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1. I N T R O D U C T I O N  

We consider problems of mixing in fluid flows and show how the methods of dynamical 

systems may be used in the analysis of these problems. In particular, we consider the problem 

of passive scalar mixing in incompressible fluid flows and decompose the problem into three 

stages as follows. The first problem is to express the desired quantities (reactant consumption 

rate .... ) in terms of statistics or functionals of the flow field u(x, t). The second is to compute 

the flow field (or a sufficiently accurate characterization of it) and, the third, determine the 

desired statistical properties. 

The third stage in this process can be formidable with no general solutions available except 

for the simplest two-dimensional steady flows. The problem is directly related to the fact that 

particle motion in two-dimensional unsteady fluids or even in three-diraensional steady flows 

can be chaotic, leading to good mixing but to major difficulties in analysis. On the other hand, 

we show that the techniques from the theory dynamical systems provide some hope for 

problems involving chaotic motion. 

We illustrate the first stage in the process by studying in Section 2 the specific example of a 

simple diffusion flame with fast chemical kinetics in an arbitrary three-dimensional flow. We 

follow closely Ottino's analysis 1 of mixing of diffusing and reacting fluids. As might be 

expected the history of the local stretching of the flame sheet governs the local reactant 

consumption rate. By choosing the steady two-dimensional velocity field of a vortex we 

complete stages two and three of the analysis in Section 3 and recover the results of Marble 2 

for the growth of the reacted core region. Mixing is poor. Flame sheets are stretched 

asymptotically only linearly in time by this flow. 

In Section 4 we consider the flow induced by a pair of translating point vortices. In a 

frame moving with the pair the motion is again steady and produces only linear stretch rates. 

However if the pair is subjected to a time-periodic potential flow, chaotic particle motion can 

result with consequent dramatic increase in mixing. A complete theory of the diffusion flame 

problem is not possible at this time but we study this flow by performing numerical 
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experiments and make a partial analysis of the problem for small perturbations by the method 

of Melnikov. In particular the Melnikov method allows us to prove analytically the existence 

of chaotic particle motions of the Smale horseshoe type and it gives an estimate of the extent 

of the "turbulent" or mixing zone in the neighborhood of the vortex pair and the rate at which 

unmixed fluid is brought into this zone. 

Previous investigations of fluid mixing or chaotic particle motion that have employed 

concepts or techniques from dynamical systems theory include Aref's investigation 3 of a model 

flow system consisting of two "blinking" vortices, a further analysis of the same flow and 

aJaother unsteady, two-dimensional model flow with alternating strain and rotation by Khakhar, 

et al 4 and the study of chaotic streamlines in certain steady three-dimensional Euler flows, 

known as Arnold-Beltrami-Childress (ABC) flows, by Dombre, et al 5. 

2. F L A M E  S H E E T  - G E N E R A L  A N A L Y S I S  

Consider a flame sheet separating two reactants A and B. The stoichiometry of the reaction 

is such that equal masses of each reactant are consumed at the infinitely thin reaction zone on 

the flame sheet. A material point p on the sheet moves with velocity 

dp= u(p,t) (2.1) 
dt 

E(p,t) 

Fig. 1. Flame sheet geometry. 
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Let y be a relative coordinate normal to the sheet at p into the space containing A. For a thin 

flame we require only the first term in the Taylor series for the relative convection velocity in 

the direction normal to the flame sheet: 

u(x, t ) ' n  - u(p, t)" n - e ( p ,  t)y (2.2) 

where e is the (negative) strain rate normal to the sheet or, equivalently, the stretching rate of 

the sheet at p. See Fig. 1. Thus the conservation equation for the mass fraction of reactant A, 

~A(P,  Y, t )  i s  

aqh i~A O~ 
0t ey---~-y =O ~ (2.3) 

where D is the diffusion coefficient. This problem may be transformed into the familiar 

diffusion equation, 1~ 

~A az~A 
1 = D  - -  (2 .4)  ~x ay2 

by transforming to the material coordinate 

y = S(p, t)y (2.5) 

and transforming in time according to 

t 

x = I S2(P, t') dr" (2 .6)  
0 

where S is the fractional increase in sheet surface area at p given by 

S (p, t) = exp e(p, t') tit (2.7) 

Solving (2.4) we find that 

~A(P,Y, . ""L (4O'O~J 
(2.8) 
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Thus the reactant consumption rate per unit initial area at p, C(p, t ) ,  is given by 

3~a S 2 C(p,t)=D--~-y ly=oS= (2.9) 

and the volume of reactant consumed per unit initial area is 

V(p,t)=IC(p, t ' )dt '= ~ 
0 

(2.10) 

Except for the important proviso to be discussed below, the local time-dependent reactant 

consumption rate is completely determined in terms of the local stretch history of the flame 

sheet. The total product volume is then simply related to the average value of V(p, t) over the 

flame sheet but the distribution of stretch histories for a given flow are generally not known. 

Furthermore the results cited are only valid up to the point when the zone of the product at 

p (ly I < (4DxlS2) 'a) "collides" with the product zone of another point on the sheet. See Fig. 2. 

Thus factoring in this sort of information for a general flow presents an even higher level of 

difficulty. The problem is reminiscent of the self-avoiding random walk. 

A 

/ 

B 

/-"a.Ucg  \ 

- {  
A ,- \ 

Fig. 2. Overlapping of product zones. 
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3. Spiral Flame Sheet 

As an application o f  the above results we consider a single vortex with circulation F on an 

initially planar interface separating the two reactants. See Fig. 3. A surface element at a 

distance r f rom the vortex will rotate around the vortex with speed 

r (3.1) 
V0= 2~r  

if r is outside the vortex core. 

amount 

We find easily that this surface element is strained by the 

S ~ F---L (3.2) 
7cr 2 

as t ~ .0 so that ~ ~ lit. The time x is therefore given by (2.6), 

r 2 t s 

• t(r, t) ~ nar4 3 (3.3) 

and the volume of  reactant consumed per unit initial area is 

._F__F [ 4Dt ']  '~ 
V (r, t ) -~ nr~ [ 3~ j (3.4) 

V8 = r / 2 r  r t = O  

B vod.  

f=t  

Fig. 3. Flame sheet in the flow of a single vortex. Time = 0 and a later time. 
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Again this result is only valid up to the point when the product zones collide or, in this case, 

when the reactants are consumed. Let r*(t) be the radius of the product core at time t. Then 

r~r* is the product volume per initial sheet area and hence the condition for product zone 

overlap is 

xr* (3.5) V(r*, t )  = 2 

which, using (3.4), gives 

[-~-1 1/6 r* ---> 16 D l/trq/3t 1/2 (3.6) 

in agreement with Marble 2 . 

Thus we have solved completely a simple combustion problem. On the other hand the flow 

was steady and two-dimensional resulting in only a linear increase in time of the flame sheet 

and relatively poor mixing. In our next example we consider the flow induced by a pair of 

translating point vortices. In a frame moving with the vortices the motion is steady so again 

we expect only linear stretching with time. However if the vortices are subjected to a time- 

dependent strain field a much more interesting flow results. 

4. T R A N S L A T I N G  P O I N T  V O R T I C E S  

The fluid flow induced by a pair of translating point vortices separated by a distance 2d and 

with circulation + F is sketched in Fig. 4. The motion is viewed in a frame moving with the 

velocity of the vorticies, v = F/4rtd ex. Again mixing would be poor as the stretching of any 

interface would be at most linear in t. In fact all the fluid inside the streamlines, W0+ and W0-, 

connecting the front and rear stagnation points remains trapped, travelling with the vortices. 

The stream function for this flow is 

F [ (x-x, lZ+(Y-Yv) 2] Fy (4.1) 
¥0 = - ~-n log (x_x~)2+(y+y,)2j - 4rid 

where (xv, yv) is the position of the vortex in the upper half plane. For the unperturbed case, 

(xv, yv) = (0, d), and the equations of particle motion are 

dx _ bq0 dy = _  bx¢0 ( 4 . 2 )  

dt 3y ' dt bx 
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and the three streamlines connecting the stagnation points are defined by 

W0(x,y) = 0 Ixl <,~Jd (4.3) 

~rO+ 

P- ~_"~-~--E~"" P+ 

*o- 
Fig. 4. Fluid induced by a pair of translating vortices. Unperturbed case. 

Next we consider the effect of adding a time-periodic potential flow, i.e., 

¥=¥o+~ (4.4) 

with 

¥~= exym sin tot + v tY  (4.5) 

and where the constant translation speed v t is included in anticipation of a coordinate change 

and is determined by requiring that the vortices have zero drift velocity. Such a flow satisfies 

the Euler equations and is produced, for example, by the motion of a vortex pair in a wavy- 

walled channel. The resulting motion of the vortices is relatively simple. Introducing the 

dimensionless parameter, 

r a = - -  (4.6) 
2m.zd 2 

and the dimensionless variables ( x l d , y ld ) - - ) ( x , y ) , t o t - -4  t and v d d t o - ~ v  e , we compute the 

motion of the vortices with (x,(0), y,(0)) = (0, 1) to obtain 
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a 
x~ (t) = exp(-e cos ~ )  S exp(e cos c0t') ~ [exp(-e(cos tot'-l)) - I I + v dt" 

0 

y , ( t )  = exp(e(cos tot - 1)) (4.7) 

where 

However  our pr imary interest is in the motion of  passive particles and, as we will see, this 

motion can be quite complicated. We give now only preliminary results o f  an analyis of  the 

flow using methods of  dynamical  systems theory and of  numerical experiments. A complete 

discussion of  the results is forthcoming. The numerical experiments described below are based 

on the full equations of  motion, valid for arbitrary e ,  i .e . ,  

a~ __~ ay ~ ,  
d---t = ~y ' dt ~x (4.8) 

with the exact x, = (x, (t, e, a), y, (t, e)) in ¥0- Our methods of  analysis require the expansion of 

the fight hand sides of  (4.8) in powers  of  e. The required expansions are simply done to obtain 

dx 
dt = a f  l(x,  y )  + eg l(x,  y ,  t; a)  + 0 (e 2) (4.9) 

d~dt = a f  2(x , y ) + eg 2(x , y , t; a)  + O(e 2) 

where the functions g l and g2 are periodic in t with period 2re. 

The analysis focusses on the study of  the Poincare map for the system (4.9), 

P : (X(to), y(to) --~ (X(to+2n), y(to+2n)) 

where t o is the section time for the map. For e = 0 the streamlines of  the flow shown in Fig. 4 

are the invariant curves of  the map. In particular, this map has two hyperbolic saddle points at 

p± = ( + ~ ,  O) 
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and the unstable manifold of  p+ coincides with the stable manifold of  p_. These manifolds are 

also heteroclinic orbits and are defined by the streamlines ¥ ~  defined above in dimensional 

form. 

For e nonzero but small, these saddle points, along with their stable and unstable manifolds,.  

persist and we can use the method of Melnikov + to test for a transversal intersection of the 

manifolds and hence chaotic particle motion. The signed distance between the manifolds is 

given by 

e.M (t o) 
d(to) = if(q(_to)) I + O(e 2) (4.10) 

where f and q are velocity and position on the unperturbed heteroclinic orbit, to parameterizes 

the orbit and M(to) is the Melnikov function given by 

M (to) = "~ ( f i g 2 - f ~ l ~  q(t-~,) dt (4.11) 

We find that 

M(to) = F(a) ~m to (4.12) 

where F(a) is shown in Fig. 5. Let a* be the nonzero value of a such that F(a*) = 0. (We find 

that a* - 1.78.) Then if a > 0, a ~ a* the Melnikov function has simple zeroes in to and therefore 

we have a transversal intersection of the stable and unstable manifolds. This implies the 

existence of Smale horsehoes and their attendent chaotic dynamics. 

I 

F(a) 

0 

- I  

0 

, , , | i | , | | i | , , , i , , , | i , , . i  

t t • , 

0.5 "1 1.5 2 
o 

2 .5  

Fig. 5. Function from the Melnikov analysis. 
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But the analysis provides much more than just the fact that chaotic particle paths exist. 

From M(to) w e  can compute d(to) and therefore we can estimate the width of the "turbulent" 

zone around the unperturbed heteroclinic orbits. See Fig. 6. Only the fluid between the two 

dashed curves in Fig. 6 can be entrained, mixed and detrained. The inner dashed curve 

represents the Poincare section of the last KAM tori. Thus fluid inside of that curve never 

escapes from the inner zone. We find also the area of each of the "lobes" or regions bounded 

by the stable and unstable manifolds is given by 

A=2elF(a)l  +0(e 2) 

and this is precisely the volume or area of fluid that is entrained into the mixing zone per 

period, i.e. lobe A0 maps to lobe A 1 in one period and then to A2, A3, etc. Of course an equal 

volume is ejected each period, namely lobe B_I is mapped to B0 and then to B1, B2, etc. 

Furthermore, from Fig. 5 the Melnikov analysis predicts that the width of the turbulent zone 

and the lobe area will at first increase with increasing parameter a, reach a maximum, go to 

zero at a - a* then increase again for a > a* but with a change in structure because F(a) is now 

negative. (Recall that signed distance between the stable and unstable manifolds, d(to) , is 

proportional to F(a).) Numerical computations for the stable and unstable manifolds of p_ and 

p+, respectively, confirm these predictions and some examples are presented in Fig. 7. 

, d(to) 
Bo ~ - ~ ~ ~ ~ ~ A o  

" , ~..-B. Aa /" t 2 

X 

Fig. 6. Sketch of stable and unstable manifolds defining the lobe structures, the distance between 
manifolds, d(to) and the boundaries of the mixing zone. 
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(a) a=O.3, e =0.1 

(b) a=O.7, e =0,1 

(c) a=l .48,  e =0,1 

Fig. 7. Stable and unstable manifolds computed using the full equations 
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A number of interesting questions remain to be answered. At the present time we are 

investigating particle escape rates and the structure of the “escape” map. For example, we 

know that all particles in lobe A0 are entrained into the interior in one period but what fraction 

of those escapes, i. e. arrives in B, after exactly k periods, and what is the distribution of those 

k-period particles in A0 ?. With information of this kind we may begin to bridge the gap 

between the general analysis of the mixing problem presented in Section 2 and the application 

of that analysis to flows with chaotic particle motion. 

5. SUMMARY 

We have discussed several aspects of mixing in fluid flows, first by concentrating on a 

specific mixing problem - that of a simple diffusion flame with fast chemical kinetics in an 

arbitrary flow. The dependence of the local reactant consumption rate on the history of the 

local stretching of the flame sheet was determined up to the point where the flame sheet folds 

over on itself and the product zones collide. The analysis was applied to a simple, steady 

vortex flow producing a spiral flame sheet. In this case, the specific mixing problem is 

completely solved. Next we considered the flow due to a pair of translating point vortices 

subjected to a time-periodic potential flow. In this flow fluid is continually entrained into and 

detrained from a “turbulent” zone that moves with the translating pair. The original mixing 

problem was not solved but a considerable amount of information about entrainment rates, size 

of the mixing zone, etc., was obtained by using concepts and techniques from dynamical 

systems theory. In addition good insights into the mixing process were obtained. In particular, 

it was shown how the simple lobe structures of the stable and stable manifolds, with their 

ordered behavior under the Poincare’ map, am responsible for chaotic mixing and mass 

transport. 

ACKNOWLEDGEMENT - This work was partially cupported by the Office of Naval 

Research contract NO00 14-85-K-0205. 

6. References 

1) J. M. Ottino, J. Fluid Mech. 114 (1982) 83. 

2) F. E. Marble, Growth of a Diffusion Flame in the Field of a Vortex, in: Recent Advances in the 
Aerospace Sciences, ed. C. Casci (Plenum Publishing, 1985) pp. 395413. 

3) H. Aref, J. Fluid Mech. 143 (1984) 1. 

4) D. V. Khakhar, H. Rising and J. M. Ottino, J. Fluid Mech. 172 (1986) 419. 

5) T. Dombre, U. Frisch, J. M. Greene, M. Henon, A. Mehr and A. M. Soward, J. Fluid Mech 167 
(1986) 353. 

6) J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of 
Vector Fields (Springer-Verlag, New York, 1983). 


