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We clevelop criterid for detecting secondary intersections and tangencies of the stable and unstable
manifolds of hyperbolic periodic orbits appearing in time-periodically perturbed one degree of
freedom Hamiltonian systems. A function, called the “Secondary Melnikov Function” (SMF) is
constructed and it is proved that simple (resp degenerate) zeros of this function correspond to
transverse (resp. tangent) intersections of the manifolds. The theory identifies and predrcts the rotary
number of the intersection (the number of “humps” of the homoclinic orbit), the transition number
of the homoclinic points (the number of periods between humps), the existence of tangencies, and
the scaling of the intersection angles near tangent bifurcations perturbationally. The theory predicts
the minimal transition number of the homoclinic peints of a homoclinic tangle. This number
determines the relevant time scale, the minimal stretching rate (which is related to the topological
entropy) and the transport mechanism as described by the TAM, a wansport theory for
two-dimensional area-preserving chaotic maps. The implications of this theory on the study of

dissipative systems have yet to be explored. © 1995 American Institute of Physics.

I. INTRODUCTION

We consider two-dimensional autonomous Hamiltonian
system possessing.a hyperbolic fixed point, a homoclinic or-
bit connecting it to itself, and a family of periodic orbits
nested in the homoclinic orbit, This situation is generic for
one degree of freedom nonlinear Hamiltonian systems. When
such a system is perturbed by.a time-periodic perturbation
(which may be or may not be Hamiltonian) chaotic behavior
may appear. The study of such systems, called one and a half
degrees of freedom systems, began more than 100 years ago
with Poincaré, and has been the subject of numerous papets
ever since because of its relevance to a wide variety of physi-
cal problems and because of its fundamental nature; These
systems model the simplest physical settings which give rise
to a Smale horseshoe. Hence, the study of these simple sys-
tems serves as a building block for the analysis of chaotic
systems in large.

To study the dynamics of the perturbed system, one con-
siders the Poincaré map F which is constructed from the
flow by sampling the solutions every period of the
perturbation,* T. For small perturbation the hyperbolic fixed
point and its stable and unstable manifolds persist, however,
generlcall_y they do not coincide as in the AULONOMOUS Case.
In fact, they may intersect each other transversely, creating a
homeclinic tangle. Since both manifolds are invariant, once
they intersect at a point they must intersect at.all its forward
and backward iterates. As line elements are also stretched in
the vicinity of the hyperbolic point, the intersection of the
manifolds gives rise to a complicated structure, the ho-
moclinic tangle*” (see Fig. 1). The primary distance func-
tion between the stable and unstable manifolds is given, to
first order in the perturbation expansion parameter, €, by the
Melnikov function, multiplied by a scaling :f::tct‘or.:’_'6 The pri-
mary distance function is the distance between the manifolds
taken along the direction perpendicular to the unperturbed
homoclinic orbit, taking the first intersection in elapsed time

of the manifolds with this cross section, see Fig. 1 or
Wiggins’ for discussion.

Theorem 4.5.3 of Guckenheimer and Holmes states that
if the Melnikov function is independent of & and has simple
zeros in ¢ then, for e sufficiently small, the manifolds inter-
sect transversely. Hence, by calculating the Melnikov func-
tion one can prove that transverse PIPs (primary intersection
pomts) exist. This implies by the Smale—Birkhoff  ho-
moclinic theorem that the dynamical system is chaotic.
Theorem 4.5.4 in Guckenheimer and Holmes states that if,
additionally, the Melnikov function depends on a parameter
# and it has a quadratic zero in ¢ at gy, then, provided some
generic conditions are satisfied, there exists a bifurcation
value p= uy+ O(€) for which quadratic homoclinic tangen-
cies occur. For dissipative systems, it is implied by New-
house results,® that tangencies of the manifolds occur in a
neighborhood of 4, and associated with these tangenc1es are
complicated behaviors .such as wild hyperbohc sets and
strange attractors.>”

In this paper we prove similar results regarding the sec-
ondary" -distance function. Observe that. a secondary ho-
moclinic point, like 7, in Fig. I, “belongs to FiK,NJ, for
some j (K, and J, are defined as in the figure, by segments
of the stable and unstable manifolds with end points which
are PIPs). Easton called j the transition number of the orbit

r;, and proved it is a well—deﬁned quantity. (independent of
the choice of r, in the figure).'® Hockett and Holmes'! de-
fined the rotary number of a homoclinic orbit as, roughly
speaking, the number . of times the orbit encircles the per-
turbed el]_1pt1c orbit (counting the infinite time encircling as
well). For example, the orbit r; is called a secondary (2-
rotary) intersection point (SIP) of index 1 if ro has a transi-
tion number {, and the orbit r; encircles around the interior
once as i increases from —7/—1 to 0. Let r(£)=(x(r),y(5))
denote the homoclinic solution of the perturbed flow comre-
sponding to Fig. 1 so that r(iT)=r;. Then the rotary number
counts the number of humps in the graph of [x(#)| vs ¢ and
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386 Vered Rom-Kedar: Homoclinic theorems

FIG. 1. The homoclinic tangle. d, is a primary distance, d, is a secondary
distance.

the gap between the two humps is given approximately by
the transition number times the Poincaré map period, T
The existence of an r-rotary intersection point for some
rn>1 may be easily established using geometrical arguments
in the area-preserving maps case (such as the Poincaré map
of the Hamiltonian flow perturbed by Hamiltonian perturba-
tion) in which the homoclinic loop “encloses” a bounded
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homoclinic point. Moreover, using Ixnearlz:a_,tlon about the
perturbed hyperbolic periodic orbit and using the Melnikov
function to extract information regarding the splitting dis-
tance between the manifolds, it is possible to estimate the
asymptotic dependence of the transition number on € as
e—0. Holmes and Marsden'? and Hockett and Holmes'
have used these ideas to estimate the number of iterates
needed to guarantee hyperbolicity on the invariant set near
primary homoclini¢ points. Judd' has used this method to
estimate the transition pumber of secondary intersection
points for the Duffing equation.

The main resitlt of this paper is Theorem 1 of Sec. II,
stating, roughly, that for sufficiently small €, simple zeros in
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homoclinic intersections with transition number j(zg.€),
where h,(#y,€) is defined by

ﬁz(ro,e)=M(ro)+M(ro+P(eM<zo))), 0<,<T,

(1.1)

M (2) denotes the Melnikov function, P(H) the period.of the
unperturbed periodic orbits with energy H, o parametriza-
tion of the unstable manifold as in the Melnikov theory, and
WNLG (with no loss of generality} we assume H=0 on the
separatrix and M (0)=0. The transition number is defined by

to+ P{eM(14))
J(to,f)=[f ,» 0<t,<T, (1.2)
where [x1 indicates the inteper nart of x and T ig the neriod
cre [ x; ndicates he mieger part of x & 3 the perng
of the time-dependent perturbation.

The importance of this theorem is not in the existence
result, nor in the general asymptotic of the transition number
as these may be found using other tools. Its importance lies
in the explicit, rigorous relation between the number and
nature of the zeros of the SMF and the homoclinic points and
the explicit formula for the transition number. This formula
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has no unknown constants, and in practice it supplies accu-

Tate estimates for transition numbers as low as two.'® Fur-

thermore, this theorem leads paturally to

—<construction of the set of € intervals for which trans-
verse secondary homoclinic solutions of transition number [
exist (Theorem 2};

—construction of the set of € values close to which sec-
ondary homoclinic tangencies of transition number / occur,
and prediction of the structure of the manifolds near the bi-
furcation values (Theorem 3). '

—in the presence of additional parameters, construction
of surfaces close to which homoclinic tangencies occur
(Theorem 4); )

—generalization of the criterion A,(¢,€)=0 and the
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n-rotary  homoclinic point with transition vector
(f1-.-»dn—1)> as is outlined in Sec. I and the proof of Theo-
rem 1. _

Since P(H)—o as H—0, it follows from (1.1} that %,
depends singularly on e This smgular dependence on €
makes the proof of the bifurcation theorems nontrivial, as the
implicit function theorem may not be used near €=0. A
trivial (yet important) result of this dependence and the pe-
riodicity of M(¢) is that there are families of countable in-
finity sets of ¢ values for which secondary homoclinic tan-
gencies ‘of the same nature occur. In contrast, varying one
parameter, generically, will cause at most finite number of
primary (1-rotary) homoclinic tangencies. Hence, generi-
oduy, ihe wuowmg scenario occurs: 10r gi'v't‘:ﬁ paraimeier val-
ues, let / be the smallest integer for which F*K,NJo#0 ({ is
called the type number of the homoclinic tangle.'>'* As s
decreased, the “tip” of F"K, gets shorter, until, at the bifur-
cation point we have a secondary tangency of transition
number {. As € is further decreased, the scenario repeats
itself with a larger [ value. Incorporating the influence of
additional parameters results in a topological bifurcation
diagram'® dividing the parameter space to regions indexed
by I, the tangle type number, and to the various kinds of
blfurcatlons occurring for each . Moreover, there is evidence
that the perturbed flow exhibits self-similar behavior near
these bifurcation values.™

What is the significance of proving the existence of SIP
of transition number {? First, we propose that the prediction
of the rotary number and the transition numbers are impor-
tant in applications for predicting stretching and transport
rates. In particular, we propose that the type number of the
homoclinic tangle determines a lower bound on the stretch-
ing rate’™!® and determines the oscillation period of the es-
cape rates and the elongation rates.*!> Hence, the described
theoretical resuits regarding global bifurcations of certain ho-
moclinic points have direct bearings on transport and mixing

nronerties of the flow, Mareover, using the SME -we can
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prove that tangencies occur at SIPs on a countable infinity
set of parameter values. In the dissipative case, near each of
these parameter values Newhouse resuits apply, hence this
theory gives an initial construction of the set of parameter
values for which 'we expect to see wild hyperbolic sets as
described by Newhouse For these parameter values, we
also expect a change'S in the “Pruning fronts” which de-
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scribe.the growth rate of the number of periodic orbits in the
system (see Cvitanovié et al.'”). Indeed, Hockett and
Holmes'' showed that the rotary number of a transverse ho-
moclinic point ‘determines the properties of the rotation set of
the hyperbolic nonwandering invariant set associated ‘with
the homoclinic point.

" Finally, we draw two speculative analogies to the theory
for the primary intersection points. The first is concerned
with the limit of periodic orbits to the homoclinic orbits and
the second concerns the angle of intersection. Theorem 4.6.4
of Guckenheimer and Holmes implies that the primary ho-
moclinic bifurcations are the limit as m—o of sequences of
subharmonic saddle—node bifurcations with rotation number
mi1. Using the typical structure near a homoclinic bifurca-
tion one concludes that there is a sequence of saddie—node
bifurcations of periodic orbits with rotation number m/n
converging onto the s-rotary homcclinic bifurcation as
m—x, These sequences, however, seem to be undetectable
by the subharmonic Melnikov function! A subharmonic SMF
may be needed for their detection. The angle of intersection
between the stable and unstable manifolds at a primary in-
tersection point is proportional to €M '(t), where 1, satisfies
M(#6)=0. In analogy we assume {without proving) that the

angle between the manifolds at the intersection point near

(2.€0) is proportional to €[ dh,(2g,€0)/92o]. The scaling of
this angle with € near the b1furcat10n points is found in Theo-
rems 3 and 4,

This paper is organized as follows: in Sec. II we list the
assumptions on the form of the Hamiltonian system suitable
for our theory and forinulate the four theorems we prove
regarding secondary intersections of the manifolds in these
systems, In Sec. Il we motivate the choice of the “Second-
ary Melnikov Function™ (SMF) and the stated résults by in-
troducing the Whisker map'®!® and by interpreting its vari-
able geometrically following the lines of Escande’s work.”
In Sec. IV we summarize our results in a nonformal way and
discuss further developments. The appendices consist of the
proofs of Theorems 1-4. In Appendices A and B we prove
Theorems 1 and 2 dealing with conditions for transverse in-
tersection of the manifolds. In Appendix C we prove Theo-
rems 3 and 4, dealing with conditions for tangencies and
other degenerate behavior of the manifolds.

ll. ASSUMPTIONS AND RESULTS

We consider two-dimensional time-periodic near-

integrable equations:

ax .
7 =filx,y)+egi(x,y,t;€),
(2.1a)

dy
i =fa(x,y)+ €gax,y,1;€),

where

oH aH
F=1f)= ;‘;”, )
. 2.
g=(g1382)’ q=(x,y)EM ( lb)

and M is a two-dimensional C™ mani
following on (2.1);

AG f,g are C” functions of their variables (x,y,?), r=4,
and g is periodic in ¢ with period T (independent of &):

27

g(x.y, 1+ Ti€)=g(x,y,t;€), T= -

2 A Pl SR oy
I

for all (x,y)eM,teR. {2.2)

g is analytic in e and possibly in other parameters p. We
drop its exphclt dependence on € and p when appropriate.
Al The origin is a hyperbolic fixed point of (2.1), hence,

WNLG we assume

y? x?
~ H(x,y)= 5 E+0(3,)’ for |x|,|y|<1, (2.3)
where J(3) stands for terms of order 3 in x and y.

A2 For €=0, the left branches of the stable and unstable
manifelds of the origin coincide, forming a homaclinic orbit,
[, parametrized by the solution ¢%(s). The right branches
may either extend to infinity (epen flow), or stay bounded
(closed flow), forming a homoclinic connection or hetero-
clinic connections, but in any case they do not extend to the
Jeft half-plane. WNLG we assume that ¢°(0)=(x%(0),0),
and that H(g%(#))=0.

" " A3 For e=0 the interior of I" is foliated by pericodic
orbits ¢™(), with period P(H), labeled by their energies
H=H{(g"(1))<0. Assume that the nth derivative of P(H)

'sausﬁes PONH) = (1/HM(C(n)+o(H)) as H—0". for

=1,2, where C(n) is an order one constant and C(I )< 0,
If the system is closed, P(H ) satisfies similar cond1t1ons for
H=0.

A4 Near the origin g is of the form: g(x ¥.1,€; y.)
=xp(t,€; )t yq(t, € )+ g(x.y,t, € 1), where p,q are pe-
riodic in ¢ and g is O(2) in x,y (uniformly in €).

A5 The Melnikov functlon a periodic function in ¢ of
period T, defined by

dt
(@ (r—1g)1)

MG =mtoim= [~ fAs

dt,
@Ou—r)y

=fjw(f18'2—f281)

(2.4)
satisfies the following assumptions:

] M(¢#) has at least two simple zeros in [0,T). WNLG
assume M{0)=0, M'(0)<0.
(iiy  For all real ¢ in [min M (#),maxM{£}], M(£)=c has a
: ﬁmtcla number of solutions t&[0,7), denoted by
().
(iii) M’ (¢) has a finite numober of zetos, all of wh1ch are of
finite order
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Remarks

(1) For ¢ sufficiently small conditions A0 and Al guarantee
that the Poincaré map has a hyperbolic fixed point near
the origin. Since g is analytic in € by the implicit func-
tion theorem there exists a change of coordinates such
that A4 is satisfied in the new coordinate systerns. How-
ever, in practice A4 is the most restrictive assumption,; if
it is not satisfied, one needs to solve for the pertufbed
periodic orbit (to all orders in €) and make the appropri-
ate, time-dependent shift of coordinates to transform the
system to this form. To avoid this transformation, one
may derive similar theory, valid on shorter time scales.

(2) For clarity of presentation, we will coricentrate on the
behavior of the left branches of the stable and unstable
manifolds, which create the homoclinic loop at e=0.
Nonetheless, the theory applies to other cases, e.g.,
closed flows or homoclinic loops which are composed of
several heteroclinic connections. There, additional sce-
ondary intersections between various branches of the
manifolds may appear, and one needs to keep track of
the different cross sections and the different Melnikov
integrals corresponding to each broken heteroclinic or
homoclinic connection.

(3) Assumptions AS5(ii) and AS5(}ii) essentlally state that the
Melnikov function is not pathological, and specifically
that it does riot have plateaus m any’ subsegments of
[0,n).

{4) For simplicity of notation, we assume in all the figures
(but not in the analysis) that M(¢) has exactly two
simple zeros every period of the perturbation,'hehce, for
small e the Poincaré map F has exactly two primary
intersection orbits denoted by.¢; and p; in Fig. 1.

{5) For example, a system satisfving A0—AS is the system
describing the motion of a particle in a forced cublc

' potentlal14 with the Hamlltoman

H¥(x,y,0)= 3"+ (= x>~ 5x*)[1 +2 cos(wr)].  (2.5)
In Appendices A-C the following results are proved:
Theorem 1: Let (2.1) satisfy AO—AS. Let 7,9 >0 and let

0<ﬂ<a<1/2 be given constants. Then there exists an
e=&la.B.nn') such that if (r,\,:-‘n\ m‘nvf'\) conditions CI and

SALL M T o oRby 00/ vl LG

C2 listed below, and €y<é then the stable and unstable mani-
folds intersect transversely in d secondary homoclinic point
of transition number I(ty,€)) defined by (1.2) for all
Ec(g—Ac,e+Aé), where Ae=0()*®) and = t0+0(6’3)
The condmons Cl and C2 are

Cl: hy(ty,€)=0 and M(tp)<—7,

(see Fig. 2.)

‘Generically, we expect the angle between the stable and
unstable manifolds to be proportional to leading order ine to
60[8h2(t0 €y)/ dtgl.

Theorem 2: Ler (2.1) satisfy AO-AS and let >0 and
ne(0,M] be given, where

FIG. 2. Transverse secondary intersection. SIP with transition number l 2
at -r‘.. = t

M = min{max M(t),—min M()}. (2.6)

Then, there exists a set of nonempty intervals, I 20,7}, and
there exist k curves [the number of curves is determined by
the multiplicity of M(t) and some of tkem may be defined only
on subsegments of I ol (e‘(to,l) to), i=1,...k, satisfying condi-
tion CI of theorem 1 for all toel with J(to,e(to,l))—l
Moreover, given n' >0 sufficiently small and €, there exists
an I,(€) such that for [zl there exist open intervals of posi-
tive lengths of ty and curves €(ty,1) <& satisfying conditions
CI and C2. Finally, if max M(f)=—min M(t} there exist
countable infinity values of (to v€(tg, l)) satzsjjzmg CI but not
C2: [ohylzg, €ty D) 010] =

Remarks:

(1) 1,(€) is the type number of the homoclinic tangle'
at €, and plays an important role in determining the nature of
stretching and transport in such flows,!*

(2) If max M(r)#—min M(¢) there may still exist
countab]c infinity values of (zo(D), eo(to(l) l)) satlsfylng Cl1
but not C2. (See Fig. 3.) :

Corollary: Let (2.1) satisfy A0-AS. Then, for €0 suffi-

ciently small there exist secondary homoclinic mtersectzon
points with finite transition numbers.

Theorem 3: Define t,(15.€,)= to+P(egM (2g)). Let (2.1) sat-
n‘f\; Aﬂ—As and let 1, fne(O,T) and ﬁn—f'(fg,f) be anu)n 50
tha.t (tg,€0) satisfy CI and (&hz/é‘to)(to,eo) 0 Then, for suffi-

ciently small €):

81 Generically (the generic condmons to be satisfied in each
of the cases listed below are given in Appendix C, with the
proof of the theorem) the manifolds undergo a “secondary
homoclinic saddle—node bifurcation” for é=e+0(ey™,
0<a<1/2; Namely, at e=¢ there exists a secondary ho-
moclinic tangency of transition number 1, with generically,
quadratic tangency (but possibly higher-order even-order
tangency). For €<€ (or €>€) the manifolds do not have sec-
ondary intersection with transition number | for t near t,
whereas for €>€ (correspondingly e<&) two secondary ho-
moclmzc orbits with transition number | are created with
t=ty+O(ef?)  and  with angle of intersection
el oy (3, &/]=0(e; " ). -
82 If additionally M (t))=M'(¢{(ty,€,))=0, then, generi-
cally, the manifolds underge a “perturbed transcritical bifur-

Downloaded 09 Sep 2008 to 132.77.4.43. Redistributio/C5Ah V8! iPNecRst895copyright; see http:/ichaos.aip.org/chaos/copyright.jsp



Vered Rom-Kedar: Homoclinic thecrems 389

FIG. 3. Secondary homoclinic bifurcations. (a) €< & I=2. (b) €=, case S1
of Theorem 3. (¢) > € case §2(ii} of Theorem 3.

cation”; depending on the relations between the second-
order derivatives of M) at 1, and 1), there are two
possibilities: 7

(i) The manifolds intersect topologically transversely at
two homoclinic points for both e<e, and e>¢,, scaling near
the bifurcation, at é=ey+0(€)*®), 0<a<1/4 like t=t+0(€5)
with the angle & [l (7, &/1=0(&)" ). Generically, there may
be nomne, one or two values of € irn the interval
(69— A€+ A€) at which the manifolds are tangent.

(ii) The  manifolds = do  not  intersect  for
(£ &=[t,+O0(),6+O(e,t )], 0<a<1/4, but may intersect
on smaller scales, with doh,(F /dt]=o(e]*).
S3 If M(g)=M(t;(tg.€))=0 and
M"(t5y=—M"(z,) then generically, the manifolds undergo to-
pologically a “pitchfork bifurcation” (the description of
which may be deduced similarly to previous cases) for

additionally

(b) \

FIG. 4. Secondary homoclinic bifurcation with symmetry. (a) e<<g [=2.
{b) €> &, case 83 of Theorem 3.

=g+ 06, 0<a<l/3, and F=ty+0(f?, and
& [ohy(T. &V 1= 0(ed). If M(2) is odd in t (M(t)=—M(—1))
then only conditions S1 and S3 are possible. (See Fig. 4.)
Theorem 4: Let g of (2.1) depend on the parameters ueR?
and let (2.1) satisfy AO=AS for an open ball of w values
centered at p (of size independent of €). Let |, toef 7',(,uﬂ) and
e =€(tg.l:pg) be given so that Cl is satisfied and
(Gho/t) to, €03 t0)=0. Then for € sufficiently small, generi-
cally, the manifolds undergo a topological saddie—node bi-
furcation along a p-dimensional surface, defined for
cc(g—AegtAe), pe(uy—AumtAm), Ae=0(g)"™),
a<<1/2, and Ap sufficiently small. The bifurcation surface of
the manifolds intersections is O(€;" *,6Au’) close to the bi-
furcation surface of hy(ty, €). _

Remark: Similarly, one can consider the parameter de-
pendence of cases 82 and 83 of Theorem 3.

ill. THE WHISKER MAP

The motivation for choosing the function k,(#g,€p)
comes from combining the geometrical viewpoint of the
structure of the manifolds introduced above and the analyti-
cal, perturbative approach, in which one looks at the change
in energy along paths of the perturbed system.'®!° Following
Escande®® geometrical interpretation of the Whisker map, we
define the separatrix map, W, as the return map of the energy
and time variables (H,,7,) to the cross sections ¥, and 2,
respectively, where 3., is composed of a segment of the x
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qu “’.To)

FIG. 5. The separatrix map. ——— Unperturbed separatrices; —— an orbit
belonging to the unstable manifold.

axis and a segment of the y axis, centered at the origin, and
3, consists of a segment of the x axis centered at qO(O) (see
Fig. 5}

W:(Hn ’Tn)_)(Hn-t-l ’Tn+l),

Q(T,,,To)EE,, (31)

anH(q(t* 'TO)?t::c)’

n?

g(ty ,T0) € Xy,
T <<,

where g(t,7g) is a solution to Eq. (2.1), (70,70} € Z,. In
Fig. 53 we draw a solution ¢"(z, 7) belonging to the unstable
manifold so lim,_, _.q“{t, 1) =(0,0).

In the neighborhood of the separatrix the cross sections
3, and 3, are transverse to the unperturbed trajectories.
Therefore, for e sufficiently small, the separatrix map is well

defined there and so is the parametrization of the unstable
Tt fallawe fram Face (2 1) and (2 2) that

manifald hy =~
7. v AULIOWS ITOIL D45, (2. dlid &0y ulal

AERGAIRLLN AN UJ
H, <1 near the separatrix. The Whisker map is defined to be
the leading-order approximation in € and H to the separatrix
map and can be calculated explicitly'® as

hn+l=hn+6M(tr1)s tn+1=tn+P(hn+l)’ (32)

where M(¢) is the Melnikov function and P{#) is the period
of the unperturbed orbit with energy 4 at 3, . Assume for
now that (3.1) is given identically by (3.2) and that as in the
case of the unperturbed problem negative energies corre-
spond to orbit passing to the left of the origin (intersect %,
with y=0), whereas orbits with positive energy pass above
or below the origin (intersect %, with x=0). Then it is natu-
ral to associate with the orbits which never reach 2., , namely
the homoclinic orbits, zero energy. In Theorem. 1 it is proven
that this choice makes H, a continuous function of #;.

In terms of this formulation, a primary intersection point
exists if there exist initial conditions (Hy,#;) such that
Hy=H(:;)=0. Replacing (3.1) with (3.2) we obtain
hy=eM(15)=0. Hence, once the above assumptions are
made rigorous, one may construct an alternative proof of
Theorems 4.5.3 and 4.5.4 of Guckenheimer and Holmes.

Similarly, a secondary intersection point of transition
number [ exists if there are initial conditions (Hy,7y) such
that Hy=H,=0, H;<0, 0<1y<T, and IT<7 <({+1)T.
Replacing H; with k; and ; with ¢#,, setting 4,=0, and using
(3.2), we obtain

hl(tO) = EM(tO)a
t1(tg,€)=to+ P(eM{tg)),

0<ty<T,
(3.3)
(g, €)= eM(ty) -+ €M (t1(tg,€))= €hy(tg,€)=0.

Hence, to prove Theorem 1, we need to prove that H, is
continuous and differentiable, that simple zeros of H, imply
transverse secondary homoclinic intersections, that /2, and ¢,
are good approximations to H, and 7, and that [#,/T]
=[7,/T] for open intervals in €. These assertions are proved
in Appendices A and B. Moreover, since M () is periodic,
the solutions to (3.3) can be easily constructed and analyzed
as is demonstrated in the proof of Theorem 2'in Appendix A.

In particular, the family of solutions described in Theo-
rem 2 is simply given by

. 1 .
e(ty,l)= Mg PN (=t M Y= M (1)) +1T),

(3.4

where M(x)=—M(ty) has k=k(zy)=1 solutions for z,
el,={1|M=—M(10)=17}, given by x=M""(—M(1())
€(0,7). Moreover, by (1.2) j(zy,€(¢y,0))=1, proving the
first claim in the theorem. As for the primary intersection
points, one can use the linearized structure near the origin to
establish that the angle between the manifolds near the SIP at
(tg,€0) is proportional to €l dhy(ty,€p)/ dtp):

foei,q,

ha(to, €0}

— gt !
e M'(tg)+M'(¢))

X1+ eM' ()P (eM(#))]. (3.3)

The type number of the homoclin
value is given by the minimal value of [ for which there
exists £, (0,T) such that e"(to,l)s €. This number is fixed
between the bifurcation values of (3.4), which can be found
easily from (3.4) and (3.3) and the periodicity of M(r).
Hence the additional significance of Theorems 3 and 4 -in
supplying the topological bifurcation curves across which the
type numbers may change.

Finally, using the separatrix map (3.2), we construct an
nth-order Melnikov function and the associated n —1 dimen-

sional fransition vector I=(ly,....1, )}

ic tangle for a given £

Liag

n—1
Rulto €)= 2 M{t(ty,€)),
i=0
toltg,€)=tg, 0<#<T,

(3.6)

i=0

i—1
f:(fo,6)=f:‘—1(f0,e)+P( €2, M(l‘j(fo,f))) ,

i=1,..,n—1,

li(IOve) 2[Ii+1(t0,6)/T],

Similar theorems to Theorems 1-4, stating that simple zeros
of k, correspond to homoclinic intersections with rotary
number 7 and with a vector type number / may be formu-

i=0,...,n—2.



Vered Rom-Kedar: Homoclinic thecrems : 391

lated (though the values of « and 8 change, see Sec. IV). For
any finite n a similar proof to the n=2 case applies. More-
over, in Appendix A we present the outline of the proof that
the corresponding function H,, is continuous for n=o0(1/¢€).

IV. SUMMARY AND DISCUSSION

Under assumptions A0—AS on the form of f and g, we
define a function, k,(#.€p) by (1.1) and an integer number
J(ty.€0) by (1.2}, and we prove the following results {the
mathematical formulation of the assumptions and theorems
is given in Sec. II}:

(1) For sufficiently small ¢ simple zeros in ¢ of &,(¢,€)
correspond to transverse secondary intersections of the
manifolds with transition namber j(t,€).

(2) We construct families of solutions €(¢,l) [=1,...,,

.,.k(t) satisfying:

(D) 50, €'(2,0))=0 and j(t,€'(t,1)=1. )

(i) The solutions supply simple zeros in ¢ of &, on some
nonempty open subintervals of (0,7).

(iii) €'(z,0)—0 as [—o0,

(3) For sufficiently large I, the existence of these solutions

“implies the existence of a secondary transverse intersec-
tion of transition number {. Moreover, given an € there
exists a minimal value of /, denoted by [, such that there
exists a ¢, solving ﬁz(to,ei(to;lo))—o and e"(to-lo)<%.
1y is the type number of the homoclinic tangle.

{4) We prove that under some generic conditions, degenerate
zeros of h,(t,,€q) correspond to tangencies or other ho-
moclinic bifurcations of the manifolds. We find the scal-
ing of the bifurcating solutions with € from which we
find the scaling of the angle of intersection there.

(5) We establish that these bifurcations occur on countable
infinity sets of parameters, indexed by {.

{6) We prove the persistence of the secondary tangent ho-

moclinic bifurcations when other parameters are intro-

duced.

We foresee two interesting directions for continuation.
The first is extending these ideas to higher dimensional sys-
tems. This study may reveal new phenomena as the mecha-
nism. for the creation of secondary tangencies is not well
understood in more than twe dimensions. Since the Melni-
kov technigque has been already derived for higher dimen-
sional systems 7 at least for some cases the extension of the
Luéﬁi‘}" should be trivial, yei its consequences mu“igumg De-
veloping the theory for more general structures is related to
the nontrivial extension of the transport theory to higher di-
mensions and is challenging. Recently, Haller and Wiggins®!
and Kaper and Kovacic* have developed criteria for proving
the existence of multihump homoclinic orbits near
hyperbolic-resonant two degrees of freedom Hamiltonian
systems, spending time of, respectively, order log(€) and or-
der 1/\/_&: near the slow manifold on which the resonance
occurs, The orbits detected in this paper qnpnd Of{log &) near

cours orbits detected in this end O{log €) near
the fixed point, and their existence in thlS two degrees of
freedom setting, and in particular the analogous transition

number is yet to be revealed.

The second direction is investigating the implications
and relations of the SMF applied to slightly dissipative sys-
tems with other phenomena:

(2) Formation of strange attracting sets and density varia-
tion on them: In two dimensions the mechanism for the
coliapse of phase space into the strange attracting set
must occur through the motion of the lobes.”® Detailed
study of the lobe properties, such as boundary length
and changes in the lobe width as the lobe is iterated
corresponds to a systematic study of the transient be-
havior. The attractor is obtained by considering the
lobe images after an infinite number of iterations. Such
a study involves the delicate issue of asymptotic behav-
ior of the manifolds. Generalizing the corresponding
transport theory, the TAM,' to the non-area-preserving
case will enable us to predict the rate at which these
lobes coltapse. It will be interesting to relate this stody
to the recent theory regarding existence and ‘‘robust-
ness” of strange attractors near homoclinic tangencies
and the construction of SRB measures on the attractors
on one hand, and to the physicist characterization of
density distributions on attractors on the other hand.?
For example, it seems that the density variations on the
attractor are related to the accumulation rate of initial
conditions along the unstable manifolds. Incorporating
the finite time results, the magnitude of the derivative
of the nth crossing time and its scaling near bifurca-
tions with the TAM may give some information regard-
ing this accumulation rate. If such a relation can be
established, it may give a method for estimating the
invariant measure and f(a) on the attractors and may
be valuable in improving numerical methods for com-
puting the manifolds.

(b} Periodic orbits, pruning theory, and the SMF: The
pruning theory has been developed to describe the
growth rate of the number of periodic orbits in dissipa-
tive systems using an approximate symbolic
dynamics.'” This symbolic dynamics is changing when
secondary tangent bifurcations occur. Moreover, new
invariant sets associated with the new fransverse sec-
ondary intersections appear, and their rotation sets may
be analyzed.!! Therefore, the combination of the three
theories may result in predictions for the changes in the
pruning fronts for slightly dissipative systems.

{c) Higher rotary number intersections: Using the Whisker
map as in (3.3), we can construct a third, fourth, and
nth Melnikov function for deiecting higher-order tan-
gencies. Each of these will have infinitely many degen-
erate zeros. Proving that these degeneracies imply tan-
gencies of the manifolds and measuring the set of all
these bifurcation values is, in some sense, trying to
prove the Newhouse result® (that tangencies persist) in
a constructive fashion. This plan is very difficult to
follow, and it might be impossible to complete because
the error grows with the rotary number of the intersec-

tion {see coniectures A 1 and A 2). Nanethelace euch

AL ol LURLLALILS SRl diiu S GSURLRNITILGS, Sl

an investigation, and especially finding the rate at
which the errors grow, may lead to better understand-
ing of the development of the homoclinic tangles.
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APPENDIX A: TRANSVERSE SECONDARY
HOMOCLINIC INTERSECTIONS

i. Proof of Theorem 1

The proof consists of three parts. In the first part we
construct a function H,(ty,€) and prove that it is continuous
and differentiable and that its zeros correspond ‘to secondary
homoclinic points, In the second part we calculate the error
in approximating H,(ty,€) by ehy(ty,€). In the third part
we establish that simple zeros of 4,(f,€q) imply simple
zeros of H y( 1, for €in the indicated interval, The condition
C2 is used only in proving the third part of the theorem.
Hence, we may use all the other results in proving Theorems
3 and 4.

A. Properties of Hj{l,,€)

Strategy: First, we define a three-dimensional region D
in the extended phase space [{x,yt) coordinate system] and
establish that we can distinguish between trapped and un-
trapped orbits by using the energy function H(g(t.ty)) mea-
sured on the cross section 3. In Lemmas A1 and A.2 we
establish that this determines a function H{x,yt,€) for which
positive/negative values imply unirapped/trapped orbits, re-
volving i times in the trapping region Hll time t. We identify
Hy=0 with orbits which asymptote the origin as t— —, thus
parametrizing the unstable manifold by ty=17,, the orbit’s
first crossing time of 2,. Then we define the functions
H{my,€) for these orbits. In Lemmas A.3 and A4 we prove
that for i=1,2 these become continuous functions of their
arguments if we identify the zeros of the function H;, i>(),
with orbits which asymptote the Oi’igii‘i as t— gnd which
cross 2, for the ith and last time at t="; {i.e., these orbits do
not reach Z, for the ith time in any finite time). We conclude
that if we find orbits for which H{my,€) changes sign as a
Junction of 7, the unstable manifold crosses topologically
transversely the stable manifold in an i-rotary intersection
point [since we do not know whether H{m) is C!, we cannot
verify actual transversality].

‘We define the region D as shown in Flg 6. Let 2¢ denote
the Poincaré section in

38={(x,y,t)|t=6 mod T}.

Let u(8) denote the point of first intersection in elapsed time
of W% with 3, in 3% Similarly, let s(6) denote the point of
first intersection in elapsed time of W% with 3, in 3¢
[5(0)=u(0)=p, in 2° of Fig. 6 since M(0)=0]. Let D(6)
denote the interior of the region enclosed by the segments of
the stable and unstable manifolds extending from the fixed
point to s(f) and u(d), respectively, and the line
I(u(6),s(), the closed interval connecting u( &) with s(8)
along 5,,. Then we define

D={(x,v.0)|(x,y) € D(8),6=t mod T}. (A1)

fh
A,

FIG. 6. Definition of the region D, The region P and two iwo-dimensional
cross sections.

We say that an orbit is trapped at time ¢ if (g,t) € D and that
it is untrapped at time ¢ if (g,t) ¢ D [if (g,?) belongs to 3D
it is neither trapped nor untrapped].

Let us fix the parametrization of the unperturbed ho-

moclinic orbit so that ¢o(0) e %, Let g%(#,7) denote a solu-
tion belonging to W*. For & sufﬁcienﬂy smali,?

gt T =qo(t— 1)+ eql(1,7) + O(€?),

te(—,0], e<é. (A2)

Moreover, choosing € sufficiently small, we can parametrize
q4(t,7) by ¢, the first intersection time of g%(¢,7) with 3,,
ie., gi(tg.to) & 2,0. g%(t,7) can be expressed similarly to
(A2) for t[0,%).

Lemma A.1: For all finite ty, H{gl(t,14))—0 as t— and
H{g¥(t,t0))—0 as t— — o0,

Proof. By assumptions Al and A4 H(0,0)=0 and
g3 ($)—(0,0) as 1— = (respectively). Hence by continu-
ity H(g"*e(1))—0 as r— *oo as indicated. O
Lemma A.2: Let g(¢)=g(#,7;_) denote a solution of (2.1)
satisfying |g(1;_|,7:— 1) — q0(0)| = O(&) for some small pa-
rameter ¢~ Then for o and € sufﬁ<:1ent1y small the orbit g(¢)

anry anin o o] £ F el el Ha

13 U.GPPCU 101 . l, =] \ l" l, 1L ana VILLY it
H=H(g(t} ,7,_;))<0 and tf°<°° where tfe(r;_1,7)
denotes the crossing time of 2, by ¢(f,7;_;). Similarly,
q{t,7;_,) is untrapped for te(7;,_,,7,) iff H;>0 and ¥
<< %0; 7; may be infinite in this case.

Proof. =: Let Nz be a neighborhood of the origin for which
the O(3) terms of H(x,y) are negligible and in particular
H(x,0)<0, H(0,y)>0, (x,y) e N;. For o sufficiently small
g(tF)eNs, hence, by Al, H;<0 and f}<c imply
vy = 0, rfr*\-J-—-?H hence, for e sufficiently smali

FANE S for € surncier Y 2lllall

(x(t,*),y(t*) t,*)eD By the construction of D and by
uniqueness of solutions of ODEs, an orbit may enter or exit
the interior of D only through the segment J{s(z),%(#)). This
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thay occur, by definition, at t= 7;_, and = 7;, respectively.
Similarly, if H;>0 and ¥ is finite; then (x(¢}¥),
y(t5).1) ¢ D. By the same argument (x(¢),y(#),7) remains
out of D until it reaches the cross section X, .

&: Assume g(2) is trapped [g(£) e D) for te(7;-,,7,).
Choose € sufficiently small so that 2., is crossed by all solu-
tions entering [N A(W*NN )] for all e<e. For sufficiently
small o and €, g(t) enters N ; in finite time (here o may be €
dependent). Since, g(f) & 3D, g{(¢) crosses X, at finite time,
tf. By Al and Ad, for e sufficiently small, the left horizon-
tal part of Eh is completely contained in' D and the perpen-
dicular part of %, is completely contained in D€ (the comple-
ment of D) Therefore, for sufficiently small e, the result
follows immediately from Al. [

Let & bé sufficiently small for Lemmas A.1 and A2 to
hold for all e<ée. Define the function:

H(t6,€):([0,7),[0,8) =R,

0, if qi(tg.t0)=qt0.t0);
H(g¥(t5 .20)),

Lemma A.3: For sufﬁc1ently small e, 7 l(ro,e) is continuous
in (#;,€), differentiable in for all >0, and

1(50,6) O(e).

Proof: First we show that H 1 ( to.€) is continuous in the limit
e—0. From (A2) it follows that ¢4(¢y,ty) is eclose to
gi(ty,to), hence g4(1,t5) remains eclose to gi(z.%y) for a
finite interval of time, in which it enters a- neighborhood of
the origin where linearized equations govern. It follows from
the form of the linearized equations (see proofs of Lemmas
A6-A8 in Appendix B for more details) that
Ig4(t¥ 1) = O(\Je) .and therefore that' H (to,€)=O(e),
and in particular H,(ty,€)—0 as e—0 for all ¢;. From (A3)
it follows that H,(#;,0)=0, hence H,(ty,€)} is continuous in
this limit. Consider €>0. For (7,.€¢) values for which
H(ty,€) is either strictly positive or strictly negative, ¥ is
finite and it depends smoothly on ¢y and analytically on
Using (A2) and Lemma A.2 we conclude that H,(#y,¢€) is a
C” function in ¢, and analytic in € for orbits which are either
trapped or untrapped for ¢ & (74,7,). Since qi(#,t,) € D for
1=1,, it follows from Lemmas A.1 and A 2 that the defini-
tion (A3) of H(ty,€) on IDNW* makes H,(#y,€) continu-
ous across 4D, Moreover, using the form of H and the form
of the solutions in the neighborhood of the fixed point, it
follows that H(ty,€) is C" in #, for all £>0. O
Slmllarly, we may define Hy(fp,€), or in general
H,(1y,€). For open flows, these are defined only on the par-

tial segments I,(€)C[0,T) for which H,_, is negative:

Il(€)=[0’T)!
1 ={tolto e Ly-1(€) and H,y(1g,€)<0}, n>2,

HI(IO’E)E (A3)

otherwise.

and

H,:(1,(€),(0,6)—R,

0’ if q‘;(fn—l 9t0)=_ql:('rn—l 'Tn—l);

Hallo: =) ggues o)),

otherwise.

Voi,
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Lemma A.4: For sufficiently small €, H,(7y,€) is continuous
in (¢y.€) and differentiable in #, for €>0.

Proof: We proved in Lemma A.3 that H (¢, €) is continuous
in its arguments, hence it is negative in a neighborhood of
(#4.€) values for which H,(2y.€) is defined, and H,(ty,€) is
defined  on such open sets (therefore the case =0 is ex-
cluded). By Lemma A.3 H|(ty,€)=0(¢), hence, qL(t§ ,2y)
is ve-close to the origin and therefore g5(7, .7} is e-close to
go(t— 7). Therefore, by Lemma A.2, the sign of H,(tj,€)
determines whether - g4{r,/9) is trapped/untrapped for
te(ry, 7). It follows that 15, the second crossing time of
24, s 'smooth for the trapped and untrapped orbits, hence
H,(t,,€) is continuous and differentiable in ¢, whenever it is
strictly negative or strictly positive. If the orbit is neither
trapped nor .untrapped, then, = since  g¥(7.Z)
el (u(7y),s(m))), it follows that g'(7,.2y) ‘must belong to
the stable manifold, namely ¢%(7,,20) =¢%(ry,7,) and then
Hi(1y,€)=0, as required for continuity. Using the smooth
dependence on initial conditions up to 7, the form of H, and
the form of the solutions in the nelghborhood of the fixed
point for t—1¥, it follows that Hz(to,e) is ! in ¢, for all
€>0 also when 5 — .

Lemma A.5: For sufficiently small €>0 and for all
foely(e), q¢(t,ty) is a secondary homoclinic orbit if and
only if H,(ty,€)=0, and is transverse if and only if
dH,(t, e)/ 4t is bounded away from zero at #,.

Proof: = If the orbit is a secondary homoclinic orbit then
there exists a ' such that ¢%(7,,20) =¢%(7;,7,), hence, by
definition, H,(fy,€)=0. If -the intersection is transverse,
then, it remains transverse up to a neighborhood of the ori-
gin, where the analysis of the linear equations show that this
implies that dH,/ 3¢ must be nonvamshmg

i T ot .0t =0 and accnima 4% f £.) ic nnt a con_
—, il £2 2\»0,(:/ U Ol ddoulliv Iff\b,l-oj A UUL Q4 Sl

ondary homoclinic orbit. Since ¢y €1,(¢), it follows that tf
is finite. and that g%(7;,t,) is e-close to g3(7, 7). Hence,
since g(7,tp) is not a SIP, for ¢ sufficiently small there
exists a finite 3 such that g(r3 ,#p) e Z,NN ;. It follows
from A1 that H,(z,,€) must be either positive or negative—
contradicting our assumption. Recall that ¢y parametrizes the
unstable manifold. Since dH,/d¢ is nonvanishing H;(z,,€)
must change sign at 15, By Lemma A.2, H,(t,€) changes
sign at #, iff orbits with H,(z,€) <0 are trapped and the ones
with H,(z,€)>0 are untrapped. Hence, by continuity, the
intersection is topologically transverse, and by using the lin-
earized structure, it can be proven to be transverse. 0

Therefore, there exists a SIP of transition number /,
given by gc(t,1;) if and only if H,(1,€)<0,
IT<1,(ty,€)<({+1)T and H,(t5,€)=0.

Though not necessary for our current work, it is interest-
ing to generalize the above results to H,(#,,€) for any n=2
(see Sec. VI).

Conjecture A.I: For sufficiently small & and n=0(1/8),
H,(ty,€) is continuous in (#y,€) for all tpel,(€), 0<e<E,
Proof outline: By induction on n. Assume H,(t;,€), n=2 is
continuous in (fy,€) and |H,|=0(ne). From Lemmas A4
and A.8 these assumptions hold for n=2. It implies that
H,(15,€)=0(1)=0" for all e<& and we may repeat the
same argument as in Lemma A4 for g%(r, .2y} to prove that
H,., is continuous. Using the Melnikov integral along

I% I|cen§e or Copyrlght see http://chaos.aip.org/chaos/copyright.jsp
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go(t—7,) it follows that (see Lemmas A.6-A.8)
H, 1 =H,+eM(7,)+O(|H,|**)=0[(n+1)e] and the in-
duction assumption is established. O
Conjecture A.2: Let n=0(1/€) and ¢ sufficiently. small.
Then for all €< (0,8, in and tyel(€) gi(t,ty) is an ith
homoclinic orbit if and only if H;(¢,,€)=0 and is topologi-
cally transverse if and only if H;(¢,€) changes sign as a
function of ¢ at #;.

Proof outline: Repeat arguments of Lemma A.S5, using Con-
jecture A.1. :

B. Hy(ty,€) may be approximated by exhy(ty,€0)

We prove consequently that H,, 7, and H, are well
approximated by &, ¢, and &, of (3.3). As the proofs of this
part are quite technical and long, we quote the lemmas, give
the essential 1deas of the proofs, and present the detalls in
Appendlx B.

In Lemmas A.6-A.8, let {2.1) satisfy assumptlons (AO)
(A5), and let ¢ satisfy M(tg)=—n<0.

Lemma A.6: H(ty,€)=h(to)+ Ok, (1)]*"*, elh; | €%
where h, is given by Eq. (3.3).

Proof: We approximate the change in energy by the intégral
of f/\g evaluated along g,(t—1#,). The expansion in € gives
an O(e? } error. Smce q:=(¢7 ,ty) # (0,0) we obtain a
boundary error, which is proportional to (yA \/— ¥, where p is
the order of H (x,y) for small (x,y) along the stable mani-
fold. By our assumptions, p=3, and it gives the above error
estimates. For the forced pendulum, for example, p=4, and
the error is O(€?). . O
Lemma A.7: 7/(2) = ¢, + O(e,N—hy,€*|hy]), where
ki, 1(1‘0) is given by Eq. (3.3). o

ri‘uur J.ll.t: UIlGl'gy LUﬁCLlOﬂ IIle&SUI'CLl on Ah I]XC:) lllt: (.llb-
tance to the fixed point, hence it fixes the time of passage
near it {this passage time is the dominant term in 7 — 7).
Choosing to approximate the perturbed orbit by the “cor-
rect” unperturbed periodic orbit—the one which has the
same passage time, we obtain the above error estimates. E]
Lemma A.8: Hz(to,e) Ry(to) +O(| 1, |*2, el )|, €
€|, 1?2, e Ry €9y ]), where h (2y.€), hz(to,e)
are given by Eq. (3.3). -

Proof: We annroximate the r‘hangp in enerov hetween H.

A 2R TR QRLVA Viigy LAeiYYuadl i

and H, by the integral of f/\g evaluated along the unper-
turbed homoclinic orbit go(#— =), using the previous esti-
mates of 7, and H,. As in Lemma A.6, there are contribu-
tions to the error from the usual perturbation terms and from
the boundary terms, which can be smaller than indicated if
has no @(3) terms in the stable direction near the origin, see
Appendix B for details. ' '
Using (3.3) we conclude the followmg

Corollary A.l: Let (2.1) satsfy A0-A5 and let
toe{t|M(r)<~ 5<0}. Then ‘

Hy(tg,€)=hy(ty,€) + O(¥%) = e[ hy(tg,€) + O(e"?)],
| Cy)
and

0H (19, €) 3hy(ty,€)
-330 —€ C;t{)

+0(e"?) ). (A3)

The second equation follows from the first as the partial
derivatives w.r-t. ¢y of the error terms listed in Lemma A.8
are still of 0(€>?). Therefore, using the linear structure near
the origin, as in the proofs of Lemmas A.6—A.8, one may
prove that the angle between the manifolds at the intersection
point (¢,,€g) is proportional to & dh,(f,€)/d7].

C. Slmple zeros of hz( t,, ) eo} :mp.'y simple zeros of
Hy(t¢)

We prove that if (1, €,) satisfy C1 and C2, then given
0<g<a<l/Z, for ey<&a,B), Hy(tg*= At,€) changes sign
for At*—O(sG) for all e=[ey—Ae,egtAe] where
Ae=0(e}"®). Hence, by continuity of H,(¢y,€) (Lemma
A.4), there exists 7 e (to— At,t5+ At) such that H,(7,8)=0,
and the zero is topologically simple. Therefore, by Lemma
A.5 the manifolds intersect topologically transversely at a
SIP, parametrized by (7,€). By Corollary A.1 it follows that
AH /3ty is bounded away from zero, hence the intersection
is transverse. Then, we show that for sufficiently small €, the
transition number is estimated correctly: I(Z,€) ={(¢y,€).

Note that it is impossible to_simply apply the implicit

nmetinn fhpnrpm tn Hole cinee b (F 23 ie cinonlar at =
l-ll (VI SEVISRNE S LWIVFR VS Y R AN I.J.Zf Lo ) S P LV W ”‘2\" s ) W ﬂlll&ulul L1 A

Nonetheless, using (Ad4), it is easy to prove that H, must
change sign as indicated; let At=Kef, k>0 and Ae ete.
Then

Hz(toi AI,Eo‘FAE).

=h2(t0'_"'Keg,eo+Ae)+O[(GO+A6)3’2] :
. iy
='iKe(1)+ (t0,60)+0(£1+“ )T &),

In the error estimates above and hereafter, we use the follow-
ing property of hz(to,eo) which follows from (1.1) and as-
sumption A3: takmg derivatives of f5(2,€p) (of its deriva-
tives) w.rt. £ does not change its order of magnitude,
whereas taking a derivative of %,(¢y,€,) (or its derivatives)
w.r.t."e multiplies the furiction by a factor of order 1/e. Since,
by. C2, (8h,/dt5)(ty,€) is bounded away from zero, we
obtain that the first term is dominant for €, sufficiently small,
and H. (r,\i At e.-+Ae) has npnnmtpc cione 'Rv (“nrnl'lm-v

uuuuuu kR (] =€) Das VOILLD SLELad ALl Y

Al we conclude that 3H,/ 8t is bounded away from zero in
the indicated intervals hence that there exists a transverse
secondaty homoclinic mtersectlon at (#,e)=(%, € for all
ec(eg—Aeg,eptAe) with a t(e)e(to Atty+ A, We
verify that the transition number of this SIP is 119, €); Us-
ing Lemma A7 we find .

(£, &) =1,(%, e)+0

\f M(t), M( o)

=1,(tg,60) + O(€§ , €8 ,\eq).

In the last equality we used A3 and the assumption that
M(1y) is bounded away from zero. If £;(z,,€y) is bounded
away from /T and (I+1)T as e—07, then, for & sufficiently
small 7(,9 e (IT,(I+1)T1. Indeed f,(zg,€,) must be
bounded away from jT' for any mteger J: assume it is not,
namer, there ex1sts a functlon #(to;€0) such that
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. lim 9([(];50)—3‘0.

t1(tg,€0) =T+ 6(t0:€0),
’ EOI~'>O+

Then, by AS,

but we assumed M(ty)<— %<0 and h,(zy,€,)=0 for all
(29,€p) satisfying C1 and C2. Hence we conclude that for
such {tg,€p), tl(to,eoj must be bounded away from j7 for
all j. 0o

2. Proof of Theorem 2

This theorem is composed of statements regarding the
behavior of hy(1y,€) which are easily verified, By assump-
tion A5 and the contmulty of M (1), for ne(0,M] (2 6) the
set

I ={to!ﬂ—f? ~M(19)=7}

is closed and nonempty. For ali toel

(A6>

the equation

M(x)=—M(tp) has k=k{zy=1 sclutions
x= l‘( M(1y))e(0,T). Therefore, given an ! and an

ne (0 M1, we can solve hy(ty,€0) =0 for all tOEI as fol-
tows:

z*’l(zo,z):M“l"‘(—M(zo)HzT,
' ' (A7)
‘[—10+M (= M(tg))+IT].

. 1
el(t():l) M( )

=310y Pt GoDl.

By (1.2} j{ty.€ (to ,l))ml, proving the first claim in the theo-
rem.
From (A7) it follows that if tye I
mm(l)— min € (to,l)OCP timn,

foslg*

then e"(to,l)

: :
max(i 77) max E(t(}%l)m; _l(lr)'

loEI

Hence, for sufficiently large [=[(%,€) the condition
ety [)< € is satisfied for all e, . Let {y= I,(& be the
minimal value of l for which € () < & It follows that
there exists an = n(ly,€) for which e(to,l)<e for all
Iy € I ‘and for all I=1,, hence condition C1 1s satisfied
there :
‘Now, we show that there are closed intervals in I for
which: condition C2 is satisfied. It follows from (3. 5) that
(ahzlato)(to,eo) 0 in one of two cases;

M'{(2)=M'(11)=0,
M’(EO)#—'O and M’(fl)#o.
Using Eq. (A7) we find

case 1:

case 2:

M (1120, D)=M'[M ™ (= M(£5))+IT]

' =M'[M™ (=M (1)), (A8)

Namely M'(t}) dépends only on z, and i (and not on &, nor
on {). Therefore, by assumption (A5) on M (1), it may vanish
only on a finite set of values of ¢, I . Let us define the
closed intervals [, CI on whxch additionally
M’ (¢ (to, 1) |=7 >0 (so case 1is excluded on I, 3). Con-
31der ‘tg € Iy 5, then (ahzlé’to)(ro,e) 0 1mp11es

AMlq
=M \LO

P
M (tl(t()al)) 1+6M (IQ)P’(EM(IQ)) (AQ)
which, with (A8) and A3 gives an equation for #;:
: —-M'(t
M'[M ™Y (=Mt )= ——err \(._".), —.
- . LHCUIM (o) M Ep) 1 o(€)
(A10)

Equation (AIO) may have a finite number of solutions, t
€ 1, for €=0. Then { ahglato)(to,e) may vanish on the (ﬁ-
mte) set of points 7, =1 O+o(e). Excludmg open intervals of
order o(e) around each of the solutions ¢° s» We obtain a set of
closed intervals 1C 7, 2,5 such that for all roel and €'(z,,1)
conditions Cl: and C2 are satisfied and’ €'(¢y,)<¥¢ for all
=15, proving the second claim of the theorem.

From the construction of the intervals 1 and I,/ 5 it is
clear that C2 may be violated on the countable 1nﬁmty set of
values [fo,€(t0,00], 1=1,...,00 if M'(25)=M"(+)=0 [spe-
cifically, if max M(t)—-@min M(r) sich a value exists].
Slmllarly, if there exists a solution t¢ for (A10) with =0,
then, genencally, for [ sufﬁc1ently large, there exist solutions
[Fo(D), € (D), 1)] of (AlO) for all 1>, thus violating C2 on
a countable infinity set of values. We suspect that for any
periodic function M(t) which satlsﬁes A5 Eq. (A10) must
have solutions when e=0. OO0

In Lemmas A.6-A.8, let (2.1) satlsfy assumptlon AQ—
A5, and let ¢4 satisfy M (zp)<— n<0. '
Lemma A.6: H(15.€)=h (r0)+0[]h,(t0)13’2 elhy), €%
where /, is given by Eq. {3.3).
Proof: Usmg thie same arguments as in the derivation of the
Melnikov “function (see nggms or 'Guckenhe_imer and
Holmesz) we find:" '
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H1=IIT~61£ dt=f0 d—H
- dt q4(r.20) ~e dt qplt—to)+eqi(t 1o} +0(?)
o dH |
s df'qo(r-—ig) e

= Hlgo(t—1t0),1)

= Hlgo(st =10 5+t —¢ | (FA8)
f

=h(tg)+ O(‘%(?T‘fo)l3}+ O(elgolti — )|+ O(H).

In the last equality we used the fact that near the origin
H(x, y)=x2— y2+0(3) which vanishes on the stable mani-
fold to O(3), that (f/\g) is O(2) there and that g,(¢) decays
exponentially as t—o. Now, we need to show that the error
terms are of the indicated order. First, if ¢ = co, it follows
that Hy=h,(;) + O(€®). Since in this case, by definition
H,=0, we obtain h,=0(€?) and the error estimates are
consistent. ' o

Consider the case of finite ¢} . Let N 5 be a neighborhood
of the origin for which linearization is valid. For & suffi-
ciently small g(¢§ ,29) € N 5 for all <&, henice we can study
the behavior of g%(¢¥ .1y) using linearization. We solve the
linearized equations in this neighborhood, and in the process
we determine (¥ —tg and go(#¥—16). Let

n=—(x¥—v) u=—1{x+v) {R?2
v A 'J.f' s ey

5= —v(1+ ea(r))+ eb(Du+0(2),
i=u(l+ec(t)+ed(o+0(2),

where a(t), b(#), ¢(¢), d(t) are T periodic functions which
depend on the form of g(x,y,#,€) near the origin and depend
on ¢ analytically. We choose a solution to Eq. (B3) which
hits 3, at (x,5,8) = ( — X 08 X5,>0 (see Fig. 7). An

(83)

i

¢ 1

u o tiy . X
{Umid M 41—t —Erain

FIG. 7. Behavior near the origin. —— An orbit passing near the fixed point
P=(0,0).

* JH
a!t+j‘1 —

dt
aolt—15)+ eq; (t.tg)+0(e?)

o dt

5 d
[T 2 (VHgr e+ O()

rF i ' '
+ EJ_;(ng)(qo(r—to),r)+ 0(62)

dt+ 0(e?)
(f]o(f_f())»f)

(B1)

—

orbit passing through the neighborhood N 5 enters the neigh-
borhood with

(B4)

(Uinauinatin)=(5’uin=tin)y
passes through 2, with
Ie SN g Y Faw ey
\Umid’umidvzl }_(xmin axminJ[ Js o)
and exits N ; with
(yout’“oul’_tout)=(Uout’astout)- (B6)
We now find in Uiy, fouts Vour i terms of £5, Xy
- We write u, v as
o
. ;o PP
v=v()+ 2 €ult),  vo(t)=xume T,
i=1 :
(B7)

u=ug()+ >, eult), uglt) =xmine’_‘;k.‘

i=1
The equations for u,,, v, are given by

n—1

Op= Ut 2 [@nmit)0i() by i(Dui(8) ]+ 0(2),

i=1

. (B8)
=yt 2 [CpmdDuit) +dy_ (v )]+ 0(2).
i=1 ‘
With the initial c_onditions
u,(:F)=0, ©v,(tF)=0, n=1. (B9)

Here the periodic coefficients a;, b;, ¢;, d; are the
e-expansion coefficients of the a, b, ¢, d coefficients of Eq.
(B3). The O(2) terms in (B8) are quadratic terms in (u,v)
and not in ‘e. Hence, '

v 1(‘t) = e_.(’"_’zlk)J-‘;:cé’_’f[vo(s)q(s) +ug(s)b(s)]ds

=x e~ ) f a(s)+e26~Dp(s)]ds, (B10)
!
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uy(r)y=e'"1 f % =6 ug(s)e(s) + vo(s)d(s)1ds

. _
= Xine' 1 f Te(s)+e 267 Dd(s)]ds.
I

Using Eq. (B8), one can show inductively that in general
[0 ()| S xpige 07D+ 207D,

. . % PR N
[t ()| Sxpipe’ ™1 (Cite™ V7D,

where the constants A;, B;, C;, D; are related to each other
via a recursion relation involving quadratic terms in these
coefficients (here assumption A4 is crucial). It follows that
for e sufficiently small the series of (B7) converges uni-
formly for r < ¢7 and in particular

*
v,,,=U(tin)=xmine_(‘i““’=lk)( 1+ EJ‘H [a{s)
fin

k]

+e2(f-fi")b(s)]ds+0(52))

=Xpme " 1+0(e)]. (B11)
Since vy, =6 [see Eq. (B4)} we find
e~ ="22[1+0(e)],
(B12)

t¥—t,=1Iog d +0(e).

X min
Now, since go(#)~e~* for large ¢, and since by definition
t;,=tp+ 7 where 7>0 is an order one quantity [time of flight
of g¥(t,t4) from 3, to the boundary of N 4, which is bounded
away, by a distance &, from the origin], we find

O 2~ 2 =100y
FO{e )

=Ke™ U ~5[ 1+ 0(Ke ™1 )]

X min s X min .
=K [14‘0(6)4‘0( )J, K<1.

S S
(B13)
Moreover, by definition,
M —H—v . DY =—L2 T10n7s .11 (R1A)
4L “\ “minsVYa¥1 S 2%minl * 7 Y\ Amind s VLTS
which implies
Tmin=V—2H,[1+O0(J|H,])].
Therefore, (recall that & is fixed, independent of ¢,
|go(t} —to)]=O(JH)). (B15)
and substituting in Eq. (B1) we obtain
Hi(tg)=h(to)+ O(|H, >, €| H,|,€%)
=hy{to) + O |*%, el hy[,€%). O

Lemma A.7: 7(t)=1,+0(e,N—h,€|h,]), where k|,
t,(ty) is given by Eq. (3.3).
Proof: Recall that #,(t;) —1, is given by the period of the
unperturbed orbit with energy #,. Namely, we claim that by
picking the unperturbed periodic solution ¢"1(¢) we obtain a
good approximation to the perturbed solution g(#) which hits
%, at 1o and %, with energy H,. We use the construction of
the solutions in Ng, and show that indeed
Lowt™ tinlq(:)= fow™ tin'th +O0(V—hy,€, 62/|h1 |) Then we
show that the entry and exit coordinates to and from N of
g(t) and g™ are close, and since g(z) and g"1(1) spend a
finite amount of time outside of NV 4 a standard application of
Gronwall’s inequality completes the proof of the lemma.
Calculating ¢~ 5, as we did for ¢f —z;, in Eq. (B12),

we obtain
S5 .
fou— tin=2 log +0(¢€). (B16)
X min
Now,
Xumin(g2(t,20))= V= 2H [ 1+ O(H})]
62
} J‘”‘l[“"(*"”hﬂuz—f”
1
X[1+0(|h|)]
. e
"_:xmin(th(t’f{))[l +O( VT —h,,€, h.')l'
L i [AAS S W]
(B17)
Therefore,
&2
tout"_tinlqi(!,io)ztout mlq”l(:)'l'o hy,e, ,hll) (B18)

it follows from (B12) that

2 (g" (1)) = Xminlg" (£ ))eXD(EF — tinl (s 1))

Aol e

2
=Uin(q{;(timt0))+0( A ""hlaes 1;_1|)

and similarly for . The u;,’s {and similatly the v,,’s)
must be close to each other as well:

u(q;
= x, ot 1+e£ff [c(s)+e-2(s-ri“>d(s)]ds)
2 2
X ]
=" {1+eC+D )
é Xmin
xz-

= ";“ [1+0(€)}+edD,

where C, D are the maximal values of the periodic functions
c(f), d(t) defined in the proof of the previous lemma.
Hence, using (B17), we find
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3

€
(g4t t) ="+ 0| & Nl Jin [ .

Hence, using the standard application of the Gronwall’s in-
equality, we obtain that the solutions ¢“(t,t;) and g*i()
remain O( \[h—ll )-close on the finite time intervals ¢ & [#g,,]
and f € [,y ,7). Combining this with the result (B18) we are
done. O
Lemma A.8: Hy(ty,€)=hy(ty, &)+ O hy|*2, €|, €2,
€lhy|, [ s> €= Ry, €1[R1]), where ki (tg,€), hylty.€) are
given by Eq. (3.3).

Proof: If H,(#;)#0 then, using the same argument as in
Lemma A.3, and using Lemmas A.3-A.6, we obtain

¥ dH¢
,* “dt

1

=H,+

=h+ O P2, elhy ), ) + eM (7))
+O(|H [, |Hy|>?, el Hy|, €] H,)
=k +eM(r)
+O(eNi [ &R L1 P2 AR, 2 el 1y €]y €2).
(B19)

If H,(ty)=0, then, by definition ]
comes

= and (B19) be-

« JH¢
l* dt

H2=H1+

=h, +eM(t,)+o(eJ‘— Tk Ja1P2 ek € )
(B20)

It follows that #, is of the same order as the error in (B20),
hence the error term in the lemma is consistent in this case
too. O

APPENDIX C: SECONDARY HOMOCLINIC
TANGENCIES

Theorems 3 and 4 are concerned with the degeneracies

of the partial derivatives of hy(t,€). If one assumes that

H.’.(r €) is S‘JfﬁClCﬂtl“' differentiable near its Zeros, then it

can be shown as in Theorem 1, that by using the appropriate
scales for € and ¢, the derivatives of H, have similar proper-
ties and the assertions follow immediately [whether H, is
sufficiently smooth is still an open question since fractional

525

powers appear in the error estimates of, e.g., (B19); addi-
tional restrictions on H, such as evenness and local symme-
tries may be needed]. Instead, we prove that H, undergoes
“topologically™ a certain bifurcation. For example, we claim
that case 81 of Theorem 3 corresponds to a saddle—node
bifurcation of ,(t,,€,). We prove that H,(tq+At, €+ A€)
changes signs twice as A¢ varies on one side of the bifurca-
tion value (say Ae>0) and does not change sign on the other
side of it (Ae<<0) as long as Az and Ae scale coirectly with
ey—small enough to allow Taylor expansion and large
enough to dominate the error in approximating H, by €h,.
The latter restriction excludes the possibility of identifying
the exact infinitesimal structure of H, near the bifurcation
without further information regarding its differentiability.
Nonetheless, it follows from the geometry that there must be
a tangency of at least quadratic order for some
(1,9 e [(to+ At tg—AD,(eg— A€, 6+ A€)]. It follows that
generically if 81 is satisfied the tangency is indeed guadratic.
Theorem 4 is proved in exactly the same fashion.

1. Proof of Theorem 3

Case SI: YLet tyel, and let 1,=£(1.0),
€0=¢€'(ty,1)>0 of (A7) be sufﬁ<:1ently small. Provided the
following generic conditions are satisfied (see assumption
A3 for the definition of the C’s):

M’(tO)#:Oa M’(tl(tO’EO))#:O’
and
M" Ml’ 2
M"(t5)} 1+C(1) M(Zl)))+M"(:,)(1+C(1) M((;}")))

M' 2
—M’(tl)(C(z) M((:O"))) £0,

we prove that there is a secondary homoclinic saddle—node
bifurcation.

First, notice that /,(z,,€,) satisfies the conditions for a
saddle-node  bifurcation:! by  assumption, Ez(zo,eo)
= h,/3t5=0. From (1.1) and A3, and since M(z,)#0 by
Cl1 we find:

ohy ,
—o =M (1) P (M (20))M (t0)

LV NI

(€1

Hence, for €, sufficiently small dk,/d¢#0. Finally, from
(3.5) and A3 we obtain

M"(fn)‘l’M”(h)rl‘{‘EnP (EnM(fn))M (tn)]2+M (ﬁ)rEnP”(EnM(tnnM (tn)2+EnP (EnM(tn))M"(tnﬂ

’0

M'(11)

__M”(tg)(1+C(1) G ))+M"(t1)(1+C(1) M(( 0))) M’(t])(

c(2) M((t "))) +o(eq). (2)
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Hence for ¢, sufficiently small ¢4,/ Sti#0 as well. We con-
clude that locally

hz(t0+At,€0+AE)
1 a &2152 AE 8h2
= 5 €t 3 (to.€0) + € o Je (to,€0)

Ae Ae\?
+0 EQAI EO At €l — 1 |
€

provided Ae and At are sufficiently small, and in particular
Ae=o0(ey). Using (A4), we find

Hg(to"‘ AI,€0+AE)

=3 €A Eﬂz—(fo,fo) GOE_OE(IO’EO)
Ae Ae\?
+0| €, A, € At 60( - ) ] (C3)
0

Choosing Ae=0(e'*%) and Ar=0(VAe/ey)=0(el'™),
the first two terms above are of the same order and dominate
the error provided 0<<a<C1/2. It follows that on these scales
Hy(t--At, 0+ A€) changes sign twice for

0’"’12(1‘0,60) Iha(ty,€0)
a2

and that it does pot change sign when A has the opposite
sign for At sufficiently small, provided Ae=0(e}™®).

It follows from Lemma A.6 that the manifolds intersect
topologically transversely at two homoclinic points on one
side of the bifurcation value and have no intersection on the
other side of the bifurcation value. Since (2.1) depends con-
tinuously on €, and since the manifolds are smooth (C"), it
follows that there must be a value of € for which the mani-
folds are tangent, with at least a quadratic degeneracy.

Finally, H, is given locally by (C3) on these scales of
(Ae,Af), hence H,(7,€)=0 for

. 20 dho(to, €0/ de
t““=t0+ [2 2(0 0) ] +O( €& € (1 a)/Z)
[8%ha(ty, €0 913]

and near the bifurcation the angle between manifolds at the
emerging homoclinic points scales like & dh,/dty)
X(1*,9x el %2 The =+ signs reflect the opposite orien-
tations of the manifolds at the emerging bifurcation points.
We note that = 1/3 seems to optimize the error estimates
above.

Case 82: let M'()=M"(t,(¢y.€))=0 and
M"(t)#—M"(+)#0 [it follows from (3.5) that if
Ohy(ty, €Y 9tg=0, then M'(15)=0 iff M'(1,)=0, hence
we need not consider the cases M'(¢;)=0, M'(#,)#0 nor
M'(t5)=0, M'(t;)#0]. It follows from (3.5), (C1) that

ﬁz(t(}afo) (IO=€0) (30,60) 0,
2hy
o (to.€0) =M"{2g) +M"(z))=A+#0, (C4}

i,

1
dedty “0’60) P! (@M (10)M" (1) M (10)= _- B#0,
§%h,
Sar (tos€0) =M"(11)P" (eM (10) " M( ro)2~- C#0.

To leading order in &, A,B,C are order one functions of z;.
Using (C4) we find

- 1 Ae 1 Ae\?
hz(t0+At,Eo+AE) == AAf +BAf — + 3 Cl— €
0
+0(3) (C5)
where the O(3) terms are third-order terms in A¢ and Aé/e,.
There are two cases to consider, depending on the sign of D:
D=B*—AC
= — €[ P' (oM (1M (16)"M" (1) )M" (£o).

Case 1, D>0: Then, h,(r,€)=0 has two branches of
solutions for (¢,€) on either side of the bifurcation point
(t9,€0), and f, undergoes a transcritical bifurcation; The so-
lutions are given by

e 28

And indeed,

- BAe \/EAG

z(t—m K'TE'O—',EO-FAE)
_[Ae z ) D N Ae\? o6
=\ %) - gvol | ) (C6)

Taking K>>1 and K<<1 in (C6) gives opposite signs of A,
hence &, vanishes on two separate branches of solutions for
all Ae sufficiently small [Ae=o(¢gy)]. Using Corollary A.1,
we conclude that Ho[r—(BAelAey) = K( \/BA el Aeg),
eo+Ae] changes sign with K—1, provided the dominant
term of €yh,, of order €y(Ae/gy)’, dominates the error of
Hy—h,, of order &?. Choosing Ae=el™® and 0<a<1/4
ensures this dominance. The angle between the manifolds at
the bifurcating solutions is given by E&dh,/at(i™,&)
at: AeD ot ),

Using Lemma A.6 it follows that the manifolds intersect
transversely at two homoclinic points on both sides of the
bifurcation value; on one side the homoclinic points ap-
proach each other as € is increased and on the other side the
homaclinic points depart from each other as e is increased. It
follows that, generically, three scenarios may occur: (1) each
of the homoclinic points may change its direction of propa-
gation before they collide, thus no tangency occurs. (2} The
homoclinic points collide, disappear in a saddle—node bifur-
cation, and then reappear in a second saddle-node bifurca-
tion, hence creating homoclinic tangencies at two € values in
the interval {e;—Ae¢,g,+Ag). (3) The homoclinic points col-
lide and create a (degenerate) tangency, then continue in re-
verse directions.

Case 2, D<0: Then, excluding the point (5,€p),
15(2,€)=0 has no solutions in a neighborhood of the bifur-
cation point. Since H,=h,+O(e)?), we conclude that
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H,(t,€) has no zeros for (1,6)=[1y+ O(€), o+ O™ )]
for a<<1/4. However, we may not conclude on the structure
closer to the bifurcation point, and in particular, we cannot
conclude whether H,(z,€) vanishes for some (1,8 ==(1,€p).
If H, vanishes, then necessarily At=o(€f), hence the angle
of intersection must scale like o(eﬁ’ 4. If H, depends on an
additional parameter then, generically, we expect this bifur-
cation to create a quadratic tangency as the other parameter
is varied. '

Case 83: Let M (1g)=M"(t,(ty.€,))=0 and
M (tg)y=—-M"(#) and assume

M"(1}#0,
M"(ta)+ MMt ) +F3C(M (1) M"(1)/ M (26)#0.

It follows from A3 that for ¢, sufficiently small:

ohy _ahy #Phy o
"56—(30»60)—6_%(fo,éo)—“é}'%—(to,fo)— .

&*h, ’ ) )
iode (t9.60) =P’ (eoM(tg)IM"(t )M (10)= E—ﬂB#O,
63}22 12 "
5 (o €0)=M" (1) +M"(2,)

0

+3eoM"(10)M" (1)) P! (€gM (1))
=A'%#0,

where, to leading order in ¢, A ', B are order one functions

of t;. Therefore,
Ae€\?
€0

(C7)

Choosing At=0(~/A¢/€y), we obtain a dominance of the
first two terms. Hence, /2, undergoes topologically a pitch-
fork bifurcation (the higher-order terms may break the sym-
metry), and similar argements to the previous case show that
H, undergoes topologically a pitchfork bifurcation as well,
provided (At,Ae)=[0(ed'?),0(e5**)1, a<1/3. The angle
between  the  manifolds is  thus  given by
0k, (£,8)/6t]= 0(ey™ ). It follows that the manifolds un-
dergo a homoclinic bifurcation. If the system is symmetric a
pitchfork bifurcation, an at least a third-order tangency from
which three homoclinic points emerges. If not, generically a
perturbed pitchfork will occur in which one solution does not
bifurcate and two additional solutions are created via a qua-
dratic tangency.

Case S3 may seem highly nongeneric. However, if M (¢)
is odd in ¢ then either 81 or 83 occur at the bifurcation. Since
M(t) is odd and T periodic and assuming, for simplicity, that
it vanishes exactly twice in [0,T), we obtain that

M (2)=M'[M " (=M (t))]= =M’ (1o). (C8)

Hence (A10) implies that (3h,/8t,)(ty,€)=0 in one of two
cases: (1) If M'(t))=M'(t;)#0 and M’ (2)/M ()
=—[2/C(1)]+o(e). Then, using M (,)=—M"(¢;) the
conditions of 81 are satisfied.

- 1 Ae
ho(to+Ar,ep+Ae)= 3 A'AP+BAL €—+0
Q

+0(3).

(2) If M'(t)=M'(z;)=0 and M"(¢;) #0, by symme-
try M"{tg)=~M"(t,) and M" (zo)=M"(t,)=0. Therefore,
the conditions of 83 are satisfied. Note that in particular case
82 cannot occur if M(¢) is odd in 7. oo

2. Proof of Theorem 4

Let tye T, (1o) and let £y =7} (20,03 o), €9= € (t0,1; o)
of (A7). Notice that since pu appears in g and not in f of
(2.1), P(h) is independent of u yet M($)=M(t;u). Pro-
vided the following generic conditions are satisfied (see as-
sumption A3):

OM(ty; o)

aty

M'(t1{(tg, €03 40)10)# 0,
M1,
(tr3000) ”

=M"(to;pm0)#0,

Em 0,
and
M"(to;,u,g)('l+C(1) Mm(;:—:’f)l)
EM"(ty30) 1+C(1) %)2
—M’(n;#o)(C(Z) %)2%0,

we prove that the manifolds undergo a tangent bifurcation
along a p-dimensional surface in the ,u parameter space.

Using M'(£g;0) %0 and h,(2y,€)/91,=0 we find
from (3.5)

Ohy(to.€03000)  OM (213 p0)
= #().
au e
Clearly (C1) and (C2) are unchanged, hence, i,(t,€, 1) un-

dergoes a saddle—node bifurcation along the p-dimensional
surface:

(= o) (Bha 13p) (20, €0, o)
(Ohqyf d€)(ty, €04 400)

€)= 50( 1-

+0[(M‘Mo)2])- (C9)
Moreover, provided Ae, Ar, and Ay are sufficiently small,
and in particular Ae=o(g;), we may write:

ho(tot At ey ot Ap) +Ae, g+ Ap)

2 (92’1—2 Ae (9’12
=At ‘ﬁ‘(to,Go,Mo)+E—0'E(fo,fo:#o)
, Ae Ae\? . Ae
+O| A, — At,l — | ,epAp ApAt,Ap —|.
€ € €y
It follows from (A4) that Hy[ro+As, ' €, g
+Ap)+Ae,ugt+Aul changes sign like hy(to+ Af,e,(1g
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+Ap)+Ae pup+Au)  does, provided (Ar,Ae)
—[0(63’2) 0(6{1)"“")] a<1/2 and Ay is sufficiently ‘small:
Ap= 0(60’2) It follows that the manifolds undergo-a tan-
gent bifurcation along a’ p-dimensional surface which is
0(elt ¥, e,A ,u,z) close to the surface (ep{p),ut) of
(C9). _ EIEII'_'I
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