
J. Nonlinear Sci. Vol. 2: pp. 9--67 (1992) 
1 

© 1992 Springer-Verlag 
New York Inc. 

Beyond All Orders: 
Singular Perturbations in a Mapping 

C. Amick L2 , E. S. C. Ching 1 , L. R K a d a n o f f  I , and V. Rom-Kedar 1 
i Computational and Applied Mathematics Program, The Department of Mathematics, The 
University of Chicago, Chicago, IL 60637, USA 

Received February 2, 1990; accepted for publication October 25, 1991 
Communicated by Philip Holmes 

Summary. We consider a family of q-dimensional (q > 1), volume-preserving maps 
depending on a small parameter ~. As e ---> 0 + these maps asymptote to flows 
which attain a heteroclinic connection. We show that for small ~ the heteroclinic 
connection breaks up and that the splitting between its components scales with e like 
~ r exp [ - / 3 / e ] .  We estimate /3 using the singularities of the B ---> 0 ÷ heteroclinic 
orbit in the complex plane. We then estimate 3' using linearization about orbits in the 
complex plane. These estimates, as well as the assertions regarding the behavior of 
the functions in the complex plane, are supported by our numerical calculations. 

Key words, break-up of heteroclinic connection, exponentially small splitting of sep- 
aratrices, singular perturbation 

I. Introduction 

A. The Problem 

By now, there is a well-developed literature on singular perturbations and how they 
affect the solution of ordinary 1 and partial 2 differential equations. In a typical singular 
perturbation problem, there is a small parameter e which appears in the differential 
equation as a multiplier of the highest-order derivative. No matter how small 8 might 
be, this term can nonetheless have a very substantial effect upon the solution. 

2 Deceased. 
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In this paper, we consider singular perturbations in the context of a mapping 

and the map is 

X/+I = G(Xj) (1.6) 

with 

G(xo, xl ..... xq-z, xq-l) = (xl, x:~ ..... xq-1, xo + eg(xp)). (1.7) 

(Here and below we use a notation in which capital symbols refer to q-dimensional 
vectors and lower-case symbols to scalars and components of these vectors.) For q = 
2 and 3, the map (1.6) may be thought of as the Poincar6 map of a time-periodic 
flow. Indeed, our initial interest in this problem arose when we studied a simplified 
version of the ABC map, 3 which mimics the dynamics of the time-periodic flow. 

Notice that the inverse of this map is another mapping problem of essentially the 
same form as (1.7), namely, 

G - I ( x l ,  x2 . . . . .  Xq) = (Xq - 8g (xv ) ,  x t ,  x2 . . . . .  Xq-1). (1.8) 

This inverse map can be reduced to exactly the same form as (I.1) with 6 < 0 by 
making the change of variables y j  = x q - j  and replacing p by p '  = q - p. 

In this q-dimensional space there exist two unstable hyperbolic fixed points 0 = 
(0, 0 . . . . .  0) and 1 = (1, 1 . . . . .  1). By the stable manifold theorem, these fixed points 
have smooth stable and unstable manifolds. 4,5,6 The dimensions of these manifolds 
depend on q and p and are always greater than or equal to 1. 

We study a one-dimensional submanifold of the unstable manifold of 0, which we 
call the unstable curve, and a one-dimensional submanifold of the stable manifold 
of 1, called the stable curve. These curves are defined to be the invariant manifolds 
on which orbits leave (resp. approach) the neighborhood of the fixed point 0 (resp. 
~1) most rapidly. The parameterized unstable and stable curves are denoted by U (t) and 

problem 

Xj+q = x j  + eg (x j+p) .  (1.1) 

Here the x j ' s  are real numbers, q and p are relative prime integers which obey 

0 < p < q, (1.2) 

the parameter 8 is a small positive number, while g ( x )  is an entire function, positive 
in the interior of the interval [0,1], and vanishing at the endpoints 

g(0) = g(1)  = 0. (1.3) 

We also demand that the derivative of g not vanish at the endpoints 

g'(0) > 0, g'(1) < 0. (1.4) 

This problem can be re-expressed as a volume-preserving map in a q-dimensional 
phase space, in which the basic variable is 

Xj  = (x j ,  xj+l . . . . .  x j+q-D (1.5) 
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S(r) ,  respectively. Here r and t are, for now, real variables in [0, oo), and U(O) = 0, 
S(0) = 1. The specific pararnetefization we choose is described in the next section. 

The limit e ~ 0 + of (1.6) is highly singular. On the one hand, when e = 0 ,  (1.I) 
simply has a periodic solution Xj+q = x j ,  and the hyperbolic structure of the fixed 
points is destroyed. If one defines a = j mod q, in this ease, there is no coupling 
between x j ' s  with different a-values. Hence, the problem falls apart into q decoupled 
and degenerate problems. For small e, these problems become coupled. Indeed, if one 
starts with generically chosen x j  ( j  = 1, 2 . . . . .  q) of order unity, and then one uses 
the map to advance j by an amount of  order 8 -1 >> 1, one finds tha, the new x j ' s  
will differ from their starting values by an amount of order unity. Thus, the singular 
perturbation e effectively lifts the degeneracy of the e = 0 problem. In this paper, we 
study the flows from the two fixed points in the limit e ---> 0 +. As one might expect, 
after many iterations, these flows show a nontrivial structure in their e-dependence. 

B. Outline of Results 

Below, we shall develop the qualitative properties of these curves using both analytical 
and numerical methods. The structure which arises for small ~ is both interesting and 
elegant. The result for q = 3, p = 2 is depicted in the cartoon of Figure 1. 

As t increases, U(t ) moves uniformly away from 0 and toward 1. As it gets close 
to 1 it begins to spiral outward and moves away from this fixed point. We denote 
the distance of U(t) from 1 by ~l(t) (see Figure 1). There is a distance of closest 

X3~ 

' I ~  ~J 
I ,.) 

0V ~" 

\ 

X 1 

Fig. I. Cartoon of the stable and unstable curves for q = 
3, p = 2. The solid line is the unstable curve, and the 
dashed line is the stable curve. The quantities 8o(r), 81(t), 
and 8(0 are also shown in the figure. 
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approach 7 to 1 which we call 81. Conversely, S(r) initially moves away from 1. This 
curve approaches U(t) very closely in an intermediate region between the two fixed 
points. The distance between the curves in this region at the point U(t) is denoted by 
8(0. Finally, S(r) gets quite close to 0 and then spirals away from that fixed point. 
We denote the distance of S(r) from 0 by 8o(r), and its minimum 7 by 80. 

There can be some qualitative differences between even and odd q. These cases 
correspond respectively to orientation-preserving and orientation-reversing maps. In 
the even q case, there is the possibility that the leading-order behavior is the repeated 
crossing (or almost crossing) of invariant curves. For odd q, the curves, to the leading 
order, circle around one another. 

In this paper, we shall be most concerned with estimating the "miss distances" 
80, 81 and 8(0 in the limit 8 --~ 0 +. As we shall see, these distances have an order 
which is smaller than any power of e. In fact, far enough from the fixed points 0 and 
1 (where t = O(1)), 8(0 takes the form 

8(0 ~ Ae -2~¢'/8 ~ ,  t ~ 1. (1.9) 

In Table 1, we summarize the results of the paper by listing the values of/3 = 2~r~bs 
and 7 obtained for various different functions g(x). 

Notice that this miss distance can be fantastically small. For g(x) = x(1 - x ) ,  e = 
1 $, and q = 3, we estimate e -2 '~ ' /8  ~ 10 -17 and find numerically A = 2.5 x 103, 

so 8(1) ~ 10-14! Clearly, our numerical work will have to be rather careful. 
From our analysis, 80 and 81 will be somewhat less extreme. We found these for 

q = 3 and estimated 

80 ~ 81 ~ 8 ( | )  2/3. (1.10) 

In general, s 

80 ~ 8(I) ~°(p'q), 

81 ~ 3(I) ~1(p'q), 

to lowest order in e. The values of "I/o and 71 are given in Table 2. 

(1.11) 

Table 1 Expressions for the coefficients in the asymptotic expansion of the 
miss distance 8(0 where t is of order one. 

Function, g(x ) fl = 21rd?, 3' 

2~r 2 I + 1 + cos x(1 - x m) m m q 

m = positive integer 

O < a < o o  

x(1 - x)(1 + ax) 

sin ~rx 

- l < a < 0  

2 ~  
l + a  

2vr 2 

1 3 2~rp 
+ q 

• ./T 2 
2~rp 

COS ' 
q 
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Table 2 Theoretical and numerical values of 71o(q, p) 
and rh(q, p) for g(x) = x(1 - xm). 

theoretical numerical 
.... 

q p m r/o = */1 ~/o ~71 

1 0.502 0.502 

2 1 

i ...... 

3 2 

4 1 

1 
0.5o0 

2 0.494 0.509 

1 0.662 0.662 
2 

0.667 

1 1.000 

2 
1 1.106 4,: 

1 - cos 
5 

2 

I 
1 

2 0.553 4~r 
1 - cos 

5 
2 

0.660 0.650 

0.928 0.943 

0.967 0.914 

0.928 0.943 

1.065 1.192 

0.550 0.559 

0.550 0.563 

13 

We have already summarized our results for the mapping in the real domain. 
However, to obtain such results in solid form, we must proceed through the complex 
plane. Here we summarize our major results in the complex plane. 

1. We state the first result in a proposition (see Appendix A for the proof). 

Proposi t ion  1. For every ~ > 0, there exist unique entire vector-valued functions 
U(t) and S(r(t)) ,  (U : C ~ Cq and S : C --* cq ) ,  which are solutions to the 
mapping problem in the sense that 

U(At)  = G(U(t))  

and (1.12a) 

S ( r / F )  = G(S(r))  

with the conditions that 

U(O) = O, S(O) = 1 (1.12/)) 

lim U(t)  = (1, A . . . . .  Aq-1), lim S(r)  - S(0) = - ( 1 ,  F -1 . . . . .  F-q+1) .  
t-~O t r--*O r 
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Here A and F are respectively the real solutions to 

A q = 1 + eg'(0)A p, 
(1.13) 

F q = 1 - eg'(1)F q-p, 

with the largest magnitude. 
2. We claim that U(t)  and S(r( t ) )  approach a unique limit Uo(t), as e ~ 0 +, 

everywhere in a finite open region, R;~, of In t bounded by 

- ¢  < Im(ln t) < t~ (1.14) 

where t~ < ~bs. The function Uo(t) is analytic in R~; es is defined as the smallest 
positive phase for which Uo(Itle i~,) is singular for some finite value of Itl. Supporting 
evidence for this claim is presented in Appendix D. 

3. Further, we claim that there exists an analytic function r( t )  in R~, which obeys 
r(At) = r ( t ) / F ,  and for which the quantity 

A(t) = S(r( t ) )  - U(t)  (1.15) 

is quite small in the region RS. Specifically, 8(t) = IlA(t)]t goes uniformly to zero as 
---> 0 + (see Appendix D). 
4. We claim that not only does Ila(t)lf go to zero but that in RS, 

llA(t)Hexp(2~r¢/e) ~ 0, as e ~ 0 +. 

This limit is not uniform in ¢,  which is the phase of t 

¢ = Im0n t). (1.16) 

The argument for this result is developed in the first part of Appendix D. 
5. Finally, we conjecture that 

llA(t)ll exp(21rh(¢)/8) 

is bounded by a power of e -1 for all sufficiently small 8 in each such open region, 
R,~. Here the bound is defined by 

h(¢) = es - 14'1. (1.17) 

The heuristic argument for this conjecture is developed in the second part of Appendix 
D. It is supported by numerical evidence presented in Section IV. 

All of our work depends on two essentially small parameters, which are related but 
which play different roles. The first is s, which is actually not so small. If we work 
at e = ½, g'(0) = 1, q = 3, and p = 1, for example, there is a 0.11% correction 
to the first-order solution of (1.13), A = 1 + e / q  = 7. The other small parameter 
is ~(¢) = exp(-2~rh(¢)/e),  which is exponential in 8 -I and can be very small 
indeed. In our chosen example with g(x )  = x(1 - x), it has a value of ~ 10 -17 on 
the real axis. For our purposes, we wish to keep only the lowest-order values in this 
other parameter. We have argued that IIA(t)H is proportional to this parameter. Hence, 
expansions in Ita(t)ll are likely to be quite accurate. 
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C. Relation to Other Work 

The existence of a heteroclinic connection is associated with important physical phe- 
nomena such as solitons 9 (when the map represents a reduction of PDE) and flow 
barriers 1° (in two dimensions, q = 2). The remnants of this connection, when e is 
finite, constitute transient behavior. 9A° Their possible structure is described in Section 
II.D. In this paper we show that inherently, even when the q-dimensional limiting 
flow attains a heteroclinic connection, the map does not. This implies, for example, 
that the exponentially small splitting of separatrices seen in a numerical simulation 
of a system of ODE's may be the result of  the discretization scheme rather than the 
nonintegrability of the ODE's. Ablowitz and Herbsd 1 have demonstrated that this phe- 
nomenon occurs for the homoclinic structures of the nonlinear Schrtdinger equation. 
Hockett 12 proved that an Euler discretization of an integrable central force problem 
leads to chaotic dynamics. This may be associated with the breaking up of homoclinic 
connection (with real fixed point at infinity). 

The phenomenon of exponentially small splitting of separatrices for ODE's was 
first observed by Poincar613 about a hundred years ago. He noted that an integrable 
two-dimensional flow (for example, resonance bands) perturbed by a fast oscillatory 
forcing, will typically exhibit such a splitting. Nekhoroshev 14 and Neishtadt 15 estab- 
lished rough upper estimates on the exponentially long escape times associated with 
the small splitting. Holmes et al.16 established lower and upper bounds on the expo- 
nentially small distance between the split separatrices for a class of fast oscillatory 
perturbations with sufficiently small amplitude. Zaslavskii et al.17 reviewed the dy- 
namics on stochastic webs, where exponentially small splitting implies diffusionlike 
motion of  the particles. 

In this paper we relate special solutions of the mappings to heteroclinic solutions of 
the limiting flows. In spirit, we follow the program described by Tanveer for solving 
singular perturbation problems. Tanveer Is has summarized the method of Kruskal 
and Segur 19 for attacking problems roughly like this. He suggests that one solves 
for the flow at infinitesimal e including all the flexibility allowed by general values 
of constants of integration. Then one examines the solution for singularities in the 
complex plane. These singular regions should be used as places at which one can 
patch together different pieces of solutions with different constants of integration. To 
perform the patching, one requires a more accurate solution in the neighborhood of the 
singularity: one which includes finite-e effects. At this point, one has to examine the 
behavior of  the expansion in e in the patching region. In general, the series expansion 
diverges near the singularity. One has to choose a special patching region or a pass 
in the complex plane to ensure that the matching is done using the leading-order term 
of a converging series. Theoretically, it is usually very hard to prove that the above 
condition is satisfied. In Appendix D, we formulate a set of propositions, which, if 
proven~ constitute a proof of our claims. The assertions which we cannot prove yet are 
supported by numerical calculations in the complex plane. Hence, while we cannot 
claim rigor, we believe our theory is based on solid grounds. 

Kruskal and Segur's work on dendritic solidification was followed by the work 
of Amick and McLeod, 2° who have proved that the exponentially small estimate 
found by Kruskal and Segur is a valid asymptotic limit. As indicated in their paper, 
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the methods developed by Amick and McLeod can be easily utilized to study the 
behavior of solutions of a large family of ODE's. The analogous proof of the validity 
of the exponentially small estimates found here, tailored to the case of difference 
equations (as opposed to ODE's), is yet to be derived. The formulation in Appendix 
D may be a first step in this direction. 

Lazutldn et al. 21 estimated the angle between the intersecting manifolds of the 
standard mapping in the integrable limit. They found that this angle is exponentially 
small in 8. They estimated the exponent and the algebraic dependence on e, and com- 
puted the prefactor. Their method is based upon the existence of an energy function 
and utilizes the form of the mapping to obtain convenient coordinate changes. Fontich 
and Sim6 22 have studied the general problem of near identity, two-dimensional con- 
servative analytic mappings attaining hyperbolic point. Their work applies to ours in 
the special case of q = 2. Using the existence of an energy function, they obtained 
an upper bound on the split distance in the form of exp(-2~'q~Je), and were able 
to verify the value of ~bs numerically. Our work, which applies to all q, is based 
upon an extension of the unstable curve U(t), and the linearized modes about U(t) 
to complex values of t. 

Recently, Scheurle et al. 23 construeted an example of a mapping in which the 
splitting distance is of the form 

[splittingdistancel=~=_®akek)e -c/8. (1.18) 

In particular, the splitting distance cannot be bounded, as e ~ 0, by any finite power 
of e in front of the exponential term. They conjectured that the form of (1.18) is 
generic and that typical estimates of the form (1.9) are valid only for a finite range of 

values (namely 7 = "g(e)). We think that our case does not fall into their generic 
category. We suggest that the main difference between the mappings considered by us 
and them is the analyticity property of the stable and unstable curves (which is used 
to develop (1.9)). While in our example, these curves are entire functions of their 
arguments, in the example considered by Seheurle et al., the curves attain essential 
singularities for all e. Our numerical study supports the prediction of 7 and fl in 
(1.9). However, any calculation of a finite range of values of ~ cannot exclude the 
possibility that the form of (1.18) is valid as 8 -~ 0 +. 

D. Outline of the Paper 

In the next section, we define the unstable and stable curves and their parameteri- 
zations. Since 0 and 1 are hyperbolie fixed points, the existence, uniqueness, and 
smoothness of these invariant curves follow from the stable manifold theorem. (In 
Appendix A, we show that the parameterized curves are entire functions of their 
arguments.) We discuss the singular limit ~ ---> 0 + and introduce the lowest-order 
solution in this limit with j 8  = O(1) where j denotes the number of iterations of the 
map (1.6). Then, we discuss the possible behavior of the stable and unstable curves. 

In Section KI we perform a linear deviation analysis. We linearize the equations 
about the stable and unstable curves and find, to lowest order in e, the linear modes. 
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We establish that the coefficients of the linear modes are the only unknowns in the 
equation for 8(0. We derive some of their properties and present numerical calcula- 
tions which support our observations. 

In Section IV we employ complex analysis to estimate the coefficients of the linear 
modes by matching solutions near the singularities of Uo(t). We use the lowest-order 
solutions in e to obtain the exponential estimate and then the next-order to obtain the 
algebraic correction. We then derive the estimates for 81 and g0. These estimates of 
81, go, and ~(t) are supported by numerical calculations. Furthermore, the numerical 
calculations in the complex plane also support our assertions regarding the behavior 
of the linear modes and the coefficients near the singularities. 

In the last section, we summarize our results. 
In Appendix A we prove Proposition 1. In Appendix B we expand the curves in 

power series. In Appendix C we present the error analysis of the numerical work. In 
Appendix D we construct an initial framework for proving our theory. 

H. Stable and Unstable Curves 

A. Definitions 

We do linear stability analysis in the neighborhood of X = 0. Linearization of (1.6) 
near 0 gives 

Vj+l = DG(O)Vj = (vj÷l . . . . .  Vj+q-l, vj + 6g'(O)vj+p). (2.1) 

The characteristic equation of DG(O) is given by 

A q = 1 + 6g'(0)A~. (2.2) 

Here, a labels the q different roots of (2.2). When s > 0, they are all distinct. In our 
labeling scheme, the index t~ is given by 

a = 0, ---1 . . . . .  - ( q  - 1)/2, for q odd, 
(2.3) 

ot = 0, ±1 . . . . .  ±(q - 2)/2, q/2, for q even. 

To first order in 6, the solution to (2.2) is 

A ~ =  fV' [1 + 6g'(O)"~P]+O(82)q (2.4) 

with 12 being the qth root of unity 

12 = e 2rri/  q . (2.5) 

The root with the largest magnitude is Ao, which we denote by A. Note that A is real 
and greater than 1. Figure 2 shows the configuration of eigenvalues in the complex 
plane which arise for various values of q and p.  

For small positive values of 6, the roots lie inside the unit circle if cos(2~-ot p~ q) < 
0 and outside whenever cos(2zroL p /  q) > O. In the latter case, the corresponding 
eigenmode is unstable around zero; in the former case, it is stable. 
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0 ~ unstable mode 
m " "  stable modes 

. . . .  u n i t  c i r c l e  

4"_-', "',, ( : . ;o  

I ' 
' / ~"~ 

q=3, p=l or2 /~--'v 
! 

I 
I ........... 
t 

\xff=- |  

\ 

I a 
/ 

/ 
s 

q=4 
[] . p=t  

f ~ ' [ z - - ,  

,5=2 / :a--o 

° j l  =-I  

Pig. 2. Stability diagram. A schematic diagram of the eigenvaluea A= 
in the complex plane for various q and p. 

The eigenvector, V., of the root A~ is given by 

Va = (1, A~ . . . . .  Aq-1), (2.6) 

and solutions m (2.1) are given by linear combination of the solutions 

V~,j = A~V~, (2.7) 

where Vo, j escapes most rapidly from the origin, 0. 
The unstable curve, depicted in Figure 1, is defined by the solutions to (1.6), X j ,  

which project onto the most unstable mode as j --+ -¢~. That is, we require 

Xj ~ AYVo, as j --~ - ~ .  

Note that a general solution to (1.6) contains modes other than V0 as j --) -oo. It 
therefore oscillates and tends to spiral around. In the limit as e ~ 0 +, the period of 
this oscillation is q. 
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Now we define the parameterized unstable curve, U(t). Since the unstable curve 
is invariant, U(t) must obey G(U(t))  = U(/3(t)) for some monotonic function/3(t). 
Moreover, the conditions on the unstable curve at 0 imply that we must choose U(0) = 
0, U'(0) = aM, and/3'(0) = A. To specify the parameterized curve uniquely, we 
choose/3(t)  = At and a = 1. In Appendix A, we prove Proposition 1, which states 
the existence and uniqueness of this curve. 

Fontich and Sim6 22 proved the same result for the families of two-dimensional 
mappings that they have considered. Their proof utilizes the Birkhoff normal form 
theorem, whereas the proof in Appendix A makes use of the Banach's contraction 
mapping theorem. 

Note that Proposition 1 implies that there exists a unique entire scalar function u(t) 
such that 

U(t) = (u(t), u(At) . . . . .  u ( A q - l t ) )  (2.8) 

and u(t) is the solution of 

u(Aqt)  = u(t)  + ~g(u(APt)), (2.9a) 

u(t) 
u(0) = 0, lira = 1. (2.9b) 

t~0 t 

An orbit belonging to the unstable curve is determined by to, an initial value of the 
parameter t 

xj  = U(tj), tj = AJto - ~ < j < oo. (2.10) 

Exactly the same approach can be used to define the stable curve S(r).  This stable 
curve is an invariant curve, which contains all the points that flow most rapidly into 
the fixed point at 1. In analogy to (2.1), the linearization of (1.8) about 1 is 

Wj+ 1 = DG-I(1)Wj  = (wj+q-1 - eg'(1)wj+p, wj,  wj+ 1 . . . . .  Wj+q-2) ,  (2.11) 

and the characteristic equation of DG-I (1 )  is 

r q = 1 - e g ' ( 1 ) r  q - ~ ,  (2.12) 

so that for small e we can write the solutions to (2.12) as 

F== "-" [1- eg'(1)~-a(q-P)]+O(e2). (2.13) 

The eigenvector, W,~, of the root I'~, is 

Wa = (1, F~ a . . . . .  F~-(q-l)), (2.14a) 

and the general solution to (2.11) is a linear combination of the solutions 

W~,j = r 2  j w~. (2. I4b) 

The root with the largest magnitude is F0, which we also denote as F. The parame- 
terized stable curve, S(r) ,  is defined uniquely as stated in Proposition 1. 
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As in the case for U(t), it follows that there exists a unique entire function s(r) 
such that 

S(r) = (s(r), s(r /F)  . . . . .  s(r /Fq- l ) )  (2.15) 

and 

s(Fqr) = s(r) - eg(s(rFq-P)), (2.I6a) 

s(0) = 1, lira s(r) - s(0) = - 1 .  (2.16b) 
r--,o r 

Orbits belonging to the stable curve are determined by r0, the initial value of the 
parameter r 

x j  = s(rj) ,  rj = ro /F j .  (2.17) 

B. Stable Manifold Theorem 

The stable and unstable curves can form, for example, the intricate structures shown 
in Figure 1. Nevertheless, according to Proposition 1, for any fixed ~ > 0, there 
exists a unique parameterization such that U(t) and S(r) are entire functions of t and 
r respectively and satisfy boundary condition (1.12b). Conversely, for fixed t and r 
there exists a nonempty interval (0, ~max) such that U(t) and S(r) are each analytic 
in e for all 8 in the interior of this interval (but not at 8 = 0). Note that a simple 
generalization of the stable manifold theorem implies that the stable and unstable 
curves are unique and C ® ,  but does not imply anything regarding their analyticity or 
their parameterization. The work of Fontich and Sire622 is, to our knowledge, the first 
to address this issue. 

C. The Limit e -* 0 + 

As discussed in the introduction, we are interested in studying the limit e ~ 0 + . For 
any 8 > 0, the fixed points are hyperbolic (though the hyperbolicity is nonuniform 
in e). One can get a formal, but essentially correct, description of the limit ~ 
0 +, j8  = O(1) by analyzing (2.9) (where j counts the number of iterations of 
(1.6)). Consider that u is a function of t and ~, u = u(t, e), and write (2.9) as 

u(Aqt, ~) - u(t, ~) 
= g(u(APt, e)) (2.18a) 

where, from (2.2), 

A = I +  
g2g'(O)2 (p q 1) 

~g'(O) + q'-'-T-- - "~ + ~ + O(e3)" (2.18b) 
q 

So long as u(t, ~) is nonsingular in its variables, one can take the limit 6 ~ 0 + in 
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(2.18) and find 

where 

duo(t) g(uo(t)) 
t ~ = ~ (2.19) 

dt  gt(O) 

uo(t )  = u ( t ,  0). (2.20) 

The boundary condition on (2.19) is u0(0) = 0. 
Table 3 fists solutions for this lowest-order solution uo(t) for the various g's de- 

scribed in Table 1. In contrast to the exact u(t), which is entire, each of these lowest- 
order solutions has singularities for finite values of t. We denote the singularities by 
ts =- [ts[e i4"s. The positions of the singularities with the smallest phases, [~b,[, are 
shown in Table 3. 

These singularities do not lie on the positive real axis. In fact, as t gets large, each 
of these uo(t) approaches 1. Therefore, in this continuum approximation our mapping 
has a heteroefinic connection between the fixed points at 0 and at 1. 

An equivalent analysis gives the behavior of 

From (2.16), we find 

so(r) = s(r , e)l~=0. (2.21) 

dso(r) g(so(r)) 
r - (2.22) 

dr g ' ( l )  

with s0(0) = 1. The solutions of (2.22) and (2.19) are connected by the statement 
that they are identical except for a trivial change of parameterization 

uo(t) = so(r(t)) (2.23) 

with 

r(t) = bot s'C1)/g'C°). (2.24) 

For completeness we list the values of b0 in Table 3. 
The continuum approximation is a quantitatively correct description of u(t, ~) and 

s(r, 8) for fixed and not-too-large real values of t and r .  However, it fails in at least 
two limits: 

i. near the singularities of uo(t) and so(r) in t and r;  

ii. as t and r go to infinity. 

In the latter case, there is the possibility that u and s can accumulate small oscillatory 
terms (like the possible period-q oscillations in x j  which were already noted) and 
that these oscillations can ruin the heteroclinic connections (see Figure I). In fact, 
we shall see that if t is real, positive, and of order 1, u(AJt) can be dominated by 
oscillatory terms when j ~ I/~2. 
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D. Possible Behavior of  the Curves 

Since uo(t) does correctly represent the behavior of u(t) when e is sufficiently small 
and t is large but not too large (see Appendix D), there will be a region of t for which 
U (t) is very close to 1. In this region, we can apply the linear stability analysis about 
the fixed point 1; using (2.14), we find 

U(t) = U(AJ to) = 1 - ~ ba(to)WaF~ j + Q(t) 
f l  

where Q(t) stands for the quadratic terms. Rewriting this equation in terms of t, and 
neglecting the small quadratic terms, we find that U(t) is of the form 

ba(t)Wa 
U(t) ~- 1 - ~ "  tlnr./ma. (2.25) 

¢l 

Here, ba may depend upon t because different t-values may represent different 
orbits. However, if one stays on one orbit, an iteration gives t ~ At. Therefore, the 
b,~'s are periodic in In t~ In A 

b,~(At) = ba(t). (2.26) 

As we shall see, for small 8 and ot ~ 0, the b,~'s are extremely small; hence it is 
justified to neglect the quadratic terms in (2.25). 

Several different behaviors are possible. The first is the simplest. 

1. b~(t) vanishes for a ~ 0. Then all points on U(t) also lie on S(r) as t ~ ~. 
Since S(r) is uniquely defined by the r ~ 0 limit, the stable and unstable curves 
must be identical, and their pararneterizations satisfy 

U(t) = S(bo(t)t- har/tna). (2.27) 

Thus in this first case, there is a heteroclinic connection between the fixed points 
at 0 and 1. 

2. Some of the ba's for ot ~ 0 are nonzero, but b~ vanishes for all the a 's  which 
have [r,~ 1 < 1. In this case, the unstable curve is contained in the stable manifold 
of 1; hence, 

lim U(t) = 1 (2 .28)  
l-.-~co 

. 

and there is a hetemclinic connection, but now the two curves are different. This 
case cannot arise for q = 2 (where F1 < 1) or q = 3 (wbere IF±it < 1), but can 
arise for q --- 4. 
Some of the b , ' s  for a ~ 0 and [F~] < 1 are nonvanishing. Then, (2.25) implies 
that as t gets so large that the a ~ 0 terms in (2.25) become large (yet the quadratic 
terms are still small), U(t) moves away from 1. Therefore, the heteroelinicity con- 
dition (2.28) is likely to fail. (It is possible but unlikely that for still larger t's 
U(t) might approach 1.) There can still be a discrete set of t* with 1 --< t* --< A 
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for which 

b~(t*) = O, for all ot # O. (2.29) 

In this ease the stable and unstable manifold will cross an infinite number o f  times. 
Fontich and Sim622 show that for q -- 2, case 3 holds and that there is a t* for 

which bl(t*) = 0. In fact, the planar geometry of  q -- 2, together with the area- 
preserving property o f  the map, demands that if  the stable and unstable curves are 
not identical they must cross. Then, if they cross once, of  course they will cross an 
infinite number o f  times. 

Our numerical evidence suggests that case 3 is generic. Moreover, it suggests that 
generically, unless q = 2 or q = 4 and p = 1, crossings do not occur (see Section 
IV.C). Nonetheless, the other cases are possible. 

To see how case 1 might arise, specify u(t) so that u(0) = 0, u(oo) = 1 and such 
that u(t) is analytic in t near t = 0 and analytic in an inverse power o f  t near t = ~o 

1.0 

0 .5  

( . . . . . .  .ll|~l 
. . . . . . .  ,,111 

s(r(tD 

u(t) 

- - -  Uo(O 

! , I , t ,  i I i i i i I i , | 

-I00 -50 0 50 I00 
In'l" 
lnA 

! ! 

Fig. 3. The one-dimensional projection of the stable and unstable curves 
and their singular limit as e --> 0. We plot s(r(t)), u(t), and uo(t) as a 
function of l n t / l n A  for q = 3, p = 2, and g(x) = x(1 - x) with 
8 = 0.75. Notice that u(t) and s(r(t)) are indistinguishable at this scale, 
except for the oscillations near the end points 0 and 1. 
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For example, use the rn = 1 case o f  line 1 in Table 3 

t 
u(t)  = t + ~ ' l  (2.30a) 

Now ask whether there is any g(x )  for which this u(t)  serves as a solution to (2.9). 
I f  such a solution exists, it defines a hetemclinic connection in which the two curves 
are identical. 

Simple algebra solves (2.9a) for g, giving 

x(1 - x) 
g (x )  = [I  + (Aq-P - 1)x][1 + ( A - P  - 1)x] '  (2.30b) 

which works when s is defined by 

A q - 1 
= ~ (2.30c) 

AP 

5 
r , . -  

o 

4 - .  

, " 0  
I 

. . I . . . .  

: 5  

v 

-5 

' I ' ' ' I ' ..... ~ ' I ' ...... 

I I I i m i I i ~, ~ I 

-20 0 20 
[nt 
inA 

Fig. 4. The one-dimensional difference between the unstable and stable curves. 
We plot u(t) - s(r(t)) versus l n t / l n A  for a small central region in Figure 
3. The period of the oscillations in the figure is approximately q = 3 and 
corresponds to the period of the linear modes v_*l(t); see (3.6) and (3.8). 
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Therefore, case 1 can hold. However, notice that g(x) in (2.30b) is not an entire 
function of x.  

In Appendix A we prove that when g(x) is entire and 8 > ~(g, q, p),  the het- 
eroclinicity condition (2.28) fails; hence only case 3 is possible. For example, if 
g(x) = x(1 - x), q = 3, p = 2, and e > {{6 then the stable and unstable curves 
cannot coincide. We note that the large 8 behavior may be unrelated to the e ~ 0 + 
limit considered in this paper as the method used in the proof does not seem to be 
eontinuable to small e values. Nevertheless, we include the proof in Appendix A for 
its elegance. 

E. Numerical Data 

In this section, we present numerical evidence supporting the qualitative assertions 
made  above. The case we picked is q = 3, p = 2, and g(x) = x(1 - x). We 
calculate u(t) and s(r) by the methods described in Appendix C. Figure 3 is a plot 
of u(t), s(r), and uo(t) for ~ = 0.75. The r and t scales are taken so that (see 2.24) 

2.0 
' ' ' ' ' " I  ' " ' ' ' I ' ' ' ' I ' ' ' ' ' I 

1.5 

1.0 

0.5 

26 

0 
-20 -10 

! v I | i , t ~.I. | i i , I 

0 10 20 
Int  

Fig. 5. The Ws~ce beV,veen Be stable and unstable curves. Here we plot 
I L S ( r ( t ) )  - U(t)ll as a ~ncfion of l n t / h A  for the s ine case as L~ Figure 3. 
The minimal distance occurs when t ~ 1, where the linear modes V_*l(t) and 
W._l(r(t)) have a magnitude of order 1. 
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b0 
r(t) = thr/t~ A (2.31) 

and bo is chosen to minimize the distance between U(t]) and S(r(tD), where tl is 
defined by 

u(tl)  = Uo(1); (2.32) 

thus, tl = 1 + O(e). 
Notice that uo(t) is only roughly similar to u(t) but that u(t) and s(r(t))  agree very 

c -  

O 

° ~  

1()3m- ~ """..." ,5o~, 
,,.,S , * ,Xt , )  

l °° 
10-9 ** "°°o 

iG 13 
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0 
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0 
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0 
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0 
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0 
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0 
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[~15: 
I f I I I i I i I I 

1.0 1.5 2.0 

E 
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0 

I n 

Fig. 6. A graph of several "miss distances" as a function of 1/v. The miss 
distances 60 and 31 a1~, resl~ctively, the minimal distance of the stable curve 
from the fixed point 0 and the minimal distance of the stable curve from 
the fixed point 1. The miss distance 8(h) is the distance between the stable 
and unstable curves at the t value h; see (2.32). The case shown is q -- 
3, p = 2, and g(x) = x(l - x). We see that all these miss distances 
exhibit an exponential dependence on 1/3, that ~ the slopes of In 8o and In 81 
are indistinguishable, and that their slope is smaller in magnitude than the slope 
of InS(tl). These results arc in accordance with (1.9) and (1.10). The exact 
value of the coefficient of 1/e in the exponent cannot be extracted accurately 
from this figure since in this range of e values the power-law correction in 
is significant. 
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closely in the central region of the plot. As expected, s(r) and u(t) each oscillates 
near one end of the graph. 

Next, in Figure 4, we plot u(t) - s(r(t)) for a small central region of Figure 3. 
Notice the tiny Out crucial) oscillation which appears to have a period 3 in In t / In  A. 
This osciUation produces the separation between the U(t) and S(r(t)) curves depicted 
in Figure 5. 

Using results like those depicted in Figure 5, we calculate the separation, 8, of the 
two curves, S(r(t)) and U(t), at q .  This separation is plotted as a function of 1/~ 
in Figure 6. Notice the apparent straight-line behavior on this log-linear plot, which 
seems to agree with the leading term in (1.9). We shall make a more careful analysis 
of this fit in Section IV. Note that in Figure 6, e >- 0.434. The smallness of 6(0 for 
real t inhibits a numerical calculation for smaller values of e. We obtain numerical 
support to (1.9) in the limit e --~ 0 + by calculating 8(t) for complex t (see Section 
IV). There, we can carry out calculations for values of 8 as small as 0.005. 

In Figures 7a and 7b, we show plots of the distance of U(t) and S (r) from the fixed 
points at 1 and 0 respectively for e = 0.75. These figures also define the minimum 

10-3 

10 -4 

I0"" 
8 

........ , '"! 
I I 

40 60 80 
tnr 
Inl" 

Fig. 7a. The calculation of the miss distances from the fixed points. In Figures 
7a (7b) we plot 8o(r) (Sl(t)) as a function ofinr/In['  (hat/1hA) for the same 
case as in Figure 3. The existence of a global minimum 8o (80 is evident. 
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(3.2) 

separations 60 and 61. In Figure 6 we also plot 60 and 6x versus 1/8. The quantifies 
In60 and ln61 also seem to show a linear behavior in l / e ,  but with a slope smaller 
than that of In 8. 

III. Linear Deviation Analysis 

A. The Linear Deviations 

The functions u(t) and s(r(t)) described above obey exactly the same equation, but 
with different boundary conditions. Let w(t) stand for either u(t) or s(r(t)) when the 
parameterization is chosen so that an increase of t by A corresponds to a decrease of 
r by F (see (1.12)) 

1 
r(At) = -~r(t). (3.1) 

1 

Then w(t) obeys (see (2.9)) 

w(Aqt) = w(t) + eg(w(APt)). 

ro -3 ' ! ' * 

io-4 
,,,,,....,. 

o O  

10-5 
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Now consider a w(t) which differs only infinitesimally from u(t ) 

w(t) = u(t) + v(t) (3.3) 

with v(t) being very small. Then (3.2) implies 

v(Aqt) = v(t) + sg '(u(APt))v(A't) .  (3.4) 

Naturally, we are thinking about the situation in which v(t) represents the very small 
difference between the stable and unstable curves. 

Exactly the same logic that led to (2.25) implies that if t << 1, then.v(t) must be 
of the form 

v(t) = E ca(Ova(t) (3.5) 
Ct 

where in the small t limit v~ goes to t x., with 

Inn~ 
X,, = In A " (3.6) 

As before, the expansion coefficients must satisfy a periodicity condition 

c~(At) = c~(t). (3.7) 

but they are otherwise arbitrary. 
In exactly the same way as we defined u(t),  using its linear behavior as t --~ 0, 

we now define va(t) for 0 < t < ~. Demand that v~(t) be a solution to (3.4). To 
specify the behavior as t ---> 0, require that ~,~(t) defined by 

v~(t) = tx*~a(t) (3.8) 

be analytic at t = 0 and go to 1 as t ---> 0 

~ ( 0 )  = i.  (3.9a) 

These requirements define v,~ and ~a uniquely. Substituting (3.8) into (3.4), we see 
that the latter function obeys 

Aqg~(Aqt) = ~,,(t) + eg ' (u(Aet ) )Ae~(APt) .  (3.9b) 

If g(x) is an entire function of x ,  then ~,~(t) is, for sufficiently small e > 0, entire 
in t and analytic in 8. 

Now that va(t) is defined, we can state the main result of this section. Let 

A(t) = S ( r ( t ) ) -  U(t). (3.10) 

We write (3.1) as 

bo(t) 
r(t) = tlar/h A (3.11a) 
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with 

31 

b0(At) = bo(t). (3.1 lb) 

We assert that 

A(t) = ~ ' j  ca(OVa(t) + 0(8 ~) (3.12) 
ot 

where 8 = 8(tl) = ]]A(tl)[]. Our job, then, has been reduced to the calculation of the 
coefficients c¢,(t) and the parameterization bo(t). As long as 8 << 1, this calculation 
will give an excellent estimate for A(t). It is important to realize that the error term 
in (3.12) is the outcome of the linearization about U(t), which does not involve any 
expansion in e. Therefore, its magnitude is proportional to the quadratic terms in the 
splitting distance. This is a key point in our analysis; given that the splitting distance is 
exponentially small, the next-order term is indeed negligible. This is to be contrasted 
with the usual situation in which the leading-order term in a regular expansion in e 
is exponentially small and the higher-order terms must be shown to be exponentially 
small as well. For finite, real intervals of t, one can prove quite easily that (3.12) is 
valid. Therefore, we shall ignore the error term for now, and identify V(t) = Z c~V~ 
with the vector of the splitting distance A(t). 

An important property of the c,~'s is that they are periodic functions of In t with 
period In A and hence can be expressed as a Fourier series 

[2~rin In t 
ca(t) = ~ c ~ , n e x p ~  ~ j .  (3.13) 

n 

The condition that s and u be real gives conditions on the complex conjugate of 
ca.n , namely, 

c~ n = { c-a.-n,  for a v ~ q /2 ,  (3.14a) 
• c~,-1-n, for o¢ = q /2 .  

The coefficient co(t) measures the distance between s(r(t)) and u(t) in the tangen- 
tial direction of u(t). Indeed, ~0(t) and du( t ) / d t  obey precisely the same equation 
(differentiate (2.9a) and compare with (3.9b)). Hence, (3.12) can be written as 

du + Z c~(t)v~(t) s(r(t)) = u(t) + co( t ) t -~  
a~O 

u(t(1 + co(t))) + ~_. c~(t)v~(t). 
a~O 

The above equation demonstrates that the only effect of co(t) is to change the param- 
eterization of the stable curve. Therefore, we define the parameterization r(t) (via the 
function bo(t)) so that 

Co(t) = 0. (3.14b) 
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B. Small  e--Results  

To understand the behavior of (3.12) for small 8, it is instructive to look at the form 
of va(t) for small t. Equation (3.8) expresses va(t) as a product of two factors. The 
first is t x*, and for small 8, (3.6), (2.4), and (2.18b) give 

2~ria (1 ~ )  
X~ = 8g'(O---'-') + a a v  + 2,n'iot -~ -- . (3.15a) 

The term in 8 -1 gives v~(t) an extreme sensitivity to the phase of t. If  t = Itle i~, 
then the leading term in Ivy(t) I is 

lv,~(t)[ ~ e-2~r~'~/L (3.15b) 

This behavior will, in the end, give the e - l  term in In 8. 
On the other hand, the remaining factor in v~(t ), namely, V,,(t ), is not very sensitive 

to 8. If we fix t and take e to zero in (3.9b), the terms of order 8 in that equation 
give 

d . g ' (u(t)) , . ,av~ . . 
IIav~a(t) + t~'~va(t) = ~ s~ v~(t). (3.16a) 

Since u(t) --> uo(t) as ~ ---> 0 + , we can use (2.19) to find 

~ ( t )  = (g (u° ( t ) )  ~c~,, (3.16b) 

Equation (3.16) holds in the limit e --* 0 +, ]t[ of order unity or smaller. It is also 
required that t be far from the singularities of uo(t). In this limit, ~,~(t) is not very 
large, and it is nonsingular. 

C. Numerical Work 

Neglecting the quadratic terms, (3.12) can be translated into an equation obeyed by 
the phase space functions U(t)  and S(r),  namely, 

S(r( t))  - U(t)  = Z ca(t)Va(t) (3.17) 

where the phase space version of va(t) is 

Va(t) = (va(t), va(At) . . . . .  va(Aq- l t ) )  (3.18) 

and r( t )  is given by 

bo(t) 
r( t)  = t~r/ ln A, (3.19) 

where bo(t) is chosen so that co(t) = 0. The functions U(t), S(r( t ) ) ,  and V~(t) axe 
computed directly from their definitions (see Section IV.E). Hence, all the quantities 
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in (3.17) are known numerically except for the coefficients c~(t). Since the vectors 
V~(t) span the q-dimensional Euclidean space, ca(t) can be computed directly from 
(3.17) by inverting the q-by-q matrix of components of Va(t). 

The neglecting of the quadratic terms in (3.17) is justified if the right-hand side 
is small. A check on the correctness is that ca(At) = ca(t). Figure 8 is a plot of 
Ic_+l(t)l for g ( x )  = x ( 1 - x 2 ) ,  q = 5, p = 2, and~  = 0.5.  Notice that the Ic±11 are 
small and not only periodic but apparently constant; the t-dependence shown in the 
figure is of the order of  the quadratic terms [c__.ll 2, and this is consistent with (3.12) 
since, as we shall see in the next section, 8 ~ [c±i1. We thus argue that, except for 
exponentially small terms, ]c- 11 is independent of t. 

In all cases, we find that the leading term on the right-hand side of  (3.17) is the 
one involving c±l(t). All the remaining ca 's  are much smaller. In these cases, except 
for q = 2, c± 1 (t) is essentially independent of t. For q = 2, ct (t) is the leading 
and only term, and it oscillates. 
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Fig. 8. The dependence of the numerical value of 1c±i[ on t. We plot 
Ic~_1(t)l-lc-d as a function of In t~ lnA for the case g(x) = x(1 -xZ), q = 
5, and p = 2 with e = 0.5. Here c~_1(t) is the result of the numerical com- 
putation and Ic-11 = 2.89956 × 10 -7. The oscillations in t are of order Ic_d 2 
and correspond to quadratic errors; see Appendix C. 
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IV. Analysis in the Complex Plane 

Recall the procedure suggested by Kruskal and Segur 19 for attacking singular pertur- 
bation problems: 

I. Find solutions which fit the desired equations with all the freedom allowed by the 
boundary conditions. In our case, these are U(t) and S(r) with the addition of the 
small perturbation terms c~(t)Va(t). 

2. Fit the solutions to the appropriate boundary conditions at the appropriate end- 
points. Here we get U and S. 

3. Find a place, usually not in the real domain, where the low-order solutions are 
singular. In this region, the small deviations will be exponentially enhanced. Use 
this region to match the solutions. In our case, the matching corresponds to the 
determination of the coefficients ca(t). 

4. Take the matched solutions and analytically continue them back into the physical 
domain. The correction terms will be correctly estimated even though they are 
exponentially small. 

The pitfall of the above procedure is that one usually finds the leading-order be- 
havior of the various quantities, and must verify that in the matching region, these 
quantities are still well approximated by the leading-order terms. In our case, we 
would like to match the left-hand side and the right-hand side of (3.12), and use the 
lowest-order solutions uo(t), so(t), and ~ ( t )  to estimate the order of magnitude of 
the terms in (3.12). To justify this procedure, we need to prove that the error term 
0(82) in (3.12) is small, and that the expansions in e of u, s, and Pa are not failing 
too badly in the matching region. In Appendix D, we formulate the above statements 
more precisely and outline the arguments for the smallness of the quadratic terms in 
a region bounded away from the singularity. 

A. Exponential Estimate of ~(t) 

In our case, the low-order solutions are easily found. In fact, we exhibited the lowest- 
order solution for the case g(x) = x(1 - x) in Table 3. Here we look at the continuum 
limit of the recursion relation and find, for example, for g(x) = x(1 - x), a lowest- 
order solution 

t 
Iim u(t) = uo(t) = (4.1) 
~ o  1 + t 

with xj  = u(tj) and to the lowest-order 

tj = eJ~/qto. (4.2) 

Clearly, the solution (4.1) has a singularity at t = - 1 .  
The qualitative reason for this singularity is easily seen. The unstable curve near 

t = 0 is defined by xj = AJto, with to small. Imagine that to is a negative real 
number. Then each xj is negative and real. Successive lxj['s get larger and larger as j 
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increases. Since 

X j + q  = X j  + 6Xj+p(1 - -  X j + p ) ,  

as Ixjl increases the steps get larger and larger until, when xj  gets to be of order 
- 1 / 6 ,  the steps between successive xi 's  get to be as large as the xj ' s  themselves. 
Our continuum solution then becomes meaningless. Nonetheless, we can use the 
neighborhood of x j ~ - 1/6 as a fitting region for the different solutions. Similarly, 
we define the matching region for a general function g to be the region in which the 
continuum limit begins to break down, namely, where x j  ~ 6g(xj) .  

Notice that we have here a singularity which arises in the low-order solution when 
the phase of t approaches _+ ~r. Now let us examine the form of the v,( t)  in this region 
of t. It follows from (3.8) and (3.15) that if ot > 0 (a < 0) the first factor in v,( t) ,  
t x- , gets exponentially large as the phase of t approaches - r r  (rr). Our lowest-order 
estimate of v,(ts)  is 

Iv,,(ts)[ ~ exp [ 2~ra4~, ~g'(0) ]" (4.3) 

In writing (4.3), we have neglected any factors which might arise from ~a(ts). In 
fact, ~,(t) does get large near ts, but, as we shall argue (see, however, the discussion 
at the beginning of Section IV), the growth is only algebraic in 6-1 and hence may 
be neglected for this lowest-order analysis. Recall our basic very small parameter 

[ 27r~bs ] 
~: - ~:(0) = exp - - ~ ) j  (4.4) 

and write the estimate (4.3) as 

lv,~(tD] ~ ~'~. (4.5a) 

Since t] is also a singular point of uo, a similar calculation gives 

Iv~(t~)[ ~ U ~. (4.50) 

Using (3.13) for c~(t), we have 

ca(t)v~(t) = Z Z  c~,nva( t )exp(2rr in ln t / lnA)  (4.6) 
Ot ol 11 

and In A = 6g'(O)/q in lowest order. We next assert that the combination 
~.a c~(t)v,,(t) which appears in s(r(t)) - u(t) (see (3.12)) must be at largest of 
order ~0 near t , .  The argument is that u(t) and s(r(t)) only get algebraically large in 
6 in that region (see discussion below), so the difference cannot include, say, a ~-I 
term which is exponentially large in 6. Here, we must also ensure that the quadratic 
terms of (3.12) remain smaller than u(t) in the matching region. We present arguments 
for their smallness in Appendix D. 

As long as c~,(t) is analytic, the ~, n term in (4.6) falls off exponentially fast in n; 
hence no cancellation is possible, and we can bound (4.6) term by term. In Appendix 
D, we conjecture that c,,(t) is analytic up to the matching region. Then, to leading 
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order, the or, n term in (4.6) is of order 1 near the singularities ts and t], and we 
must have, respectively, 

1 > Ic,z,ni~q"~ a, 
1 > ICa,nl~-qn~ -a, 

since [al -< q/2 we find that 

Ica,n[ < ~ql-I+a sign(n) for n # 0, 

Ica,ol < ~lal. (4.7) 

This analysis permits only Ico,ol to be of order unity z4. However, we have chosen 
(see (3.14b)) the parameterization r(t) to force this term to be zero. The next biggest 
terms are 

Ic*_1,01 < ~, for q > 2, (4.8) 
Icl,ol, I c . l  < ¢ ,  for q = 2 .  

All other terms are at most of order ~2 and are negligible in comparison to these. 
It follows from (4.7) that if a # q/2 then ca ~ ca,0; hence, ca is essentially 

independent of t (this observation is supported by the numerical calculations as shown 
in Figure 8). Moreover, 

Ical "" lc___l[ I~1. (4.9) 

When a = q/2, (3.14) and (4.7) imply that 

{ lnt  ) 
Cq/2(t)Vq/2(t)  ~ 2[Cq/2,01 COS ~'trl- ~ + 0 ~aft)(1 + O(e)) 

(4.10) 
[ lnt  ) 

2lc~,olq/2cos~Tri- ~ + 0 ~a(t)(1 + O(e)) 

where 0 is an unknown phase. 
Now we are in a position to estimate to exponential order, the distance between 

the two curves. For q > 2 we have 

6(t) = llS(r(t)) - u(t)ll = [Ic~.0v~(t) + c*~,oV?(t)[I. (4.11a) 

Substituting (3.8) and (3.16b) for Vl(t), and t = 1 + O(~) in (4.11a), we find 

{ g(uoO)) l oo~2,,p/q> 
8(t) ~ ~ lcd ~ j (1 + 0(~)).  (4.11b) 

I f q  = 2 a n d t  = 1 + O ( 8 ) ,  

. l n t  
8(t) = [lVl(1)[l ltX' (Cl,O + Ct,-l exp[-27r, l'-~]) ; (4.12a) 

hence, 
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- 21cl ol g'(°) lcos { in t 8(t) ' g ( u - ' ~ ) ) ~ r l ' ~  + 0)I (1 + 0(~)) (4.12b) 

where 0 is an unknown phase angle. 
To complete this exponential order analysis, all that remains is to compute the 

phases, qb s ( -cks) ,  at which the singularities appear. To do this we have to solve 

du g(u( t ) )  
t ~ ~ 

d t  g'(O) ' 

u(t) 
- -~  1 a s  t ~ O. 

t 

(4.13) 

Consider 

g ( x )  = x(1 - x m) (4.14a)  

where m is a positive integer. The solution to (4.13) is 

t 
uo(t) = (1 + tin) 1/'n' (4.14b) 

and u approaches infinity as t m approaches - 1 ;  hence, 

4,, = ~r/m. (4.14c) 

Next take 

sin 7rx 
g ( x )  = ~ (4.15a) ql" 

for which 

2 7/" 
uo(t) = ~ a r c t a n ( ~ - t ) .  (4.15b) 

Here the singularities with smallest phase lie at t = ---(2/~')i ,  so 

4's = ~'/2. (4.15c) 

To get a nontrivial case take 

g ( x )  = x(1 - x)(1 + ax) ,  - 1  < a < O, 0 < a < ~,  (4.16a)  

to find the implicit equation for u 

t l+a = ul+a (4.16b) 
(1 - u0)(1 + auo) a" 

The uo(t) is singular at t = a(-a/l+a)(--l)(-1/l+a); hence, the singularity with the 
smallest phase gives 
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7r O < a  < ~ ,  ' 
~b s = l + a '  

zr, - l < a < O .  
(4.16c) 

Notice that for positive rational a ,  uo(t) has a finite number of singularities, whereas 
for positive irrational a,  the union of all singular points of uo(t) on all its branches 
forms a circle. Nevertheless, the value of ~bs is insensitive to this structure and only 
depends upon singularities on the principal branch. 

We summarize the properties of the singular solutions in Table 3. 

B. Algebraic Corrections f o r  5 ( 0  

We estimate the magnitude of u(t) ,  s (r ) ,  and P(t) near the singularity in the matching 
region. These estimates suggest that u, s, and ~a are enhanced at most algebraically 
in this region. In addition, they supply an algebraic correction to the split distance 
8(0.  Theoretically, this part is not easy to justify. Our basic claim is that for regions 
bounded away from the singularities, the regular expansion in 8 is a valid asymptotic 
expansion; hence on the borderline of the validity region, the leading-order term 
represents correctly the order of magnitude of the diverging series. This claim is 
supported by our numerical calculations, but is yet to be proven. 

Recall that our matching region is the region in which the continuum limit fails, 
namely, where 

eg(Xm) ~ Xm, lxmt >> 1, (4.17) 

where Ixml denotes the order of magnitude of Ix l in the matching region. Solving 
(4.17) (to leading order in e) for our three examples gives 

Xm ~ e -1/m, (4.18a) 

xm ~ / ln~  -1, (4.18b) 
7/" 

Xm ~ [as[ -1/2. (4.18c) 

Indeed, it is easy to verify that these values of Xm are realized by uo(tm) where 
tm = tse  -iS~l and ¢kl is an order-I positive number. 

By (4.18), both U(tm) and S(tm) exhibit at most algebraic dependence on e. Sim- 
ilarly, we use the lowest-order solution of ~,~(t) to estimate its magnitude in the 
matching region. Substituting (4.17), (4.18), and the value of tm into (3.16b), we 
obtain, to leading order in e 

~a(t,n) ~ e-i~ra~P/me -(l+l/m)a*p, (4.19a) 

va(tm) ~ (1/2)f~*Pe-l~P(ln e - l )  t~p, (4.19b) 

v~(tm) -- at~°P(a-1)/2(a+l)e -3/2t~p. (4.19c) 

Now we estimate the algebraic corrections to 8 (0  by estimating c~(tm). By definition, 

Ca(tm)va(tm) = u(tm) - s(r( tm))  5 Xm, 
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and similarly, 

Z co(r)v~(r.) <_ gin. 
o t  

Using the same arguments as in the previous subsection, we obtain 

lco..l < IXml~ql"l+" sig°~.) 
tv=(tm)l ' " ~  0, 

(4.20) 

Ic~,01 < Ix'l~l"l 

Specifically, for the three examples we consider, the dominant term, Icl.01 is given by 

lcl,ot ~ B~e-I/'n+(l+l/'n)c°s(zr:P/q)e°(8), (4.21a) 

I ca.01 ~ B ~  =°~<2~/~) exp{O [In(In ~)]}, (4.21b) 
Ic~.oi ~ B~e,-l/2+3/2c°s(2~rP/q)e°(e), (4.21c) 

where B is an unknown constant (numerically B is found to be a rather large constant, 
typically B ~ 103). It follows from (4.11) and (4.12) that the algebraic corrections 
to 6 (0  for t ~ 1 are identical to the algebraic corrections to ]cl,0] and they are given 
by (4.21). Hence, the coefficient y in (1.9) is given by the power of the e term in 
(4.21). We summarize the results for the coefficients in the asymptotic expansion of 
B(t) in Table 1. 

The occurrence of large constants such as B is not surprising. We have neglected 
the order- 1 terms in the exponents, which may contribute large numbers. For example, 

_ I 

we know that Ic~,01 is proportional to t s x ,  which contains the term -2~r]~bs 1(½ - p/q)  
(see (3.15a)) in its exponent. This term by itself can explain a 103 factor in (4.21) for 
p / q  < ½ .  Numerically, we do not find a significant difference between the constants 
corresponding to p~ q < ½ and p~ q > ½ .  This suggests that there are other constants 
like the one mentioned here which were not accounted for. Also, we note that Lazutkin 
et al.21 find a similar behavior for the standard mapping. 

C. Estimates of  8o and 81 

We use the estimates of c,~'s to find 60 and 8j. Equation (3.12) enables us to estimate 
the behavior of S(r(t)) as t ~ O. In this limit, u(t) --* t and v~(t) ~ t x., so that 
(3.17) implies 

S(r(t)) -~ tVo + Z c'~(t)tx°V~ (4.22) 

with V,~ given in (2.6). In (4.22) we neglect the quadratic terms, which are of order 
tel,ol z. It follows that z~ the estimates for 6o and 61 are consistent for q <- 5. Note 
that in the limit e ~ 0, the A~ reduce to f/~ so Re{V~} form an orthogonal set 

V~ . V~ = f q + O(e)' a = - f l ,  or a = /3 = q/Z, 
O(e), otherwise. (4.23) 

t 
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There are two cases to be considered. 
1. Orientation-preserving maps (q is odd): Then, as we argued in Section IV.A, 

the ca(O's are essentially independent of t. Equation (4.22) implies that to leading 
order in e 

= t 2 + 2 L~I lc-l 2t2Re{x~}. (4.24a) IlS(r(t))l[ 2 

q a = l  

Using (3.11), (4.24a), and bo(t) ~ bo for real t, we find 

[q/21 
IIs(r)ll2 = (bo/r) 21"A/tnr + 2 2 1 c'~t2(b°/r)2RellnA~/lnr} (4.24b) 

q a=l 

Equation (4.24) attains an extremum if 

[q/2] 
t ~  --2 ~ Re{x~Iical2t 2Re{x"}-1 . (4.25) 

We assume that the right-hand side of (4.25) has a dominant term, so that 

t - [-2ReCw)Ic l z] 
K~[cl l &/(l-Re~'~ }) 

(4.26) 

for some &, 0 < t~ < q/2.  It is easy to show that the above result is consistent 
if fi minimizes the expression a/[1 - Re{x~}]. Since t is positive, we also require 
Re{x,~} < 0. Substituting (4.26) in (4.24), and using (4.9), we obtain 

80 ~ A0[ct[ TM, ~o = min a (4.27a) 
, 1 - 

IMxaI<o 

where A0 is a constant to leading order in e. 
In Figure 7a we plot the distance IIs(r)ll for r values which are close to rmin, 

where rmin= r(t) and t is defined by (4.26). For r < train, IIS(r)ll is dominated by 
the first term in (4.24b); hence, it is monotonically decreasing with r .  For r > rmin, 
the dominant term is, to leading order in e, monotonically increasing with r .  The 
oscillations seen in the graph for r - rmin correspond to the first-order corrections to 
this dominant term. In Figure 7b we present the analogous picture for U(t). 

Similar analysis gives 

61 ~ A1]OI[ nl, *ll = min ~c~r<0 1 - Re{~a}' (4.27b) 

where 

In Fa 
~ = inF 
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and AI is a constant (different from A0) to leading order in 8. The value ]~11 is found 
from the relation 

8(0  ~ tel Wl(r(t))l ~ tciV~(t)t 

which at t = 1 gives, to leading order in v, 

I~11 = Ic, l .  (4.28) 

Here, ~lWa(r) is the analogue of Va(t), namely, it is the nonlinear extension of Wa 
in (2.14). In Table 2 we show the numerical and theoretical values we get for ~10 and 
~71 for various p's and q's. 

2. Orientation-reversing maps (q is even): Then, for oc # q/2,  c,~(t)'s are 
essentially independent of t, but cq/2(t)tx*/~ oscillates. Equations (4.9), (4.10), and 
(4.22) imply that 

[q/2--1] { In t 
IIS(r(t))H2 - t 2 + 2 Z lc~l 2t2R°x~ + lcllqt-2c°s2~qr~'-A +O/l (4.29) 

q ~=1 

where 0 is a constant. Hence, IlS(r(t))l} oscillates in t even in the leading-order terms. 
As t ---> 0, the last term in (4.29) dominates and grows without bound for almost all t. 
However, there exists a subsequence tn ~ 0 for which this term vanishes. If Rex,~ > 0 
for all 0 < ~x < q/2 ,  this implies that, to linear order, IS(r(t.))l ---, 0 as t .  ~ 0, 

namely, that heteroelinic orbits possibly exist. These conditions are satisfied for q = 2 
and for q = 4 with p = 1. The possible existence of heteroclinic orbits in four- 
dimension, created via intersections of  one-dimensional curves, is quite surprising. 
Numerically we have found similarities between the q = 4, p = 1, and the q = 2 
cases, but we cannot conclude whether we have found heteroclinic orbits. With these 
observations in mind, the calculation of the minimal distance of  approach, when there 
are no heteroclinic orbits, is straightforward: one considers (formally) the sequence tn 
for which the last term vanishes, and therefore disregards this term, obtaining similar 
results to the orientation-preserving case. When there exists heteroclinic orbit, one 
has to redefine the meanings of 80 and 81. For example, for q = 2 (4.29) becomes 

[ lnt  ) 
IlS(r(t))llz2 - t2 + 1¢112t-2 c°s2 ~r i-h-S + 0 

{ ln r  ) = (bo/r) 21nA/lnF + [Cll2(r/bo)21nA/lnrcos2~'trl-- ~ + O' . 
(4.30) 

As r ~ 0% the second term in (4.30) dominates, and llS(r)ll oscillates wildly; there is 
one subsequence of r values for which IIs(r)ll --, 0 (corresponding to the heteroclinic 
orbits) and for almost all other points [IS(r)[[ --* ~. Therefore, we define 80 to be the 
minimal 7 distance of the envelope of llS(r(t))ll from the origin, namely, 

80 = rain max HS(r(A-Jt))II (4.31) 
j to<t<-Ato 
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where to is some fixed O(10 -1) quantity (clearly 80 is independent of  to). Using (4.29) 
and (4.31), we obtain exactly the same result as in (4.27), although the interpretation 
of 8o and 81 is different. In Figure 9 we plot lls(r)[[ for q = 2, g(x) = x(1 - x),  
and e = 0.75. The oscillation in IIs(r)ll is clearly seen. The envelope of lls(r)ll and 
80 are also shown in the figure. 

D. Numerical Results 

We test our estimates of  8(tl),  80, 81, and cl by computing these quantities numeri- 
cally for a range of 8 values and comparing the exponents and power law dependencies 
on ~ with the predictions. The results of  these computations are summarized in Tables 
2 and 4. In Table 4 we present the theoretical and numerical values of/3 and 7 for 
several forms of g(x), where 

{cl.0t ~ Ber e -#/~ 

3 

~ o 2  
x 
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l / 
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Fig. 9. The definition of the miss distance from the fixed points in the two- 
dimensional case (q - 2). We plot g0(r) as a function of lnr/lnF for 
g(x) = x ( 1 -  x), q = 2, and ~ = 0.75. The miss distance 80 is de- 
fined as the minimum of the envelope of go(r) which is drawn schematically 
in the figure. Note that the minima of go(r) correspond to heteroclinic orbits 
and asymptotically approach 0 as r ---> o~. 
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Table 4 Theoretical and numerical values of  fl and y. 

Function, g(x) m or a q p f l ~  

x(1 - x " )  

x(1 - x)(1 + ax) 

s in  "fix 

77" 

flnum T ~  Tnum 

3 2 19,739 19.718 - 2 . 0 0 0  -2 .001  
1 

5 3 19.739 19.710 - 2 . 6 1 8  - 2 . 5 8 7  

3 2 9.870 9.860 - 1.250 - 1.259 
2 .......... 

5 3 9.870 9.863 - 1.714 - 1.703 

3 2 6.580 6.574 - 1.000 - 1.008 

5 3 6.580 6.572 - 1.412 - 1.409 

3 2 19.739 19.732 - 1 . 2 5 0  - 1 . 2 5 0  

5 3 19.739 19.732 - 1 . 7 1 4  - 1 . 7 1 0  

3 2 19.739 19.732 - 1,250 - 1.250 

5 3 19.739 19.730 - 1 . 7 1 4  - 1 . 7 1 0  

3 2 13.160 13.153 - 1 . 2 5 0  - 1 , 2 2 4  

5 3 13.160 13.150 - 1 . 7 1 4  - t . 6 8 3  

3 2 11.844 I 1.837 - 1.250 - 1,238 

5 3 11.844 11.834 - 1 . 7 1 4  - 1 . 6 9 4  

, f~  3 2 10.912 10.905 - 1 . 2 5 0  - 1 . 2 4 5  
1 + 

4 5 3 10.912 10.902 - 1 . 7 1 4  -1 .701  

7r 3 2 11.056 11.049 - 1,250 - 1.243 

5 3 11.056 ! 1.046 - 1.714 - 1.700 

3 2 7.896 7.889 - 1.250 - 1.266 
1.5 . . . . .  

5 3 7.896 7.886 - 1 . 7 1 4  - 1 . 7 2 5  

3 2 4.766 4.763 - 1.250 - 1.269 
77" 

5 3 4.766 4.762 - 1,714 - 1.725 

3 2 9.870 9.867 - 0 . 5 0 0  - 0 . 5 0 6  

5 3 9.870 9.865 -0 .8 0 9  - 0 . 8 0 0  

3 

71" 

5 

1 

2 

1 

2 
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and B is a constant. Notice the agreement (typically three significant digits) between 
the numerical values and the theoretical predictions for all dimensions (different q's 
and p's) and for all the different functions we considered. For the function g(x) = 
x(1 - x)(1 + ax) the structure of the singularities of uo(t) depends sensitively on 
the value of a; see (4.16). We demonstrate that the theoretical prediction appears to 
work equally well for values of a which are negative, positive, rational, and irrational 
(using the computer, double-precision approximation of irrationals). 

The numerical computations for Table 4 are performed in the complex plane. There, 
we can compute for 8 values as small as O(10-3). We think that the exponents we 
see reflect the 8 ~ 0 ÷ limit. In addition, the computation in the complex plane 
enables us to check many of the assertions in this paper. For example, we perform 
the numerical computation in the matching region where ~b = ~bs - 8~b: and find that 
for ~bl sufficiently large (typically thl ~ O((hs)), the coefficient cl(t) is essentially 
independent of t to order clv 1,2 2. hence the quadratic terms in (3.12) are indeed small, 
and the sum over or, n in (4.6) is dominated by the lowest-order terms. In Appendix 
C, we present detailed analysis of  these effects. In addition, we find that u, s, and 
~ are of the predicted order of magnitude in the matching region. 

In Table 2 we present the theoretical and numerical values of r/0 and r/1 for the 
maps g(x) = x(1 - xm), m = 1, 2, where 

81 ~ A l l c l l " ' ,  

and ,4o and AI are constants to order e °(e). The numerical results are in satisfactory 
agreement with the theoretical predictions (typically the results agree to two significant 
digits). The results are not as sharp as for the asymptotic coefficients of Ic:l, the 
computations of 80 and 81 are limited to quite large e values, and at these values of 
e higher-order terms may be significant (see Table A.2). 

Finally, in Figure i0 we display a test of the relation between 8(t) and lc l (see 
(4.11b)) for t = tl for the case g(x) = x(1 - x), q = 3, and p = 2. Equation 
(4.11b) does seem to work. 

E. Numerical Method 

The quantities 80) ,  80, 81, and c:,o are extremely small for small values of e. Hence, 
we developed a careful numerical scheme for computing these quantities. Here we de- 
scribe the numerical scheme, and in Appendix C we derive estimates for the numerical 
errors. 

To compute 801) and the c,~'s we find, using a Newton method, the value of 
to such that AJto = tl and to is about 0.2 (recall that u(tl) = uo(1)). Then, we 
initialize u(to) and ~(t0). To obtain accurate initial conditions, we always use the 
Taylor expansion (of u, ~, and s, as described in Appendix B), taking enough terms 
so that the corrections are zero to the machine accuracy (10-15). Then, we advance 
u and ~, j times according to (2.9) and (3.9), respectively. Using a Newton method 
once more, we determine the value of ro for which the vector ( U ( t t ) -  S(rl)) is 
perpendicular to l,~(t:), where r :  = ro/F k, k is O(1), and r0 is about 0.2. Then, 
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Fig. I0. Comparison of the miss distance 8(t 1) and 2 ~ t c - 11, ((4.11 b)) 
for the case g(x) = x ( 1 -  x), q = 3, and p = 2. The agreement 
between the two quantifies is clearly seen for sufficiently large e values. 
The advantage of working with the coefficient Ic-t1 rather than the miss 
distance is also demonstrated in the figure: we can compute [c-ll for very 
small e values, whereas the computation of 8(tl) fails for e -< 0.4. In 
the inset we plot the ratio of the two quantities, R = 2 ~ [c-l[/8(tl), 
versus 1 / 8 for 0.4 < e < 1. Equation (4.11 b) implies that R = 1 + O(e). 
Numerically, R ~ 0.9 ± 0.1 for e > 0.45 whereas for smaller 8 values 
the computation of 8(tl) becomes less accurate and R(e) oscillates. 

8( t l )  is given by the magnitude of  U(tl) -S (r l ) ,  and the values of  the ca 's  are found 
by inverting the matrix spanned column-wise by the Va's. The only c,~'s for which 
our numerical results are significant are c+ 1 since all the other ca 's  are contaminated 
by the quadratic powers of  c._]V+_l. In Appendix C we show that the computation 
o f  8( t t )  is accurate to machine accuracy, and that the computation of  [c11 is accurate 
to the machine accuracy or up to the magnitude o f  the quadratic terms, whichever is 
larger. 

The above procedure works well for e > 0.45 (for the quadratic case with 
q = 3, p = 2). For smaller values of  e the magnitude of  8( t l )  vanishes to ma- 
chine accuracy. However, to get sharp values for fl and 7 we must obtain results for 
a larger range o f  s 's .  Therefore, we perform a similar procedure in the matching region 
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of the complex t-plane, where 8 (0  is increased algebraically as ~ decreases. First, we 
fix the phase of tc (the point at which the stable and unstable manifolds are matched) 
to be ~bs - etkl, where tkl is an order-l, positive constant. The magnitude of tc is 
determined so that Itc - tsl is minimized, giving 

Itd = lt~lcos~4,1. 

We initialize U and Q at to = Itcl exp - e l)] A-J ,  where j is an order-1 integer 
for which lto] is about 0.2. Then we advance u and ~ and determine rc as in the scheme 
for real t and r .  We use (3.19) to obtain an initial guess to the phase of re. We note that 
in the complex plane it is important to iterate ~(t) rather than v(t), since the term t x~ is 
exponentially small (or large). Once re is found, we compute 8(tc) .  To obtain the ca's 
we need to invert the matrix of the Va's. To avoid their exponential smallness/largeness 
we normalize t by tnorm, where tnorm = exp(i(~bs - es~bl)), and e, is the smallest 
value we use in the computation. Once the normalized ca's are found, we multiply 
them by (ts/tnorm) x* . The result of the computation is ( ts)  x~ ca,  which enables us to 
check directly the correctness of 2/without computing exponentially small (or large) 
quantities. To measure/3 we use the results of the small e range, together with an 
appropriate normalization. It follows from the numerical error analysis that there is a 
range of ~bl values for which IIA(t)It is sufficiently large and the quadratic corrections 
are sufficiently small so that c±t can be determined up to seven significant digits. 

The numerical computation of 8o and 81 is done for real t, in a similar fashion to 
the computation of $(tl). One merely replaces the Newton method by a minimization 
scheme on the interval [to, Aqt0), where to = O(10-I).  However, in this case we are 
limited not only by the smallness of tS0 and 81 but also by the accumulating numerical 
error, since, for small e, we iterate (I. 1) many times. In Appendix C we estimate the 
minimal value of e beyond which our results are significant: the critical 8 at which the 
error term and 80 (resp. 81) are of the same order of magnitude. These lower bounds 
agree with the lowest value of e for which our numerical scheme converges as shown 
in Table A.2. As e is increased, the relative error decreases exponentially in 1/8. 

V. Summary and Conclusions 

We have developed a method for estimating the distance between the stable and 
unstable curves for a family of q-dimensional maps. It uses the singularities in the 
complex plane of the solution to the limiting flow, u( t ) ,  and the behavior of the 
linearized modes, v~(t) ,  near the singularities. To find the distance between the curves 
we first find the e-dependence of u( t )  and va( t )  in the vicinity of the "closest" 
singularity. This behavior determines the magnitude of the coefficients of the linearized 
modes, ica(t)l.  Using the theoretical expressions for v,~(t) and lc~(t)l, we compute 
the distance between the curves for any real t. 

To test our predictions for the curve separation, we have developed numerical 
schemes which compute the curves, the Ca'S, the v,~'s, and the distance between the 
curves. The computations are done in the complex t-plane to achieve high accuracy 
for small values of e with a standard, double-precision workstation. We find excellent 
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agreement between the numerical results and the theoretical predictions for all the 
examples we considered. 

Generalizations and extensions of this work may include: 

i) A rigorous proof that for entire g(x)  the stable and unstable curves cannot coincide 
or, on the contrary, a characterization of all the analytic functions for which such 
a phenomenon occurs. 

ii) Characterization of the distance between invariant manifolds of higher dimensions 
(instead of one-dimensional curves). 

iii) Investigation of the change in the distance between the curves as a result of small 
changes in g. 

iv) A rigorous proof of the assertions in Appendix D. 
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Appendix A: Existence and Uniqueness of U(t) and S(r) 

Here we prove Proposition 1 of Section I. 

Proposition 1. For every ~ > 0, there exist unique entire vector-valued functions 
U(t) and S(r(t)) ,  (U : C --~ C q and S : C ---> C q) which are solutions to the 
mapping problem in the sense that 

U(At )=  G(U(t))  

and (1.12a) 

with the conditions that 

S ( r / I ' ) =  G(S(r)) 

U(O) = O, S(O) = 1, (1.12b) 

lim U(t____)) = (1, A . . . . .  Aq-1), lim S(r)  - S(O) _ ( t ,  F -1 . . . . .  F-q+1). 
t--'~O t r--~O r 
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Proof. We shall prove the part for U(t); the proof for S(r)  is identical. 
It follows from the definition of G (see (1.7)) that Proposition 1 holds if and only 

if there exists a unique entire scalar function u(t) defined by (2.9) 

u(Aqt)  = u(t) + sg(u(APt)) ,  (2.9a) 

u(t) 
u(0) = 0, lira = 1. (2.9b) 

t ~ 0  t 

Here t is a complex variable, ~ > 0 is fixed, and g is entire with g(0) = 0 and 
g'(0) > 0. A similar argument holds for the function S. For ease of notation, we 
shall do the case of g given by (4.14a) with q = 3, p = 2, and m = I. Analogous 
arguments hold for the general case. The idea of the proof is to invert the linear 
operator on the left-hand side of the equation 

u(A3t) - u(t)  - 8u(A2t) = -su(AZt)  2 (A.1) 

and solve the resulting equations by Banach's contraction mapping principle. For a 
suitably smooth function h with h(0) = h'(0) = 0, the solution of the linear equation 

u(A3t) - u ( t ) -  8u(A2t) = h(t), (A.2) 

lira ,u(t! = 1, (A.3) 
t ~ 0  t 

is given by 
~o 

u(t) = t + ~ 'AJAm_tA~h(A-J -m-n-3 t )  (A.4) 
j=o 

where A > 1, AI, A-I  are the roots of (2.2), namely, the roots of x 3 - s x  2 -  1 = 0. 
Since AIA,A- , t  = AIAII 2 = 1, it follows that Ia~l = IA-I1 = 1 / ~  < 1. The 
formula giving u in terms of h is analogous to the standard variation of parameters 
formula for differential equations. For our problem, h(t) = -¢u (A2 t )  2, and setting 
u(t) = t + R(t) yields 

~o 

R(t) = 71(R)(t) =-- - ¢ ~ ' A J A m _ l A ~ [ A - J - m - n - a t  + R(A-J- 'n-n-s t )]  2. (A.5) 
0 

For each 8 > 0, let Z = Z(8)  denote the set of functions R such that R is analytic 
on the disc (t ~ C;Itl < ~), continuous on the closed disc {t E c ; I t l  -< 8), and 
R(0) = R'(0) = 0. Denote the norm of R by 

IIRtl = max  IR(t)l = max  IR(t)[, 
Itl~8 Itl=6 

(A.6) 

An elementary calculation shows that if 8 is sufficiently small, then ~7 maps Z(8) into 
itself and is a contraction there 

II~(R) - ,7(w)ll  <- ½11R - Wll (m.7) 

for all R, W ~ Z(8).  Banach's contraction mapping theorem gives the existence of a 
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unique R ~ Z(8)  satisfying R(t) = tl(R)(t), It I < 8. Since R is analytic on this disc, 
the same is true of u. The form of the equation for u ensures that it is entire. 

Now we prove that for sufficiently large e the stable and unstable curves cannot 
coincide. Here we consider the case g(x) = x(1 - x), q = 3, and p = 2. For any 
8 > 0, the maximum modulus principle gives 

~ a x  u(t)l = m ~ l u ( t ) ]  = - u ( - 8 ) ;  (A.8) 
1-<8 ltl=8 

the final equality follows from (B.2) since an > 0 for all n. It follows from (B.2) 
that -u ( t ) ,  u'(t), u"(t) . . . .  are all positive on (-co, 0) and tend to oo as t ---> -oo. 
One can show that the growth of u is well approximated by the equation 

u(Aqt) ~- - eu (AVt )  2, as t ~ -co. (A.9) 

This is analyzed easily, and one can find the order  of u 

lim sup In(8)-1 In{In[max lu(t)l]} - In 2 (A. 10) 
8--,® ttt~8 (q - p) In A" 

i A standard theorem in complex analysis 25 states that an entire function of order < 
cannot be bounded on an arc connecting 0 to infinity. I f  we take q = 3, p = 2 for 
definiteness, then the condition (In 2 / I n  A) < ½ is equivalent to e > ~ .  Hence, for 
this case, u(t) does not remain bounded as t ---> co. A little additional analysis shows 
that 

lim inf u(t) = -co. (A. 11) 
t - ,~¢o  

In particular, the stable and unstable curves cannot coincide for the quadratic case 
wi thq  = 3, p = 2, a n d e >  6--3 

16" 

Appendix B: Series Expansions 

In this section, we derive a series expansion for u when g is given by (4.14a) with 
m = 1. We also give another proof that u is entire. 

Take g to be of the quadratic form given by (4.14a) and m = 1. Then (2.9a) reads 

u(A q t) - u(t) - eu(APt) = -e[u(APt)] 2. (B. 1) 

Write u(t) in a formal series expansion 

oo 

u(t) = Z an(-- 1)n+lt n. (B.2) 
n = l  

The coefficient of the first power of t is 

a l iA  q - 1 - eAP]. 

According to the definition of A, the factor in the square brackets vanishes. We now 
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take a l = I and move on to consider higher-order terms which obey 

k-1 

Bkak = ~ a l a k - i  
l---I 

(B.3) 

with 

A (q-p)k - A -pk - e. 
Bk = (B.4) 

for k = 1, 2, 3 . . . . .  Since Bk is strictly an increasing function of k, and since 
B1 = 0, B/ is always positive for k > 1. Then, (B.3) implies that all the ak'S are 
positive. 

It follows from (B.1) that there are only two possible kinds of behavior for the 
formal series (B.2) (recall that A > 1). 

a. The series has a zero radius of convergence, whence u(t) has a singularity at t = 0, 
b. The series has an infinite radius of convergence. 

We shall distinguish between the two possibilities by means of a ratio test in which 
the sequence of ratios 

ak+l 
rk = ~ (B.5) 

ak 

will be shown to have a finite upper bound. This finiteness eliminates possibility (a) 
and thus implies possibility (b). 

The proof is constructed by taking the ratio of the terms in (B.3) for successive 
values of k. The ratio equation reads 

Bk+l ~ k  m=l araak-m+l 
Bk rk k-1 

~ ' n  = 1 anak-n  

To use this result, define a coefficient ratio 

Bk+l 
Rk = (B.6) 

Bk 

and rewrite our result as 

k-1 
ak + ~"m=t  amak-rn+l 

gkrk  = k-1 
~"'n = 1 anak-n  

and finally 

k-1 
l ~ m = l  araak-mrk-m 

r k - -  + 
Bk+l k-t Rk ~"n = 1 anak-n 

(B.7) 
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Now we set some bounds. From its definition 

Rk > A q-p > 1 

for k > 1, and consequently 

As before, we take al,ot = 
coefficients 

51 

(B.8) 

k - 1  

Bk,aak,a ----" Z am,rtak-ra,a 
m=l 

(I3.13) 

where 

Bk > B2 A(q-p)(k-2) 

for k > 2. Furthermore, B2 > A -p so that 

Bk > A - P A  (q-p)(k-2) (B.9) 

for k > 2. Now, let Mk be the maximum value of (r2, r3, r4 . . . . .  rk-l) .  Since the 
a's are positive, (B.7) implies 

rk < APA -(q-p)(k-l) + MkA -(q-p). (B.10) 

Assume now that possibility (a) holds, i.e., lim sup rk is infinite. Then no matter 
how large m might be there is a k > m for which rk > Mk. Then (B. 10) implies 
that for these values of k 

APA-(q- p)(k- t) 
Mk < 1 - A-(q-p) (B.11) 

and thus there is a bound on rk which gets smaller and smaller as k gets larger. Since 
we started by assuming that, for large k, r~ was unbounded from above, we have 
reached a contradiction. We must conclude that (b) is true. 

A very similar approach will give a series for v.( t ) ,  which obeys 

va(Aqt) = v~(t) + ~g ' (u(A ' t ) )v~(A ' t ) .  

To state the boundary conditions we write, as in Section III, 

va(t) = tx'9~(t) 

where X~ is given by (3.8) and 9~(0) = 1. Now we use an expansion like that in 
(B.2) 

Pa(t) = ~ "  an.a(-  1) n- 1 tn- l .  (B. 12) 
n = l  

1. Now (3.11) translates to the conditions on the expansion 
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AqA(q-p)(k-1) - A-Pfk-1) - ~A~ 
Bk,a = 2~Ag (B. 14) 

The Bk.,, are bounded away from zero for all k, o~. First rewrite (13.14), using (2.2) 
for Ao, as 

A'~P(A (q-p)k - A -pk) + e(A (q-p)k - 1) 
Bk+a,, = 2~ (B. 15) 

Since A > 1, it is clear from the form of (B. 15) that if Ag p has nonzero imaginary 
part or if it is real and positive, Bk,a are bounded away from zero for all k > 0. 
The only case which requires some more care is when Ag p = - b  for some real 
b, b > 0. Since A~ satisfies (2.2), b = t + O(e), and (B.15) can be written in this 
case as 

( - 1  + O(e))A (q-p)k + (1 + O(~))A -pk - 
Bk+l,~ = 2~ (B. 16) 

Hence, for sufficiently small e, the Bk,a are strictly decreasing with k. Since BL,~ = 0 
it follows that the Bk.a are indeed bounded away from zero for all k, or. 

Appendix C: Numerical Er ro r  Analysis 

Here we use the linear deviation analysis to estimate the numerical errors in the 
computation of u(t), s(r),  8(t), 80, 81, and cl.  We use a superscript N to denote 
the numerical values and no superscript to denote the exact values of the various 
variables. Also, we use ex, Ex, and Ex, to denote the differences between the exact 
and computed values of a scalar quantity x, a vector X,  and a matrix X respectively. 
For example, e~ = x - x N. 

A. Error Estimate for  u(t) and s(r) 

It follows from our linear deviation analysis that for sufficiently small initial error 

eu(t) = u(t) - uN(t) = Z dava(t)  (C.1) 
a 

and the magnitude of the da's  is determined by the initial error eu(to). Assuming that 
there are no cancellations in the right-hand side of (C. 1) and that to < 1, we estimate 

Idol- le~(to)lto ~{x"}. (C.2) 

We further assume that the tangential error may be ignored. Then, for t < 1 we obtain 

ie,,(t)l- [eu(to)l(t/to) °~', to << t, (C.3) 

leu(t)] - l eu ( to ) l ( t / t o )  p='., to >> t, (C.4) 
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where 
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where 

~m~ = max Re{~,~}, 
~t#0 

(c .8)  
~min = min Re{~a}, 

of 

and to leading order in 

Pmax = ~max = maxcos(2"rr Pa l, 
~.o \ q / 

groin = ~rnin = m i n c o s ( - ~ ) . .  

To leading order in 8, Pmax - 0 for q - 4 and Pmax > 0 for q > 5. Hence, the 
numerical errors arc enhanced more rapidly when q --> 5. 

and 

B. Error Estimate for 8(tl) and the [cal's--the Real tl Computation 

Recall our method for computing c5(tl). First, we determine the value of tl by solving 

u(tl) = u(AJto)= u0(1). (C.9) 

Equation (C.9) is solved numerically using a Newton method to determine the value 
of to, subject to the constraint that U(to) is on the unstable curve. We satisfy this 
constraint by using the Taylor series of u to evaluate both u(to) and its derivative. 
Once the Newton iterations converge and enough terms in the Taylor expansion are 
used, we have 

le,(tl)l = lu(A j to) - uN(A j t~')t ~ 10 -15 (C. 10) 

le . ( t f f ) [  = [U(to N) - uN(t~)I ~ i0  - ' s .  (C.1 t) 

Namely, the error in determining u(tl) is zero (to machine accuracy) by construction, 

Pmax = maxRe{x,~}, 
,~,,o (C.5) 

Pmin = alan Re~(a}. 

The methods we use to compute ~(t), g0, and 81 are constructed to minimize the 
tangential error, hence the latter assumption is justified for what follows. 

Exactly the same considerations for s(r) imply 

le~(r)[ ~ les(ro)l(r/ro) ~ ,  ro << r ,  (G.6) 

leAr)l-  les(ro)[(r/ro) ~ ,  ro >> r, (C.7) 
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and the numerical error is swept to the determination of to. Indeed, (C.4) gives 

I .  \th~r~ 

[e~('o)[ = [u( t0)-  uN(toN)[ ~ [e~(t l)[I~ ) , 

leading to 

[t~ - to[ ~ [eu(tl)[(t°/tl)Pm~ + leu(t~)] 
[ut(to)[ (C. 12) 

For future reference, we substitute in (C.12) the typical numerical values from the 
computations: to ~ O(10-1), tl ~ O(1), ut(tg)  ~ tg ~ to, Pmin > - 1 ,  and get 

le,0l = It~ v - to[ < 10 -13. (c.13) 

To proceed, we calculate s(r(tl)) ,  where r(tl)  is defined as the r value for which co 
vanishes, by solving 

co = V-1( t t ) (U( t i )  - S(FJro))(1) = 0 (C.14) 

for ro = F-J(r( t l ) ) .  V- l ( t l )  is the inverse of the matrix V(tl), the matrix which is 
spanned column-wise by the V~'s. This method of computing S(r(t l))  guarantees that 
the tangential error is indeed zero to machine accuracy; hence, 

l es (r° )[ (r ( t l ) / r° )°~  f 10-15' q - 4, [e,(r(tl))[ ~ 10 -14, q ----- 5, (C.15) 

and the numerical error in the computation of 8(tl)  = I I u ( t l )  - S(r(tO)ll is 

les(,~)l -< I lEv(t l ) [I  + IlEs(r(tO)ll ~ { Io -ls,lo -14, qq >------- 4,5. (C. 16) 

The above estimates demonstrate that when 8(tl)  ~ 10 -15, this method of compu- 
tations fails. For the quadratic map with q = 3, we cannot use this method for 
~-< 0.4. 

Finally, we compute the ca's using 

C N = V-IN(t l )[UN(t l )  -- SN(r(tl))], (C.17) 

where 

= I c,~, for a > 0 
Cj 

l Ctq/2]-,~, for a < 0 

and the Va's are ordered accordingly. There are two sources of error in this computation 
of the Ca'S; the first is the numerical error in evaluating the right-hand side of (C. 17) 
and the second is the negligence of the nonlinear interaction of the V,~'s. Including 
these terms formally, we write 
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where dat~(t) can be found from the general solution to the equations for the quadratic 
terms. Since the error estimates are performed for It] = O(1), we assume that 
d~o(t) ~ d~o(1) in this region, and 

Subtracting 

d.~(1) = O(c,~c~). 

[uN(t) -- sl~(r(t))]J = Z vN, a(t)c~a 

from the exact difference, we obtain 

[Eu-Es](j)  = (VEc)j +(EvC)j +(F-,vEc)j + Z d~a V J,'*(t)V j,/s(t)+O(llc'V~(t)ll 3)" 
cz,fl 

Using (4.23) to find V -1 to leading order in ~, we find 

Ec r = V -1 [Eu - Es - EvC - EvEc]r 

+ Z d"¢ tx~+xo-x" Z AjOe'+xo-x')(I + O(s)) + o(llc~v~(t)lr) 
a,~ j 

= V-I[Ev - Es - EvC - EvEc]y (C. 18) 

+ Z d.13F(a,/3, T)t x"+x~-x" + o(llc~v~(t)ll 3) 
a,fl 

where 

q + O(~), a +/3 - 7 = 0 (rood q), 
F(a , /3 ,  3') = 0(~), otherwise. 

Now, we estimate the right-hand side of (C. 18). First, we estimate E,.  Let tl = Akto, 

v~ (A to )l lEvi,, t __ i va (AJ+k to )_  N j+k N 

]Aka +j { t~ 'va(AJ t l )  - (to - eto)X*(va(AJ t l )  - e% (AJ t l )  

-- Va t(AYtl)AJtleto/to)} [ 

v~(AJtl) ~a(AJtl) + to ta~ 

< lv~(AJt')l(Kl~ol + le~"(AJtD ~ 1 )  ] 

(C.19) 
where K = O(1) to leading order. In (C.19) we have used (3.t6a) to estimate the 
derivative of ~a(t). Also, one can neglect the term e~,(AJtl)/ga(AJtl) since the 
linearity of (3.1 lb) and the slow growth of all the ~'s with t imply 
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Jer,,,(a,t,)l "" l e % ( J -  10 -15 << [tollva(AJtl)l."- 

Equations (C. 19) and (C.20) imply that 

Ev -- K et°v; 
to 

hence, 

(c.20) 

(C.21) 

(V-1EvEc)~, ~ K etO Ec , 
to 

and therefore the latter term contributes only to higher-order corrections of Ec v . Using 
(C. 18)-(C.21), we conclude that 

lE~,l < [V-'[Ev-Es]l+ Kl-~9-ollcvl+ l,~_fa d~#F(tz, /3, Y)tx~+x~-x" + o(llc, (t)tt%. 

(C.22) 
For real t of order one and ~ << 1, IIVlI, IIv-'ll  = o (1 ) ,  and le,oc l/to << llEuII; 
therefore, 

Iec, I IIEvll + IlEsll + max IF(a,/3,  T)dat3[ 
(c.23) 

max(llevll, llesll, gq,#ll 2) 
where Kq,y has at most a power law dependence on e, and the dependence of all the 
quantities on t is suppressed. 

For the quadratic map with q = 3 and 8 = 0.75, Ic,I - 5 × 10-9; hence, according 
to (C.23) the error in [cl1 is estimated to vanish to machine accuracy. We computed 
]Cll for a range of t values of order 1 and verified the oscillations in t are of the order 
of 10 -16. A similar calculation for the case g(x) = x ( t  - x2), with q = 5, p = 2, 
and n = 0.5 gives oscillations of the order 10 -13, shown in Figure 8. Indeed, in 
this case fclt - 3 x 10 -7, and (C.23) predicts oscillations of the order 10 -13. The 
oscillations of Ic, l in t are associated with the oscillating vl (t) term, contained in the 
quadratic corrections. The little "bumps" which are superimposed on this mode (see 
Figure 8) may be associated with the algebraic corrections in e, and the general trend 
of decreasing error with t may be related to the t-dependence of d 1,1. 

The error estimate of c r demonstrates two limitations on the computation. First, 
that one cannot compute ca for lal > 1. Second, that the computation of c_.l is limited 
to sufficiently large e values for which [c_.,(e) I > 10 -15. The first limitation is not 
crucial since these coefficients are insignificant for evaluating the splitting distance. 
We overcome the second limitation by performing the same calculation in the matching 
region of the complex t plane, where all quantities are exponentially enhanced. 

C. Error Estimate for $(te) and cl--Complex t calculation 

Recall our procedure for computing 8(tc) and c+_-1 using complex t. First, we fix the 
phase of t to be (ths - ~tkl) and find the value of 1t0l for which AJto is closest to the 
singularity (~bs > 0 when tkl < 0 and vice versa). We initialize u and the ~a's at this 
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value of to and advance them j times. Since the phase of t is fixed (namely t d t o  is 
a real number), the estimates for the error in the calculation of U(t), to, S(r), 6(tc), 
and ~a(t,) are given by (C.10), (C.13), (C.15), (C.16), and (C.20) respectively. The 
main difference between the real and complex calculations is the treatment of the 
t x* terms which appear in V and their contribution to IIEcll. These terms may be 
exponentially small (or large) for complex t even when ltf = O(I). We avoid the 
problem of computation with small (or large) numbers by normalization. We replace 
(C. 17) by 

Cno~ - 1 = Vnonn (t)[S(r(t)) - U(t)] 

where 

Vj,anorm (t) = tno{¢ n Va(AJ-lt) = (t/tnoma) x" SZa(AJ-lt) 
(C.24) 

tno~ = tc(e~n) = Itc(8~i,)le i(~'-~4'') 

and emin is the smallest value of e for which the calculation is performed. This 
normalization makes the entries of the matrix Vnorm and its inverse to be of order 1. 
Finally, we find t x* Ca (an order-1 quantity) from 

tX"c~ = Canorm(tJtnorm) x" = Canormei¢'x~m"lts/tc(e:min)lx", (C.25) 

avoiding the explicit use of exponentially small quantities. For the error analysis 
itself, it is easy to show that the normalization factor drops out; hence, for simplicity 
of notation we do the analysis for the nonnormalized quantities. 

To find the error in t x• ca, we multiply the right-hand side of (C.22) by t x* , and 
evaluate it at t = to 

IE,:,c,I < tt~'l~_,lV~.~(tc)ltlEv jl + IEs jl] + K~ld 'c~l  
J 

+ l ( t s / t c )X ' } ( lZ  dal3F(ct, fl, y)tXc~+Xa + O(IJClVl(t)l[s)) 
\1 a,# 

I(t,/tc)x'iillE& + II~slll + K ~ t t X "  cr[ (C.26) 
< 

+ kl(t,/t~)x,t max Ic~t~x~ I + l(t,/t¢)x, lo(llc, e~(t)ll s) 

exp(2~l~,rl)tllEvll + IIe~ll] + g~lt~, 'c~l  < 

+ k exp(-2~'14,,[(2 - Irl)) + exp(2~rl~'rl)o(llc, v~ (t)ll s) 

where K,  ~7 are constants to leading order in e. The higher-order correction term is of 
the order exp(-6zr~bD and hence negligible. Mso, to leading order, when Yq~l < 0, 
tX'cr = O(1), and the relative error in this case is given by 

[~': '~, t < t XTc~ i - max(exp(2*rl4,,~l)[tlEvll + IIEstl],KI~oI, K exp(--2~rt6~l(2-  tYl))) 
I 

< max(exp(2,rl~,~l)tllevtt + IIEsll], k exp( -2~ i~ , l (2  - 171))). (C.27) 
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If ~'4,J > o, ItX~'c~,l ~ Ic~l 2 and the relat ive error b e c o m e s  large as e is decreased,  
namely, one has to choose the correct phase in order to obtain c ± 1 .  Also, (C.27) 
demonstrates that one cannot find c v for I~1 > 1. 

In the computation, we search for an interval of kbl[ for which c(4,1) is roughly 
independent of tkl. We define I~1 to be the value for which cl(chc) takes the average 
value in this interval. In Figure A.I ,  we present a plot of  Ic~_l(t~i) - c-l(~bc)l, con- 
firming the exponential dependence of the error on ~bl. It follows from (C.15) and 
(C.27) that the minimal error in cl is given by 

Ic±11 

and that this error is realized at 

101 

l0 -1 
0 
" ¢ 1 "  

0 

x 10_ 3 
t 

T 
¢ J  

-7-10-5 
"49-. 

¢ j I  

- -  10-~ 

! 0 - 9  ~ 

| 

.... numerical result 
- -  - - - -  theoretical prediction 

I v I m , I I i I 

2 4 
i I 

6 

Hg.  A.1.  The dependence of the numerical value o f [ c e l l  on the phase of  t. We 
plot l([CN_l(4'l)l--lC-ll)[ for the case g(x) = x (1 - -x2 ) ,  q = 5, and p = 2 with 

= 0.1, where t -- Itctexp(i(4's - ~4'1)), and Ic-~l -- 5.1974207 x 10 -4°. 
We also plot the theoretical prediction for the error (see (C.27)), where K is 
determined to obtain the best fit. A least-square fit for 1n1(Ic~_1(4';~1 -Ic(4'c)1)1 
gives a slope of  - 6 . 2  (6.0) for 4'1 < 4'c ( 4'1 > 4'c), whereas our error analysis 
gives a slope of  -2~r (2~r). 
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Table  A.1 Numerical values of Ic-ll for various g(x)'s. 

Function, g(x) m o r a  q p e 

3 2 0.100 
1 

5 3 0.100 

3 2 

5 3 

x(1 - x m) 2 

0.005 
0.010 
0,050 
0.100 
0.300 
0.400 
0.500 
0.600 
0.700 

O. 100 

Ic-,1 

4.0630759 x 10 -81 

6.498439 × 10 -sl 

8.262491 x 10 -854 
1.4798233 x 10 -42s 
1.5327448 x 10 -83 
4.496933 x 10 -2o 

3.6488399 x 10 -t3 
8.846798 × 10 -1° 

8.70057 × 10 -8 
1.74400 x 10 -6 
1.41825 x 10 -5 

9.377381 X 10 -41 

8.345954 X 10 -28 

1.8377573 × 10 -27 

1.982035 X 10 -s2 

1.525768 × 10 -8z 

4.227849 x 10 -55 

3.937723 X 10 -42 

4.462319 X 10 -42 

x(1 - x)(1 + ax) 

sin rrx 

7r  

1 

3 2 0.100 

5 3 0. I00 

3 2 0.100 

5 3 0.100 

3 2 0.100 

3 2 0.100 

5 3 0.100 
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~m = t n l l E u I I -  l n R  = 2.748 - l__~nK 
4¢r 4~" " 

Numerically, we find that ~c ~ 3.4, and that the relative error is approximately 10 -7. 

These results axe consistent with the above estimates when K --  80, ~bm ~ 3.1 and 

one examines an interval of length 0.7 in t~l. In Table A. 1, we quote some numerical 

values of 1c-1[ for various 8 values and for various g(x) 's .  We present six to seven 

significant digits, the number of digits which are identical for different tkl values in 

an interval near ~bc. 

D. Error Estimation for 8o and 81 

Recall that the definitions of 80 and ~z are 

go - minl lS(r)  - 011, 
r 

81 -- min l lU( t )  - 111- 
/ 

(C.30a) 

(C.30b) 
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Hence, the only source of error in the computation of 80 and 81 is the accumulating 
error in the computation of S(r) and U(t), respectively. Also, since 80 and ~l are 
found via minimization on the parameters r and t, respectively, it is clear that the 
errors in the tangential direction are irrelevant. In section A of this appendix, we 
established that for i = O(1) (respectively ~ = O(1)), eu(~) and es(~) are given by 
(C.3) and (C.6), respectively. However, from our analysis, we know that the minima 
in (C.30) are attained for rrnin >> 1 and train >> 1, respectively. We use the result 
that U(t) is very close to S(r(t)) for 7 --< t --- train to approximate the growth rate of 
eu(t) for t >> I by the linearized modes about S(r(t)). Namely, we use (C.3) and 
(C.8) to obtain 

e ¢t x l  I I t ~ t n f i n ) [  
e,,Ctn~n) = u, o)l~o] ~ - - ~ ]  (C.31a) 

and, similarly, 

. .[~ ~ f t ( rmin)~  ~" 
es(r~a,) = e , t r o , ~  o) ~ t - - ~  ) " (C.31b) 

Setting 7 = ~ = I, we get 

eu(t~n) ~ eu(to)to~r(t~n) ~ ,  (C.32a) 

es(r~a~) ~ es(ro)ro~t(rrm) p'~. (C.32b) 

We use (4.26) to estimate the value of r(tmin) and t(r~n) m (C.32) to obtain 

eu(tmm) ~ e~(to)to~(K~lel[~)~% (C.33a) 

es (r~)  ~ es(ro)ro ~ (Kalcl[~°)~ , (C.33b) 

where t~ and & are the t~ values which minimize ~min and Pmin, respectively. Finally, 
the relative errors are given by 

eu(t~an) eu(to)to~(k~l?llnl)~_l ,  (C.34a) 
81 

es(r~n) es(ro)ro~(K~lcllno)p~-i (C.34b) 
8o 

The e values for which the relative errors are of order 1 define the minimal values of e, 
denoted by 80 and 81, for which the computations of 8o and 81 are meaningful. We use 
the analysis to deduce the 8 dependence of the relative error, and we use the numerics 
to get the prefactor of [c1[. The prefaetor of l ll is found from (4.28). For example, 
when g(x) = x ( 1 - x ) ,  q = 3, and p = 2, (C.31) gives e0 = el = 0.437. 
Numerically, our method converges for e >-- 0.43 in the two cases. In Table A.2, 
we present the theoretical and numerical 80 and el.  For q <-- 4, the theoretical and 
numerical values agree to the first significant digit. When q >- 5, 80 and el are large 
and the corrections from the higher-order terms are significant. 
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Table A.2 Theoretical and numerical 
values of eo and ~: for g(x) = x(1 - x). 

theoretical numerical 

q P e0 el 

3 2 0.437 0.437 

4 1 0.740 0.535 

5 1 0.739 0.739 

~0 ~I 

0.43 0.43 

0.71 0.59 

0.73 0.63 
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Appendix D: Toward Rigorous Results 

Here we set up a framework which may lead to a theoretical justification of our 
results. We divide this appendix into two parts. In the first part we outline a proof of 
the exponential smallness of the distance function; here we relax the sharp estimate of 
/3. In the second part we formulate a series of steps, which, if proven, wil: constitute 
a proof of the main results of this paper, namely, the sharp estimates of /3  and ~/in 
(1.9). 

A. The Distance Function Is Exponentially Small in 

In this part we give supporting evidence to the following claim. 

Claim D.1. Given a qb, 0 < (b < ~bs, and an entire function g(x) which is positive 
on the open interval (0, 1) and satisfies (1.3) and (1.4), there exists an ~m = 8m(~) 

and an analytic function r(t) such that for 0 < e <em and real t of order 1 

8 0 )  = [[A(t)l] = l]S(r(t))-  V(t)[[ <- B(e, ~b)~ '~/*', (D.1) 

where B(e, ~b) ---> 0 as e --> 0 +, and ~ is the small parameter defined by (4.4). 

Supporting Evidence (SE). Define the region R,~ in the In(t) complex plane as 

R,  = {t[ - q~ < Im{ln(t)} < ~b, a < Re{In(t)} < A}, (D.2) 

where 0 < a < A~-~,b)A < ~. We estimate the magnitude of A(t) in R,~ and conclude 
its exponential smallness on the real axis. For clarity, we first state the essential 
lemmas and claims which constitute the proof of Claim D. 1, and then outline their 
supporting evidence. 

Lemma 1. In R¢,, the vector-valued functions U(t), S(t), and V~(t) are analytic 
(hence bounded)for all 0 <-- e < 8m. 

We denote the uniform bound of a function f ( t ), valid for all t E R~ and 0 <-- e < 
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Claim 1. In R e, all the above-mentioned functions have a unique, analytic limit as 
e --~ O +. 

We denote the limit e ---> 0 + of a function f ( t )  by fo(t). 

Claim 2. The matrix V is nonsingular in R e, and its inverse W is of the form 

Wa,j (t) = (A j t)-x" ff'a,y (t). 

The functions ~V~,j(t) are analytic (and bounded) for all 0 <-- e < era. 

(D.3) 

Claim 3. There exists a function r(t), analytic in R e, such that r(At) = r( t ) /  A and 
6(e, ~b) ---> 0 as e ---> 0 +, where 6(6, ~) denotes the upper bound of S(t) in R e. 

Corollary 1. The coefficients z~(t) 

z.(t) = f W A ( t ) ) ~  (D.4) 

are analytic in R e . 

Corollary 2. Let Im{ln(t)} = 0. Then, for t E R e, 

Iv.(t)l <- exp(-2~'0a/q In A)f,(4~), 

lwa(t)l <-- exp(2~rOa/ q In A)~,(~b). 
(D.5) 

Corollary 3. In R e , 

(D.6) 

Claim 4. There exist constants ca,0 such that 

za(t) = c~.o + ec,(t), 

le,~(t)l-< AE,~l'~lel*'a(e, 4,)~,(4,), 
E~ = min{~ (~- qO +e(q-21al))/e,, ~q(e*-o)/¢,, 

~-lS(e, tk)~'(~b)(1 + ~:[(2-1od)e-(2lol+aa)]/e, + ~(~qo+e(q-2~l))/e,)} 

where the upper (lower) sign stands for ot > 0 (or < 0). 

(D.7) 

(D.8) 

(D.9) 

Conjecture 1. Generically, in the space of entire mappings g(x) of the form consid- 
ered in this paper, the constants ca,o attain the value of the upper bound of (D.8). 

To obtain the order-of-magnitude estimates, we assume that the mappings we 
consider have this property, namely, we assume 

i c ,ol --- e (D. 10) 

Then, it follows from (D.7), (D.9), and (D. 10) that for real t, the order of magni- 
tude of Za(t)  is given by Icl,0p for 0 < --- 2, whereas for > 2 the nonlinear 
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interaction of the V+_l(t) modes can dominate. Therefore, using (D.4) (D.5), (D.7), 
(D.9), and (D.10) we obtain (D.1) with 

B(e, c~) = 8(~, tk)~(~b)~,(q~). (D. 11) 

Proof of  Lemma 1. In Appendix A we prove that U(t) and S(t) are entire in t for 
all e > 0. A similar argument holds for the Va(t)'s. The region R~ is defined so that 
Uo(t) is analytic in it. It follows from (3.16) that if g(uo(t)) ~ 0 for all t E R~ then 
rF~0(t) is analytic in this region as well. From the positivity of g(x) on the interval 
(0, 1) we conclude that g(uo(t)) cannot vanish in an open neighborhood of the interval 
[a, A]. For simplicity, we will further assume that g(uo(t)) ~ 0 in R4. 

SE to Claim 1. An argument similar to the one presented in Appendix A should work. 
In a neighborhood of the origin, Uo(t) ~ t and U(t) ~ t; hence U(t) ~ Uo(t) 
there. Continuing in the complex t-plane, one can expand Uo(t) about an arbitrary 
point t* E R e, and use the same arguments as in Appendix A to show that U(t) must 
have the same behavior there. A similar argument should work for the V,~. 

SE to Claim 2. It follows from (3.16) and Claim 1 that for ~ sufficiently small and 
for t ~ 0, ~,~(t) --~ 1; hence, using (3.10) it follows that for e and t sufficiently 
small V(t) is nonsingular. Since V(At) = DG(U(t))V(t), and DG(U(t)) is analytic 
and nonsingular (in fact, det(DG(U(t))) = 1), it follows that V(t) is nonsingular in 
R4. The form of W follows from (4.23). 

SE to Claim 3. It follows from the first two lemmas that if one chooses r(t) to 
be given by (3.19), with bo(t) = bo of Table 3, then r(t) is analytic in R6 and 
~(e, tk) ~ 0 as e ~ 0 + . 

SE to Claim 4. Since the za's are analytic in In(t) in R4, we may use Cauchy's 
integral formula for the variables x = exp(-2rri  In(t)~ lnA) to find 

+- 1 [ z~(t')d(in(t')) 
za(t) = ~ ~L 1 -- exp(+--2~ri l n ( t / t ' ) / InA)  (1:).12) 

where L is any closed curve in R6 which encircles t, and the upper (lower) sign 
stands for c~ > 0 (c~ < 0). We choose L as drawn in Figure A.2; in the In(t) plane, 
L has fixed upper and lower legs, P+ and P- ,  for which the phase of t '  is fixed at 
tkl and -~bl, respectively, and its magnitude It'[ varies between e b and e b+A, where 
0 < tkl < tk, a < b, and b + A < A. The side legs Psl. and PsR are located lnA 
apart along the Re{In(t)} axis, and may be deformed so that L encircles t. 

For ot > 0 (c~ < 0), we define the constants c,~,o as the averaged values of za(t) 
along P_ (P+) 

1 Ie zc,(t')d(ln(t')). (D.13) 
Cc~,O -~ ~ -sign(a) 

It follows from (D.6) and (D.13) that 

c~,o <-- ~1~1~1/~'8(~, tk)v~(tk). (D. 14) 
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Hg- A.2. The path of integration in the lnt plane of (D.12). The legs 
P_. are fixed, and the legs PsL and P,R are varied so that L encircles 
t, yet their horizontal distance is always In A. 

The optimal bound on ca,0 is found by letting 4'1 -'* 4', resulting in (D.8). 
Now, we estimate e,~(t) = za(t) - c~,o using (D.12-14). It follows that 

where 

e~(t) = Ec,,-(t) + Ea,+(t) + Ea,s(t) 

~-1 fp za(t')d(ln(t')) 
E,,,-(t) = ~ _ 1 - exp(-2zri ln ( t / t ' ) / lnA)"  

+-1 fv za(t')d(ln(t')) 
Ea,+(t) = ~ + 1 - exp(2zri In ( t / t ' ) / l nA) '  

1 Io (zc,(t') - z~(At'))d(ln(t')) 
E~.s(t) = ~ .. ,L 1 - exp(+-2~i ln(t / i ' ) /  ln A) " 

Using (D.6), we find the following bounds on Ec,,±(t) 
+ ^ Ea,-(t) <-- ~(q(4,,+o) '~¢")I'/"8(8, $)~(4'), 

(q(¢t-e)-~¢l)/¢~ 8 ~. Ea,+ (t) <--- ~ ( . 4p) (4p). 

Finally, we bound E,~,,(t). Using (D.4), (D.16), and (2.8) we find that 

z~(t) - z,,(At) = 

t -x '[Ar(t)  F~(U(t), DG-I(U(t)) ,  D2G(U(t))) A(t) + o(llA(t)ti3)], 

(D. 15) 

(D.16a) 

(D. 16b) 

(D. 16c) 

(D. 17) 

(D.18) 
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where Fa (U(t), DG-I(U( t ) ) ,D2G(U(t ) ) )  is a matrix with bounded entries in R#. 
First, we establish that for all t ~ R~, 

a( t)  = ~ ca,oVa(t) + Ea(t) 
i v  

IIE,,(t)ll << I I Z  c~.oV~(t)ll. 
~t 

(D. 19) 

We multiply (D. 12) by V~(t) and sum over a .  Using (D.7),(D. 15), (D. 16), and (D. 18), 
we then find an integral equation for A(t) of the form 

A(t) = Z V,~(t)(ca,o + E~_(t) + E,~,+(t) + O(IIA(t)II3)) 
c t  

(t-x.Ar(t) F~(U(t),DG-I(u(t)),DZG(U(t))) A(t) (D.20) 
Z + Va(t) 

,, Jv, L 1 - exp(+2zri I n ( t / t ' ) / I n  A) 

Note that the kernel in the integral is bounded. Since we have an a priori small bound 
on A(t) in R~ (Claim 3), we conclude that the integral term is small and can be 
neglected (this part can be probably justified using a fixed-point type of argument). 
Finally, using (D. 17) we obtain (D. 19). 

Now, we substitute (D.18) and (D.19) in (D.16c) to establish the bounds on Ea, s. 
Using (D.5) and (D.8) we estimate A(t) by Cl,0Vl(t) when 0 < 0 and by C-l,oV-l(t) 
when 0 > 0, and find 

E,,,s ( t ) <- e-lscl'~l~l/~'t~2(e, ~bl ) (V2 ( qb )e-  I [ l + ~((2-i~l)4~' -(21°l+aa))/ ~" + ~f(q- 2lal)~ = q°)/ ~" ]. 

(D.21) 

Equations (D.17) and (D.21), in the limit ~bl --~ @, result in (D.9). 

B. The Distance Function Is Bounded by the Right-hand Side of (1.9) 

Conjecture D.1. Given an entire function g(x)  which is positive on (0, 1) and which 
satisfies (1.3) and (1.4), there exist an ~.m and an analytic function r( t ) such that for 
0 < e <em and for real t of  order 1 

8(t) <- A(~)e~'~, (D.22) 

where ~ and 3' are given by (4.4) and Table 4 respectively, and A(e) has a weaker 
dependence than a power law on ~. 

Note: In view of the example given by Scheurle et al. 23, such a conjecture cannot 
hold in general. We think that the mappings we consider have different properties 
from theirs (see Section I.C). 

Strategy of Proof. We define the family of regions De as D~ = R,~,_8¢,, where R~ 
is defined by (D.2). We follow the same logic as in the previous proof, replacing the 
convergence property of Claim 1, by an order-of-magnitude statement. 
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Step 1. For any ~, > 0 and 0 < 8 < 8m, the vector-valued functions U(t), S(t), 
fr,~(t), and W(t) are analytic in De and have a unique limit as 8 ---> 0 +. Moreover, 
for ~b sufficiently large, these functions are of the same order of magnitude as their 
limits, on the boundaries of D~. Namely, f(t+_~¢) = O(fo(t±8~)), where 

t ± ~  = It±,~[ exp(---i(~bs - e~b)). (D.23) 

Step 2. There exists a function r(t), analytic in De, such that r(At) = r ( t ) / A  and 
such that for all t E Dq,, 

~(t) <-- ~zlllUo(t~)ll, (D.24) 

for some constant KI. 

Corollary 1. z . ( t )  = (WA(t)),~ are analytic in D~. 

Corollary 2. The following bounds hold on the boundaries of  D~: 

Iv,~(t±**)[-< K2(8)~±c'~,~ o(t±,,), 
(D.25) 

[w,,(t±8~,)l-< R3(8)~='~',~ o(t__.8~,), 

where K'2(8) and K3(8) have a weaker dependence on ~ than a power law. 

Corollary 3. On the boundaries of  D~ 

Iz.(t__.,~,)l- ~&(~)~:="llUo(t+__.~)ll lift', o(t.~)ll. (D.26) 

Step 3. For ot ~ q / 2  and for a "generic" g(x)  (see Conjecture 1) there exist constants 
ca,0 such that 

z~(t) = c~,o + e,( t) ,  (D.27) 

Ic~,ol ~ g~(~)~l~lllUo(t±~,)ll Ila'~ o(t~,)ll, (9.28) 

le,(t)l < Ico,olg ~'(=-I'b/~', (9.29) 

where the K .  (e)'s have a weaker dependence than a power law on e. 
Therefore, for real t and a = -- 1 the z,,'s are small and are constants to exponential 

order in ~. Moreover, for real t, Iz~(t)l << Izll for [o,I > 1. Therefore, using (D.4), 
(D.5), (D.27), (9.28), and (D.29) we obtain (9.22), with 

A(8) = (Kx(8) + K-Ks))llUo(t±,~)ll I1~¢~ o(ts,)ll. (D.30) 
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