tan(β2 )
∂fu1
∂tc

− ∂fu2
∂tc

=

−v10 sinh(λtc)

λ
√

2H−v210−ω2(u10−u1s)2
− tan(β2 ))

1
ω sin(ωtc)

tan(β2 ) [−(u10 − u1s)ω sin(ωtc) + v10 cos(ωtc)]− cosh(λtc)
√

2H − v210 − ω2(u10 − u1s)2
.

Now let rup denote the reflection at the upper boundary. By the reflection law at the
upper boundary,

Drup =

[
1 0

− sin(β)(ω2(fu1−u1s)−fu1λ
2 tan(β/2)2)√

2H−ω2(fu1−u1s)2−f2
v1

+f2
u1

λ2 tan(β/2)2
cos(β)− fv1 sin(β)√

2H−ω2(fu1−u1s)2−f2
v1

+f2
u1

λ2 tan(β/2)2

]

with det= 1.
Similarly, we calculate Dg (the flow from the upper boundary to the lower boundary),

Drlow (the reflection at the lower boundary), and Dh (the flow back to the section); see [7]
for the full calculation.

The linearization of the Poincaré map at a periodic orbit is

D|(u,v)periodic = (Dh ·Drlow ·Dg ·Drup ·Df)|(u,v)periodic .
Using the MATLAB symbolic math package, we checked that this is indeed symplectic.
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