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A parabolic resonancés formed when an integrable two-degrees-of-freeddrn.f) Hamiltonian
system possessing a circle of parabolic fixed points is perturbed. It is proved that its occurrence is
generic for one parameter familiéso-dimension one phenomenoof near-integrable, two d.o.f.
Hamiltonian systems. Numerical experiments indicate that the motion near a parabolic resonance
exhibits a new type of chaotic behavior which includes instabilities in some directions and long
trapping times in others. Moreover, in a degenerate case, tilsiparabolic resonancdarge scale
instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic
resonance. This supplies a simple mechanism for the transport of particlessmvih (i.e.
atmospherically relevahtinitial velocities from the vicinity of the equator to high latitudes. A
modification of the model which allows the development of atmospherical jets unfolds the
degeneracy, yet traces of the flat instabilities are clearly observedl9%F American Institute of
Physics[S1054-15007)00201-3

The motion of n particles under conservative forcege.g.  portant open questions linger, see for example papers in this
the planets in the solar system, coupled frictionless pen- issue by Klafter, Meiss? Melnikov,® and Zaslavsky and
dulums, point vortices, etc) is described by an references therein.

n-degrees-of-freedom Hamiltonian system. This motion What is the structure of near-integrable two d.o.f. Hamil-
may be ordered or chaotic, depending on the Hamil- tonian system? Generically, most phase space is foliated by
tonian H(x,v) (the energy), the dimension of the system two-dimensional tori which divide the energy surfaces. Sub-
and the initial position and velocities of the particles. ~Stantially different dynamics appear near singular points or
Consider a Hamiltonian flow for which all solutions are ~ CUrves on the energy surface—either fixed points or invariant
ordered. A fundamental question is what will be the so-  Gircles(or lines in the non-compact casef the flow> When
lution's fate if the system is changed just by a small isolated unstable fixed points exist inherently three-

dimensional phenomena arise, and these are not yet fully
amount (e.g. the effect of a meteor on the solar system " o 2
. . ) . understood. See Lerman and Umartskar the classification
In particular, consider solutions which are bounded and

of integrable systems and Koltsova and Lerfhaand
are ‘“roughly stable” in the unperturbed system (there J y

: 7 . ) . " Grotta-RagazZofor the analysis of chaotic system with a
exists a finite size neighborhood in phase space which 4 0clinic loop to a saddle-center.

stays “near” these solutions foreve). Can solutions in Consider near-integrable Hamiltonians of the form:
this neighborhood become unbounded or considerably
different if the system is changed by little? In this paper H(x,v,D,0;€)=Ho(X,v,D)+€eHy(Xx,v,D,0;€),

we discover a new low dimensional mechanisnin=2)
creating such a dramatic effect on solutions. We prove it
is a mechanism which is physically common, and demon- Such a form arises from a general Hamiltonian
strate its consequences on a simple model for the motion H(X,v,y,w;€) of a near integrable flow by using one of the
of weather balloons in the atmosphere. constants of motion of the unperturbed flone=<0),
D(x,v,y,w) as a variable, and defining as its conjugate
variable (e.g. D is the angular momentumConsider a do-
I. INTRODUCTION main U for which the transformation X v,y,w)
—(x,v,D, ) is non-singular, i.e. where the surfaces spanned
The appearance of homoclinic loops in integrableby the Poisson action of the integrable systere at least
Hamiltonian systems provides a mechanism by which byone-dimensional. In particular, i), a fixed point in the
small perturbation integrability is destroyed and new com{(X,v) plane,q;=(X;,v¢,Dy):
plex dynamics arises. This phenomenon has been principally _
V (Xf,l)f, f) 0 (12)
investigated in the context of a one-and-a-half degree of free-
dom (d.o.f) Hamiltonian system. Yet, even with regards to COI’I’ESpOI’ldS to an invariant circle in the four-dimensional
this simplest setting for which homoclinic chaos exists, im-Phase spacéand not to an isolated fixed pojnfThis circle
may be composed of a family of periodic orbife/hen
3Electronic mail: vered@wisdom.weizmann.ac.il; Q(qf)¢0] or of a circle of fixed points [when
http:/Avww.wisdom.weizmann.ac itvered 6(x;,v¢,D5)=0]. An important lesson from the Lerman and

(x,v,D)eR3,0eT, (1.1
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Vered Rom-Kedar: Parabolic resonances 149

UmanskiP work is that phenomena which are co-dimensionperbolic resonangeoccurs when a system containing a nor-
one in near-integrable one-and-a-half d.o.f. Hamiltonian sysmally hyperbolic circle of fixed points with a family of het-
tems may become generic in integrable two d.o.f. Hamil-eroclinic orbits connecting points on the circle is perturbed,
tonian systems. In thex(v) plane,q; may generically be see Kovacic and Wiggin¥ Haller® and Kaper and
hyperbolic or elliptic, and generically, there exi®=D,  Kovacic!* Using ideas as in Lerman and Umanskit, is
values for which it iparabolic® Similarly, generically, there proved in Sec. Ill that the occurrence of a circle of fixed
exists D;=Dg values for which 6(x;,v¢,D;)=0. These points which is normally hyperbolic within the energy sur-
simple observations are the basis for the proof that parabolitice is generic in the class of integrable two d.o.f. Hamil-
circles of fixed pointsii.e. Dy=Dg=D,) are generic in a tonian systems. Th_us_, if the energy surfaces are compact, the
one-parameter family of integrable two d.o.f. Hamiltonian Scenario of homoclinic hyperbolic resonance appears generi-
systems(see Sec. I\ cally in near-integrable two d.o.f. Hamiltonian systems.

The behavior near the invariant circles under small per- 0 this paper a new type of chaotic behavior is
turbations depends on their stabilfiye. the stability ofg; in  introduced—thehomoclinic-parabolic resonancearabolic

: L invariant circles appear generically in integrable non-
the (x,v) pland, on the rotation rate on thefine. 6(q;)], L O .
and the rotation rate on orbits which are homoclinic to themsep_arqble tW_O d.odf. Ha_mllto_nlan ?ySté hen there exists
(if such exist. If q; is elliptic, stability reigns, though one periodic motion on the invariant circles the effect of a small
. f ’ ’

: . . erturbation on initial conditions in its neighborhood seems
may obtain resonant or non-resonant behavior depending gn

the frequency ratios. In particular,df is an elliptic circle of 0 be insignificantin fact the separatrices splitting is expo-

fixed points, the resonance creates localized structur@s in nentially small in the distance from the bifurcation poft

. . In particular, initial conditions starting close to the invariant
Whena is hyperbollc,' and the energy surfaces ar'e.compactcircle stay close to it—the invariant circle is “roughly

under small perturbation several types of homaclinic tangle%table.” This changes dramatically when the invariant circle
may appear. It is conjectured that only one type, the reduc-

ivle h linic tanale. is topologicabrbit Lgate t is a circle of fixed points in the four dimensional phase
ole homoclinic tang'e, 1S topo ogicdbrbita) conjugate to. space, see figures 1-5. First, it is proved that this event is not
the one appearing in the one-and-a-half d.o.f. Hamiltonia

Lo exotic—it is a co-dimension one phenomena for inte-
system case.

: . . rable two d.o.f. Hamiltonian system. Then, it is demon-
The reducible homoclinic tangl@appears when, in the g Y

int ble limit. th ists a h inic | ¢ iod strated numerically that small perturbations lead to dramati-
integrable limit, there exists a homocliinic 1oop 10 a PerodiC .,y yitferent dynamics than observed in the other types of

orbit, and the motion along the homoclinic loop and its faty, -, cjinic tangles or the other types of resonances. It is a
nelghborho_od preserves the angular direction of the IoerIOdIEombination of the hyperbolic homoclinic chaos, the local-
orbit (i.e. [6|>a>0 along the periodic orbits and the ho- jzation of the elliptic resonances and instabilities formed by
moclinic loop. In this case a global Poincaneap transverse  gjiding along the newly formed elliptic circles as seen in
to the periodic orbit is well defined in a neighborhood of thesjow passage through bifurcatiofsThese effects are even
homoclinic loop and the flow is conjugate to a two- more pronounced when additional degeneracy appears—the
dimensional symplectic map with a homoclinic tangle. Forflat parabolic resonance case. Here, in the unperturbed sys-
separable two d.o.f. Hamiltonian systems homoclinic loopgem the parabolic invariant circle of fixed points is a part of
to periodic orbits of bounded periods always satisfy this req family of invariant circles of fixed points all of which be-
quirement as in Holmes and Marsd&m non-separable sys- long to the same energy level sdt,=h. Namely, on this
tems, it is satisfied in regions in phase space for which one afnergy surface the non-degeneracy conditions for the iso-
the angle variables varies monotonicallytiralong the un-  energetic KAM theory fails to exist and instabilities reign.
perturbed separatrices as in Holmes and MarSdéven in  This may be an example for a two d.o.f. equivalent of the
this simplest setting there are some differences between twstochastic-web€ which appear in a one-and-a-half d.o.f.
d.o.f. Hamiltonian systems and one-and-a-half d.o.f. HamilHamiltonian systeriglobal instabilities will appear if non-
tonian systems when one considers behavior of physical eompact energy surfaces are considgred
sembles of initial conditio§** or relations between, for This study has been initiated while investigating a
example residence time and escape rates in the Poiseare simple model for particlegweather balloons or flogtsrans-
tion. These differences seems to be physically important ygbort in the atmosphere or ocean. With Dvorkin and Palor,
mathematically technical. we have analyzed the simplest possible two-dimensional mo-
A second type of homoclinic tanglégumpy homoclinic  tion on a rotating sphere, due only to Coriolis forge. in
tangle arises when small perturbations are applied to systhe absence of any body force, see Paldor and Killw8yth
tems for which non-monotonicity in the angle occurs alongperturbed by the inclusion of a zonally travelling pressure
the unperturbed homoclinic solutions. Then, non-uniformitywave which perturbs the geopotential surface from its mean
in the angle variable of the chaotic zone is credféBeyond  spherical shape, see Paldor and BSds. Ref. 10 we devel-
the differences in terms of the observed non-uniformity be-oped tools for delineating the phase space of a non-separable
tween the first and second types, it is conjectured that thiswo d.o.f. Hamiltonian system to regions in which the differ-
case is dynamically distinct from the reducible homoclinicent types of homoclinic structures appear. Here, it is shown
tangle, at least for a small yet finite perturbation parameterthat this model exhibits a flat parabolic resonance when the
A third type of homoclinic tangles, theomoclinic hy-  perturbation is of the form of a standing pressure wave. Add-
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150 Vered Rom-Kedar: Parabolic resonances

ing a latitude dependent pressure gradient, as was suggested dx u
in Ref. 10, removes this degeneracy. If the pressure gradient ‘g7 = cos ¢’
is comparable to reasonable atmospherical velodithes at-

mospherical relevant casthen strong instabilities induced dU_ . u A(e)

by the nearby flat parabolic resonance are observed. qr v sine| 1t cos & —kemcos(k)\—at),
The parabolic resonance is a low co-dimension phenom-

enon, hence it is expected to appear in many other applica- _¢=U 2.2

tions. For example, the motion of a particle in a central dt '

field®2°with effective potential with at least one maximum is ’

an integrable two d.o.f. Hamiltonian system, which, when — = —uy sin ¢(1+ —B'(¢)

perturbed by a small amplitude travelling wabdin the dt cos¢

angle directioh may exhibit a parabolic resonance for some — €A’ (¢)sin(kh — at),

isolated wave speedshis is a variation on the example of

Holmes gnd Marsdérwho considgred this problem. in the be| - Z’z A e[0,27],u,v e R2.

hyperbolic regime and with standing wave perturbatiém- 2'2

other example of si.milar form is the Whirling pgndulum Per- Here B(¢) and A(¢) represent the latitude dependent am-
turbed by a travelling wave perturbatlon. Notice that thes%litudes of the pressure gradient and the pressure wave, re-
examples(and the atmospherical modedre formally two-  gpeciively. For simplicity, both are assumed to be even in
and-a-half d.o.f. problem&ince time is explicitly introduced #. For e=0, the system is autonomous,is uncoupled and

in Sec. Il and discussed in Sec. lll, this class of systems cathe angular momentu® and the energg:

be easily reduced to an autonomous two d.o.f. Hamiltonian
system. Finally, the example which motivated the works on
the homoclinic hyperbolic resonancésee Kovacic and 1
Wiggins'®), namely that of a two-mode truncation of the E= §(u2+vz)+B(¢). (2.3
damped and driven Sine-Gordon equatioisee the
McLaughlirf* paper in this issue and references theraiso  In Ref. 1 the structure of2.1) is studied forB(¢)=0 for
exhibits parabolic resonance for some parameter values. general values of the parameters. By constructing the colored
This paper is organized as follows: In Sec. Il the simple€nergy surfacesl =h and the corresponding bifurcation dia-
quasi-inertial model for Lagrangian motion in the atmo-9rams of the energy-momentum méindicating singular
sphere is recalled and studied numerically near its paraboligurves, their stability and the monotonicity properties of
resonances. In Sec. Ill it is established that the occurrence ¢t) in the (H,D) plang, the phase space is delineated to
a parabolic resonance is generic for a near-integrable twE£9i0nS in which inherently three-dimensional dynamics ap-
d.o.f. Hamiltonian system depending on one parameter. TheR€ars and to regions in which the system is reducible to a

several physically typical forms of a two d.o.f. Hamiltonian ©N€-and-a-half d.o.f. Hamiltonian systéfhCritical param-
system(such as separable systénase considered, and their eter values for which the dynamics changes qualitatively are

compliance with the genericity assumptions is examined'fOund by this analysis._Spe_c?ficaIIy, the case of standing
Section IV is devoted to discussion. waves =0) has been identified as a degenerate case. It is

shown below that foB(¢)=0,0=0, a flat parabolic reso-
nance occurs, and that by appropriate choiceB6$) the
resonance may be made non-degenerate. Moreover, the be-
havior near elliptic and hyperbolic resonances is compared

D=cos ¢(cos ¢+2u), (2.2

Il. MODEL FOR PARTICLES' MOTION IN THE with that appearing near a flat and generic parabolic reso-
ATMOSPHERE nances. _
Consider the cade # 0, and define:
The motion of a particle on a rotating sphere subject to a 1 o
conservative travelling wave perturbation serves as a simple 0= E(R—Ct), =1 (2.4

model for the motion of particles in the atmosph&t&®19|t

was recently suggested that the inclusion of a latitude depen-hen(2.1) becomes:

dent pressure gradient may be incorporated into this modelto 49 1 p 1

simulate the appearance of jets in the atmospHetésing =TT 5
: . . . dt 4cos ¢ 2

polar co-ordinates, the non-dimensional Lagrangian momen-

tum equations for the eastward and northward velocity com- dD

ponents (,v) and the rate of change of the longitude and  g¢ ~ —2keA($)cog 2k0),

latitude coordinates\(, ¢) in the presence of a zonally trav-

elling pressure wave and a latitude dependent pressure gra- d¢

dient are given by: TR

L
CE'
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Vered Rom-Kedar: Parabolic resonances

dv 1 D? ) ,
a—gSln(2¢)(1——CO§¢ —B'(¢)

— A’ ($)sin(2K),

which is an autonomous system with Hamiltonian

v2 1/ D 2 ¢
H(¢,v,0,D;k,c,e)=?+ §<Cos¢—cos¢) —5D
+B(¢)+ eA(p)sin(2k6),
k#0, —Esc,e>0, sigr(k) = sign(c). (2.5

2
Since A(¢) and B(¢) are assumed to be evdthus this

assumption of symmetry is convenient, yet it seems to be

inessential for what follows the cylinder¢=v =0 is invari-
ant for all . On it the equations for[{, #) correspond to the
pendulum equations withkislands of width\/8eA(0) cen-
tered atD=D,(c)=1+2c, and rotational orbits filling the

rest of the cylindef? The behavior near this cylinder in the
four-dimensional phase space depends on its stability prop-

erties in its normal(¢,v)) direction.

Consider the unperturbed flow in the(v) plane. The
origin is hyperbolic forD|<+/1—4B"(0), having two sym-
metrical homoclinic orbits extending to % (¢,0)
[¢n~arccosP) for B(¢)<<1l]. It is parabolic at

D=D,=y1-4B"(0) and elliptic for|D|>D,. Parabolic
resonance arises whé&n,~D,(c), namely forc values near:

1 1
Cp=5(Dp=1)=5(1-4B"(0)~ 1),
For |D|<D,, there are two elliptic fixed points¥{ ¢,,,0) at

8B’ (den)
SIN(2¢ey))’
with the natural frequency in the¢(v) plane of nearly

singyg [for small B’ (¢),B"(¢)], and with the frequency in
the longitude direction of

a0 L [ 8 a) L[ 1
Tt Gar0006an~ 3V Syzgo 31 2/

(2.9

Dy (hen) =CoS(ben) \/ 1 - 2.7

(2.8
Notice that forB' (¢)<1
de B'(de) 1
al(d’ell'o'a'Dg(‘i’ell))% m — EC. (29)

It follows that when B(¢)=0 [more generally if
B'(¢)=asin(2¢$)] and c=c,=0 (resp.c=c,~2a) a de-
generate situation occurs by whiaih&/dt|(%”,0,0,%(%”»
= - %cpzo. Namely, for eaclpe e( — 7/2,7/2), the circle

(¢e|,,0,6,Dg*(¢e”)) consists of fixed points in the four-
dimensional phase space. Moreover, ferx0 all these

151

15708 ,
¢ |
-1.5708 : L
3.14159
@ ° 6
1.1
(\
D |

0.1 : L
o ]

314159
(b)

FIG. 1. Flat parabolic resonance. One trajectory shown irfaheg, 6) and
(b) (D, 6) planes.e=0.00025,c=0, ||($o,v0,Uo)||=0(10"5), B(¢)=0.

Numerical simulations of E¢2.5) are performed using
psTool?? with the Bulirsch-Stoer integrator. The Hamil-
tonian value is monitored so that at least 5 significant digits
are unaltered in each computation. In all figures

k=3,A(¢)=cos(¢),B(¢)=3Bcos(¢), and the other param-
eters, includingB=—B"(0), arevaried as indicated in the
captions.

Figure 1 demonstrates that strong instabilities appear
near a flat parabolic resonance. In this figure one trajectory
starting close to the flat parabolic resonanceDat=1 is
shown. The trajectory which is positioned initially close to

circles of fixed points belong to the same energy surfacéhe equator with very small initial velocitied0 cm/s=ug

H=0. In Sec. lll it is established that thitat parabolic
resonancds not generic.

=10"*) travels to latitudes as high as 6@imilar behavior
is observed for initial westward velocities of up to 1 m/s
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152 Vered Rom-Kedar: Parabolic resonances

Moreover, the motion is restricted for a long period of timeare detected by simple numerical experime(fte small
to one cell of the resonance bafmbnally localizedland then  ¢).
jumps to a different cell. In thef,D) plane it is seen that the The behavior in the vicinity of a hyperbolic-resonance is
motion forD>D, follows closely the resonant motion of the mostly influenced by the instability in the hyperbolic direc-
invariant cyllnderqb v=0 whereas the instabilities are cre- tion. Thus, theO(\/e) oscillations inD are coupled to the
ated forD<D, when the motion descends along resonantunstable chaotic motion in thep(v) plane as is shown in
elliptic points up to very smalD values O=0.1 is seen in figure 6 and figure 7. The extent in latitude to which chaotic
the figurg creating the instabilities that are seen in thetrajectories reach is approximately the same as the latitude
(¢,0) plane. As—uy is increasedabove —uy=0.01) the reached by an unperturbed orbit starting with the same initial
descendent along these elliptic points disappears, and as itvelocity ¢,.,= ¢21ax+0(\/2) (see the figures The perturbed
increased furtherabove —uy~0.05) localized structures motion near the invariant cylinder is chaotic w.r.t. north-
disappear. Therefore, a mechanism for the transport of pasouth motion and it has a zonal structure scarred by the reso-
ticles launched near the equator wijtluy,vo)||<<1 to high  nance on the invariant cylindésee figure 6 and figure)7
altitudes has been found, a phenomena that has been odbacalized motion ind exists on the invariant cylinder inside
served in atmospherical experimeft<Curiously, it appears the resonance zone. Applying the general theory of Haller
that the instabilities develop only for sufficienynallinitial ~ for the case B(¢)=0k=3, it follows that for ¢
velocities. Typical initial conditions seem to be trapped in e (c,= — sir(a/4k),0) homoclinic orbits to oscillatory peri-
one zone for a long periods of tinfe.g. figure 2. odic orbits exist? i.e. that localized homoclinic solutions

In figure 2 the behavior near the parabolic resonance igxist (and may be detected numerically by devising the cor-
examined as the wave velocityis varied: the same initial rect schem& 4. Sincec,~ —0.066, this range of values
condition (with Dy=1) is integrated three times with is also influenced by the flat parabolic resonance, and so the
c=0.1,0.01 andc=0.0001 respectively. It is seen that for behavior described above for the near-parabolic-resonance
c values sufficiently far from 0 the equator area is stableregime fits this regime as well. It is unclear yet if this is true
whereas wher=0.0001 the instability and the localization in the general case. Taking smallervalues €= —0.25),
of the nearby flat resonance is clearly seen. one finds that trajectories progress along the longitude coor-

If B’ (en)/sin(2¢,) # const then the flat degeneracy is dinate(with known “speed’'®3, thus no zonally localized
removed. The effect of removing the flat degeneracy is exmotion is detected outside the invariant cylinderv =0.

amined by varying8=—B"(0). In figure 3 the nearly flat Generic parabolic resonance combines the behavior of
behavior is examined, with B=0.03 the hyperbolic and elliptic regimes—one observes the local-
(cp=0.0291P,=1.058), showing that the flat instabilities ized structures due to the elliptic nature of the trajectory for
prevail. D>D, and then the hyperbolic nature which induces insta-

Figures 4-5 show the non-degenerate case Ritt0.3  bilities eventually breaking this localized structure for
nearD,= J2.2~1.48 andc=c,~0.24. In figue 4 a trajec- D<D,. Moreover, another dominant mechanism for the in-
tory starting very close to the invariant cylinder exhibits stability is induced by the elliptic orbits created@t=D,,,
strong zonal localization and a mixed behavior of motionsimilar to trajectories passing slowly through a pitchfork
near the elliptic points, near the separatrices and near thaifurcation!® Combining these three mechanisms one ob-
separatrices of the resonance zone. Figure 5 shows the b&ins a motion which has chaotic nature w.r.t. to zonal local-
havior near the resonance when baths slightly shifted ization (long trapping periods and then a jump to a different
from c,, and the initial condition of the trajectory is not ex- island and instabilities in the latitude extent of the trajecto-
tremely close to the invariant cylinder as in the previousries. Initial conditions which in the unperturbed case remain
figure. The chaotic trajectory is presented together with twan the vicinity of the equator(starting withD>D,) may
other trajectories which are on the invariant cylinderreach latitudes as high as 25° in the non-degenerate case
(¢po=vo=0) to illustrate the shift of the localized structure (figure 4 and much higher latitudes in the flat and nearly flat
from its base. cases(figure 1 and figure B Changing the parameters to

We would like to contrast the behavior observed in thesevalues which are close to those producing parabolic reso-
figures, with that observed near elliptic resonance and nearances, show that much of the properties described above are
hyperbolic resonance. In the elliptic-resonance case near ttstill present—though the zonal localization occurs for lower
resonance zone th® variable performs excursions of D values as the distance from the invariant cylinder is in-
O(\/e). However, in the ¢,v) plane these excursions are creasedfigure 5.
nearly unnoticeable—the motion continues to exist mostly
on invariant tori. Some of these tori correspond to oscillatory
motion in 8, and small changes injv) usually do not alter IIl. GENERICITY OF PARABOLIC RESONANCES
the oscillatory/rotational behavior iy unless the initial con-
ditions are in the extrem@xponentially smallPclose vicin- Consider a near-integrable two-degrees-of-freedom
ity of the separatrices created by the resonance. Thus, in thdamiltonian flow depending on a parameter
elliptic-resonance case one observes either regular zonally H(x,0,D,8;c) = Ho(X,0,D:C) + eH1(X,v,D, 6; €),
localized motion or regular motion travelling around the
globe and no transitions between the two types of motions (x,v,D)eR%,0eT,ceR. (3.9
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Vered Rom-Kedar: Parabolic resonances 153

1.5708 1.5708
C. ¢
-1.5708 L L r -1.5708 s L s
(a) [] 8 3.14154 (b) 0 g 3.14154
1.5708
¢ |
-1.5708 L L L
[} 3.14154
(c) 6

FIG. 2. Near a flat resonance. The same initial conditon is evolved with different wave speeds0 > B(¢)=0,(¢o,v0,60,Uo)
=(1075,10"5,2.2,3107 1. (@) ¢=0.1, (b) c=0.01, (c) c=0.0001.

Such a form arises from a general Hamiltoniandomain U for which the transformation x(v,y,w)
H(x,v,y,w;c,€) of a near integrable flow by using one of —(x,v,D,#) is non-singular, i.e. where the surfaces spanned
the constants of motion of the unperturbed fl@wx,p) asa by the Poisson action of the integrable systere at least
variable, and defining as its conjugate variable. Consider a one-dimensional. In particular, itJ, a fixed point in the
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154 Vered Rom-Kedar: Parabolic resonances

L5748 . . 15708

$
¢ ]
-15708 : . .
@ ° 9 314159
-1.5768 : 1
@) 0 0 3.14159 1% .
12
D
D ]
11 . :
(b) ] 9 3.14159
FIG. 4. Parabolic resonance. One trajectory shown in@héd, #) and(b)
0.7 : . : (D,6) planes. €=0.00025,c=0.24,B"(0)=—0.3, (¢, vo, 09, Ug)

=(10"1210"%20,0.24).
) 0 8 314159 ( )

FIG. 3. Nearly flat parabolic resonance. One trajectory shown in(dhe
(¢,0) and (b) (D,6) planes. e=0.00025, c=0.029,B"(0)=-0.03,

(o, vg)=O(10"%), Uy=0.00042 Surfaces of fixed points of the two-dimensional flow in
0, Y0/ » Yo Y .

the (x,v) plane are determined by:

(x,v) plane corresponds to either a periodic orbit or to a ¥ x)Ho(d) =0, qr=(X¢,v1,Dy.C), 32

circle of fixed points in the four-dimensional phase SpacE\hence these are two-dimensional surfaces. Denote the union

(and not to an isolated fixed pojnt . of these surfaces blf and denote points oR by q;. Ge-
Generally, one would expect parabolic resonances to be

of at least co-dimension 2 in this settifig.g. one condition nerically the fixed points);F are either elliptic or hyper-

for parabolicity and another for vanishing frequency on thebonc' Parabolic pointsj, on F are determined by the addi-

invariant circlg. Loosely, in view of the Lerman and tional condition

UmanskiP work, one parametgr may be replaced by the con- (2Ho(X,0,D:C))

stant of the unperturbed motioB.. det =0,
It is proved below that transverse intersections of various (9%,dv) dp

manifolds in the four-dimensional space,,D,c) imply

the genericity of the hyperboli@resp. parabolicresonances and hence correspond to a one dimensional c@ad-.

in near-integrable,(resp. one parameter family of near- Define the three-dimensional surfade consisting of

integrable two d.o.f. Hamiltonian systems. pointsgr at whichdé/dt=0:

(3.3
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L5708

(@) [] 8 3.1415% (a) 0 g 3.1415%

14 i : 0%

314159 3.14159

o ° 6 (b)

FIG. 5. Near a parabolic resonance. Three trajectories are shown (@the FIG. 6. Hyperbolic resonanced,=0. One trajectory shown in théa)
(#,0) and (b) (D,6) planes. €=0.00025,c=0.2 (c,=0.24), (¢,0) and (b) (D,d) planes. €=0.00025,c=—0.25,B(¢)=0,
B"(0)=—0.3, Two trajectories are on the invariant cylindér=v=0. (¢g, vo)=0(10"%), uy=—0.25.

Third trajectory has ¢q, vo, 6o, Ug)~ (1075, 10°5,0,0.2).

Lemma 1: The occurrence of a normally hyperbolic
(resp. elliptic) circle of fixed points is generic in an inte-
=0. (3.4) grable two d.o.f. Hamiltonian system.
Corollary 2: The occurrence of a hyperbolic (elliptic)
resonance is generic in near-integrable two d.o.f. Hamil-
Generically, T intersects F transversely along a one- tonian systems.
dimensional curveR of fixed points qggeR for which Moreover, generically the three-dimensional surfdce
deo/dt=0, namelygg corresponds to a circle of fixed points intersects the one-dimensional curve of parabolic fixed
in the full phase space. Generically the fixed pointdRoare  points P at isolated pointsjpg, which are circles of para-
composed of intervals of elliptic fixed points and intervals ofbolic fixed points in the four-dimensional space. Thus, it has

dHg

JD
ar

hyperbolic fixed points. Since generically been established that:
Lemma 3: The occurrence of a parabolic circle of fixed
ﬂ £0 (3.5 points is generic in a one-parameter family of integrable two
dc ’ ' d.o.f. Hamiltonian systems.

ar .
Corollary 4: The occurrence of a parabolic resonance

the curve R intersects the three-dimensional surfaceis generic in a one-parameter family of near-integrable two
c=const transversely at a poifor several points hence, d.o.f. Hamiltonian systems.
we have established: Finally, notice that the surface of constant energy con-
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156 Vered Rom-Kedar: Parabolic resonances

mospherical model described in Sec. Il, exhibits, when
B(¢)=0, this degenerate flat parabolic resonance.

The form (3.1) arises naturally in applications, four of
which were mentioned in the Introduction. In the applica-
tions, the HamiltonianHy(x,v,D;c) may appear in some
special form. The implications on the non-degeneracy condi-
tions mentioned above are examined for three physically
common cases:

1.570R

A. The separable case

The separable case arises naturally when two one d.o.f.
systems are weakly coupled. Then, the transformation
(X,v,y,W)—(x,v,D, ) is applied near an invariant circle in
the (y,w) plane, namely D,6) are the action-angle co-
ordinates of the \{,w) unperturbed flow. Moreover, it is

@ ° : é ’ 314159 natur_al in this case to assume that t_he parameteppears
only in one of the one d.o.f. Hamiltonian systems. Hence we
e assume
Ho(x,v,D;¢)=H$(x,0;¢1) + HY(D;cy), (3.6
or, more explicitly
dHgo
VX,U(?_DEO’ (37)
and consider the two caseg=const andc,=const sepa-
‘ rately.
D Fixing c,, i.e. letting
PHo ag
dDdc ' 3.8
does not alter the previous results. Note that the curves cor-
responding to parabolic invariant circleB, (which generi-
cally occur for isolatedc; values, are just straight lines of
03 : : : the form{qg,=(x,,v;,C1,,D),D e [D4,D,]}. Since in this
(b) 0 8 3.14159 case
FIG. 7. Hyperbolic resonancef,=1.8. One trajectory shown in the 8H8(D;C2)
@ (¢,0) and (b) (D,6) planes. e=0.00025c=—0.25, B(¢)=0, T= T =0} ={qr:Dt=Dg}, (3.9
(¢o, vo)=0(107%), up=—0.25. ar

it follows that P intersectsT transversely. Similarly, the
curve R lies in T and generically intersects the surface
taining the parabolic circle of fixed points C=const transversely. It follows that the previous Lemmas
Ho(q)=Ho(gpr) defines a three-dimensional surfadgg,  and Corollarie1-4) are valid with the words “two d.o.f.
which generically intersects the one-dimensional curve ofamiltonian system” replaced by “two d.o.f. Hamiltonian
circles of fixed pointsR, at isolated points, and the two- Systems satisfying3.7) and(3.8).”
dimensional surfac& along a curveFpr. Hence, generi- Fixing c,, corresponds to:
cally, on its energy surfacepg is an isolated circle of fixed IH,
points belonging to a one-dimensional family of invariant \Y
circles (Fpg) on whichdé/dt # 0.

The tangential parabolic resonanaeccurs when the in- and produces different behavior. In this case, generically,
tersection ofHpr with R is not transverse ajpg, namely  parabolic invariant circles do not appear. The two-
FprandR are tangent afjpr. Clearly this is a co-dimension dimensional surface of fixed points is parallel to the
two phenomena. Then, there is an infinitesimal band ofD,c) plane, and on it there exists the curiReon which
circles of fixed points orHpg. A flat parabolic resonance circles of fixed points live. Thus for this case Lemma 1 and
appears when the two curv&and Fpg coincide. If along  Corollary 2 apply yet Lemma 3 and Corollary 4 are not
Fpr € remains constant, then a whole line of invariant circlesvalid; in fact:
of fixed points belongs to the same energy surface for the Lemma 5: A necessary condition for the generic exist-
same parameter value—a degenerate situation in which nence of a parabolic circle of fixed points in a one parameter
barriers to transport exist under small perturbations. The attamily of integrable two d.o.f. Hamiltonian system is

X,UWEO (31@
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dH,
rry

Hg
XU 9D

*0. (3.1)

el

B. The travelling wave (TW) case

Consider unperturbed Hamiltonians of the form

Ho(x,v,D;¢)=Hg(x,v,D)+Hg(D;c), (3.12
namely,

v, Moo g Mo, 3.1

xw e =0 Voo #0. (3.13

These are called travelling wave Hamiltonians by the follow-For

oV
Ix

apR
PV

W =0, (321)

dpr

v
D

dpr
Generically this form obeys the assumed transversality of the

manifolds as in the general case, hence Lemmas 1-5 apply.
example, the following Hamiltonian [with

ing motivation. Consider an integrable two d.o.f. Hamil- dpr=(0,0,1,0)] satisfies the genericity assumptidfe b

tonian system with canonical coordinatesy(,D,\), which ~ #0):
. . . . 1 1 1
is perturbed by a travelling wave perturbationNn Ho(x,0.D:C) = §+b E(D—l)Z—CD‘F Evz
H(x,v,D,\)=Hgy(X,v,D)+ eH{(X,v,D,k\ — ot). 3
(319 +1 21 D+1 3+1 4
Formally this Hamiltonian corresponds to a two-and-a-half 5 X )+ 337 Zasx

d.o.f. Hamiltonian system. Using the trivial change of vari-

ableqfork # 0)

o
f=\— —t=\—ct,

K (3.19

it is reduced to an autonomous two d.o.f. Hamiltonian sys-

tem of the(TW) form with
H(x,0,D,0)=H(x,0,D)—cD+ eHy(x,0,D,ké).

(3.16

Indeed,
.. H a1
0—7\—C—E, (7)
B k&Hl(X,v,D,a)_ IH 31
I PR T (318
(3.19

(3.22

Taking a;>0, b>—1/2a; corresponds to compact energy
surfacesHy(x,v,D;c)=h for any finite h. Adding the per-
turbation H,= e(1— 3x?)cosk®), the corresponding vector
field is of the form:

X=v, (3.23

v=a;(D—1)x—a,x?—asx3+ ex cogké), (3.29
9=~ +b)(D-1 L ax? 3.2

0= 2—a3+ ( - )—C—Ealx, ( . 5)
. 1 )

D=ke(l—§x2)sm(k0), (3.26

attaining hyperbolic resonances for0 at

D =1+ ¢ 3.2

(€)= (1285 70" (3.27

Three of the four examples mentioned in the Introduction aré parabolic resonance Bf,=1, ¢,=0 and a flat parabolic

of this form.

In this case the parabolic invariant circles occur for iso-

resonance at these values for=0. Numerical experiments
with this model produce similar results to the ones presented
for the atmospherical problem described in Sec. Il.

lated fixedD values independent af, so the curved are
straight lines parallel to the axis. The curveR of circles of
fixed points are as in the general case, hence Lemmas 1-4
are valid for the TW case as well. IV. CONCLUSIONS

The behavior near parabolic resonances provides a new
type of chaotic mechanism for a two d.o.f. Hamiltonian sys-
tem. It has been established that this phenomenon is of co-
. . dimension 1, hence it is expected to appear in humerous

If Ho is constructed from a family of one-degree-of- 5pjications. Moreover, the basic idea of Lerman and
freedom systems with an effective potential which dependg;manskii® that the addition of another non-separable d.o.f.
onD: may be considered from the bifurcation theory point of view
as the addition of another parameter, applies to higher de-
grees of freedom as well—e.g. we may think of the wave
speedc as another conserved quantity of a larger system
showing that for higher dimensional systems the parabolic
resonance case may be generic.

C. The natural mechanical case

Ho(x,v,D;c)= ;UZ-I-V(X,D;C), (3.20

thenqpr= (Xpr,0,Dpr,Cpr), and the condition$3.2), (3.3),
(3.4) become:
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