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I. INTRODUCTION

Visualizing and quantifying mixing in unsteady fluid flows is a magical and tricky

business, with important practical implications including larval dispersion and population

connectivity1,2, oil spills3,4, search and rescue5,6, functioning of the marine ecological system7

and more8. Currently there are many tools to visualize and analyze mixing properties of

flows and maps9–17. While this field provides an endless source of scientifically-produced

art, beyond its aesthetic nature lurks the scientific challenge of characterizing these complex

phenomena and providing predictions and insights relevant for real life problems.

One aspect of the complexity arises from the flow field structure. Unsteady flow fields

typically have a mixture of Coherent Structures (CSs), jets and mixing layers that move in

an unsteady fashion. Moreover, these structures typically exist only for some finite time.

Roughly, by coherent structure we mean a body of fluid which moves together for a certain

period of time in any reference frame one chooses, namely, we take the Lagrangian point of

view which is frame independent (see discussion and references in15,18,19). Passive particles

placed inside such a coherent structure remain in it as long as it lives, often moving roughly

quasi-periodically around the coherent structure center. Here we mainly focus on such CSs.

Jets may be characterized as regular particles that flow between neighboring sections. These

structures are typically separated by mixing layers, the regions in which there is “chaotic

mixing” - a sensitive dependence of the Lagrangian trajectories on initial conditions (i.c.).

Particles belonging to the mixing layer may stick to a nearby coherent structure or a jet for

a certain period and then eject from it. This complex mixture of structures may appear in

flows in closed domains (such as closed basins), in open domains (such as coastal areas) or

in practically unbounded domains (such as eddies within the Pacific Ocean).

Another aspect of the complexity is the infinite dimensional nature of the initial data

problem17,20,21. Indeed, the initial distribution of the particle density belongs to the space of

all possible initial distributions of scalar fields. Different mixing characteristics may apply

to particular subclasses of such distributions22,23.

The last aspect we mention here is the temporal complexity of the problem. There

are the classical mixing time scales associated with the molecular diffusion and viscosity,

relevant for both steady and unsteady flows. However, for unsteady flows, additional scales

emerge24,25, those associated with the unsteady component frequencies and amplitudes and
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those associated with the resulting chaotic mixing scales. Finally, in many applications the

observation time scale is also relevant18,26.

Defining a proper characterization of mixing is non-trivial and is problem and application-

oriented. With all these complexities in mind, with the common appearance of mixture of

flow regimes having temporal variations, we conclude that any classification scheme of mix-

ing domains must have some tunable threshold parameters. On a finite time regime most

characteristics do not reach their asymptotic values, hence to distinguish between different

types of trajectories (i.e. belonging to different structures or regions), threshold parameters

need to be introduced. For example, to distinguish between a mixing layer and coherent

motion on a finite time interval, a threshold parameter for Finite Time Lyapunov Exponent

(FTLE), Finite Size Lyapunov Exponent (FSLE) or for Relative Dispersion (RD) is com-

monly used, either apriori or posteriori. This observation impedes the quest for universal,

parameter-free classification. Indeed, despite being a classical long standing problem, new

mixing characteristics are suggested and presented in various ways, from both Eulerian and

Lagrangian points of view10,15,16,27–30.

Eulerian characteristics correspond to snapshots (or temporal averages) of the velocity

field or its spatial derivatives (e.g. the Okubo-Weiss criterion or the vorticity field 31,32).

Numerous studies in recent years developed methods to detect mesoscale eddies, relying on

analysis of oceanic Eulerian measurements, such as velocities, Sea Surface Height (SSH), or

Sea Surface Temperature (SST)33–35.

Lagrangian characteristics are based on an integrative procedure by which an observable

is measured along trajectories (e.g. the absolute dispersion (AD) measures the distance trav-

elled by a particle, the RD measures the distance between a particle and its neighbors, the

FTLE measures the maximal local stretching rate, etc.). Some of the Lagrangian character-

istics present the resulting observable after a certain integration time, with no information

on the intermediate time dynamics (e.g., the AD and RD fields depend only on the initial

and final location of the particles), whereas some of the other Lagrangian characteristics use

averaging or integration along the trajectories3,17,26,36–38. These Lagrangian fields are com-

monly used to identify regions of small and enhanced stretching and, in particular, are used

to identify the spatial position of dividing surfaces between different regions 2,26,27. Another

approach, mainly applicable for time-dependent open flow is based on the residence time that

particles spend in a certain domain30,39. The locations and sizes of CSs have been mainly
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studied by the transfer-operator approach, providing a connection between the Eulerian and

Lagrangian perspectives15,40–42. More recently, the notion of coherent Lagrangian vortices

was introduced to identify CSs by using a variational principle on the averaged Lagrangian

strain19. The notion of maximal absolute dispersion was first introduced for studying the

lobe dynamics43 of surface particles embedded in a three dimensional velocity field44. This

study has motivated much of the current work.

Here we propose a new family of Lagrangian characteristics: the spatial dependence

of extreme values of an observable along trajectories. Since asymptotically these values

converge to common extreme values in each ergodic component (similarly to Lagrangian

averages along trajectories, in particular, this is the main feature of the ergodic partition

approaches3,17,36), such extrema fields provide a rough division into distinguishable ergodic

components. Moreover, the extreme values of the selected observable may by themselves

have significant physical meaning. Examples of such significant observable values are: maxi-

mal/minimal extension of trajectories in a certain direction (hereafter MET), maximal speed

or strain experienced by the particle, closest approach to the particle initial location or clos-

est approach to a prescribed location. In fact, any of the commonly calculated Lagrangian

fields may be chosen as an observable.

Here we focus on the MET and its variants, such as the average between the minimal and

maximal extents and their difference (hereafter we refer to all of these as MET). These new

MET characteristics have a few advantages. First, their computation is simple and intuitive

and their computational cost is relatively low. Second, by definition their convergence in

time is non-oscillatory. Third, and most important, by choosing the MET and examining

its Probability and Cumulative Distribution Functions (PDF and CDF) we can extract not

only the existence of CSs, but can also quickly determine many of their characteristics (e.g.,

their number, size and location). This feature will potentially allow for a substantial data

reduction; see below.

Studying extreme value statistics in the context of chaotic dynamical systems is a fas-

cinating relatively new field of research45–50. Previous works on the extreme values of an

observable of dynamical systems have mostly focused on the temporal dependence of a sin-

gle chaotic trajectory for maps (mainly for chaotic dissipative maps), connecting it to the

universal distributions appearing in the field of Extreme Value Statistics (EVS) on one hand

and to Poincaré recurrences and local dimensionality of the attractors on the other hand
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(the connection to36,48 may thus be intriguing). Here, we focus instead on utilizing the

extreme value functionals as convenient spatial characteristics of dynamical systems with

mixed phase space. A related approach in the study of the spatial structure of resonances

in the standard map has been previously proposed, where differences between supremum

and infimum along trajectories (minus the averaged rotations) was related to the width of

a resonance45.

The paper is ordered as follows: we first define the new family of characteristics (section

II) and explore their properties using a few toy models (section III). We then apply these

measures to real geophysical data - surface currents in the South Atlantic (section IV). We

conclude and discuss some of the future directions in section V.

II. MAIN CONCEPTS AND DEFINITIONS

Consider the motion of passive particles in a fluid flow (see specific examples below):

dx

dt
= u(x, t), x ∈ Rn, n = 2 or 3 (1)

and the extremal (and its variants) values of an observable function φ for each particle along

a time segment of a trajectory:

M+
φ (τ ; x0, t1) = maxt∈[t1,t1+τ ] φ(x(t; t0)) (2)

M−
φ (τ ; x0, t1) = mint∈[t1,t1+τ ] φ(x(t; t0)) (3)

M shift
φ (τ ; x0, t1) = M+

φ (τ ; x0, t1) − M−
φ (τ ; x0, t1) (4)

Mmean
φ (τ ; x0, t1) = 1

2
(M+

φ (τ ; x0, t1) + M−
φ (τ ; x0, t1)) (5)

where x(t0; t0) = x0 and t1 ∈ R. Notice there are three time parameters in the above

definition: t0 corresponds to the seeding time of the particles - the velocity field phase

at which the integration of the trajectories begins. [t1, t1 + τ ] is the extremal window,

the recording time interval on which the observable is maximized/minimized. One natural

choice is to take t1 = t0 and τ sufficiently large with respect to the CS turnover time,

so that the CS is resolved within the extremal window. For periodic flows, shifting the

extremal window may reveal trapping regions of the CSs. For unsteady flows, when coherent

structures emerge and disappear or move around in an unknown manner, windowing in t1

and τ may reveal the temporal existence and spatial movement of CSs, see below. Notice
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that M shift
φ (0; x0, t0) = 0,Mmean

φ (0; x0, t1) = M+
φ (0; x0, t1) = M−

φ (0; x0, t1) = φ(x(t1; t0)) and

that M shift
φ (τ ; x0, t1), M+

φ (τ ; x0, t1),−M−
φ (τ ; x0, t1) are nondecreasing functions of |τ |.

Asymptotically, we define:

M+
φ (x0) = lim supt→∞ φ(x(t; t0)) (6)

M−
φ (x0) = lim inf t→∞ φ(x(t; t0)) (7)

M shift
φ (x0) = M+

φ (x0) − M−
φ (x0) (8)

Mmean
φ (x0) = 1

2
(M+

φ (x0) + M−
φ (x0)) (9)

with similar definitions for the negative time asymptotic.

These definitions naturally extend to maps. Indeed, for time-periodic flows, when the

observation time includes many periods, it makes sense to consider the discrete time series

found from the Poincaré map (the stroboscopic sampling of the signal) instead of the contin-

uous flow, and all the above notions apply (e.g., notice that M shift
φ (x0) is very similar to the

width function that was previously used in studying the standard map45). Here, however,

for deductive reasons we do not use the time-periodicity feature of the toy models. Instead,

we keep in mind the general setting for geophysical flows where the velocity field is not

periodic and in principle even when there is a known dominant frequency in the spectrum

(e.g., tidal frequency) the observation time may be shorter than the associated period.

Here we focus on the MET fields by setting the observable φ to measure the extent of

the particle position in a given direction r: φ(x(t; t0)) = x(t; t0) ∙ r. M±
r (τ ; x0, t1) represent

the maximal/minimal extents visited by the particle during the extremal window [ t1, t1 + τ ].

M shift
r (τ ; x0, t1) denotes the difference between these maximal and minimal extents, and is

called the maximal shift. Mmean
r (τ ; x0, t1) denotes the mean of the maximal and minimal

extents, and is called hereafter the Mean of Extrema EXtents - MEEX.

We propose that by monitoring these fields, which are trivial to compute, we can infer

quite a few properties of the Lagrangian flow structure both asymptotically and transiently.

Moreover, we propose that such properties may be found quite efficiently by analyzing the

probability and cumulative distribution functions (PDF and CDF) of the MET field. This

may lead to significant data reduction from 2D fields (e.g., the common FTLE or RD) to a

1D plot. Often, especially in realistic geophysical applications, the amount of data (e.g. data

extracted from satellites or from general circulation models) is huge and time-dependent,

and efficient data-compression methods are needed. As described in the next section, the
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FIG. 1. Two stationary coherent structures: the maximal (left) and minimal (right) x position

(M±
(1,0)) of all initial conditions is plotted (top), as are the corresponding PDF (middle) and CDF

(bottom) functions. Each gyre appears in the PDF and correspondingly in the CDF: the left gyre

accumulates to occupy exactly half of the domain, as apparent from the height of the CDF plateau

region. For the maximal extent CDF (left column), the CS center at x = 0.5 is identified by the

CDF parabolic rise and its maximal extent, up to x = 1, is identified as the plateau left boundary.

Corresponding identifiable signatures apply to the right gyre and to the minimal extent CDF (right

column). Eq. 10, A = 0.25, ε = 0 and τ = 200.

shape of the CDF provides information about the existence of coherent structures, their

locations, and the existence of chaotic zones. It seems that some of the properties may even

be inferred from a sampling of the flow field in only a few directions, making this diagnostic

a potentially useful tool in real applications where practically there is a limited sampling of

the flow (e.g., by only few drifters). Potentially this approach may be also applicable in the

fully three dimensional setting. We will further explore this direction in future studies.
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III. TYPICAL FEATURES OF THE MET: TOY MODELS

Next we examine the properties of the extremal fields at typical structures that appear in

unsteady flows. To this aim we first consider prototypical models for stirring and mixing in

bounded domains - the steady and time-dependent double gyre models. We then consider

the oscillating vortex pair model to demonstrate the method on a flow in an unbounded

domain.

A CS, loosely defined as a group of trajectories with a common averaged behavior on some

fast eddy-turnover time scale, may be stationary, gently oscillating, rotating or advected in

an unbounded domain. The FTLE and RD fields for particles in all such structures asymp-

totically vanish. Below, we list the characteristic features of the MET in these different

settings. We show that while the MET is simpler to compute it provides additional infor-

mation about the properties of the coherent structures.

A. Coherent structures in bounded domains

To gain intuition we examine the double gyre model27:

Ψxy(x, y, t) = −A sin(πf(x, t)) sin πy (10)

f (x, t) = ε sin ωt x2 + (1 − 2ε sin ωt)x.

We begin with the trivial case of the steady double gyre (ε = 0) and then continue to

more realistic settings. In this and all other cases (except Figs. 6,7 in which sensitivity

to resolution is studied) we seed the double gyre domain [0 , 2] × [0, 1] by uniformly spaced

400 × 200 initial values, integrating the equations of motion with Matlab ode45 solver.

A single stationary coherent structure. Consider the stationary double gyre model.

The maximal and minimal extents in the x direction for this case are shown in Fig. 1a,d.

The flow has two symmetric gyres lying along the horizontal direction and no mixing zone.

Examine the left gyre first. All trajectories belonging to the left gyre are bounded and

periodic in time. Hence, for any fixed t1, for all τ , Mr(τ ; x0, t1) and M±
r (∙) are finite and,

for sufficiently large τ , M shift
r (∙) is equal to the width of the periodic orbit in the direction

r, whereas M±
r provide the maximal and minimal extents in this direction.

Asymptotic form of the PDF and CDF The PDFs and CDFs for this case are

also shown in Fig. 1. The CDF of M+
r converges to a piecewise smooth increasing function
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which starts increasing quadratically from zero concentration at the coherent structure center

(x = 0.5) and abruptly stops increasing at the coherent structure boundary (x = 1.0). The

area fraction of the left coherent structure is given by the CDF height difference between the

two corresponding plateaus of the CDF. The CDF of M−
r (Fig. 1f) starts increasing abruptly

at the coherent structure leftmost boundary (x = 0) and stops increasing quadratically at

the coherent structure center (x = 0.5) in a plateau. For the M−
r CDF, the area fraction of

the left coherent structure is given by the CDF height difference between the corresponding

plateau of this CDF and the origin.

Several stationary coherent structures. The properties of the four quantifiers

M shift
r ,Mmean

r ,M±
r and the directional dependence is clarified when several coherent struc-

tures coexist in the flow. Fig. 2a-h shows these four fields for two directions (x and y). First,

we observe that the M±
r fields distinguish between different CSs provided that the structures

have no overlap in the direction r. In our example it is clear that the x maximal/minimal

extent fields (M±
(1,0), Figs. 1 and 2e,f) distinguish between the left and right gyres whereas

the y maximal/minimal extent fields (M±
(0,1), Fig. 2a,b) do not. More generally, denote by

Lx−left the x coordinate of the right boundary of the left gyre, by (Cx−right, Cy−right) the

center of the right gyre and by Ly the height of the gyres. Then, for r = (rx, ry), we see

that M+
r (i.c. in left gyre) = maxi.c. in left gyre(x(t)rx + y(t)ry) < Lx−leftrx + Lyry whereas

M+
r (i.c. right gyre) = maxi.c. in right gyre(x(t)rx + yry) > Cx−rightrx + Cy−rightry. Hence, if

there is a gap between the two bounds (here ry

rx
<

Cx−right−Lx−left

Ly−Cy−right
) we will call r a resolving

direction and then the CDFs of M±
r show two distinct monotone increasing regimes each

corresponding to a different gyre as in Fig. 1. In contrast, the M shift
r field is identical for

the two gyres. More generally, for all r, since the M shift
r field measures the spatial extent in

the direction r of the gyres, all the coherent structures are generally lumped together in the

CDF of the M shift
r field (similarly to the CDF of the standard FTLE and RD fields). Finally,

while the Mmean
r field distinguishes between the gyres, it is not necessarily monotone within

the gyre and thus may produce a more complex CDF (see e.g. Fig. 3).

More generally, we see that depending on the structures’ alignments, a direction r may

or may not resolve the structures. If the center of one structure is bounded away from the

maximal (or minimal) extent of the other in the direction r we do have separation - a gap in

the M±
r values. We expect to be able to find such resolving directions when there is a small

number of coherent structures, but not when there are many possibly disordered structures
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FIG. 2. Two stationary (a-h) and oscillatory (i-l) coherent structures. (a-d) The need to choose

resolving direction for obtaining the number of distinct CSs from the corresponding CDFs is demon-

strated. The two gyres here have exactly the same extent in the y direction (i.e. identical M±
(0,1)

values) hence the CDF of the M±
(0,1) does not lead to a distinction between the left and right gyres.

(e-h) The need for the maximal/minimal quantifiers is demonstrated - while the maximal/minimal

x values (M±
(1,0)) (e,f) distinguish between the right and left gyres, their difference, the maximal

shift M shift
(1,0) (g), does not. The MEEX in x, Mmean

(1,0) (h), distinguishes between the gyres yet re-

mains constant throughout the gyre, namely it does not resolve the inner gyre structure. (i-l). The

applicability to unsteady flow is demonstrated (Eq. 10 with A = ε = 0.25, ω = 2π/10 and τ = 200).

Notice that in both the stationary and oscillatory cases, at the coherent structure centers the fields

M shift
r ,M+

r ,−M−
r attain their local minima, whereas Mmean

r appears to be approximately con-

stant along each gyre (as a result of the symmetric form of the gyres). In the stationary cases

(a,b,e,f) the value of M±
r at the center matches the center position whereas in the oscillatory case

(i,j) there is a mismatch due to the oscillation: M±
r − xc(t0; t0) ∙ r 6= 0.
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in the domain (as in 2D-turbulent flows). In such cases, one can subdivide the domain until

the structures are resolved; see the real data section and the discussion.

The important conclusion from the above is that the CDF of the Mmean
r and M±

r fields

with a resolving direction r may be used to distinguish between the existence of multiple

vs. a single CSs (thus helping in data reduction). In contrast, the CDF of the M shift
r field,

of the MET in non resolving directions, of the RD, FTLE fields and of other similar fields

cannot help in counting the number of distinct CSs.

Oscillating coherent structures and the mixing layer Consider now the periodically

perturbed double gyre model shown in Fig. 2i-l. Here, trajectories starting inside the two

gyres move on some invariant rings around the two oscillating centers located near x =

0.5, 1.5, y = 0.5. We expect that most of the initial conditions in these gyres belong to KAM

tori, namely they perform regular (quasiperiodic) motion. We observe that the properties

of the fields Mmean
r ,M shift

r ,M±
r (Fig. 2i-l) and their PDFs and CDFs in the CSs (Fig. 3) are

similar to those of the steady gyres. To gain intuition, assume that the trajectories are of the

form: x(t; t0) = xc(t; t0)+ g(t; x0) where xc(t; t0) is some unknown slowly moving center and

g is rapidly oscillating with zero mean (otherwise the particle drifts away from the center).

The main difference between these and the stationary CSs, and in fact a way to identify these

oscillating structures, appears when one examines the value of M±
r at the coherent structure

center xc(t; t0), where, as before, we may define xc(t0; t0) as the trajectory along which Mr

attains its local minima. In the steady case, we have M−
r = M+

r = xc(t0; t0) ∙ r, whereas

in the oscillating case these values provide the minimal and maximal central location of the

coherent structure along the r direction, see Fig. 2i-l (see also Fig. 4).

In the oscillatory case a mixing layer appears: it consists of chaotic trajectories having

sensitive dependence on i.c. that eventually encircle both gyres. Hence, for all i.c. x0 in the

mixing layer, the values of M shift
r ,M±

r ,Mmean
r asymptote to the width/the extent/the mean

extent of the mixing layer in the r direction. It follows that the boundary between the mixing

layer and the coherent structure in the MET fields plots is sharp - the MET are discontinuous

at this boundary (Figs. 3,4,5). The PDFs of M shift
r ,M±

r ,Mmean
r converge to a delta function

on the chaotic component, at the corresponding value of the shift/maximal/minimal/mean

extent of the mixing layer (in the present case the maximal/minimal extent of the domain) -

the chaotic bin. In the PDF of these fields the only observable structure is the mixing layer

whereas the regular coherent structures become invisible (Fig. 3b). In the CDF the finite
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FIG. 3. Oscillatory double gyre - the maximal extent and the extremal mean in x: M+
(1,0),M

mean
(1,0) ,

their PDF, CDF. In the CDF of M+
(1,0), the two gyres appear as two parabolic segments starting

near the x values 0.8 and 1.7 whereas the mixing layer appears as a sharp jump at x = 2, so these

three structures are clearly distinguishable in this CDF, whereas in the PDF the high concentration

of the distribution function in the mixing layer bin (xmax . 2) makes the contributions to the

regular coherent structures hardly detectable (see inset). In the CDF of Mmean
(1,0) , the two gyres and

the mixing layer all appear as sharp jumps, so these three structures are distinguishable, yet their

different character is not clearly identifiable. Eq. 10, A = ε = 0.25, ω = 2π/10 and τ = 200.

(i.e. non-infinitesimal) volume of the chaotic layer is apparent (Fig. 3c).

Fig. 4 demonstrates that the CDF of the MET field M+
(1,0) provides a succinct way to

compare the mixing properties of different flow fields. In this figure we compare the CDFs of

the unsteady double gyre model, after 20 periods, for increasing power of the gyre intensity.

By increasing the gyre intensity (A in Eq. 10) we effectively decrease the non-dimensional pe-
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FIG. 4. MET field for the oscillatory double gyre for different base flow intensity A after 20 periods.

Right: The maximal extent in x, M+
(1,0), is shown for four different base flow strengths. Left: The

corresponding CDF for these and additional values of A. The CDF provides succinct presentation

of the CSs size and location for the different flows without using any flow visualization analysis. The

two gyres and the mixing layer are distinguishable: the left (respectively, right) gyre corresponds

to the parabolic increase in the CDF starting near x = 0.75 (respectively, near x = 1.7) whereas

the mixing layer corresponds to the sharp increase of the CDF near x = 2. The difference between

the location of the gyre center and its maximal value provides information regarding its oscillation

magnitude. The accumulated size of the coherent structures is seen to decrease here with decreasing

A thus providing estimates for the area of the mixing zone. In all figures ε = 0.25, ω = 2π/10 and

t1 = 0, τ = 200.
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FIG. 5. MET fields for the oscillatory double gyre after 5 (a), 10 (b), 20 (c) and 40 (d) periods

and their CDFs (left). The convergence of the CDFs and of the MET fields in regular regions is

mainly achieved already after 5 periods, whereas the mixing layers have slower convergence and do

not achieve their asymptotic behavior even after 40 periods. Here A = 0.17, ε = 0.25, ω = 2π/10.
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FIG. 6. Dependence on spatial resolution of the Maximal extent field and its CDFs. The number of

particles is increased by a factor of 64 from (a) to (d). The fast convergence of the CDF becomes

even more dramatic (the lowest 3 curves become indistinguishable, and the jump at x = 1.2

disappears) when the particles that are restricted to the rectangle boundaries are discarded. Here

A = 0.17, ε = 0.25, ω = 2π/10.

riod of the oscillatory component, bringing the system closer to the near-integrable regime 25.

The CDFs reveal how the two CS centers oscillate to larger extent and shrink in size as A

is decreased without using any flow visualization analysis. Indeed, notice that the parabolic

increase in the CDF starting near x = 0.7 (x = 1.7) corresponds to the maximal x-locations

of the left (right) CS center respectively. Thus, the change in this value with A (see inset)

indicates that the centers experience larger oscillations as A decreases. The plateau value of

the CDF provides the area of the left CS (seen to decrease from 40% of the area to nearly

vanishing values as A decreases). The sharp increase in the CDF towards x = 2.0 indicates

the transition to the mixing layer orbits, thus, for sufficiently large τ , the value of the CDF

at the transition point provides the total fraction of area of the regular component. Notice

that when A decreases to 0.17 the two gyres break into smaller CSs, some of these begin

to rotate in the box (see the bright red crescent on the left part of the box - this crescent

together with the island to the right of the center line correspond to a period two CS. The

large discrepancy between the location of this crescent and the M+
(1,0) value in it, which is

equal to that found in the other island, suggests its rotational nature. This may be verified

by trajectory computations and by looking at the minimal extent field, not shown).
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FIG. 7. Dependence on spatial resolution of the Relative Dispersion field. The same 4 resolutions as

in Fig. 6 are used to calculated the RD field. The spurious patchiness at the two lowest resolutions

(a,b) hides the existence of the small CS structures near x = 1 - these do appear in the lowest

resolution of the Max. extent plots Fig. 6a,b. Here A = 0.17, ε = 0.25, ω = 2π/10.

Sensitivity tests to time dependence and particle density

Fig. 5 shows the MET field M+
(1,0) and its CDFs at several times, showing the convergence

of the MET field to its asymptotic values which are constant on each ergodic component.

It is seen that while the CDF component of the CSs appears to converge already after 5

periods, the mixing component has not reached its asymptotic form even after 40 periods.

Namely, the convergence characteristics of these fields are different in the mixing vs. the CS

regions. Indeed, high variability in the convergence time due to stickiness and long tails are

expected to emerge in the chaotic zone whereas in the coherent structures the convergence

is expected to be regular for most i.c.. Notice that the ghost of the stable manifold is readily

seen for short extremal windows. These distinct convergence properties and the transient

features of the MET may be utilized to distinguish between different regions and for locating

dividing surfaces - this is left to future studies.

Fig. 6 shows the maximal extent in x and its CDF for 4 different spatial resolutions.

The CDF converges rapidly as the resolution is increased. The spurious jump of the CDF

at x = 1.2 which disappears with the increased resolution is associated with the boundary

particles that remain on the rectangular boundary for all times and thus corresponds to an

artificial effect caused by the choice of the grid. When these particles are discarded one can

hardly detect the difference between the four curves (not shown). Fig. 7 shows RD field for

the same resolutions. The spurious patchiness of the RD at low resolutions is apparent -
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we observe that the small CS structures located near the domain center may be detected

in the low resolution Max. extent plots (Fig. 6a,b) but not in the corresponding RD plots

(Fig. 7a,b).

B. Coherent structures in open flows.

Consider next an open flow model, the Oscillating Vortex Pair (OVP): a vortex pair in

an oscillating strain-rate field embedded in a uniform flow. The non-dimensional stream

function39 is of the form51:

ψ(x, y, t) = − log
(x − xv)

2 + (y − yv)
2

(x − xv)2 + (y + yv)2
− vy + εxy sin(ωt)

dxv

dt
=

1

2yv

− v + εxv sin(ωt), (11)

dyv

dt
= −εyv sin(ωt)

where (xv(t),±yv(t)) denote the vortex locations and xv(0) = 0, yv(0) = 1. For ε = 0,

sufficiently far from the vortices, the particles move with a constant velocity (−v, 0), whereas

for non-zero ε these particles are also subjected to the oscillatory strain field. The vortex

pair itself moves, in an oscillatory fashion, with an average horizontal velocity vvort = (0.5−

v + O(ε), 0). As the vortex pair advects it carries with it a body of fluid, namely particles

that move with the same averaged velocity vvort, and due to the oscillations it sheds parts

of this body of fluid in the form of lobes39. Originally, v was tuned so that vvort ≈ 0 and

thus the mixing was observed in the vortex pair moving frame. Here we take different values

of v to examine the dependence of the MET methodology on the translational frame of

reference52.

For negative v (respectively large positive v, v > 0.5 + O(ε)) all particles move to the

right (respectively, to the left). The more complex behavior appears for small positive v

(0< v < 0.5 + O(ε)), where the particles carried with the vortices move in the positive x

direction, and the surrounding particles53 move on average to the left.

To better understand the properties of the MET fields in such open flows, let us discuss

the structure of trajectories in this flow. Trajectories moving with the vortex pair are of

the form: x(t; t0) = vvort(t − t0) + xc(t; t0) + g(t; x0) where xc(t; t0) denotes a slow bounded

motion of the vortex center and g denotes the bounded fast oscillating part of the trajectory
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FIG. 8. The MEEX in X for the OVP open flow at v = 0.25 - dependence on time. The four

right panels show the MEEX in X, Mmean
(1,0) , at four different extremal windows (t1 = 0, τ =

(1, 3, 5, 10) ∙ 2π/ω) for the OVP flow (Eq. (11) with ε = 0.2, ω = 1.45, v = 0.25). The left

panel shows the CDFs of this flow, multiplied by the area factor of the seeded domain, at the

corresponding times - and, the rightmost curve, after 23 periods (see Fig. 9c). The location and

size of the vortical core may be identified from the CDFs; The location of the core at different

time points corresponds, roughly, to twice (recall that this is the mean of the extrema extents)

the x value at which a sharp rise in the CDF occurs (e.g. after 10 periods the vortex is centered

near x = 15. The area of the fluid carried by the vortices is estimated by the height of this sharp

increase in the scaled CDF, namely, the area carried by the vortex after 10 periods is estimated to

be ≈ 5. The area of the lobes that are shed from the vortex region correspond to the small wiggles

in the CDF. The monotone increase in the CDF up to the lobe shedding regime corresponds to

the outer particles that move on average with negative horizontal velocities of approximately −v,

with MEEX value of approximately −vτ/2 + x0 + O(1).

around the vortex. Consider a general direction r and assume for now that vvort ∙ r > 0.

Then, for sufficiently large τ + t1, M+
r (τ ; x0, t1) ≈ (vvort ∙ r)(τ + t1 − t0) + O(1), so all

particles belonging to the CS associated with the vortex pair have a similar maximal extent 54.

Since we assumed here that the CS moves in the positive r direction, the minimal extent

in direction r is essentially, up to some constant, given by the position of the particle

at the beginning of the extremal window: M−
r (τ ; x0, t1) ≈ x(t1; t0) ∙ r. Hence, the M−

r

provides a meaningful characterization of the CS only for sufficiently large t1, M−
r (τ ; x0, t1) ≈

(vvort ∙r)(t1−t0)+O(1). Notice now that if the direction of the vortex pair motion reverses, so
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FIG. 9. The CSs dependence on the strain field frequency. On the right panels the MEEX in x,

Mmean
(1,0) , is shown for four different frequencies at t1 = 0, τ = 100 (about 5, 12, 23 and 50 periods of

the corresponding frequencies, notice that in panel (a) the colorbar does not include the extreme, see

the CDF for the actual values). The left panel shows the CDF of these fields. The area of the CSs

is approximately given by the height of the sharp increased part (i.e. the areas are approximately 7,

5, 5.5, 0.5 for ω = π, 1.45, 0.8, 0.28 respectively). The location is given approximately by double the

position of this sharp increase (since we plot the mean and the minimal value here is approximately

zero), namely, xc ≈ 30, 35, 50, 135 respectively. The non monotone dependence of the core area on

ω is apparent.

that vvort∙r < 0, the same conclusions apply with the roles of M+
r and M−

r exchanged. Taking

the mean or difference of these two values Mmean
r (τ ; x0, t1) ≈ (vvort ∙ r)(τ/2 + t1 − t0) + O(1)

or M shift
r (τ ; x0, t1) ≈ (vvort ∙ r)τ + O(1) enables a meaningful characterization of CSs that

move with different velocities in the direction r with no experimentation with the extremal

window starting location, t1, and without the need to choose between maximal and minimal

extents according to the CS direction of motion (allowing one to run the diagnostics without

saving the full trajectories). This suggests that the Mmean,shift
r fields are more appropriate

for detecting CS structures in open flows, and that using non-trivial extremal window helps

in identifying the CSs. These arguments are expected to hold even when the CS velocity

is not constant and is unknown, as long as the CS averaged motion in the direction r is

unidirectional on the observational time scale and is distinguishable from its surroundings.

If one chooses a direction r which is perpendicular to the direction of motion (e.g. the y

direction here), the number of separate regions may be possibly detected (if r is resolving),

but the information on the CS motion is lost. Below, we demonstrate these properties on
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the OVP model and in section IV on real data.

Fig. 8 shows55 the MEEX in x and the associated area-scaled CDFs for the OVP flow

at several extremal windows of increasing lengths for v = 0.25, where particles move in

both positive and negative directions. Here, and in general in the open flow setting, the

size of the seeding area is arbitrary, and thus, instead of plotting the CDF we plot the

accumulative area in the region, so that the CS area may be directly extracted from these

plots, independently of the initial seeding region.

The CSs appear as a sharp increase in the CDF, its center moving with time. Thus, by

following this sharp rise in the CDF, it is possible to detect the area and location of the

body of fluid which advects with the vortices as well as to identify the volume of fluid that

is shed by the lobes, see figure caption.

Notice that for the OVP flow, trajectories that are far from the vortices experience, on

average, a nearly uniform constant velocity. The MET fields have a nice smooth dependence

on initial conditions in such regions. The CDFs thus have a bulk smooth region correspond-

ing to the background flow, a quadratically increasing portion with a moving center that

corresponds to the CS, and some shedding of lobes that appear as small steps in the CDF,

see Figs. 8-9.

Fig. 9 (respectively 10) shows the MEEX in x (respectively in direction r=(1, 4)) of the

OVP flow for different frequencies of the strain field oscillations. As expected, the CSs area

depends non monotonically on the frequency25, and this property is apparent from both

the CDF diagram and the extremal field plots. While the MEEX in the x direction lumps

together the two CSs associated with the two vortices, the (1 , 4) direction resolves the two

structures.

Sensitivity tests to extremal windows and different translational reference

frames

Fig. 11 compares the different MET quantifiers for three extremal windows. We see that

the MEEX field is non-degenerate, whereas the maximal/minimal fields are degenerate at

t1 = 0 (left- most and right-most columns). Thus, while the MEEX and the shift fields

with t1 = 0 reveal the mixing pattern even after 3 periods (left column), and more so

after 10 periods (right column), the maximal/minimal extents remain with the same initial
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FIG. 10. CSs in a resolving direction. On the right panel the MEEX fields in direction (1 , 4),

Mmean
(1,4) , are shown for the four different frequencies shown in Fig. 9 (again (a) suffers from the

colorbar cutoff). The left panel shows the CDF of these fields. Here, the resolving direction

distinguishes between the lower and upper vortex CSs, showing, for example, that they are of

equal areas.

degeneracy. On the other hand, when we take t1 to be sufficiently large, these degeneracies

lift, and the maximal/minimal extent fields supply similar information as the MEEX.

Fig. 12 shows the MEEX and the maximal extent in x of the OVP flow for different

moving frame velocities, v. While the MEEX field appears to be quite insensitive to the

value of v (though some peculiarities appear at v = 0.25), the maximal extent field with

t1 = 0 has strong v dependence - the regions in which it records only the initial positions

or initial oscillations of the left moving particles depend on v (Fig. 12c,d). Thus, it is

suggested that the MEEX and the shift fields are insensitive to monotonic translations

and applicable even when some structures move out of the original region in which the

particles are seeded in opposite directions. On the other hand the maximal/minimal extent

fields provide meaningful information only if one shifts the extremal window sufficiently far

from the origin or if all trajectories happen to move in the positive/negative r-direction

respectively. Note that these features are especially relevant to geophysical applications in

which the observed domain is open and there is an unknown underlying current, see section

IV.

We conclude that in the open flow settings it is advantageous to use the MEEX, the

mean of the extrema extents in a direction that is both resolving and not perpendicular to

the CS averaged velocity. If the observation time is sufficiently long, it is preferable to use
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FIG. 11. The four different MET quantifiers for three different extremal windows: (a-d) a 3 periods

window starting at t1 = 0, (e-h) 3 period window starting at t1 = 7(2π/ω), (i-l) 10 period window

starting at t1 = 0. For t1 = 0, (left and right columns) the maximal/minimal extent fields cannot

characterize left/right moving trajectories respectively, whereas the MEEX and shift neutralize

this effect. Taking a large t1 makes the maximal/minimal/mean fields quite similar and resolves

this problem (middle column).

non-trivial extremal windows, and in this case the MEEX, the maximal and the minimal

extents provide similar information (in fact, the comparison may provide a way to check the

suitability of the extremal window). Following the changes in the CDFs of the various MET

fields in different directions, the CS approximate location, size, and averaged velocity may

be estimated.
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FIG. 12. The MET dependence on translational frame of reference. The OVP flow with the same

parameters as in Fig. 8 after 10 periods in four different translational moving frames (Eq. 11 with

ε = 0.2, ω = 1.45 and v = −1, 0., 0.25, 1 at τ = 102π
ω ). At v = 0.25 and v = 1 a large portion of i.c.

move to the left, the maximal extent for these i.c. is simply their initial horizontal positions, and

hence the CDF of the maximal extent does not reflect inherent features of the flow. For v = −1 all

i.c. move eventually to the right and the CDF of the max extent field and of the MEEX, stretched

by a factor of two, are identical. Due to this property, we see that the MEEX CDF has a much

weaker dependence on v than the maximal extent CDF.

IV. REAL DATA

We next apply the MET analysis to real data from the South Atlantic, in the region shown

in Fig. 13, using surface currents obtained from the AVISO database (www.aviso.oceanobs.com).

Transport and identification of CSs in this region during this period were studied before 56,57.

As in57, our analysis suggests fewer CSs than identified, e.g. by the Okubo-Weiss criterion

or by the method of35. One of the CSs we identify (A in Figs. 14, 15) was identified by57

while the rest are undetermined. Within this velocity field we deploy 80,000 virtual particles

22



  60oW   40oW   20oW    0o    20oE 

  48oS 

  40oS 

  32oS 

  24oS 

  16oS 

 

 

s-2

-3

-2

-1

0

x 10
-10

FIG. 13. The South Atlantic region in which particles are seeded on Nov. 24, 2006, is the col-

ored rectangular domain. The colors represent the Okubo-Weiss field (showing some spurious

structures57) for Nov. 22, 2006, the closest date to Nov. 24, 2006 for which raw data from the

AVISO data set is available.

on an approximately 4 km grid (approximately 3.6km in longitude and 4.4km in latitude)

and track them for 90 consecutive days starting on Nov. 24, 2006.

During the period examined in this study, the distributed global product was a combina-

tion of altimetric data from Jason-1 and -2 and Envisat missions. The dataset is comprised

of weekly near-real-time sea-level-anomaly data files, gridded on a 1
3

o × 1
3

o
Mercator grid.

The methodology for extracting a velocity field from sea level data is known to introduce

errors, as does the linear interpolation scheme we use for integrating trajectories. Other

sources of uncertainties in the data are due to tides and atmospheric conditions. In particu-

lar, the extracted velocity field is not area-preserving. Although in stratified ocean the flow

is approximately 2D (i.e. vertical velocities are few orders of magnitude smaller than the

horizontal velocities), 3D effects may qualitatively change surface mixing 44. We calculate

the MET on a cartesian grid, with the origin set at the South-West corner (34 oS, 4oW ),

recording the results every hour. This introduces additional error due to the convergence of

longitudes on the spherical Earth, which, for this latitude belt, is up to 5% error, smaller

than the above-mentioned errors. Despite these errors and limitations, as shown below, our

analysis captures the existing CSs.

Since we do not have apriori knowledge of the flow field structure, and in particular of
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FIG. 14. MEEX in X (top row), maximal extent in X (middle row) and minimal extent in X (lower

row) for a few extremal time windows (columns from left to right): 0-30, 30-60, 60-90, and 0-90

days. The particles were seeded on Nov. 24, 2006. Several separate CSs are identified. The three

black dot groups, marked by A-C in the upper-right panel, represent the initial positions of the

particle trajectories shown in Fig. 15.

its resolving directions, we calculate various MET characteristics along both the zonal (X,

longitudinal, Figs. 14, 16, 17) and meridional (Y, latitudinal, Fig. 18 left panel) directions

for a few extremal time windows. As might be expected, we find that the X direction better

resolves the CSs in this region due to their westward propagation. In Fig. 14 we present the

MEEX in X (top row), the maximal extent in X (middle row) and the minimal extent in

X (lower row) for a few extremal time windows (columns from left to right): 0-30, 30-60,

60-90, and 0-90 days. Compared with the Okubo-Weiss field shown in Fig. 13, fewer CSs

exist, as previously discussed57.

From the leftmost and rightmost columns it is clear that the MEEX captures the CSs

better than the maximal extent in X, as in the OVP toy model example. The reason

is clear: in this case, the CSs migrate mainly westward, hence the maximal extent in X
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FIG. 15. Trajectories of particles seeded within regions identified as CSs from the MEEX in X

field (Fig. 14, top-right panel). The colors represent their locations at the indicated dates. The

existence of the diagnosed CSs at these locations and their westward propagation is clearly seen.

basically records the initial conditions of trajectories. Since particles move both eastward

and westward, once an interim window is selected, as in the 2nd and 3rd columns, the CSs

are seen in all MET fields, including the maximal extent.

Notice that the MEEX field provides information regarding the location and the motion

of the CSs. Take, for example, the main CS centered at (32.5oS, 3oE), labeled as (A) in

Figs. 14 (top-right panel) and 15. We observe that the initial location in X of this CS is

at X = 770km (seen for example from the middle row-right most or left most columns)

whereas the MEEX field value at this CS after 90 days is at about X=500km (top-right

panel), hence the CS moved westward at about double the difference, namely about 550km,

i.e. about 5o. This is nicely verified by trajectory integration in Fig. 15. See also Fig. 17

showing, via CDF plots, the westward propagation of this CS in time.

Numerous CSs appear in the large seeded region (26o−34oS, 4oW−80E, over million km2)

and the PDF and CDF of any of the MET characteristics, in both the X and Y directions,

lump together many CSs in such a large region. Hence, as expected, these figures cannot

be used to detect CSs. To identify the location and size of the CSs in the large domain we

subdivide it to smaller sub-domains, plot the PDF and CDF for each one of them aiming to

identify isolated structures. Fig. 16 shows the MEEX in X (upper row), PDF of the MEEX

in X (middle) and CDF (lower row) for the latitudinal belt 30o − 34oS subdivided to two

main sub-domains, each of these is again subdivided to two (see caption). By subdividing

the two domains and inspecting the PDF, it is possible to identify when there is possibly
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FIG. 16. MEEX in X for 0-90 days (upper row), PDF (middle row), and CDF (lower row) for

different regions and sub-regions of the latitude belt 30o − 34oS. Right column: regions D1 (2oE −

80E, red), and its sub-regions D1L (2oE − 5oE, green), and D1R (5oE − 8oE, blue). Left column:

region D2 (4oW−2o), red), and its two sub-regions D2L (4oW−1oW , green), and D2R (1oW−2oE,

blue). The upper row shows sub-regions of Fig. 14 top-right panel in the regional colorbar.

only one CS in a domain: this occurs when there is a dominant peak in which the PDF

of one of the sub-domains is the main contributor to the corresponding peak of the large

domain. We then suspect that an isolated CS exist in the specific sub-domain. For example,

the overlapping of the green and red line in the left-most peak on the left middle panel of

Fig. 16 is clearly identified with the CS centered initially at (31oS, 2.5oW ). As in the above

examples, the shape of the CDF provides an estimate for the size and location of the CS.

The time-dependence of the CDF for the sub-domain D1L is shown in Fig. 17. The

locations of the first rise of the CDFs at the sequence of the extremal windows move to the

left, indicating that the CS propagates westward. The heights of the this first rise become

lower, indicating that this CS is shrinking in size.

Fig. 18 shows a few more fields that are often used to identify CSs. The left panel

shows the MEEX in latitude - we see that many of the CSs have similar MEEX in y value.

This reflects the observation that these structures are mostly aligned along latitudinal belts,
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FIG. 17. The PDF and CDF of the MEEX in longitudinal direction - dependence on time for

region D1L. The creation and motion of CS in this region are observed (see text).

   4oW    2oW    0o     2oE    4oE    6oE    8oE 
  34oS 

  32oS 

  30oS 

  28oS 

  26oS 

 

 

km

-200

0

200

400

600

800

1000

   4oW    2oW    0o     2oE    4oE    6oE    8oE 
  34oS 

  32oS 

  30oS 

  28oS 

  26oS 

 

 

km
0

200

400

600

800

   4oW    2oW    0o     2oE    4oE    6oE    8oE 
  34oS 

  32oS 

  30oS 

  28oS 

  26oS 

 

 

km

200

400

600

800

1000

FIG. 18. Additional Lagrangian diagnostics: MEEX in Y (left), relative dispersion (middle), and

absolute dispersion (right) for 0-90 days.

moving to the north-west essentially together. The RD and AD fields are also plotted

(middle and right panels). Not surprisingly, in all these fields the same patterns emerge.

V. DISCUSSION

Our main result is the introduction of a new family of Lagrangian diagnostics, in particu-

lar the MET, and the demonstration that the CDF of the MET allows one to find important

characteristics of the CSs at low computational cost. In particular, the number, location,

and size of the coherent structures (nested sets of a continuum of ergodic components) with

a volume above a threshold value may be found with no need for minimization or image

processing procedures. A major advantage is thus the ability to compress a large amount of

data into a simple diagnostic plot.

The computation of the MET is based on a single particle integration with no need for
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integrating derivatives or tracking sufficiently close-by neighbors. This suggests that such a

method is easier and cheaper to utilize on sparsely seeded domains, yet a thorough study of

its efficiency has not been conducted yet.

The signature of a CS in the CDF appears as a smooth curved increasing segment - the

base of it and the value where it flattens or abruptly increases provide information on the

CS spatial location and width along the specific direction that is used to compute the MET.

The height difference between these values provides its area. The signature of a mixing layer

(in closed domains) is a fast growing segment that asymptotes as τ , the extremal window,

grows to infinity, to a discontinuity of the CDF. A motion of the CS corresponds to a shift

of its corresponding segment in the CDF of the appropriate MET characteristic with hardly

any change of its shape. We demonstrated that the MET provides insightful information

using toy models in both closed and open domains and on a real data set from the South

Atlantic.

The MET and many other Lagrangian quantifiers (such as RD, FTLE, the hypergraph

map and other averaged quantifiers2,3,17,26,27,36) have a common feature: asymptotically these

converge to constants on ergodic sets and hence, in principle, may be utilized to divide the

phase space to separate ergodic components. In many applications, the transient properties

of these and other Lagrangian quantifiers were studied, showing that in some cases ridges

of finite time realizations of these fields provide good predictors for dividing surfaces. We

expect that similar analysis can also be applied to finite time realizations of extremal fields

(see especially Figs. 5 and 8) and this direction has yet to be explored. Here we exploit

the asymptotic features of these fields as a way to identify CS. In this aspect, we note that

the RD and FTLE are degenerate - they asymptote to zero in the regular regime and to

a positive constant in the mixing zone. On the other hand, the value of the MET (and of

the hypergraph map and other Lagrangian averages3) asymptotes to a smooth function in

a regular region and to a constant in the chaotic zone. The unique feature of the MET is

that if the direction r is resolving, its CDF readily provides additional information on the

location and number of CSs (whereas with the other quantifiers the CDF lumps together all

coherent structures).

Another distinguishing characteristic of the MET is that the convergence to its asymp-

totic value is always monotone in time whereas in all the other quantifiers convergence to

their asymptotic values is oscillatory (except the arc-length map37,38 which is monotone yet
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unbounded). Hence we expect that the convergence of the MET will be faster and more regu-

lar. In fact, the temporal convergence properties of the MET may be related to the universal

convergence associated with extreme value statistics of ergodic dynamical systems 46–50. The

implications of these on the convergence of the CDF, on the spatial smoothness of the MET,

and on the sensitivity of these to noise and velocity errors have yet to be investigated.

The MET fields are well suited for studying open flows. We demonstrated that in the

real data example much information on the location, size and propagation of the CSs may

be gained by observing the MEEX field, by observing the MET fields on nontrivial extremal

windows, by examining several directions, and by examining PDFs and CDFs of these on

sub-domains.

The current work leaves many additional directions to be explored in future studies,

including: (1) The transient MET fields in the coherent structures are quite smooth whereas

their transient behavior in the mixing layers is noisy. This property may be utilized to

distinguish between these regions on short time scales. More generally, the study of the

transient behavior of the MET in τ, t1 may reveal the structure (e.g. local dimension36,48)

of the ergodic component. Possibly, it may reveal other transient transport processes, such

as dividing surfaces and the lobe structure43. (2) The applications shown here suggest

that additional insight may be obtained by studying the temporal and spatial dependence

of extreme values of other observable functions in systems with mixed phase space (e.g.

velocities, speed, distance from the origin, stretching rates, strain rates, FTLE, recurrences 48

etc.) (3) The study of open flows needs to be further explored, in particular, the distinction

between CSs, shear layers, and hyperbolic structures and their forms in the PDFs and

CDFs of the various MET fields has not been studied yet. We also note that for open flows

with moving CSs the difference between the traditional AD field and the MET fields is not

dramatic, yet the MET fields provide the additional advantage of directional information

and non-oscillatory convergence. Possibly, one may also study directional AD and RD fields

and compare these to the MET. (4) In real applications we often have a limited sampling of

the flow along specific directions, e.g. by few drifters. How much of the flow characteristics

can be extracted from such limited information is unclear. Based on our preliminary results

(not shown), 1D sections might suffice to provide many of the flow characteristics. Moreover,

this approach may work in higher dimensions as well. (5) In flows with a large number of

CSs of different scales and locations, such as 2D-turbulent flows, it may become difficult to
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find resolving directions. In such cases it may be beneficial to adopt a multi scale strategy

by which resolving directions are sought on sub-domains. Preliminary results along this

line are shown in Figs. 16 and 17, where one can see the promise (the appearance of nice

isolated peaks in PDFs of small sub-domains) and some of the associated problems (e.g.,

how to distinguish between isolated peaks and noise and how to identify structures that

are not CSs). One may envision an algorithmic approach by which the PDFs of different

MET characteristics (MEEX in several directions, all the MET fields on several extremal

windows, calculation of these on several sub-domains) are compared to identify CSs more

precisely. (6) Finally, we note that many of the above issues may be studied first on chaotic

maps with mixed phase space behavior (e.g. we currently study the standard map and its

higher dimensional extensions continuing, in some sense, a previously suggested approach

for studying these maps45). Such studies allow for the introduction of a more rigorous

mathematical analysis.

When compared with methods based on Eulerian data for eddy detection33–35, the La-

grangian diagnostics have a few advantages: (1) These can possibly be used to identify

various kinds of CS, not necessarily eddies. (2) They are applicable for a wide range of

scales, not just mesoscale structures dominated by vorticity. (3) Methods that rely on veloc-

ity derivatives, such as the Okubo-Weiss parameters, introduce noise to the data, especially

when errors in the velocity field are not small when compared to the high spatial resolu-

tion. The identification of CS based on the computation of trajectories seems to be less

sensitive to data errors58. In recent years, various sophisticated Lagrangian diagnostics have

been proposed3,14–17,26,30,36,37,41,59–61. One may envision a quick screening using the MET

approach combined with some of these high-end methods.

In conclusion, we present new, promising Lagrangian diagnostics that enable the extrac-

tion of properties of coherent structures from large data sets by looking at extremal values

of observables, their PDFs, and CDFs. These diagnostics are not only simple, intuitive, and

computationally cheap; they also can potentially enable a significant data reduction, since

it is possible to extract from the cumulative distribution functions much of the relevant

information regarding the existence, location, size and motion of the coherent structures.
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