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Abstract Here we develop the Topological Approximation Method (TAM) which gives a 
new description of the mixing and tnnsport processes in chaotic two-dimensional timeperiodic 
Hamiltonian flows. It is based upon the shucture of the homoclinic tangle, and supplies a detlled 
solution to a tnnsport problem for this class of systems, the characteristics of which are typical 
to chaotic, yet not ergodic dynamical systems. These chancteristics suggest some new criteria 
for quantifying ansport and mixing-hence chaos-in such systems. The results depend on 
several parameters, which are found by perturbation analysis in the near integrable case, and 
numerically otherwise. The strength of the method is demonstrated on a simple model. We 
conshuct a bifurcation diagram describing the changes in the homoclinic tangle as the physical 
parameters are varied. From this diagram we find special regions in the parameter space in 
which we approximate he escape ntes from the vicinity of the homoclinic tangle, finding non- 
trivial self-similar solutions as the forcing magnitude tends to zero. We compare the theoretical 
predictions with brute force calculations of the escape rates, and obtain satisfactory agreement. 

AMs classification scheme numbers: 58F14,58F13,58F?O, 70KO5.70K50 

1. Introduction 

Until recently, it has been fashionable to numerically find that the model in question is 
chaotic, at best prove it, and skip to the next model. However, by now it is well known that 
most flows in nature are chaotic, thereby nullifying the above exercise. Instead, developing 
tools to quantify the behaviour of ensembles of solutions to chaotic flows is on the agenda 
For example, two significant properties that all chaotic flows present are enhanced transport 
and exponential stretching of material lines. Beyond their theoretical value as quantifiers of 
chaos, both properties are important in applications [1-6]: studying the spread of pollution 
due to simple time-dependent velocity fields, and studying chemical reaction rate between 
two fluids in motion must be preceded by an analysis of the transport rates and the interface 
growth rate, respectively. 

The underlying structure which determines the transport properties of the considered 
mappingst is the homoclinic tangle (see figure 2 below). It is created by the intersections 
of stable and unstable manifolds of the mappings’ hyperbolic fixed points. Since both 
manifolds are invariant, once they intersect at a point, they must intersect at all its forward 
and backward iterates. As line elements are also stretched in the vicinity of the hyperbolic 

i Part of this research w a  conducted while the author was a member of the Computational and Applied Mathematics 
Program ?he Department of Mathematics, The University of Chicago. 
i The mapping may be the Poincare map of a timeperiodic flow conshucted by sampling the Rows solutions at 
constant inte~als  of times, corresponding to the periodiciry of the vector field. 
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point, the consequence of an intersection of the manifolds is the homoclinic tangle. Using 
the Smale-Birboff homoclinic theorem, the existence of a homoclinic tangle has been 
extensively used for proving that a given flow is chaotic. However, the chaos occurs on a 
measure zero set, which is unobservable. Analysing the transport corresponds to analysing 
the dynamics of the complement set to this chaotic invariant set. 

The methods we use here are reminiscent of methods used in studies of scattering [7,8]. 
In these one usually constructs symbolic dynamics which is in one to one correspondence 
with the trajectories of a hyperbolic invariant set. The hyperbolic smcture of the invariant 
set enables one to predict the asymptotic behaviour of the system. However, the situation 
is more complicated when the system is mixed, containing both hyperbolic and elliptic 
structures. Traditionally, people have attacked the mixed problem using the ‘effective 
diffusion‘ concept. Diffusion and transport were used almost as synonyms, and the criterion 
for a successful transport model was its capability to predict the diffusion coefficient in the 
system. In the last decade, it has been realized that transport (conveying ‘particles’ &om 
one region to another) may be governed by non-diffusive processes for which the diffusion 
coefficient is ill-defined [9-12J. The first non-diffusive model for transport in chaotic 
systems was introduced a decade ago by MacKay et al [IO]. Their general ideas were used 
in numerous subsequent works on the subject (see the review by Meiss [13]) and inspired 
the finding of important scaling properties of partial barriers to the flow [lo, 141. However, 
several key assumptions (such as ‘loss of memory’ in subregions of the flow) are, in our 
view, inconsistent with the structure of chaotic flows [15,16]. 

Here we develop an alternative non-diffusive nonlocal transport model: the TAM 
(Topological Approximation Method) supplies a new transport mechanism for two- 
dimensional area-preserving chaotic maps. The transport model depends on several 
parameters which are determined by the geometry of the homoclinic tangle. These are 
the Transport Order Parameters (TOP) of the map or flow [17]. We develop an analytical 
method to estimate the TOP for a class of near integrable Hamiltonian systems. Otherwise, 
these parameters may be found numerically. The critical assumption of the TAM is the 
simplicity of the topological structure of the manifolds, based upon simple templates or the 
‘Birkhoff signature’ of the tangle [18,19]. As a by-product, the TAM supplies a lower bound 
on the stretching of material lines (mixing). Judd [20] noted that their asymptotic behaviour 
gives a lower bound on the topological enhopy, and developed independently similar ideas 
for estimating the topological entropy and the Hausdorf dimension of the unstable manifold 
of dissipative homoclinic tangles. 

Another tradition in the dynamical system community. which we do not follow, is to 
characterize solely the asymptotic behaviour of solutions. First, in many applicationsfinite 
time results are significant [21]. Second, in many chaotic dynamical systems the transient 
behaviour is long, hence theoretical characterization of the transience is as important as a 
characterization of the asymptotic behaviour. Third, in some cases the asymptotic behaviour 
depends sensitively on the ensemble one takes and on the time interval one considers, hence 
it is not well defined. The TAM predicts both finite and infinite time behaviour. We believe 
its main contribution is in the finite time results, which lead to new characterizations of the 
transient behaviour, and may be rigorously justified. 

The TAM may be applied to two-dimensional area-preserving maps (possibly a Poincar.6 
map of a flow) satisfying the following three assumptions: 

(IA) The map possesses a hyperbolic fixed point p .  
(1B) The stable (respectively unstable) manifold of p has one branch which intersects 
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the unstable (respectively stable) manifold transversely?. 
(1C) The map is an open map: the other branch of the stable (respectively unstable) 

manifold of p extends to infinity, possessing no homoclinic orbits. 

For simplicity of notation we assume in (lA>-(lC) that the tangle is homoclinic 
(associated with the intersection of the stable and unstable manifolds of a single hyperbolic 
fixed point p ) .  However, the results can be easily extended to the beteroclinic case. The 
most significant assumption we make on the flow is (lC)-that of open flow. It implies 
that there is only one tangle of the stable and unstable manifolds, and hence there is 
no mechanism for reentrainment. There are several reasons for considering these flows. 
Physically, they come up in applications, e.g. pollution problems in the context of fluid 
mechanics and ionization problems in the context of chemical reactions. Mathematically 
these systems are interesting since they are inherently transient (their asymptotic behaviour 
is quite boring), hence the concepts of finite time estimates must be developed. These 
concepts may subsequently be used to characterize the transient behaviour of closed chaotic 
systems. Finally, these flows are simpler to investigate theoretically and numerically, hence 
they serve as good building blocks and as test problems for advanced methods. Indeed, the 
TAM has been recently generalized to closed flows as well [17], so classical examples like 
the forced Duffing equation and the forced pendulum may be similarly analysed. 

This paper is organized as follows: in section 2 we present our model and verify that it 
satisfies the open flow assumption and the assumptions required for applying the perturbation 
analysis. In section 3 we introduce the notation for classifying the homoclinic tangles and 
define the quantities we estimate in this paper. We end this section with a definition of 
some of the geometrical parameters of the homoclinic tangle. In section 4 we compute the 
whisker map for our model and use it to estimate the geometrical parameters which were 
defined in section 3. The results are summarized in a bifurcation diagram, which describes 
the dependence of the geometrical parameters on ( E ,  0). In section 5, we summarize some 
of the methods developed by Rom-Kedar [22] for estimating the development of tangles 
in specific regions of the parameter space. Then, we use this construction to estimate the 
exponential growth rate of line elements for our example and find the beginning of a Devil's 
Staircase for the topological entropy. In section 6, we estimate the escape rates for these 
tangles using the whisker map and the TAM, examine their behaviour in the limit of small 
E ,  and end this section with a comparison to brute force computation. Section 7 contains 
a summary and a discussion of the results. In appendix A, which summarizes a joint work 
with Dana Hobson, we present a numerical bifurcation diagram and a description of the 
numerical method we use to find it. In appendix B, we include some details of a calculation 
of the geometrical parameters. In appendix C we derive the approximate action formulae 
and estimate the initial escape rates. 

2. A particle in a cubic potential 

To demonstrate our theory, we study the phase space flow of a particle in a forced cubic 
potential, with the Hamiltonian: 

(2.1) 1 2  1 2  1 3  H,(x,y,t) = z y  + (p - T X  - i ) (1  +ECOS(Wt)) 

where e and w are the two non-dimensional parameters, measuring, respectively, the strength 
and frequency of the forcing. This problem has direct applications in mechanics and 

t The orbits dong which the stable and unstable manifolds intersect are called homoclinic orbits. 
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chemistry and may also be considered the normal form of a more complicated Hamiltonian 
system. We verify that for E # 0, the Hamiltonian (2.1) gives rise to a system which 
satisfies assumptions (1A)-(1'2). The Hamiltonian (2.1) induces the flow: 

dx 
dt Y -=  

dy - = x ( x -  1)(1+&cos(wt)). 
dt 

For all E ,  the points (0,O) and (1.0) are fixed points of (2.2). When E = 0, the fixed point 
(1,O) is hyperbolic, hence for sufficiently small E (LO) remains hyperbolic and assumption 
(IA) is satisfied. For the unperturbed system, assumption (1C) holds, and one can prove that 
for sufficiently small E the perturbed system must satisfy (IC) as well. Finally, for E = 0, 
the parts of the stable and unstable manifolds which do not extend to infinity coincide. To 
prove that (1B) holds for E $ 0, we calculate the Melnikov function and verify that it has 
simple zeros 123,241. Solving (2.2) for the unperturbed homoclinic orbit, we compute the 
Melnikov function M(f0): 

m 

M(t0) = S__y ( - x + x ~ ) c o s ( ~ ( I + t o ) ) ~  dt = C(o) sin(ot0) (2.3) 

(2.4) 

homoclinic orbii 

where 

C(o) = 2aw2(1 - 04)cosech(zo). 

The function C(o) is plotted in figure 1. Notice that C(o) = 0 when o = 1 and when 
o + 0, W. Therefore, the analysis in this paper applies to small E values and all finite 
values of o, excluding neighbourhoods of 0 and 1. We discuss the possible behaviour near 
these special values of o in the conclusion section. 

-0.2 

-0.4 0 o'f3z?Y3 2 w 4 6 

Figure 1. The maximal magnitude of the Melnikov function. 

P(Ho),  the period of the unperturbed periodic orbits which are foliated in the homoclinic 
loop is given by: 

It follows from (2.2) that for the unperturbed problem HO vanishes on the homoclinic orbit, 
hence near the separatrix, [Hol << 1. 
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It follows from the above calculations that H,(x? y, t )  is analytic in E near E = 0 
and periodic in t ,  that Ho(x, y )  is independent of  t ,  that &(x, y. t )  is quadratic in (x, y) 
near the hyperbolic periodic orbit (1,O) (in particular &(l, 0, t )  = 0), that the unperturbed 
structure satisfies the assumptions required for the Melnikov technique to apply (there exists 
a homoclinic loop, foliated by periodic orbits), that the Melnikov function has simple zeros 
and no plateaux, and finally that P’(h) = i ( l +  o(h)) for small h. These are the required 
conditions for applying the perturbation analysis [25]. 

3. The geometrical properties of the homocliiic tangle 

To study (2.2), we introduce a Poincard cross section in time and define the Poincark map, 
F ,  as the return map to this cross section. In the following analysis let E be sufficiently 
small, such that the perturbation analysis applies. Then, F has a hyperbolic fixed point 
at p = (1,O) and its stable and unstable manifolds persist. Moreover, since the Melniov 
function has two simple zeros every period of the perturbation (equation (2.3)), the PoincarL 
map F has exactly two primary intersection points (PIP) denoted by 40 and po in figure 2. 
The segments of the stable and unstable manifolds connecting the fixed point to po define 
a region, S. We study transport and mixing of an initial uniform distribution in S. The 
segments of the stable and unstable manifolds connecting p i t  and qi (resp. qi and pi+l) 
bound the regions Di (resp. Ei) which are called ‘lobes’. Their dynamics determines the 
transport through S. The growth rate of the lengths of  their boundaries, L(Ei), L(Di)  with 
i, gives a lower bound to the elongation rates in the flow. 

In figure 2 we draw the homoclinic tangle on the Poincark section with zero phase, for 
w > 1. The form of (2.2) implies that at this cross section the stable manifold is identical 
to the unstable manifolds reflected about the x-axis. Hence po is located on the x-axis (and 
indeed M ( 0 )  = 0). Since M’(0) < 0 for U > 1, the orientation of the manifolds at po 
is as depicted$. During our analysis, we will remark on the implications of this model’s 
symmetries on the TAM results. 

\ 

Figure 2. The homoclinic tangle. qi and pi are pip orbits. ri is not. 

i pi = F‘po. 
$ When o < 1 this Poimare map is symmevic about q ~ ,  and the same orienmtion appears if one considers the 
Pancare section for w =- I at t = r/o. We note that in practice these values of o give rise to very large lobes 
[26], hence we expect that the perturbative tools Which we use will not work well in this regime. For simplicity 
of presentation, we will limit our discussions to the case o z 1, and quote OUT fo~mal results for w c 1. 
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3.1. Transport and mixing characteristics 

We define the following characteristics for transport and mixing through the region S 

1. The phase space area originating in S which escapes at the nth iteration: 

e,, = f i ( ~ - ' ( s )  n s) - P(F"(s) n s) 

where p ( A )  denotes the area of the set A. 
2. The phase space area originating in S which stays in S after the nth iteration: 

R. = ,.L(P(s) n s). 

3. The length of the boundary of F"(S) ,  L(F"(S)).  

The above quantities are independent, up to a shift in n, of the definition of the 'origin' 
of the orbit pi (hence S) and of the particular Poincark section one chooses. When possible, 
choosing a cross section with symmetries, as in figure 2, is both elegant and computationally 
efficient. Note that L(F"(S)) is determined by the length of the lobe boundaries L(&) and 
L(Di). Similarly, in Rom-Kedar et al [6] we showed that c, and R, can be expressed in 
terms of the escape rates, e,, defined by 

en = n DO). 

In fact, it is easy to show that for open Aows 

The above results are exact and enable a major reduction in computational efforts 
surrounding the transport ratest. Here we find the mechanisms which govern the behaviour 
of the ea's and the L(E,)'s and present an analytical method for estimating them. From 
the above qhantities, we may attempt to extract asymptotic information, for example: 

1. The area of the invariant set in S, R,. 
2. The asymptotic behaviour of c, for large n; in particular, it is of interest [lo, 271 to 

find whether e, decays exponentially, as a power law, or in a more complicated fashion in 
n. 

3. The topological entropy, which may be estimated by the asymptotic exponential 
growth rate of L(E,,), 

1 
h= l i i  -lnL(E,). 

"+cc n 

t The equivalent formulae for two-dimensional maps which are neither open nor area-preserving have been 
developed as well. 
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3.2. Geometrical parameters, tangles and trellises 

The topological and metric properties of the flow depend sensitively on the way the 
homoclinic tangle develops. In general, given the sh’ucture of L(Do)nL(Ej). j = 1, . . . , n, 
one can calculate the minimal number of homoclinic points in L(D0) n L(En+l) and their 
ordering along the stable and unstable manifolds [28]. However, L(D0) n L(E,+x) may 
intersect in other points, which we call spontaneous intersection points 1221. One can 
imagine that there exist some parameter values for which the arcs do not develop any 
spontaneous intersection points for all j > n. For these parameter values we have some hope 
of estimating the topological and metric properties accurately, using information regarding 
the initial development of the manifolds. Then, we would argue that near these parameter 
values our estimates are still reasonable. This is the basic idea of the TAM. To support 
these claims, we consider three families of tangles which are determined by geometrical 
specification for the structure of L(D0) n L(Ej) ,  j = 1, . . . , n, for some finite integer n, 
and the rule that there are no spontaneous homoclinic points for j > n. To specify their 
structure we tirst define the structure indices e, m, k as follows: 

The structure index t is given by the minimal value of j for which Ej n DO # 0. 
The structure index m (respectively k )  is given by the minimal value of j for which 

the intersection of the tip of Et (respectively D-t), emanating from L(D0) (respectively 
L(Eo)), with D-j  (respectively E j )  is non-empty. 

A tangle belonging to the first family of tangles. the type4 trellises [28], has a structure 
index e, its critical intersection set, L(D0) fl L(Ee), contains exactly two homoclinic 
points (see figure 2), and for j > e, L(D0) n L(Ej )  is determined by the rule that no 
spontaneous intersection points are allowed. A tangle belonging to the second family of 
initial configurations, called type-(& m, k,  0) trellises [ZZ], has structure indices e,  m, k t ,  
its critical intersection set L(D0) n L(Et )  contains exactly four homoclinic points, and the 
critical intersection sets of the tips contain exactly two intersection points each (see figure 3). 
If the map is symmetric, as in the figure, then, necessarily, m = k .  As m ,  k --t 00 the type- 
(& m, k ,  0) trellises approach the type4 trellis ‘from above’, namely the tip size decreases 
as m ,  k are increased. This feature allows us to examine how the topological and metric 
properties change as the parameters of the problem vary, suggesting that the topological 
and metric quantifiers asymptote monotonically their limiting values as one approaches the 
region of the typed trellises. Hence our claim, that the estimates should hold in a region of 
non-vanishing area in parameter space, bas some theoretical support. The third family of 
trellises, of type-(L - 1, s, n,  -l), may be defined similarly, and approaches the type-@ - 1) 
trellis ‘from below’: the arc L(Ee-1) grows, intersecting the arcs L(D-,) ,  until finally, as 
s + 00 it touches the arc L(D0) and the index e decreases to e - I$. The last of the ‘0’ 
labelled trellises, the type-(& e - 1, e - 1,O) &ellis, is identified with the first of the ‘-1’ 
labelled trellises, the type-@ - 1, e - 1, e - 1, -1) trellis. 

We approximate the properties of tangles which have the same structure indices and the 
same number of homoclinic points in the critical intersection sets by the ‘minimal’ tangles, 
the typed uellises or the type+, m, k ,  0) trellises. In the next section we use the whisker 
map to find the regions in parameter space in which the tangles satisfy these conditions. 

t The last index ‘0’ is a label, indicating which of the threeindices-families of trellises we consider. 
t The trellis which appws to be most persistent in the H6non m p  [29], is a type-(l,3,3, -1) trellis, 
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Fwre 3. A type-g m, t ,  0) hellis. L = 2, m = t = 3. 

Figure 4. The pmuy of the separatrix map. - - -, unpenurbed separauices; -. an o ~ t .  

4. Calculating the structure indices 

In this section we define and compute the whisker map (WM) for (2.2). Then we use it to 
cons!mct a bifurcation diagram describing the dependence of the structure indices on t and 

Define the separatrix map, W, as the return map of the energy and time variables (hn, TJ 
w. 

to the cross sections & and &, respectively (see figure 4): 

W : (hn. r,,) + (h,+l. rn+d 
4 ( T d  E & (4.1) 

ha = f f , (q ( t* ) .  f ' )  q ( r * )  E & Tn < f *  < Tn+l 

where q( f )  is a solution to (2.2). In the neighbourhood of the separatrix (h << 1) the cross 
sections 4 and Xr are transverse to the unperturbed trajectories. Therefore, for sufficiently 
small c, the separatrix map is well defined there. Tbe WM is defined to be the leading 
order approximation in E and h to the separatrix map [22], and can be written as [30,31]: 

h,+l = h. + E M ( T J  = h.  + EC(W) sin(or.) 

r.+l = 5. + P(hn+d 
(4.2) 

where C(w) is defined by (2.4) and P(h)  by (2.5). Plugging the approximate expression 
(2.5) in (4.2) gives rise to the approximate whisker map (AWM) which we have used 
previously [32]. While the AWM enables one to derive analytical expressions for most of 
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the quantities in question, it introduces a dominant error of order *In(<), which limits the 
applicability of the analysis to much smaller values of E.  

Following Escande [31, we argue that for sufficiently small E the sign of hi determines 
whether a particle is trapped or not at the ith crossing of &S. In particular, hi = 0, 
i > 0 (respectively i = 0) implies that the orbit belongs to the stable (respectively unstable) 
boundary of S after the (i - 1)th crossing (resp. before the 0th crossing). Using this 
interpretation, we assert that .f is given by the minimal integer j for which there exists a 
solution (ho, to) to the equations? 

ho=O h i < O  h*=O 

0 1 2 3 4 
Y 

Figure 5. The topological bifurcation diagram. -.€:(a); - - -, €;CO). f. values are indicated 
to the left of the curves. 

Using the WM to approximate the hi’s and ti’s in (4.3), we found two families of 
solutions (‘a,b’), each containing two solutions for E > ~ , “ , ~ ( w ) ,  and none below these 
bifurcation values (see appendix B for details). In figure 5 we plot the bifurcation curves, 
which divide the parameter space to regions by the index 2, one of the flow t~ansport order 
parameters. 

As one increases E along the line ABC in figure 5, the number of solutions to (4.3) 
changes, and therefore the structure of the manifolds of (2.2) changes, as shown in figure 6; 
for example, when €2” < E < E; (point B in figure 3, (4.3) has exactly two solutions with 
j = 2, and we estimate the structure index 2 of (2.2) to be 2. Here, the tip of E2 crosses 
L(Do), two homoclinic points in EanDo are created (figure 6B), and the tangle has the same 
initial development as a type-2 trellis. A small increase (respectively decrease) in E results 
in type-@, m. m, 0) trellises (respectively type-(2, s. s, -1) trellises). In appendix A we 

$ We have recently proven that this argument may be nude rigorous, e.g. that hl and hz can be made cantinuous 
by defining hi = 0 on the boundiuy of S [U]. 
t In (3.8) of Rom-Kedar [32] we missed the index by one. This error was propagated through (3.12) and altered 
figures 5,  9 and 10. A similar error was mnde in (3.130) of that paper, altering the indices in (3.14X3.17) and 
figure 7. 
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Figure 6. GeameVical interpretation of the bifurcation curves e; and c j .  A: G; c < < 6;; B: 
<! c E c<;; c: 6; < e  < <:. 

(with Dana Hobson) compare the bifurcation diagram with a numerical bifurcation diagram, 
found by integrating the manifolds and searching for homoclinic tangencies. Figures A1 
and A2 of the appendix are the numerical analogues to figures 6 and 5, respectively. 

We found regions in parameter space in which the tangles had the same initial 
development as a type-e trellis. In these regions the jinite rime topological and metric 
properties of the flow may be approximated using the properties of the simplest construction, 
the type-e trellises. We extend our prediction to the asymptotic behaviour as well. As 
Robert MacKay remarked (private communication), when e = 1 we have some theoretical 
justification for this procedure; the horseshoe map, which is structurally stable, defines a 
type-1 trellis. Hence, we expect to find an open interval, contained in [e; ,  4'1, for which 
the map F is topologically conjugate to the horseshoe map and its manifolds form a type-1 
trellis. Davis er al 1291 find numerical evidence suggesting that the (1, s, U, -1) trellises 
are structurally stable as well. 

In the regions where the initial development of the tangles differs from that of a type- 
e trellis, we need information regarding the fate of the tip of Et .  This information is 
supplied by calculating the structure indices m ,  k .  Recall that by symmetry, m = k for 
(2.2). Following the arguments which led to (4.3), we find that an orbit contained in 
L ( E t )  r l  L ( R j )  must satisfy: 

2x 
ho=O k 1 < 0  k z < O  k Z = O  O < Q -  

0 

2x 2x ( e + s ( w ) ) - < ~ ~  ~ ( e + i + s ( W ) ) ~  (4.4a) 
w 

23r 2n 
( j  + e  + s(w))--- < T~ < ( j  + e + 1 + s(w))--. 

w w 

In addition, we demand that the orbit belongs to the tip of Et,  therefore 
- 

7 ; ~  < 70 G ~:(e) (4.4b) 

where ?:(e), 7:(e) are the two interior solutions of (4.3) with j = e. 
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m is given by the minimal value of j for which there exists an initial condition (ho, to) 
which solves (4.4). These conditions are meaningful only in the regions where the tip is well 
ddned, namely for c; < E .  equation (4.4) results in a nonlinear equation for to((, w; e). 
To find a bifurcation value one adds the requirement of vanishing derivative (dh3/dr, = 0) 
and obtains two nonlinear equations in the two unknowns ( E ,  to), which can be solved 
numerically. Technically, it is quite difficult because the solutions q, approach r,'(e) or 
.:(e) exponentially in m. Indeed, we could not obtain reliable results for general m. 

When m = e or m = e - 1, we use the symmetry of our system to simplify the above 
equations. This reduces the number of unknowns by one, and enables us to calculate the 
bifurcation curves easily (see appendix B for details). The bifurcation curves E : ; : , ~ , ~  of 

for m > I lie (4.4) for m > I lie between E; and E & ~ , , .  The bifurcation curves c2:l,m,m,-l 
between E ~ , ~ - ~  ,e- I,o = ce-, ,e- l,e-l,-l and E:-, . Hence, these two curves can be thought of 
as bounding the region in which the index m describes the tangle. We add the bifurcation 
curves E ~ , ~ , ~ , ~  and E ~ - ~ , ~ - ~ , ~ - ~ , - ~  to the e bifurcation curves in figure 7. We observe that there 
are still large gaps between c:-l,E-l,t-,,-l and e o ;  the implications of this observation 
will be discussed in section 5 (the, curve E ; , ~ , ~ , ~  iiks' between these two curves and is not 
shown). 

a b  

b b 

b b 

I 2 3 4 
e 

Figure 7. The m-bifurcation CUNS. On top of figure 5 we add: - - -. €&e,o and -, 
b 

€e,(-1.e-1.w 

Close to the bifurcation curves E = E; the tip of E2 is small, therefore we linearize 
the solutions of (4.4) about $(e) and t;(e). Using the AWM, we find the approximate 
dependence of m on E (see appendix B): 

where [XI denotes the integer part of x .  It follows that the bifurcation curves e&,, and 
ci,m are exponentially close in m to 6;. (4.5) gives a perturbative estimate of the topology 
near the bifurcation. Generalizing m to a continuous variable enables one to estimate a 
topological critical index, as discussed in section 5. 
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5.  Elongation rates of type4 trellises 

We summarize some of the methods developed by Rom-Kedar [22] for estimating the 
development of a type4 trellis and then use this construction to estimate the exponential 
growth rate of segments of the unstable manifold. We conclude the section with a definition 
and an estimate of the transient time scale. 

5.1. The structure of a ope-e trellis 

The assumption that a type-.! trellis does not develop any spontaneous homoclinic points 
enables us to construct a one-sided symbolic dynamics which describes the dynamics of 
the lobes: we divide the tangled image of EO into several types of strips, called states. By 
the TAM assumptions, these states obey simple dynamical rules under the Poincari map F .  
We draw typical members of the various states in figure 8 and define them as follows: the 
strips of E, r l  S which have one boundary belonging to L(Do)  and another belonging to 
L(Dj ) ,  j 2 e ,  belong to the state f,. The strips of E. n S with one boundary belonging 
to L(D-k) and the other belonging to L(De-k) or L(Dt -k+ l ) ,  where 1 < k < e - 1, 
belong to the state f k + l .  The strips of F”(E0) n S which have one boundary belonging 
to L(D0) and another belonging to L(Dl ) ,  belong to the state fc+l. Finally, the arcs of 
E, n D-k, k = 0, . . . , e  - 1 belong, respectively, to the state gk, k = 1, . . . , e .  The arcs of 
E. n 0,. j 2 1, belong to the state go. 

Figure S. The States of a type4 uellis. The hatched strips are the members of the indicated 
states. 

By preservation of ordering along the stable and unstable manifolds and by their 
invariance, the states obey the following dynamics: 

7 fl 
fl +ft+l==+fL-+fc-I+ _ ’ ’  +fl (5.1) 

I 81 I ge+gc-i+ ’ . .  -+gi + go 

where ‘fc+l j fe’ means that one strip of type fe+l produces two strips of type fe .  The 
dynamics of the states fi  determines the folding of curves inside S .  I n  this section we may 
ignore the ‘passive’ states gi and the width of the states fi; both were introduced for the 
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estimates of the escape rates (see section 6). From (5.1) we construct the (t + 1) x (t + 1) 
transfer matrix, Te: 

1 0 0 ... 0 0 1 
1 0 0 . . .  0 0 0 
0 1 0 ... 0 0 0 

[ :  0 0 : 1 : ... '. 0 : 0 : 0 : ]  
. . .  . . . .  
0 0 0 ... 1 0  0 
0 0 0 ... 0 2 0 

The number of strips of E, (n > 0) belonging to a state fi is bounded from below by the ith 
component of the vector (0, . . . , 0, 1,O) T:-': spontaneous intersections may only increase 
the number of strips. This observation enables us to estimate the length of L(E, n S): 

where A is a vector of lower bounds on the lengths of the states fi. The exponential growth 
rate of these quantities is given by log A%, where An denotes the modulus of the the largest 
root of the characteristic polynomial of Te, 

pe(A) = he'' -he - 2 > 2. (5.3) 

When t = 1, the matrix G is replaced by the matrix 

= ( i  :) 
and hr, = 2. In general, hr, is monotonically decreasing with t (see table 1). 

Table 1. Topological entropy and transient time of Te. 

1 i o  Ai = log(lO.O)/log(Ao/Ai) 
1 2.0000000 1.OOOWOO ~ 3.3219281 
2 1.6956208 1.0860520 5.1685438 
3 1.5436890 1.1382433 7.557 1668 
4 1.4510851 1.1579180 10.2025106 
5 1.388.0935 1.1633646 13.0373234 
6 1.3421522 1.1625420 16.0274050 
7 1.3069900 1.1589236 19.1506905 
8 1.2791080 1.1541097 22.3913371 
9 1.2563918 1.1488701 25.7372592 

10 1.2374839 1.1435843 29.1788643 

5.2. The elongation rate of the unstable manifold 

The bifurcation diagrams of figures 5 and 7 may be considered as an approximate diagram 
of.the level sets of the topological entropy: if the type4 trellises are similar to the tangles 
with the same initial development, then, for c," < E < G;, the exponential growth rate of line 
elements in phase space is given approximately by loghr,. A previous result along these 
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lines has been obtained by Judd [ZO] ,  who constructed a diagram describing the change in the 
topological entropy of the Duffing equation as the dissipation varies, using directed graphs 
to describe the evolution,of the lobes and rough estimates, using the Melnikov function, to 
estimate the indices. 

In Rom-Kedar [22], we constructed the symbolic dynamics for a type-(& m, k, 0) trellis 
form z 1 and calculated its eigenvalues. In table 2 we quote the values of hl; and h~,,,,,~ for 
several values of and m. Using the same approach, we construct the symbolic dynamics 

are quoted in the table as well. Comparing the differences in the topological entropies 
between the different families we notice that the ‘central difference’, Al;-,,c.l,c+, - h~,,,,,~ 
is smaller than the two ‘side differences’, hl;,sro - hl; and hl;., -hl;-,,6-1,t .,,_,, and that the 
ratio between these differences increases with e .  We conclude that the critical increase 
in the topological enbopy starts when the tips of the lobes BE-, and D-ol intersect 
(type(& e,  e ,  -1) trellis), increases as m is varied and ends after they go through each 
other once more as a type-(& e, e,  0) trellis. The above observations were motivated by the 
derivation of Cammasa and Hobson using difference equations on lobe evolution, indicating 
that (e, e ,  e, -1) is the ‘critical bifurcation’ (private communication). Figure 7 shows that 
there is a considerable gap between the curves ~ f ~ ~ , , , ,  and cE-l,t-l,t-l,-l, and from table 2 
we find that the topological entropies of these two tangles are almost the same. This implies 
that either there is no significant change in the dynamics in the gap, or that the topological 
entropy is not monotonic there. If the first possibility is occurring, then, perhaps the type- 
(e. e ,  e, 0) trellis is stiucturally stable. Both possibilities are quite fascinating. The tools 
developed here, in Rom-Kedar [22] and in Davis et al [291 may be used to study this 
question. 

- for (e ,  m, m, 0) when m = e, e - 1 and find hl;.t,LO and Al;,t-l,z-,,o - h ~ - , , ~ - , , ~  _,._, which 

b 

Table 2. Topological enkopy and ansient time of type-(l, m, m, x )  kellises. 

I m x L .  T,, I m x A  TWS 
1 1 0 2.26953 18 6 6 0 1.36213 85 
1 
I 
1 
2 
2 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 

5 0  
0 0  
1 -1 
2 0  
5 0  

10 0 
0 0  
2 - I  
3 0  
0 0  
3 -1 
4 0  
0 0  
4 -1 
5 0  
0 0  
5 -1 

2.001 99 
2.00000 
1.891 10 
1.80370 
1.70325 
1.695 65 
1.69562 
1.63841 
1.603 17 
154368 
1.507 46 
1.489 25 
1.451 08 
1.425 72 
1.414 89 
1.388 09 
1.369 18 

29 
23 
28 
28 
36 
51 
32 
38 
41 
42 47 

52 
55 
56 
68 
72 
65 

6 0 0  
6 6 -1 
7 7 0  
7 0 0  
7 7 -1 
8 8 0  
8 0 0  
8 8 -1 
9 9 0  
9 0 0  
9 9 -1 

10 10 0 
10 15 0 
10 20 0 
10 0 0 
IO 10 - I  

1.34215 91 
1.32742 79 
1.32253 103 
1.30699 108 
1.29514 99 
1.29159 121 
1.27910 I24 
1.26933 121 
1.26666 141 
1.25639 143 
1.7.4817 140 
1.24610 156 
1.23876 158 
1.23763 169 
1.23748 163 
1.23046 156 

Using a least square fit for hl;,m,m,o -AT, we have found [22] that for m > 1: 

hl;,,,,,o % AT, + CC expI-2&4 

be % 0.68 - a loge +0.0111+... . (5.4) 
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Using (4.5) and (5.4) we conclude: 

According to our construction, the topological entropy has plateaux which shrink 
exponentially with m. and their overall behaviour is described by (5.5). Smoothing out these 
plateaux we obtain a ‘topological phase transition’ with a critical index given approximately 
by: 

3w 3w(0.68-$log2+0.011t+ ... ) 
2n 2n CQ = -be = (5.6) 

The first factor of the critical index, bt, is universal as it depends only on the geometry. The 
second factor 3 ~ 1 %  is problem-dependent and is determined by the asymptotic behaviour 
of the period near the separatrix and by the form of the Melnikov function. According to 
the TAM approximation, the entropy is constant for E: < E < E; and hence we conjecture 
that the topological entropy is not a smooth function in E .  To establish this conjecture 
one needs to prove that the lower bound on the topological entropy is realized on the 
plateaux, i.e. that the trellis is structurally stable there, as conjectured for the (1, s, U ,  -1) 
trellises [29]. Another approach may be to add tlie additional structure of the trellis when 
the curve E = 6; is approached from below (along the plateaux) and obtain a different 
rate of convergence. We may repeat the same process near each of the exponentially small 
plateaux by adding more indices and obtain pathological behaviour of the entropy-a Devil’s 
Staircase. Troll [7] observed such behaviour in the family of truncated sawtooth maps: a 
hyperbolic, discontinuous, open family of mappings. 

5.3. The transient time 

In table 2 we include the transient time, the number of iterations we need until we achieve the 
convergence criteria of, say, a power method, to a given accuracy, Error (Error = 1.E-6 
for table 2). If A1 is the second largest root in magnitude, the convergence condition of the 
power method implies that: 

where C = O(1) depends on AI, A0 and the initial vector one chooses for the matrix 
multiplications in the power method. An improvement of one digit in the estimate of Ao 
requires UmS iterates of the matrix, where 

(5.8) 

In table 1 we list the transient time unit UmS for the type-t trellises. Comparing U,,, and 
Tms of tables 1 and 2, we observe that C = O(1) and has a non-monotonic dependence 
on 2. We also verify that changing the initial vector hardly changes TWs (hence C ) ,  as is 
expected for a ‘generic’ choice of an initial vector. 

Ao 
A1 

Vu,,,=lnlO/In-. 
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Using a least square fit for 2 < e < 24 we find 

U,.,(t) M 1.981'.'7s. 

Namely, UmS grows faster than linear (the expected growth rate) with e. The intuitive 
view that the l th  power of the typee trellis behaves like a type-1 trellis is diminished by 
this calculation. Using the characteristic polynomial of the type(& e, e,  0) trellis: 

P ~ , t , l , o  = (-l)e-'Ae(At+l -A '  - 2) + 2 (5.10) 

we find 

um,(e, e,  e,  0) F;: i.78e1"035. (5.11) 

If the behaviour described by equations (5.9) and (5.11) is valid for e + w, then, for 
1 > 70 the transient time of the qpe-(t, e, e, 0) trellis will be larger than that of the type4 
trellis, i.e. we will have a non-monotonic dependence of on the indices. 

6. The escape rates of type4 trellises 

6.1. The semi-linear approximation 

We add a semi-linear approximation to the topological approximation by assigning weights 
to the dynamics described in (5.1). Then, we construct a weighted transition matrix, Me, 
which approximates the action of the flow on the states. Constructing an initial distribution 
vector for EO, we estimate E, distribution between the states by matrix multiplication. In 
particular, e, = p(En f~ DO) is given by the 'mass' of E, concentrated in the state gl. 

By construction, there are three non-trivial (# 0 or 1) weights, denoted by s1. sz and 
$3. SI (resp. s ~ )  measures the fraction of the area of a strip belonging to the state fI which 
maps to a strip belonging to the state f1 (resp. f ~ + l ) .  s3 measures the fraction of a strip 
belonging to h+l which ends up as a strip belonging to the state h. The weighted transition 
matrix is of the form: 

The matrix WL realizes the dynamics on the fi states: 

w, = 1 's1 0 0 -  ... 0 0 sz 
1 0 0 ... 0 0 0 
0 1 .o ... 0 0 0 
0 0 1 ... 0 0 0 

0 0 0 ... 1 0 0 
$0 0 0 ... 0 s3 0 

. . . , . . . . . .  . . . .  . . . . . . . 

(&la )  

(6.lb) 

The matrix R administrates the transfer of areas from the fi states to the gi states: 

R(1 ,2 )  = 1 -SI - s2 R(l + 1, e + 1) = 1 - s3 R(i, j )  = 0 otherwise. (6.1~) 
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Finally, L, is an n x n transfer matrix which reflects the trivial dynamics of the gi states: 

L, = 

1 0 0 ... 0 0 0 
1 0  0 . . .  0 0 0 
0 1 0  ... 0 0 0 I; . . .  p 1 ::: 0 0 01 
0 0 0 ... 1 0  0 
0 0 0 . . .  0 1 0  

The lobe El has, by construction, one part which belongs to an fe state and another small 
part which belongs to a ge state of area et. Therefore, once  EO), et and the weights SI, s2 
and s3 are known, we can estimate e, as the second component of the vector U": 

e, GX ~ " ( 2 )  = U 1Mn--1(2) (6.2) 

where U' is a vector with (22 + 2)  components, two of which are non-vanishing: 

d ( e  + 1) = et and ~ ' ( 2 2  + 1) = @(EO) - et. (6.3) 

From the form of the matrix Me. it is easy to verify that the weights si can be estimated 
by: 

Therefore, given ej, j = e, 2 + 1, e + 2 , 2 1 +  1 and  EO), we can approximate the escape 
rates for all n. How should we determine the initial escape rates? In the next subsection 
we complete the theoretical prediction by estimating the escape rates using the WM. This 
gives an a priori estimate with no adjustable parameters (albeit with the possibility of 
improvement by refining the partition, as in Gaspard and Rice [SI). 

6.2. Estimates of the initial escape rates 

Since the variables (h, 5 )  of the separatrix map (4.1) are canonical variables, e, is given by 
the integral of dhodto evaluated between the values of (ha, to) on the boundaries of the set 
E-I  n Following Escande's ideas [3], we approximate these values using the WM 
(4.2), and derive the 'approximate action formula' to estimate these integrals (the derivation 
is included in appendix C): Let tp, ti", hq, hp denote the crossing times and energies of two 
homoclinic orbits of order n (so h:b = h2b = 0), which are connected to each other by 
segments of stable and unstable manifolds, enclosing a simply connected domain (i.e. there 
are no additional homoclinic points of order < n on the connecting segments). Let to" < t i .  
Then we conjecture that for sufficiently small E and n, the area of this domain is given 
approximately by: 

To evaluate ej. j = e ,  e + 1, e + 2,2e + 1 and p(Eo), one needs to find the crossing 
times and energies of the relevant homoclinic points and their orderings (see appendix C). 
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Equation (6.5) is reminiscent of the formulae developed by MacKay et a1 [lo] and by 
Bensimon and Kadanoff [33], expressing the area bounded by segments of the stable and 
unstable manifolds by differences in the actions of the homoclinic points. When n = 0, we 
obtain the well known result that the area of the lobe is given, to leading order in E, by 
the integral of the Melniliov function [6,34]. We conjecture that there exists an E ~ N )  such 
that for E < E O ( N ) ,  (6.5) supplies the leading order approximation in E for all n < N to the 
exact formulae, given in 'terms of the differences in action of the homoclinic points. One 
could think of using the above formula for calculating the en's for all n's. However this 
is not a practical approach; the above formula requires a knowledge of all the homoclinic 
points of order n, ti", and their ordering. Their number increases exponentially, and solving 
equations of the sort of (4.4) for higher iterates is non-trivial (MacKay et al [lo] developed 
sophisticated numerical schemes for locating homoclinic orbits for twist maps); keeping 
track of the ordering after each iterate makes it even more difficult. Moreover, given an E ,  
the above formula will fail for sufficiently large n, and there are no a priori estimates for 
determining what is a 'large' n (see subsection 6.4). 

6.3. Discussion of the theoretical predictions and the limit E + 0 
We calculated  EO), ee,  ee+z, eu+l for a 100 values of E E [E:, €3 and for several w 
and e values. Each computation, in which we solve the algebraic equations for the ti's (the 
crossing times of the homoclinic points of order 2 and 3)  for each E E [E:,  E:] and calculate 
the integrals of (6.5) for n < 3,  takes about 3 minutes of CPU time on a 20 MIPS DEC 
work station. 

-----__ 
0.1 

0.05 

0 0.2 0.4 0.6 0.8 1 

X 

Figure 9. The self-similar escape rates. F,(X: o) = ej(i) ( E .  o)/p(E"(e,  0)) and j ( i )  = 
e , e +  1,e+z,z + I fori = 0, ..., 3. 

The most striking finding is that the initial escape rates exhibit self-similar behaviour 
in e. Fixing w,  we find that the dependence of the initial escape rates on E is not trivial 
for et < E < E;, yet this dependence is seemingly unchanged when E:+, < E c €RI. This 
observation suggests that as E + 0 

where 
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and the functions IS:(X, w )  are independent of e or E. In figure 9 we present these functions 
for w = 2.2. Note that the self-similarity is non-trivial: it involves rescaling in time 
as a function of E (via e) and focusing on special intersection sets. Since E; - E! gets 
exponentially small in e, we obtain a wild behaviour of the ej's as functions of E as E + 0. 
The self-similarity of the ej's may be caused by self-similarity of the solutions to equations 
(4.3) and (4.4): introducing the scaled variable X and using the AWM we found that the 
solutions to (4.3) are independent of e and E .  

We found that the relative strength of ez+1 and ei+l changes with w ;  for 1 e w e 2.4, 
e > 1 we find that ez+l > ee+i, and eu+l is of the same order of magnitude as el .  As 
w increases past the value 2.4 we find that ee+l e=+l. For large w, both et and eu+l 
decrease, and eC+, and ee+z dominate. We notice that in all cases the contributions of the 
initial escape rates are significant, their sum varies between 30 and 40% of @(EO) for all 
the parameter values examined, and the relative weight of each of the initial escape rates 
varies with E and w .  This finding strengthens our view that models which neglect this effect 
of correlation between entering and exiting lobes are bound to fail [16]. 

It follows from (6.6) and (6.4) that the weights governing the lobes dynamics, the si, 
exhibit a self-similar relation as well: 

where si min and si- denote the minimal and maximal values of si in the interval [E:, E;]. 
In the l i t  E + 0 these values should be fixed (independent of e). In practice they 
change slightly with e ,  whereas their difference is almost independent of e .  We also 
note that the overall change of si with E is small yet not monotonic, on the order of 
4% of its value as E varies in the interval [E:, E;]. For w FZ 2 the weights obey 
SI << s3 < sz (e.g. for w = 2.084, E = 0.1 we find (SI, sa, s3) = (0.055,0.796,0.723)). 
As w increases, s2 decreases and SI and s3 increase, so that when w = 4.19 we find 
(SI, SZ, s3) = (0.308,0.491,0.903). The self-similarity and the asymptotic behaviour of the 
initial escape rates and weights for E + 0 and w + CO, respectively, suggest that it is 
possible to find an analytic, asymptotic solution in these limits. 

6.4. Asymptotic predictions and their relevance 

According to the TAM, for any finite number of indices which are found for a tangle, the 
approximate en's decay exponentially as <", where ( is the largest root of the characteristic 
polynomial of the weighted transition matrix. For the typed tangles, the characteristic 
polynomial is given by: 

(e+l - s * p  - szs3 = 0. (6.9) 

Given an w and an 2 we use (6.4) and (6.5) to calculate <e(<, 0) for E E [E:,  €3. We 
observed that the decay rate is not necessarily monotonic in E in each of these intervals, yet 
in general < --f 1 as E + 0. For example, fixing w = 2.2 and setting E = 0.12,0.0004 (then 
e =  2,4 respectively), gives Ink = -0.165, -0.095, respectively. Fixing E and increasing 
w makes h increase, and changes the concavity of its graph (i.e. h attains a maximum 
instead of a minimum in the interval (E,", E;)). When w = 3.4 the graph of A is convex, 
and decreasing E does not change the shape of the graph (namely, in this case the convexity 
is found in the self-similar regime). Incorporating the self-similar behaviour of the weights 
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and the asymptotic dependence of e on E in (6.9), we obtain that as E + 0, for some 
function G, 

In particular, we obtain that 5 + 1 logarithmically, with rapid oscillations as E + 0. Recall 
that e,, M eN<”-N for large n and some N > e. Hence, for E c 1 we obtain that 

G(exp(-i logs)) (6.10) 

and hence that C T e , ,  M eNllogE[/G(exp(-ilogE)). For N - e  = O(1) we can establish 
that eN = o(E), hence, we obtain that E;” e, = p(&) converges as E + 0 and the theory 
gives consistent results in this limit (notice that the summation and the limit E -+ 0 are 
not interchangeable). Whether (6.10) really gives the asymptotic behaviour of the ea’s as 
E + 0 is an open question. 

Calculating the transient time unit UmS (see (5.8)) for the escape rates, we found 
that UmS is larger than the transient time units of the topological entropy by an order of 
magnitude (e.g. for w = 2.2, E = 0.12 we found U,-&) = 55 whereas Umns(A) = 5). This 
implies that even for a tangle which satisfies all our topological and metric assumptions, 
a significant exponential decay will be seen only after a few hundred iterates. Moreover 
as e increases U,,, is increased significantly. We notice that for all w and l values we 
chose, UmS was found to be monotonically increasing with E within each band, whereas 
decreasing E and skipping to the next band by increasing l ,  increased Umos. In practice, 
we see the exponential decay quite early, but it is modulated by oscillations (see figure 10 
below). These may be partly responsible for the large transient time unit we obtain, since 
they delay the convergence of the exponent. 

We use the method developed in Rom-Kedar [22] to estimate the area of the invariant 
set. Denoting by ME the submatrix of Mt (6.1) which does not include the state go (crossing 
out the first row and column of M t )  and by ii’ the vector V I  (6.3) without its first component, 
we approximate the area of the invariant set by: 

Z+l 

R,  p(rnu) = p(s) - ~ ( E ~ ) ( I  + s ( w ) )  - ii’(i - &)-‘(s) 

the first estimate involving the topological and semi-linear approximations. The second 
estimate (of p(S)) involves regular perturbation analysis-we estimate the difference in 
area. enclosed by the perturbed and unperturbed orbits on a semi-infinite interval, following 
the same strategy as in the derivation of the Melnikov function. Using the calculations of 
the weights and of et,  we calculated R, for several intervals of parameter values. We note 
that using (6.1 1) incorporates the exponential decay of the escape rates, yet overcomes the 
problem of long transient time predicted by U-$. In all calculations we found that p(Rm)  
is positive and monotonically decreasing with E (e.g. for w = 2.2, 0.11 c E c 0.15 we 
found 0.68 > p(Rm)/1.2 =- 0.6). A comparison of our predictions for the escape rates, 
e., with numerical experiments suggests (see next subsection) that at some point the rapid 
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exponential decay of the escape rates relaxes to a slower decay rate. Therefore, OUT estimate 
of p(Rm) is probably a lower bound on the area of the invariant set (see (3.1)). 

Since hyperbolic and elliptic structnres coexist near homoclinic tangles, it is 
controversial whether one should expect an exponential or a power law decay of the escape 
rates. In fact, Hillermeier et al 1271 demonstrate that even a hyperbolic mapping (with 
symbolic dynamics consisting of a countably infinite number of symbols) may give rise to 
a power-law decay rate. Numerical experiments are not reliable for the long time evolution 
(notice that ‘long time’ is not well defined) and it is hard to prove that an approximate 
scheme (such as the TAM or the various Markov-chain models) gives the c o m t  asymptotic 
behaviour in time. MacKay et a1 [IO] argue that the stickiness of the cantori observed by 
Karney [35] should give a power law behaviour. As the model they presented gives an 
exponential decay, they postulated that refining their model to include an infinite number of 
states would result in a power law decay. For the TAM, any finite grammar classification of 
the tangle will give an exponential decay. Nonetheless, we may repeat their reasoning, and 
argue that refining our symbolic dynamics by including infinite number of indices will result 
in an infinite matrix hence, in a possible power-law decay rate. Hanson et a1 [36] used 
self-similarities of a discrete set of cantori approaching a boundary circle to construct an 
infinite-Markov-chain model which gives an algebraic decay rate of the survival probabiIity. 
Meiss and Ott [14] incorporated the finer structures of the island chains and their canton to 
construct an infinite-Markov-tree model to find a slower decay rate. As the referee noted, 
we may try and follow their ideas by incorporating self-similarities into the structure of 
the tangle to obtain algebraic decay. In any case, a solid conclusion on the asymptotic 
behaviour using methods like the TAM must be derived from investigation of the structural 
stability of the approximating trellises. 

6.5. Comparison with numerical experiments and the WM 

In figure 10 we present the computation of the ea’s using four different methods. 

1. A brute force method. We find the boundaries of the lobe EO numerically, we 
distribute N initial conditions (typically N Es 40000) on a regular grid in EO and integrate 
these initial conditions until they exit, recording the number of exiting particles in every 
Poincar6 section. We use a fourth-order Adam-Moulton integrator (a predictor-corrector 
method). Typically, such a computation takes about 5 hours of CPU time on a 20 MIPS 
DEC workstation. While we do not expect our integration to be accurate per trajectory, the 
large amount of initial conditions and the concept of the shadowing lemma give us some 
confidence that our results regarding the escape rates are accurate. Indeed, increasing the 
number of initial conditions and decreasing the time step by a factor of two had only a 
small impact on the dips in the logen’s oscillations for n =- 40. 

2. The theoretical method. We use (6.2) and (6.3) together with the approximate action 
formulae to compute the en’s as described in subsections 6.1-6.3. This computation takes 
seconds of CPU time on the same workstation. 

3. The semi-theorelical method. We use (6.2) and (6.3), but use the results of the 
brute force computations to obtain the values of the initial escape rates. We include this 
mix of methods because it isolates the topological and semi-linear approximations from the 
perturbation analysis. We found no significant difference between the semi-theoretical and 
theoretical predictions. 

4. The WM iterates. We replace the dynamics of our system with the WM: we distribute 
N ( x  40000) points evenly in the region 0 < to 6 ala, 0 < ho < EM(To), and evolve each 
initial condition according to the WM (4.2). Once a particle escapes (has a positive energy), 
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20 30 40 50 10 

Figure 10. The escape mtes-comparison. - - -, brute force computation; -, theary; -- -, 
semi-theoxticat - . -, WM computation. 

the escape set with the corresponding exit time is increased by one. This computation takes 
about 5-10 minutes of CPU time. 

We found satisfactory agreement between our predictions and the numerical calculations. 
Moreover, for some parameters, the theoretical prediction seemed to give the best overall fit 
to the numerical calculation. In table 3, we compare the series x, = ln(en)-ln(en-l), n 6 40 
found by the last three methods to the numerical computations. We list the values of the 
&est, the correlation r and the ratio between the averages of x, and the numerical average, 
which gives the exponential decay rate 1. This table quantifies what one observes from a 
sequence of figures like figure 10; that the theoretical prediction does pretty well for all 
parameter values, that in general it is better for smaller E values, yet it performs better on 
the bifurcation curve 6; than slightly below it, and that it is more robust than the WM. 

Table 3. Statistical comparison of the en's calculations. 

Parameters Theory Semi-Theoy Whisker map 
L A x ! x 2  r xz r T G  xz G 

i 
A " W  
- W E  

2.2 0.105 2 1.230 0.887 1.047 1.057 0.883 1.021 1.477 0.835 1.039 
2.2 0.117 f 2 1.293 0,830 1.016 1.238 0.821 1.028 2.116 0.675 1.010 
2.2 0.131 f 2 1.612 0.743 0.998 1.758 0.719 1.016 2.910 0.542, 0.942 
2.2 0.144 f 2 1.824 0.677 1.009 2.120 0.641 1.033 2.897 0.513 0.965 
2.2 0.157 1 2 1.765 0.679 0.998 1.992 0.652 1.025 3.523 0.429 0.979 
2.8 0.086 3 1.011 0.831 1.001 4.875 0.029 0.948 0.910 0.847 0.975 
2.8 0.092 3 1.183 0.820 1.022 1.136 0.820 1.006 0.925 0.861 1.005 
2.8 0.098 f 3 1.128 0.795 0.999 1.125 0.795 0.996 0.536 0.912 0.978 
2.8 0.104 1 3 1.598 0.747 1.007 1.582 0.748 1.008 0.710 0.897 0.981 
2.8 0.111 1' 3 1.388 0.780 1.017 1.353 0.782 1.018 0.627 0.908 0.986 

Examining figure 10, we observe three interesting phenomena: the oscillations of the 
en's for all n's, the exponential decay for n c f&&, and the sudden change from the 
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exponential decay to a different regime for n z Nb,*. Comparing the different curves we 
notice that for a few oscillation periods, the theoretical and numerical results follow closely, 
Then, at some point (denoted by Nshift in table 4). the real tangle encounters a tangency 
or an intersection which is not predicted by the topological approximation, and we get a 
shift in the en’s. In table 4 we list the approximate value of Nb-, found by inspection of 
figures such as figure 10. We include in the table the Nshift and N b d  values of the WM 
simulation for comparison. 

Table 4. Properties of the en’s caleulaions. 

Parametws Numerical Whisker map 

O E  X 1 Period V3I N s ~ a  Period Vm h$hifr Narc* 

2.2 0.1053 0.01 2 2.889 0.457 22 36 2.833 0.500 19 30 
2.2 0.1174 0.25 2 2.833 0.617 22 36 2.736 0.315 16 48 
2.2 0.1306 0.50 2 2.684 0.228 19 36 2.550 0.260 13 38 
2.2 0.1438 0.75 2 2.666 0.234 19 36 2.944 0.644 13 30 
2.2 0.1571 1.00 2 2.684 0.228 16 40 2.550 0.260 13 30 
2.8 0.0862 0.01 3 3.125 0.783 21 55 3.571 0.725 17 38 
2.8 0.0920 0.25 3 3.333 0.952 17 50 3.846 0.641 17 45 
2.8 0.0982 O S @  3 3.333 0.952 17 42 3.571 1.802 17 45 
2.8 0.1044 0.75 3 3.400 0.543 17 35 3.571 0.879 17 35 
2.8 0.1107 1.00 3 3.333 . 0.809 17 38 3.062 0.596 17 38 

The theory predicts the period of the oscillations to be approximately e + 1 Poincare 
periods for a type4 trellis. The numerical results follow this trend. In table 4 we list the 
mean and variance of the distances between adjacent local maxima of the numerical en’s, 
and the ones calculated with the WM for two values of w and for several distances, X (see 
(6.6)), from the bifurcation curves. The averages are taken over 60 Poincar6 periods. For 
e = 2 the averages are quite close to the predicted average of 3.0. However for e = 3, the 
averages of the numerical periods are much lower than the predicted period, 4.0 (most of 
the shorter oscillations seem to occm for intermediate times -20 c n i 35). The statistics 
of the WM oscillations seems to be different. 

7. Discussion 

We developed the TAM and used it to analyse the phase space flow of a particle in a cubic 
potential, perturbed by temporally periodic forcing. We summarize the TAM and our main 
results in table 5. This study demonstrates the usefulness and relevance of the TAM, we 
predict the transient behaviour of the system for a whole range of parameter values, based 
upon the underlying structures, using less than five minutes of workstation time (solving a 
few algebraic equations). Moreover, this approach seems to focus the study on the ‘correct’ 
quantities leading to the discovery of non-trivial self-similarities. 

We found that the ‘first-order’ approximation of the tangles, by the typed trellises, fails 
to predict the long time (e, > eNblbrur, 30 < e 50 ) and asymptotic behaviour of the 
escape rates. We expect similar behaviour of the elongation rates. Taking better topological 
approximations (adding more indices) would improve the agreement between the model 
and the flow thereby increasing the value of However, it is unclear whether any 
finite grammar approximation of this sort could give the correct asymptotic behaviour for 



Table 5. TAM-toplogical approximation method 

Concent Motive Tools Assumntions Remarks 
~~ 

Topological bifurcation classify tangle WM & slmclure near-integrable system can Rod numerically in the 
diagram by indices indices definition non-perturbalive case 

Manifold length 
(i) finite time estimates intcrface length symbolic dynamics for topological approximation: application to chemically 

(ii) asymptotics lower bound on symbolic dynamics for topological approximation gives 'topolological phasewanition'& 

the lobes evolution .finite grammar' reacting fluids 

topological entropy the lobes eolution 'finite grammar' indicative of 'Devil Staircase' 
for the topol. entropy 

mansport rates 
(i) initial e x a m  rates initial conditions for WM and the annroximate near-intemable system exhibit self-similarity .. .. . 

(i.e.r.) mhc transport process action formula a s r - t o  

(ii) weighted symbolic obtain estimates for i.e.r. --t weights topolological approximation ond weights exhibit self- 
similarity as E -t 0 dynamics the escnw rates lobes symbolic dynamics semi-linear approximation 

(iii) Escape mtcs 
(I) finite time 
(2) asymptotic 

(I)  Vdnsient behaviour wcighted symbolic dynamics topological approximation and ( I )  oscillatory behaviour 
(2) lind exponential & weighted transition mslrix semi-liwm approximation (2) breaks down for n j. N- 

decav rate 
(3) rransient time unit (3) transient period (3) gives long uansient times 

expect R, > R,(Iheoretical) (iv) area of invariant set, R, weighled symbolic dynamics & topological approximation and 
ncrturbation method semi-linear aDproximation 
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some interval of parameter values-namely if the trellises are structurally stable. It might 
be necessary to include an explicit modelling of the influence of the elliptic structures on 
the homoclinic tangle. 

We argued that by using the topological approximation tools, one can improve the 
approximation to higher accuracy. However. we do not supply any quantitafive estimates 
for the ‘accuracy’ of our method. The topological and semi-linear approximations are 
based upon geometrical arguments and have no rigorous justifications or error estimates. 
Finding structurally stable maps which attain type-e trellises would substantiate the validity 
of the TAM. If these do not exist, a consistent construction of trellises of countable infinity 
indices with converging properties to the type2 trellises may be needed. Construction of 
the type-@, m, m, 0) trellises gives a good indication that such a convergence exists. This 
construction may be used to estimate the errors involved in the topological and semi-linear 
approximations. Recently [25],  we have proven that the perturbation analysis we developed 
is valid in the limit E --f O+, and have supplied the corresponding error estimates for that 
part of the analysis. 

Our results are valid for sufficientIy small E ,  and for finite values of o which are 
bounded away from zerc and one; f o r o  = 0 , l  or infinity, the Melnikov function vanishes 
identically, and we cannot conclude upon the structure of the homoclinic tangle using the 
WM approximation. The limit w --t 0 is the adiabatic limit, in which the homoclinic tangle 
has large lobes [3,37] (e = 0), hence different symbolic dynamics for the lobes needs 
to be developed. For w sx 1, the structure of the tangle is determined by the next non- 
vanishing term in the expansion series of the distance function in 6. and the perturbation 
theory and its error estimates must be modified accordingly. In the limit o + CO we expect 
to see exponentially small separation of the manifolds [38], hence a failure of our regular 
perturbation theory. Formally, this limit corresponds to e + CO in our analysis, and we 
observed interesting trends of the escape rates and weights in this limit The significance 
of the asymptotic behaviour of our model in this limit is an open question. 

We demonstrated that the TAM can be used to obtain a global description of the changes 
in the properties of the flow as the parameters vary. Moreover, we found that these methods 
are easy to apply, require a negligible amount of numerical computations and programming, 
and supply a reasonable approximation of the brute force calculation. Therefore, we expect 
to see extensions of the TAM to closed flows [17], quasi-periodic flows and higher dimension 
Hamiltonian systems, at least for cases in which the additional dimensions do not change 
the geometry of the tangle too dramatically and can be viewed as small perturbations to the 
structures we have introduced. Other developments may be in the direction of incorporating 
cutoff scales to the system, to account for diffusivity of particles; since the TAM includes 
a detailed account of the width of the lobes at any given time, it seems like a natural 
framework for such a study. Using the TAM approach to construct a ‘Devil’s staircase’ for 
the topological entropy [7,29] and for constructing numerical schemes for computing the 
topological entropy also seems promising. Finally, allowing the perturbation to be slightly 
dissipative should not alter any major part of the TAM, and may shed some light on the 
issue of strange attractors, as these can be viewed as the limiting set of the lobes. 
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Appendix A. Numerical bifurcation diagramt 

In figure 11 we present the numerical version of figure 5: We fix E = 0.1 and vary w .  For 
w = 2.3,2.2,2.1 and 1.9 the lobes E1 and D-1 (hence EZ and DO) intersect each other 
in 0, 1,2 and 4 homoclinic points, respectively. These results are in good agreement with 
our theory which predicts, for E = 0.1 that the bifurcations will occur at w = 2.189 and 
2.083 respectively. To obtain these diagrams we use the method and code developed by D 
Hobson [39] for accurate integration of the stable and unstable manifolds. 

To obtain a numerical bifurcation diagram, we incorporate into Hobson’s code conditions 
for tangencies. While general conditions for tangencies are quite complicated to program, 
the tangencies we are interested in can be found using the the symmetries of the manifolds 
in the symmetric Poincar.4 sections (to = 0, z / w ) .  Once the conditions are formulated, we 
use an arc length continuation scheme in w and E for finding the bifurcation curves. 

First, note that given that lobes A and B are symmetric with respect to reflection about 
the x-aiis, a tangent bifurcation of A n E (and their images and pre-images) exists when A 
(hence E )  is tangent to the x-axis. Similarly, the bifurcation from two to four intersection 
points of A C l  E happens when the front part of A is perpendicular to the x-axis. Hence, 
once the appropriate lobes and Poincar.4 sections are defined, a continuation parameter for 
the bifurcation curve E:(@)  is the distance of a symmetric lobe from the x-axis. Similarly, 
a continuation parameter for finding the bifurcation curves <:(U) is the angle between the 
tangent to a symmetric lobe at the front point of intersection and the x-axis. This observation 
implies that the symmetry forces the degenerate bifurcation of E : ( @ ) .  

For our model, the following symmetries of the tangle hold 

1. When w > 1 (resp. o < 1) and t is odd, letting t =U(+ 1, the lobes EK and D-k-1 

2. When w > 1 (resp. o < 1) and t is even, letting t = 2k, the lobes E k  and D-K are 
are symmetric in the Poincar.4 map with the zero (respectively 2) phase. 

symmetric in the Poincar.4 map with the -2 (respectively zero) phase. 

Using these symmetries in the Poincar.4 sections 0, n fw.  we find the bifurcation curves 
E;(w),  E:(w) for all U ,  e. We compare the numerical bifurcation curves and our analytical 
predictions in figure 12. We observe that for w > 2, the agreement is quite satisfactory 
even for large values of E .  For small values of w we are approaching the adiabatic limit, 
and as expected, our analysis fails. 

t This appendix by Dana Hobson and the author. 
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F i p  Al. The geometrid interpretation of the bifurcation curves E;,€; .  E = 0.1 in all 
figures. (a)  o = 2.3, E' < 0.1 < f;; (b)  o = 2.2, E; % 0.1; (e) o = 2.1, c 0.1 c E;;  (d) 2 o= 1.9, e; -c 0.1 c 

0 1 2 3 4 
0 

F i p  U. Numerical and analytical topological bifurcation diagram - - -, numerical, -, 
&); ----, f;(o), analytid. 
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Appendix B. The bifurcation curves 

B.I. The l-bifurcution curves 
Using (4.2). we find that (4.3) amounts to finding a solution 0 < SO < % to: 

M h )  = -WSO + P ( E M ( s o ) ) )  

The solutions of (B.1) satisfy: 

or 

where S; E Io, S: < r$ 6 r: < r;, and 

[Jr/w, z T / w ]  for w i 1 
for 0 > 1. = { [O, n / w ]  

We equate the right-hand side of (B.2a) to one, and find the bifurcation curves for (B.2u): 

For E c E;,  (3.24 has no solutions, and for E > E; (B.24 has two solutions, $(e) < r i ( l ) .  
The bifurcation curves ei(w).  0 6 l < 5 are plotted in figure 5 (the dashed lines). We 
obtain the bifurcation curves of (B.2b) by requiring the function 

to have a quadratic zero in the appropriate interval of ro. Eliminating 6, we obtain the 
following algebraic equation for SO: 

tan(wr0) = - - h ( r ~ )  

We use the AWM to obtain an initial guks for TO at the bifurcation: 

dP(h(ro)) h(r0) = P-’ -2ro + (8 + 1 + a(@))- . (B.5) 
dh ( ”) 0 2 

(3. (B.6) rJ(e) = r:(e) cz -tan-‘ 

Using this initial guess and a Newton method with an arc length continuation method we 
solve (BS),  substitute in (B.4) and obtain the bifurcation curves ~ t ( w )  of figure 5 (the solid 
lines). Using the AWM (2.5~) we estimate: 

1 
w 

where tan-’(:) is chosen to belong to I,. We note the peculiar property that, to leading 
order in E ,  (4.3) has a degenerate bifurcation from two to four solutions. C SimG has 
remarked (private communication) that this degeneracy is a common feature in homoclinic 
tangles and it is associated with the symmetries of the homoclinic tangent bifurcation. In 
Appendix A we (with Dana Hobson) give a simple geometrical argument for this occurrence. 
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B.2. The m-bifurcation curves 

Using (4.2), we find that (4.4) amounts to finding a solution ro to: 

(B.8a) 

(B.8b) 

Case 1. When m = e or m = 2 - 1, we use the symmetry of our system to simplify the 
above equations. By the symmetry of the tangle, one can show that the two symmetric 
solutions satisfy: 

(e ,  e, e ,  0) trellis 

(e, e - 1, t - 1,O) trellis. 
(B.9) 

These identities allow us to eliminate E from the bifurcation equation, and obtain the 
following equation for to: 

h(r0) = P-'(r1 - ro) (B.lO) 

which, together with (B.9), is of the same form as (B.5) and can be solved easily. cjLt ,o 

and E ~ , ~ - ~ , ~ - ~ , ~  are then found from E = L%=zd 

dP(h(r0)) 
dh 

tan(wr0) = -wh(ro) 

. .  
~b 

Mkd . 

Case 2. We estimate the solutions to (BA) and exert their dependence on m near E = se". 
There, the tip of Et is small, therefore the distance between the zeros st(!) and r , @ )  is 
small. In fact, expanding (B.2) in Z = c - E: we find 

hence, 



470 V Rom-Kedar 

where P' denotes the derivative of P w.r.t. the argument and the approximate sign is 
used when we replace the WM with the AWM (2 .5~) .  This enables us to write explicit 
expressions in E ,  yet the errors are expected to be much worse (the estimates involve terms 
multiplying log(€), and were omitted). Define the tip variable, e', by 

r; = rL(e) + 8' i = 2 , 3  and ez o,e3 < 0. (B.12) 

Assuming [e ' [  << 1, linearizing (B.8) about r; = rice), i = 2.3 and using (B.1) and (B.11) 
we find after some algebra that: 

exp ( - j  j, 114 - 36 e: FT 
EIC(O)l02 

82 FT - l2 exp ( - j  , f 114 - qc(w)[Oz 
Now, we postulate that the two bifurcation curves E:,,, and 
rd = to", respectively. From (B.ll) and (B.12) we find that these conditions amount to: 

are found when r i  = and 

Substituting (B.13) in (B.'l4) we obtain: 

(B.14) 

'I (B.17) 

w 
log [c(o) I (E;, ,  - E;) - - log - - -e 

2i7 648 2 

2~ 648 2 2 'I o w  IC<O)~(E;,, - ce) - -log - - -e - - 
where [XI denotes the integer part of x .  
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Appendix C. Estimating the escape rates 

We derive the 'approximate action formula': let t f ,  ti", h:? hf denote the crossing times 
and energies of two homoclinic orbits of order n (so h;f,* = h$b = 0, to" < t i )  which are 
connected to each other by segments of stable and unstable manifolds, enclosing a simply 
connected domain (i.e. assume there are no additional homoclinic points of order < n on 
the connecting segments). The stable (resp. unstable) segment enclosing this domain is 
given by (ho(to), to) values for which h,(ho(to), to) vanishes (resp. ho(r0) vanishes). Using 
the fact that (ho, to) are canonical variables, we conclude that the area enclosed between 
these segments can be found by integrating ho(to) dto for to E' [t,", $1. Approximating the 
crossing times and energies by the WM, it follows from (4.2) that: 

n-1 

hj(to)lh,(ro)=o % -6 M ( f i )  0 < j < - 1 
i= j 

and from (4.2) we find 

Hence, 

We evaluate p.(Eo) by using the above formula with n = 1, evaluate e&, e&+l and e&+2 with 
n = 2 and ez+1 with n = 2 and n = 3. The ti's and hi's are found by solving (B.1) and 
(B.8). The orderings of the integration are determined by the geomehy of the manifolds: 

where M(fo) = M(tl) = 0 are the two adjacent zeros of the Melnikov functiont. 

t Equation (C.1) can be derived directly, using the geometrical interpretation of the Melnikov function [61 
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Let iA( j ) ,  i = 1, . . . , 4  be the solutions to (B.1) with index j .  Then, 

et m h&)I dfo 
7: (e) hz(to)=O 

The solutions t ; ( j )  are found using the Newton method with arc length continuation and 
bracketing. The initial guess is found using the AWM. The solutions r t ( j )  and t:( j) 
are found lirst by inverting the monotonic period function P, see (B.2a). Then, we 
bracket ti'o.) by 0 < r;(j)  c r,'(j) (the 0 is replaced by x / w  for w < 1) and $ ( j )  
by 0 . 5 ~  < $ ( j )  c $( j )  (the 0.5 is replaced by 1.5 for w e 1). 

Finally, we estimate ea+* = p(FZe+'(Eo) n DO). The set Fa+l(E0) n DO is composed 
of two arches. One arch is enclosed by segments encircling the origin once. Its area is 
approximated by (C.2). with j = 2e + 1. The second (and thicker) arch is enclosed by 
segments encircling the origin twice before escaping. The end points of these segments are 
given by t i ,  the four solutions to @.Sa) with j = e and the e in (E3.8) replaced by t. + 1. 
Then, the thicker arch is approximated by 

It follows from the geometry of the manifolds that the solutions, CA, obey 

.,'(e + 1) c 4 < t,' < d(i) and $(e) < 4 c 4 $(e + 1) K-4) 

and that t; c t l  < tz < tz. Moreover, by symmetry 

2x 
t: = tf = (e + 1 +O.SS(w))-. (C.5) w 

Using (C.5), the solutions t,' and t: of (B.8) are given by the solutions to: 

2?r 
to + P(EC(W)  sin(wt0)) = (e + 1 + 0 . 5 8 ( 0 ) ) ~  (C.6) 

which are. found using the bracketing of (C.4). The solutions ti and ti are found by solving 
(J3.8) directly (iterating the WM) and using the accurate bracketing of (C.4) together with 
the solutions of (C.6). 
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