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A parabolic resonanceis formed when an integrable two-degrees-of-freedom~d.o.f.! Hamiltonian
system possessing a circle of parabolic fixed points is perturbed. It is proved that its occurrence is
generic for one parameter families~co-dimension one phenomenon! of near-integrable, two d.o.f.
Hamiltonian systems. Numerical experiments indicate that the motion near a parabolic resonance
exhibits a new type of chaotic behavior which includes instabilities in some directions and long
trapping times in others. Moreover, in a degenerate case, near aflat parabolic resonance, large scale
instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic
resonance. This supplies a simple mechanism for the transport of particles withsmall ~i.e.
atmospherically relevant! initial velocities from the vicinity of the equator to high latitudes. A
modification of the model which allows the development of atmospherical jets unfolds the
degeneracy, yet traces of the flat instabilities are clearly observed. ©1997 American Institute of
Physics.@S1054-1500~97!00201-2#
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The motion of n particles under conservative forces„e.g.
the planets in the solar system, coupled frictionless pen
dulums, point vortices, etc.… is described by an
n-degrees-of-freedom Hamiltonian system. This motion
may be ordered or chaotic, depending on the Hamil-
tonian H„x,v… „the energy…, the dimension of the system
and the initial position and velocities of the particles.
Consider a Hamiltonian flow for which all solutions are
ordered. A fundamental question is what will be the so-
lution’s fate if the system is changed just by a small
amount „e.g. the effect of a meteor on the solar system….
In particular, consider solutions which are bounded and
are ‘‘roughly stable’’ in the unperturbed system „there
exists a finite size neighborhood in phase space whic
stays ‘‘near’’ these solutions forever…. Can solutions in
this neighborhood become unbounded or considerably
different if the system is changed by little? In this paper
we discover a new low dimensional mechanism„n52…
creating such a dramatic effect on solutions. We prove it
is a mechanism which is physically common, and demon
strate its consequences on a simple model for the motio
of weather balloons in the atmosphere.

I. INTRODUCTION

The appearance of homoclinic loops in integrab
Hamiltonian systems provides a mechanism by which
small perturbation integrability is destroyed and new co
plex dynamics arises. This phenomenon has been princip
investigated in the context of a one-and-a-half degree of f
dom ~d.o.f.! Hamiltonian system. Yet, even with regards
this simplest setting for which homoclinic chaos exists, i
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portant open questions linger, see for example papers in
issue by Klafter,1 Meiss,2 Melnikov,3 and Zaslavsky4 and
references therein.

What is the structure of near-integrable two d.o.f. Ham
tonian system? Generically, most phase space is foliated
two-dimensional tori which divide the energy surfaces. Su
stantially different dynamics appear near singular points
curves on the energy surface—either fixed points or invar
circles~or lines in the non-compact case! of the flow.5 When
isolated unstable fixed points exist inherently thre
dimensional phenomena arise, and these are not yet
understood. See Lerman and Umanskii5 for the classification
of integrable systems and Koltsova and Lerman6 and
Grotta-Ragazzo7 for the analysis of chaotic system with
homoclinic loop to a saddle-center.

Consider near-integrable Hamiltonians of the form:

H~x,v,D,u;e!5H0~x,v,D !1eH1~x,v,D,u;e!,

~x,v,D !PR3,uPT, ~1.1!

Such a form arises from a general Hamiltoni
H(x,v,y,w;e) of a near integrable flow by using one of th
constants of motion of the unperturbed flow (e50),
D(x,v,y,w) as a variable, and definingu as its conjugate
variable~e.g.D is the angular momentum!. Consider a do-
main U for which the transformation (x,v,y,w)
→(x,v,D,u) is non-singular, i.e. where the surfaces spann
by the Poisson action of the integrable system5 are at least
one-dimensional. In particular, inU, a fixed point in the
(x,v) plane,qf5(xf ,v f ,Df):

¹~x,v !H0~xf ,v f ,Df !50 ~1.2!

corresponds to an invariant circle in the four-dimensio
phase space~and not to an isolated fixed point!. This circle
may be composed of a family of periodic orbits@when
u̇(qf)Þ0# or of a circle of fixed points @when
u̇(xf ,v f ,Df)50]. An important lesson from the Lerman an
1480 © 1997 American Institute of Physics

IP¬license¬or¬copyright,¬see¬http://chaos.aip.org/chaos/copyright.jsp



on
y
i

o

an

e

em

g

in
ac
le
u

ia

ic
fa
d

-

he
o-
o
p
re
-
e

tw
i
e
r

y

ys
ng
ity

be
th
ic
te

r-
-
d,

d
r-
il-
, the
eri-

is

n-

all
ms
-

nt
y
cle
se
not
te-
n-
ati-
of
is a
al-
by
in
n
the
sys-
of
-

iso-
n.
he
.f.

a

r,
mo-

re
ean

rable
r-
wn
the
dd-

149Vered Rom-Kedar: Parabolic resonances
Umanskii5 work is that phenomena which are co-dimensi
one in near-integrable one-and-a-half d.o.f. Hamiltonian s
tems may become generic in integrable two d.o.f. Ham
tonian systems. In the (x,v) plane,qf may generically be
hyperbolic or elliptic, and generically, there existsDf5Dp

values for which it isparabolic.5 Similarly, generically, there

exists Df5DR values for which u̇(xf ,v f ,Df)50. These
simple observations are the basis for the proof that parab
circles of fixed points~i.e. Df5DR5Dp) are generic in a
one-parameter family of integrable two d.o.f. Hamiltoni
systems~see Sec. III!.

The behavior near the invariant circles under small p
turbations depends on their stability@i.e. the stability ofqf in

the (x,v) plane#, on the rotation rate on them@i.e. u̇(qf)],
and the rotation rate on orbits which are homoclinic to th
~if such exist!. If qf is elliptic, stability reigns, though one
may obtain resonant or non-resonant behavior dependin
the frequency ratios. In particular, ifqf is an elliptic circle of
fixed points, the resonance creates localized structuresu.
Whenqf is hyperbolic, and the energy surfaces are comp
under small perturbation several types of homoclinic tang
may appear. It is conjectured that only one type, the red
ible homoclinic tangle, is topological~orbital! conjugate to
the one appearing in the one-and-a-half d.o.f. Hamilton
system case.

The reducible homoclinic tangleappears when, in the
integrable limit, there exists a homoclinic loop to a period
orbit, and the motion along the homoclinic loop and its
neighborhood preserves the angular direction of the perio

orbit ~i.e. uu̇u.a.0 along the periodic orbits and the ho
moclinic loop!. In this case a global Poincare´ map transverse
to the periodic orbit is well defined in a neighborhood of t
homoclinic loop and the flow is conjugate to a tw
dimensional symplectic map with a homoclinic tangle. F
separable two d.o.f. Hamiltonian systems homoclinic loo
to periodic orbits of bounded periods always satisfy this
quirement as in Holmes and Marsden.8 In non-separable sys
tems, it is satisfied in regions in phase space for which on
the angle variables varies monotonically int along the un-
perturbed separatrices as in Holmes and Marsden.9 Even in
this simplest setting there are some differences between
d.o.f. Hamiltonian systems and one-and-a-half d.o.f. Ham
tonian systems when one considers behavior of physical
sembles of initial conditions10,11 or relations between, fo
example residence time and escape rates in the Poincare´ sec-
tion. These differences seems to be physically important
mathematically technical.

A second type of homoclinic tangle~lumpy homoclinic
tangle! arises when small perturbations are applied to s
tems for which non-monotonicity in the angle occurs alo
the unperturbed homoclinic solutions. Then, non-uniform
in the angle variable of the chaotic zone is created.10 Beyond
the differences in terms of the observed non-uniformity
tween the first and second types, it is conjectured that
case is dynamically distinct from the reducible homoclin
tangle, at least for a small yet finite perturbation parame

A third type of homoclinic tangles, thehomoclinic hy-
CHAOS, Vol. 7,
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perbolic resonance, occurs when a system containing a no
mally hyperbolic circle of fixed points with a family of het
eroclinic orbits connecting points on the circle is perturbe
see Kovacic and Wiggins,12 Haller13 and Kaper and
Kovacic.14 Using ideas as in Lerman and Umanskii,5 it is
proved in Sec. III that the occurrence of a circle of fixe
points which is normally hyperbolic within the energy su
face is generic in the class of integrable two d.o.f. Ham
tonian systems. Thus, if the energy surfaces are compact
scenario of homoclinic hyperbolic resonance appears gen
cally in near-integrable two d.o.f. Hamiltonian systems.

In this paper a new type of chaotic behavior
introduced—thehomoclinic-parabolic resonance. Parabolic
invariant circles appear generically in integrable no
separable two d.o.f. Hamiltonian system.5 When there exists
periodic motion on the invariant circles the effect of a sm
perturbation on initial conditions in its neighborhood see
to be insignificant~in fact the separatrices splitting is expo
nentially small in the distance from the bifurcation point15!.
In particular, initial conditions starting close to the invaria
circle stay close to it—the invariant circle is ‘‘roughl
stable.’’ This changes dramatically when the invariant cir
is a circle of fixed points in the four dimensional pha
space, see figures 1–5. First, it is proved that this event is
so exotic—it is a co-dimension one phenomena for in
grable two d.o.f. Hamiltonian system. Then, it is demo
strated numerically that small perturbations lead to dram
cally different dynamics than observed in the other types
homoclinic tangles or the other types of resonances. It
combination of the hyperbolic homoclinic chaos, the loc
ization of the elliptic resonances and instabilities formed
sliding along the newly formed elliptic circles as seen
slow passage through bifurcations.16 These effects are eve
more pronounced when additional degeneracy appears—
flat parabolic resonance case. Here, in the unperturbed
tem the parabolic invariant circle of fixed points is a part
a family of invariant circles of fixed points all of which be
long to the same energy level setH05h. Namely, on this
energy surface the non-degeneracy conditions for the
energetic KAM theory fails to exist and instabilities reig
This may be an example for a two d.o.f. equivalent of t
stochastic-webs17 which appear in a one-and-a-half d.o
Hamiltonian system~global instabilities will appear if non-
compact energy surfaces are considered!.

This study has been initiated while investigating
simple model for particles~weather balloons or floats! trans-
port in the atmosphere or ocean. With Dvorkin and Paldo10

we have analyzed the simplest possible two-dimensional
tion on a rotating sphere, due only to Coriolis force~i.e. in
the absence of any body force, see Paldor and Killworth18!,
perturbed by the inclusion of a zonally travelling pressu
wave which perturbs the geopotential surface from its m
spherical shape, see Paldor and Boss.19 In Ref. 10 we devel-
oped tools for delineating the phase space of a non-sepa
two d.o.f. Hamiltonian system to regions in which the diffe
ent types of homoclinic structures appear. Here, it is sho
that this model exhibits a flat parabolic resonance when
perturbation is of the form of a standing pressure wave. A
No. 1, 1997
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150 Vered Rom-Kedar: Parabolic resonances
ing a latitude dependent pressure gradient, as was sugg
in Ref. 10, removes this degeneracy. If the pressure grad
is comparable to reasonable atmospherical velocities~the at-
mospherical relevant case! then strong instabilities induce
by the nearby flat parabolic resonance are observed.

The parabolic resonance is a low co-dimension phen
enon, hence it is expected to appear in many other app
tions. For example, the motion of a particle in a cent
field9,20with effective potential with at least one maximum
an integrable two d.o.f. Hamiltonian system, which, wh
perturbed by a small amplitude travelling wave11 ~in the
angle direction! may exhibit a parabolic resonance for som
isolated wave speeds~this is a variation on the example o
Holmes and Marsden9 who considered this problem in th
hyperbolic regime and with standing wave perturbation!. An-
other example of similar form is the whirling pendulum pe
turbed by a travelling wave perturbation. Notice that the
examples~and the atmospherical model! are formally two-
and-a-half d.o.f. problems~since time is explicitly introduced
in the travelling wave perturbation!, but, as is demonstrate
in Sec. II and discussed in Sec. III, this class of systems
be easily reduced to an autonomous two d.o.f. Hamilton
system. Finally, the example which motivated the works
the homoclinic hyperbolic resonance~see Kovacic and
Wiggins12!, namely that of a two-mode truncation of th
damped and driven Sine-Gordon equation~see the
McLaughlin21 paper in this issue and references therein! also
exhibits parabolic resonance for some parameter values

This paper is organized as follows: In Sec. II the simp
quasi-inertial model for Lagrangian motion in the atm
sphere is recalled and studied numerically near its parab
resonances. In Sec. III it is established that the occurrenc
a parabolic resonance is generic for a near-integrable
d.o.f. Hamiltonian system depending on one parameter. T
several physically typical forms of a two d.o.f. Hamiltonia
system~such as separable systems! are considered, and the
compliance with the genericity assumptions is examin
Section IV is devoted to discussion.

II. MODEL FOR PARTICLES’ MOTION IN THE
ATMOSPHERE

The motion of a particle on a rotating sphere subject t
conservative travelling wave perturbation serves as a sim
model for the motion of particles in the atmosphere.10,18,19It
was recently suggested that the inclusion of a latitude dep
dent pressure gradient may be incorporated into this mod
simulate the appearance of jets in the atmosphere.10 Using
polar co-ordinates, the non-dimensional Lagrangian mom
tum equations for the eastward and northward velocity co
ponents (u,v) and the rate of change of the longitude a
latitude coordinates (l,f) in the presence of a zonally trav
elling pressure wave and a latitude dependent pressure
dient are given by:
CHAOS, Vol. 7,
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dl

dt
5

u

cosf
,

du

dt
5v sin fS 11

u

cosf D2ke
A~f!

cosf
cos~kl2st !,

df

dt
5v, ~2.1!

dv
dt

52u sin fS 11
u

cosf D2B8~f!

2eA8~f!sin~kl2st !,

fPF2
p

2
,
p

2 G ,lP@0,2p#,u,vPR2.

HereB(f) andA(f) represent the latitude dependent a
plitudes of the pressure gradient and the pressure wave
spectively. For simplicity, both are assumed to be even
f. For e50, the system is autonomous,l is uncoupled and
~2.1! has two integrals of motion, corresponding to~twice!
the angular momentumD and the energyE:

D5cosf~cosf12u!, ~2.2!

E5
1

2
~u21v2!1B~f!. ~2.3!

In Ref. 1 the structure of~2.1! is studied forB(f)50 for
general values of the parameters. By constructing the colo
energy surfacesH5h and the corresponding bifurcation dia
grams of the energy-momentum map@indicating singular
curves, their stability and the monotonicity properties
u(t) in the (H,D) plane#, the phase space is delineated
regions in which inherently three-dimensional dynamics
pears and to regions in which the system is reducible t
one-and-a-half d.o.f. Hamiltonian system.10 Critical param-
eter values for which the dynamics changes qualitatively
found by this analysis. Specifically, the case of stand
waves (s50) has been identified as a degenerate case.
shown below that forB(f)50,s50, a flat parabolic reso-
nance occurs, and that by appropriate choice ofB(f) the
resonance may be made non-degenerate. Moreover, the
havior near elliptic and hyperbolic resonances is compa
with that appearing near a flat and generic parabolic re
nances.

Consider the casek Þ 0, and define:

u5
1

2
~l2ct!, c5

s

k
. ~2.4!

Then ~2.1! becomes:

du

dt
5
1

4

D

cos2 f
2
1

2 S c1
1

2D ,
dD

dt
522keA~f!cos~2ku!,

df

dt
5v,
No. 1, 1997
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151Vered Rom-Kedar: Parabolic resonances
dv
dt

5
1

8
sin~2f!S 12

D2

cos4 f D2B8~f!

2eA8~f!sin~2ku!,

which is an autonomous system with Hamiltonian

H~f,v,u,D;k,c,e!5
v2

2
1
1

8 S D

cosf
2cosf D 22 c

2
D

1B~f!1eA~f!sin~2ku!,

kÞ0, 2
1

2
<c,e.0, sign~k!5 sign~c!. ~2.5!

SinceA(f) and B(f) are assumed to be even~thus this
assumption of symmetry is convenient, yet it seems to
inessential for what follows!, the cylinderf5v50 is invari-
ant for alle. On it the equations for (D,u) correspond to the
pendulum equations with 2k islands of widthA8eA(0) cen-
tered atD5Dr(c)5112c, and rotational orbits filling the
rest of the cylinder.10 The behavior near this cylinder in th
four-dimensional phase space depends on its stability p
erties in its normal„~f,v!… direction.

Consider the unperturbed flow in the (f,v) plane. The
origin is hyperbolic foruDu,A124B9(0), having two sym-
metrical homoclinic orbits extending to6(fh,0)
@fh'arccos(D) for B(f)!1]. It is parabolic at
D5Dp5A124B9(0) and elliptic for uDu.Dp . Parabolic
resonance arises whenDp'Dr(c), namely forc values near:

cp5
1

2
~Dp21!5

1

2
~A124B9~0!21!. ~2.6!

For uDu,Dp there are two elliptic fixed points (6fell,0) at

Dg
6~fell!5cos2~fell!A12

8B8~fell!

sin~2fell!
, ~2.7!

with the natural frequency in the (f,v) plane of nearly
sinfell @for smallB8(f),B9(f)], and with the frequency in
the longitude direction of

du

dt
u~fell,0,u,Dg~fell!!'

1

4
A12

8B8~fell!

sin~2fell!
2
1

2 S c1
1

2D .
~2.8!

Notice that forB8(f)!1

du

dt
u~fell,0,u,Dg~fell!!'

B8~fell!

sin~2fell!
2
1

2
c. ~2.9!

It follows that when B(fell)[0 @more generally if
B8(f)5asin(2f)] and c5cp50 ~resp.c5cp'2a) a de-
generate situation occurs by whichdu/dtu(fell,0,u,Dg(fell))

5 2 1
2 cp50. Namely, for eachfellP~ 2 p/2,p/2), the circle

(fell,0,u,Dg
1(fell)) consists of fixed points in the four

dimensional phase space. Moreover, fore50 all these
circles of fixed points belong to the same energy surf
H50. In Sec. III it is established that thisflat parabolic
resonanceis not generic.
CHAOS, Vol. 7,
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Numerical simulations of Eq.~2.5! are performed using
DSTOOL22 with the Bulirsch-Stoer integrator. The Hami
tonian value is monitored so that at least 5 significant dig
are unaltered in each computation. In all figur

k53,A(f)5cos3(f),B(f)51
3bcos3(f), and the other param

eters, includingb52B9(0), arevaried as indicated in the
captions.

Figure 1 demonstrates that strong instabilities app
near a flat parabolic resonance. In this figure one trajec
starting close to the flat parabolic resonance atD051 is
shown. The trajectory which is positioned initially close
the equator with very small initial velocities~10 cm/s5u0
51024) travels to latitudes as high as 60°~similar behavior
is observed for initial westward velocities of up to 1 m/s!.

FIG. 1. Flat parabolic resonance. One trajectory shown in the~a! (f,u) and
~b! (D,u) planes.e50.00025,c50, uu(f0 ,v0 ,u0)uu5O(1025), B(f)[0.
No. 1, 1997
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152 Vered Rom-Kedar: Parabolic resonances
Moreover, the motion is restricted for a long period of tim
to one cell of the resonance band~zonally localized! and then
jumps to a different cell. In the (u,D) plane it is seen that the
motion forD.Dp follows closely the resonant motion of th
invariant cylinderf5v50 whereas the instabilities are cr
ated forD,Dp when the motion descends along reson
elliptic points up to very smallD values (D50.1 is seen in
the figure! creating the instabilities that are seen in t
(f,u) plane. As2u0 is increased~above2u0'0.01) the
descendent along these elliptic points disappears, and as
increased further~above 2u0'0.05) localized structures
disappear. Therefore, a mechanism for the transport of
ticles launched near the equator withuu(u0 ,v0)uu!1 to high
altitudes has been found, a phenomena that has been
served in atmospherical experiments.23 Curiously, it appears
that the instabilities develop only for sufficientlysmall initial
velocities. Typical initial conditions seem to be trapped
one zone for a long periods of time~e.g. figure 2!.

In figure 2 the behavior near the parabolic resonanc
examined as the wave velocityc is varied: the same initia
condition ~with D051) is integrated three times wit
c50.1,0.01 andc50.0001 respectively. It is seen that fo
c values sufficiently far from 0 the equator area is sta
whereas whenc50.0001 the instability and the localizatio
of the nearby flat resonance is clearly seen.

If B8(fell)/sin(2fell) Þ const then the flat degeneracy
removed. The effect of removing the flat degeneracy is
amined by varyingb52B9(0). In figure 3 the nearly flat
behavior is examined, with b50.03
(cp50.0291,Dp51.058), showing that the flat instabilitie
prevail.

Figures 4–5 show the non-degenerate case withb50.3
nearDp5A2.2'1.48 andc5cp'0.24. In figure 4 a trajec-
tory starting very close to the invariant cylinder exhib
strong zonal localization and a mixed behavior of moti
near the elliptic points, near the separatrices and near
separatrices of the resonance zone. Figure 5 shows the
havior near the resonance when bothc is slightly shifted
from cp and the initial condition of the trajectory is not ex
tremely close to the invariant cylinder as in the previo
figure. The chaotic trajectory is presented together with t
other trajectories which are on the invariant cylind
(f05v050) to illustrate the shift of the localized structu
from its base.

We would like to contrast the behavior observed in the
figures, with that observed near elliptic resonance and n
hyperbolic resonance. In the elliptic-resonance case nea
resonance zone theD variable performs excursions o
O(Ae). However, in the (f,v) plane these excursions a
nearly unnoticeable—the motion continues to exist mos
on invariant tori. Some of these tori correspond to oscillat
motion inu, and small changes in (f,v) usually do not alter
the oscillatory/rotational behavior inu, unless the initial con-
ditions are in the extreme~exponentially small?! close vicin-
ity of the separatrices created by the resonance. Thus, in
elliptic-resonance case one observes either regular zon
localized motion or regular motion travelling around t
globe and no transitions between the two types of moti
CHAOS, Vol. 7,
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are detected by simple numerical experiments~for small
e).

The behavior in the vicinity of a hyperbolic-resonance
mostly influenced by the instability in the hyperbolic dire
tion. Thus, theO(Ae) oscillations inD are coupled to the
unstable chaotic motion in the (f,v) plane as is shown in
figure 6 and figure 7. The extent in latitude to which chao
trajectories reach is approximately the same as the latit
reached by an unperturbed orbit starting with the same in
velocityfmax

e 5fmax
0 1O(Ae) ~see the figures!. The perturbed

motion near the invariant cylinder is chaotic w.r.t. nort
south motion and it has a zonal structure scarred by the r
nance on the invariant cylinder~see figure 6 and figure 7!.
Localized motion inu exists on the invariant cylinder insid
the resonance zone. Applying the general theory of Halle13

for the case B(f)50,k>3, it follows that for c
P (ck52sin2(p/4k),0) homoclinic orbits to oscillatory peri-
odic orbits exist,10 i.e. that localized homoclinic solution
exist ~and may be detected numerically by devising the c
rect scheme12–14!. Sinceck'20.066, this range ofc values
is also influenced by the flat parabolic resonance, and so
behavior described above for the near-parabolic-resona
regime fits this regime as well. It is unclear yet if this is tru
in the general case. Taking smallerc values (c520.25),
one finds that trajectories progress along the longitude c
dinate~with known ‘‘speed’’10,13!, thus no zonally localized
motion is detected outside the invariant cylinderf5v50.

Generic parabolic resonance combines the behavio
the hyperbolic and elliptic regimes—one observes the loc
ized structures due to the elliptic nature of the trajectory
D.Dp and then the hyperbolic nature which induces ins
bilities eventually breaking this localized structure f
D,Dp . Moreover, another dominant mechanism for the
stability is induced by the elliptic orbits created atD5Dp ,
similar to trajectories passing slowly through a pitchfo
bifurcation.16 Combining these three mechanisms one o
tains a motion which has chaotic nature w.r.t. to zonal loc
ization ~long trapping periods and then a jump to a differe
island! and instabilities in the latitude extent of the traject
ries. Initial conditions which in the unperturbed case rem
in the vicinity of the equator~starting withD.Dp) may
reach latitudes as high as 25° in the non-degenerate
~figure 4! and much higher latitudes in the flat and nearly fl
cases~figure 1 and figure 3!. Changing the parameters t
values which are close to those producing parabolic re
nances, show that much of the properties described abov
still present—though the zonal localization occurs for low
D values as the distance from the invariant cylinder is
creased~figure 5!.

III. GENERICITY OF PARABOLIC RESONANCES

Consider a near-integrable two-degrees-of-freed
Hamiltonian flow depending on a parameterc:

H~x,v,D,u;c!5H0~x,v,D;c!1eH1~x,v,D,u;e!,

~x,v,D !PR3,uPT,cPR. ~3.1!
No. 1, 1997
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153Vered Rom-Kedar: Parabolic resonances
FIG. 2. Near a flat resonance. The same initial condition is evolved with different wave speeds:e51025, B(f)[0,(f0 ,v0 ,u0 ,u0)

5(1025,1025,2.2,
1
210

211). ~a! c50.1, ~b! c50.01, ~c! c50.0001.
an
f

a

ed

Such a form arises from a general Hamiltoni
H(x,v,y,w;c,e) of a near integrable flow by using one o
the constants of motion of the unperturbed flow,D(x,p) as a
variable, and definingu as its conjugate variable. Consider
CHAOS, Vol. 7,

Downloaded¬16¬Sep¬2007¬to¬132.77.4.43.¬Redistribution¬subject¬to¬A
domain U for which the transformation (x,v,y,w)
→(x,v,D,u) is non-singular, i.e. where the surfaces spann
by the Poisson action of the integrable system5 are at least
one-dimensional. In particular, inU, a fixed point in the
No. 1, 1997
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154 Vered Rom-Kedar: Parabolic resonances
(x,v) plane corresponds to either a periodic orbit or to
circle of fixed points in the four-dimensional phase spa
~and not to an isolated fixed point!.

Generally, one would expect parabolic resonances to
of at least co-dimension 2 in this setting~e.g. one condition
for parabolicity and another for vanishing frequency on
invariant circle!. Loosely, in view of the Lerman and
Umanskii5 work, one parameter may be replaced by the c
stant of the unperturbed motion,D.

It is proved below that transverse intersections of vario
manifolds in the four-dimensional space (x,v,D,c) imply
the genericity of the hyperbolic~resp. parabolic! resonances
in near-integrable,~resp. one parameter family of nea
integrable! two d.o.f. Hamiltonian systems.

FIG. 3. Nearly flat parabolic resonance. One trajectory shown in the~a!
(f,u) and ~b! (D,u) planes. e50.00025, c50.029,B9(0)520.03,
(f0 , v0)5O(1025), u050.00042.
CHAOS, Vol. 7,
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Surfaces of fixed points of the two-dimensional flow
the (x,v) plane are determined by:

¹~x,v !H0~qf !50, qf5~xf ,v f ,Df ,c!, ~3.2!

hence these are two-dimensional surfaces. Denote the u
of these surfaces byF and denote points onF by qf . Ge-
nerically the fixed pointsqfPF are either elliptic or hyper-
bolic. Parabolic pointsqp on F are determined by the add
tional condition

det
~]2H0~x,v,D;c!!

~]x,]v !
U
qp

50, ~3.3!

and hence correspond to a one dimensional curveP,F.
Define the three-dimensional surfaceT consisting of

pointsqT at whichdu/dt50:

FIG. 4. Parabolic resonance. One trajectory shown in the~a! (f,u) and~b!
(D,u) planes. e50.00025,c50.24,B9(0)520.3, (f0 , v0 , u0 , u0)
5(10212,10212,0,0.24).
No. 1, 1997
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155Vered Rom-Kedar: Parabolic resonances
]H0

]D U
qT

50. ~3.4!

Generically, T intersects F transversely along a one
dimensional curveR of fixed points qRPR for which
du/dt50, namelyqR corresponds to a circle of fixed poin
in the full phase space. Generically the fixed points onR are
composed of intervals of elliptic fixed points and intervals
hyperbolic fixed points. Since generically

]H0

]c U
qR

Þ0, ~3.5!

the curve R intersects the three-dimensional surfa
c5const transversely at a point~or several points!; hence,
we have established:

FIG. 5. Near a parabolic resonance. Three trajectories are shown in th~a!
(f,u) and ~b! (D,u) planes. e50.00025,c50.2 (cp50.24),
B9(0)520.3, Two trajectories are on the invariant cylinderf5v50.
Third trajectory has (f0 , v0 , u0 , u0)'(1025, 1025,0,0.2).
CHAOS, Vol. 7,
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Lemma 1: The occurrence of a normally hyperboli
(resp. elliptic) circle of fixed points is generic in an inte
grable two d.o.f. Hamiltonian system.

Corollary 2: The occurrence of a hyperbolic (elliptic
resonance is generic in near-integrable two d.o.f. Ham
tonian systems.

Moreover, generically the three-dimensional surfaceT
intersects the one-dimensional curve of parabolic fix
pointsP at isolated pointsqPR , which are circles of para-
bolic fixed points in the four-dimensional space. Thus, it h
been established that:

Lemma 3: The occurrence of a parabolic circle of fixe
points is generic in a one-parameter family of integrable tw
d.o.f. Hamiltonian systems.

Corollary 4: The occurrence of a parabolic resonanc
is generic in a one-parameter family of near-integrable tw
d.o.f. Hamiltonian systems.

Finally, notice that the surface of constant energy co

FIG. 6. Hyperbolic resonance,u050. One trajectory shown in the~a!
(f,u) and ~b! (D,u) planes. e50.00025,c520.25,B(f)[0,
(f0 , v0)5O(1025), u0520.25.
No. 1, 1997
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156 Vered Rom-Kedar: Parabolic resonances
taining the parabolic circle of fixed point
H0(q)5H0(qPR) defines a three-dimensional surfaceHPR ,
which generically intersects the one-dimensional curve
circles of fixed points,R, at isolated points, and the two
dimensional surfaceF along a curveFPR . Hence, generi-
cally, on its energy surface,qPR is an isolated circle of fixed
points belonging to a one-dimensional family of invaria
circles (FPR) on whichdu/dt Þ 0.

The tangential parabolic resonanceoccurs when the in-
tersection ofHPR with R is not transverse atqPR , namely
FPR andR are tangent atqPR . Clearly this is a co-dimension
two phenomena. Then, there is an infinitesimal band
circles of fixed points onHPR . A flat parabolic resonance
appears when the two curvesR andFPR coincide. If along
FPR c remains constant, then a whole line of invariant circ
of fixed points belongs to the same energy surface for
same parameter value—a degenerate situation in which
barriers to transport exist under small perturbations. The

FIG. 7. Hyperbolic resonance,u051.8. One trajectory shown in the
~a! (f,u) and ~b! (D,u) planes. e50.00025,c520.25,B(f)[0,
(f0 , v0)5O(1025), u0520.25.
CHAOS, Vol. 7,
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mospherical model described in Sec. II, exhibits, wh
B(f)[0, this degenerate flat parabolic resonance.

The form ~3.1! arises naturally in applications, four o
which were mentioned in the Introduction. In the applic
tions, the HamiltonianH0(x,v,D;c) may appear in some
special form. The implications on the non-degeneracy con
tions mentioned above are examined for three physic
common cases:

A. The separable case

The separable case arises naturally when two one d
systems are weakly coupled. Then, the transforma
(x,v,y,w)→(x,v,D,u) is applied near an invariant circle i
the (y,w) plane, namely (D,u) are the action-angle co
ordinates of the (y,w) unperturbed flow. Moreover, it is
natural in this case to assume that the parameterc appears
only in one of the one d.o.f. Hamiltonian systems. Hence
assume

H0~x,v,D;c!5H0
s~x,v;c1!1H0

D~D;c2!, ~3.6!

or, more explicitly

¹x,v

]H0

]D
[0, ~3.7!

and consider the two casesc15const andc25const sepa-
rately.

Fixing c2, i.e. letting

]2H0

]D]c
[0, ~3.8!

does not alter the previous results. Note that the curves
responding to parabolic invariant circles,P ~which generi-
cally occur for isolatedc1 values!, are just straight lines of
the form$qp5(xp ,vp ,c1p ,D),D P @D1 ,D2#%. Since in this
case

T5H qT : ]H0
D~D;c2!

]D
U
qT

50J 5$qT :DT5DR%, ~3.9!

it follows that P intersectsT transversely. Similarly, the
curve R lies in T and generically intersects the surfa
c5const transversely. It follows that the previous Lemm
and Corollaries~1–4! are valid with the words ‘‘two d.o.f.
Hamiltonian system’’ replaced by ‘‘two d.o.f. Hamiltonia
systems satisfying~3.7! and ~3.8!.’’

Fixing c1, corresponds to:

¹x,v

]H0

]c
[0 ~3.10!

and produces different behavior. In this case, generica
parabolic invariant circles do not appear. The tw
dimensional surface of fixed pointsF is parallel to the
(D,c) plane, and on it there exists the curveR on which
circles of fixed points live. Thus for this case Lemma 1 a
Corollary 2 apply yet Lemma 3 and Corollary 4 are n
valid; in fact:

Lemma 5: A necessary condition for the generic exis
ence of a parabolic circle of fixed points in a one parame
family of integrable two d.o.f. Hamiltonian system is
No. 1, 1997
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157Vered Rom-Kedar: Parabolic resonances
I¹x,v

]H0

]c I1 I¹x,v

]H0

]D I[” 0. ~3.11!

B. The travelling wave (TW) case

Consider unperturbed Hamiltonians of the form

H0~x,v,D;c!5H0
T~x,v,D !1H0

D~D;c!, ~3.12!

namely,

¹x,v

]H0

]c
[0, ¹x,v

]H0

]D
Þ0. ~3.13!

These are called travelling wave Hamiltonians by the follo
ing motivation. Consider an integrable two d.o.f. Ham
tonian system with canonical coordinates (x,v,D,l), which
is perturbed by a travelling wave perturbation inl:

H~x,v,D,l!5H0~x,v,D !1eH1~x,v,D,kl2st !.
~3.14!

Formally this Hamiltonian corresponds to a two-and-a-h
d.o.f. Hamiltonian system. Using the trivial change of va
ables~for kÞ 0)

u5l2
s

k
t5l2ct, ~3.15!

it is reduced to an autonomous two d.o.f. Hamiltonian s
tem of the~TW! form with

H̄~x,v,D,u!5H0~x,v,D !2cD1eH1~x,v,D,ku!.
~3.16!

Indeed,

u̇5l̇2c5
]H̄

]D
, ~3.17!

Ḋ52ek
]H1~x,v,D,a!

]a
52

]H̄

]u
. ~3.18!

~3.19!

Three of the four examples mentioned in the Introduction
of this form.

In this case the parabolic invariant circles occur for is
lated fixedD values independent ofc, so the curvesP are
straight lines parallel to thec axis. The curvesR of circles of
fixed points are as in the general case, hence Lemmas
are valid for the TW case as well.

C. The natural mechanical case

If H0 is constructed from a family of one-degree-o
freedom systems with an effective potential which depe
on D:

H0~x,v,D;c!5
1

2
v21V~x,D;c!, ~3.20!

thenqPR5(xPR,0,DPR ,cPR), and the conditions~3.2!, ~3.3!,
~3.4! become:
CHAOS, Vol. 7,
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]V

]xU
qPR

50,

]2V

]x2U
qPR

50, ~3.21!

]V

]DU
qPR

50.

Generically this form obeys the assumed transversality of
manifolds as in the general case, hence Lemmas 1–5 ap
For example, the following Hamiltonian @with
qPR5(0,0,1,0)] satisfies the genericity assumptions~for b
Þ0):

H0~x,v,D;c!5S 1

2a3
1bD 12 ~D21!22cD1

1

2
v2

1
1

2
a1x

2~12D !1
1

3
a2x

31
1

4
a3x

4.

~3.22!
Taking a3.0, b.21/2a3 corresponds to compact energ
surfacesH0(x,v,D;c)5h for any finiteh. Adding the per-
turbation H15e(12 1

2x
2)cos(ku), the corresponding vecto

field is of the form:

ẋ5v, ~3.23!

v̇5a1~D21!x2a2x
22a3x

31ex cos~ku!, ~3.24!

u̇5S 1

2a3
1bD ~D21!2c2

1

2
a1x

2, ~3.25!

Ḋ5keS 12
1

2
x2D sin~ku!, ~3.26!

attaining hyperbolic resonances forc.0 at

Dr~c!511
c

~1/2a3!1b
, ~3.27!

a parabolic resonance atDp51, cp50 and a flat parabolic
resonance at these values forb50. Numerical experiments
with this model produce similar results to the ones presen
for the atmospherical problem described in Sec. II.

IV. CONCLUSIONS

The behavior near parabolic resonances provides a
type of chaotic mechanism for a two d.o.f. Hamiltonian sy
tem. It has been established that this phenomenon is of
dimension 1, hence it is expected to appear in numer
applications. Moreover, the basic idea of Lerman a
Umanskii,5 that the addition of another non-separable d.o
may be considered from the bifurcation theory point of vie
as the addition of another parameter, applies to higher
grees of freedom as well—e.g. we may think of the wa
speedc as another conserved quantity of a larger syst
showing that for higher dimensional systems the parab
resonance case may be generic.
No. 1, 1997
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158 Vered Rom-Kedar: Parabolic resonances
Preliminary numerical observations of the behavior n
parabolic and flat parabolic resonances are presented in
ures 1–5. The features of the parabolic resonance seem
mix three different dynamical behaviors—localization as
the elliptic resonance case, homoclinic chaos which dest
this localization and slow passage through a bifurcat
which leads to strong instabilities.

For the atmospherical model with (B(f)50), for any
given wave speed20.5,c,0, a hyperbolic resonance oc
curs: particles sent from the equator’s vicinity with westwa
velocity u0'c(,0) participate in a complex dynamical be
havior moving north and south chaotically, reaching latitud
of arccos(122uu0u)1O(Ae). The motion of such particles
may be non-uniform zonally10 ~i.e. some zones will be vis
ited more frequently than others!, yet generally, zonally lo-
calized motion is not robust. When the speed of the trav
ling pressure wave vanishes~i.e. the perturbation is of the
form of a standing wave! parabolic circles of fixed points
occurs fore50. Small perturbations of the form of standin
waves or travelling waves with small wave speeds result
parabolic resonance. Moreover, this case is degenerate
ing to strong instabilities as shown in figure 1. This dege
erate model thus supplies a mechanism for the transpo
particles with small initial velocities near the equator to hi
latitudes. Adding a latitude dependent pressure grad
(B(f) Þ 0), which physically corresponds to including th
influence of jets,10 removes the degeneracy. If this gradient
not large~which seems to be a reasonable assumption f
the physical point of view as the pressure gradient is prop
tional to the particles velocity, which should be of ord
0.01) the degenerate instabilities still appear~figure 3!.

The results presented are preliminary—analytical a
extensive numerical studies are in progress. It appears
near a generic parabolic resonance the instability zone in
latitude coordinate corresponds approximately to the m
mal latitude achieved by an unperturbed homoclinic orbit
a hyperbolic circle withD5Dp2O(Ae). The behavior near
a flat parabolic resonance is not resolved yet even num
cally. In particular, the scaling of the radius of instabili
with respect to the perturbation strength~if it is finite!, and
with respect to the distance in phase space and param
space from the flat parabolic resonance case has yet t
found. General conditions for the occurrence of a flat pa
bolic resonance have yet to be derived.

Many questions are left unanswered at this point, and
particular the relation of this work to the McLaughlin,21

Klafter,1 Meiss,2 Melnikov3 and Zaslavsky4 presentations
has yet to be explored.
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