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Abs t r ac t :  We study the motion of Lagrangian particles launched on a 
geopotential surface of a rotating sphere (e.g. floats in the deep ocean) where the 
latter is zonally perturbed by some travelling pressure wave (e.g. tidal waves). 
The motion of these particles is described by a near integrable, two-degrees-of- 
freedom Hamiltonian system. For some regions in parameter and phase space, 
the system may be reduced to a one-and-a-half-degrees-of-freedom Hamiltonian 
system and standard tools may be applied to prove the existence of chaotic 
homoclinic behavior, hence of the phenomena of anomalous transport associated 
with the homoclinic chaos. In other regions zonally localized structures and 
homoclinic tangles with back-flows, associated with the three dimensionality of 
the energy surfaces appear, as well as resonant behavior of unstable periodic 
orbits. 

1. I n t r o d u c t i o n  

The simplest possible two-dimensional motion on a rotating sphere, due 
only to Coriolis force (i.e. in the absence of any body force), is called the inertial 
motion. It may be relevant for describing the motion of Lagrangian ("passive") 
particles in the atmosphere (such as weather balloons, pollutants or satellites in 
the upper atmosphere) or for describing the motion of floats in the deep ocean. 
Each of these applications involves different scales of velocities, and various sim- 
plifying assumptions on the dynamics which need to be carefully examined (in 
particular, for the atmospheric applications the role of the interaction of changes 
in pressure and particle velocity). In the context of atmospheric and oceano- 
graphic flows, the possible solutions of the inertial (i.e. force free) motion have 
been described in various textbooks 1 for some specific cases (e.g. small latitudi- 
nal extent). The introduction of the general equations of motion (namely when 
the scale of the motion is allowed to encompass the entire globe), their inte- 
grals, and the full analysis of their possible solutions has been introduced only 
recently by Paldor and Killworth 2. The influence of weak zonally travelling pres- 
sure waves, perturbing the geopotential surface from its mean spherical shape, 
was considered by Paldor and Boss 3. They have demonstrated that chaotic tra- 
jectories exist and cause dispersion of lines of Lagrangian particles. In fact, many 
different waves exist in the real atmosphere - tidal (thermal or planetary) waves 
are examples of eastward propagating waves while Rossby waves propagate west- 
ward. The effect of these two waves on particle dispersion will be shown to be 
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qualitatively different. Here we set the ground for a complete analysis of these 
equations, and include results regarding mixing and transport for some particu- 
larly simple cases. We concentrate on the mathematical aspects of the analysis, 
and at this point, use the physical circumstance as a motivation for posing the 
mathematical  problems. The application of our results to observations on the 
physical system is deferred to a follow-up study. 

Mathematically, the equations we consider are near integrable two-degrees- 
of-freedom Hamiltonian system. Most of our conclusions are based upon known 
results from various works in dynamical system theory. The use of several dif- 
ferent tools in understanding one system seems to be unique, and brings up the 
issue of matching between the different techniques in the intermediate regimes. 
The new concept /method we introduce here is the representation of colored 
energy surfaces: we plot a two dimensional cross-section of the three dimen- 
sional energy surfaces and tag them according to the behavior of the angular 
variable. This geometrical representation enables an immediate interpretation 
of the generic qualitative behavior and aids in identifying the occurrence of all 
singular behavior. 

It has been observed that the chaotic zone in two- and four-dimensional area 
preserving maps which is associated with the existence of homoclinic tangles 
exhibits anomalous transport  in which LeVy flights alter the decay rate of the 
autocorrelators and lead to non-diffusive behavior 4. Moreover, such a behavior 
has been observed experimentally in a rotating system in which the inertial 
motion may be realized (see Weeks et al., this proceeding). The analysis of 
our system reveals the existence of homoclinic chaos of various types, with two 
types which are "generic" - the usual homoclinic tangle associated with one-and- 
a-half d.o.f. Hamiltonian systems and a homoclinic tangle with a back-flow in 
the angular direction. It follows that the phenomena of anomalous transport is 
present in our system in the former case. The appearance of the L~vy flights in 
the second case is yet to be explored. 

This paper is organized as follows: in section 2 we describe the structure 
of the integrable system and its symmetries. In section 3 we construct the 
energy surfaces and present the division to the parameter ranges according to 
the expected behavior under perturbation. In section 4 we present the Melnikov 
analysis results for the simplest, infinite wave length perturbation case. We 
discuss the implication of this result on maximal mixing and maximal chaotic 
z o n e .  

2. T h e  p h a s e  space  g e o m e t r y  

The non-dimensional Lagrangian momentum equations for the eastward and 
northward velocity components (u, v) and the rate of change of the longitude and 
lat i tude coordinates (A, ¢) are given by: 

dA u 
- ( 2 . 1 a )  

dt cos ¢ 
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__du = vsin¢(1 + u ) _  keA,(¢ ) cos(k;~- at).  (2.1b) 
dt cos ¢ cos ¢ 

de 
- -  = v ( 2 . 1 c )  
dt 
dv u 
- -  = - u s i n ¢ ( 1  + - - ~  eA'(¢)sin(k~ at) (2.1d) 

c o s t "  - - dt 

Equations (2.1) have been nondimensionalized using the radius of the earth for 
length scale and twice the frequency of the earth's rotation for the frequency 
scale, so tha t  a nondimensional time unit corresponds to 24h/2~r ~ 1.901 hours. 
Order one velocities in the nondimensional variables turn out to be nearly 1 
km/second dimensional velocities, so the relevant nondimensional velocities for 
atmospheric flows are of order 0.01 , For satellites, the relevant scales are of 
order 1 and for oceanographic flows of order 0.001. A(¢) represents the lati- 
tude dependent  amplitude of a pressure wave (divided by the density), which is 
assumed to be even: 

A(¢) = A ( - ¢ )  A(0) = 1, A'(0) = 0. (2.2) 

A(¢) may represent, for example, the amplitude of a daily tidal forcing (k = 
1, a = 1), for which the amplitude A(¢) may be either taken as constant (A(¢) = 
1) or to vary with lati tude like A(¢) = cos 3 ¢, see Paldor and Boss 3 for discussion. 
Higher or negative wavenumbers may be associated with other waves present in 
the atmosphere (e.g. Rossby waves). For the atmospheric flows the relevant 
scale for the pressure wave is that  of the order of the kinetic energy, namely 
e is O(10-4) .  Finally, we note that  the polar coordinates introduce apparent 
singularity at the poles; cos ¢ = 0 there, but u vanishes there as well, so no real 
singularity is encountered when the solutions pass near the poles. 

When no waves are present the motion is integrable; Two integrals of motion 
were derived in Paldor and Killworth 2 for the inertial trajectories, corresponding 
to the angular  momentum D and the kinetic energy E: 

D = cos ¢(cos ¢ + 2u) (2.3a) 

E = u 2 + v 2. (2.3b) 

Using (2 .3a)  u may be expressed in terms of D and ¢: 

1 ( _ c o s  ¢ )  ( 2 . 4 )  u = ~  

When e = 0 the equation for/k decouples, D is conserved so it is considered 
a parameter ,  and the phase flow of the two dimensional system obtained for 
(¢, v) depends on the value of D as follows: 

When ]D I > 1 the origin is stable (elliptic) and is surrounded by periodic 
orbits which visit both hemispheres. Denote the maximal latitude reached by a 
periodic orbi t  by Cmax = Cmax(E, D). 
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When [D[ < 1 the origin is unstable (hyperbolic) and two stable, elliptic 
fixed points are created at 

(¢~u,v~u) : +(arceos ]X/~,0)- ( 2 . 5 )  

~=t The origin has two homoclinic orbits~, one in each hemisphere: qh ( ; Chmax)  ~- 

4-(¢h(t; Ch,,~), vh(t; Chm~)) where Ch,~a~ is the maximal latitude reached by 
the homoclinic orbit and is given by 

cos Chm~. = IDI. (2.6) 

While not included here for lack of space, we note that Eqs. (2.1) provide exam- 
ple in which all unperturbed solutions may be found analytically - the homoclinic 
orbits to the origin qh(t; Ch,~a~) for IDI < 1, the associated homoclinic solution 
for the longitude position A~(t; Ch,~a~), the period of the periodic orbits in ¢, 
P¢(¢max; Chinas) = Pc(E, D) and the longitude position after completion of one 
period in the ¢ variable. In particular, exact predictions for the location of 
resonances may be found easily. 

The homoclinic orbits separate the phase space to three distinct regions - 
regions R1 and R2 contain periodic orbits which are restricted to one hemisphere 
(north and south respectively) whereas region R3 contains periodic orbits with 
Cmax > Ch,~a~. The area of the bounded regions is: 

= = s in  Chr o  -- c o s  ¢hmo . ( 2 . 7 )  

It follows from (2.1) that when e 7~ 0 

dO _ -2eA(¢)k cos(kA - at), ~ - -  ( 2 . s )  

hence there is a major difference between the k = 0 and k ~ 0 cases: 

Forcing with infinite wavelength (k = 0): 

This forcing corresponds to a perturbation which does not vary with lon- 
gitude. If the amplitude of the pressure wave is independent of latitude ( 
A(¢) = const.) then the perturbation merely changes periodically the radii of the 
spherical geopotential and hence has no effect on the motion along it. Thereby, 
only latitude dependent amplitude (A'(¢) ~ 0) is of interest. Since the angu- 
lar momentum is conserved in this case, using (2.4) it follows that equations 
(2.1c ,2.1d ) are independent of ,k and may be analyzed using the standard tools 
of a one-and-a-half degrees of freedom Hamiltonian system, depending on the 

These are solutions which are asymptotic to the origin as t --* -4-oo. 
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parameters  D, a and on A'(¢): 

-dA 1( D 
d - ~ = ~  c---~s2 ¢ 1) 

dD 
- - ~ 0  
dt 
de 
- - ~ - - V  
dt 
dv 1 . 

= ~ sm(2¢)(1 

and the Hamiltonian: 

D 2 

¢) + eA'(¢) sin(at) 
COS 4 

(2.9a) 

(2.9b) 

(2.9e) 

(2.9d) 

v ~ , D _ c o s ¢ ) 2 _ c A ( ¢ ) s i n ( a t ) .  ( 2 . 1 0 )  H ( ¢ , v , t ; D )  = y + ~(¢-G~¢ 

The equations and Hamiltonian written for k = 0 clearly demonstrate the rel- 
evance of the restriction to latitude dependent amplitude of the perturbation. 
More details regarding this case are presented in section 4. 

Forcing with 11hire wavelength (k ~ 0): 

Introducing the wave velocity c: 

c = ~  

and defining 9, the conjugate variable of D, by: 

(2.1) is replaced by: 

(2.11) 

e = 1(~ - ct), (2.12) 

dO 1 D OH i t  + (2.13a) 
dt 4cos 2¢  ~ c  ~ j =  OD 

dD OH 
d t - -  2kcA(¢)cos(2kO)-- 00 (2.13b) 

d¢ OH 
v (2.13c) 

dt Ov 
dv 1 D 2 OH 

- 8 sin(2¢)(1 cos4 ¢)  - eA'(¢) sin(2kg) - 0¢ , (2.13d) dt 

where H is the Hamiltonian given by: 

v 2 1 D c H(¢,v ,O,D)  = 7 + g(G~¢ - c°s¢)  2 - 7 D + eA(¢)sin(2kO). (2.14) 

Using the symmetries of (2.13) , it is easy to show that the relevant param- 
eters ranges for (2.13) are: 

< c < oo, (2.15) k > O, ~ > O, - ~  _ 
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as all other  values may be reduced to the above. Mathematically, the natural  
period for 8 is ~/k, however, physically, it is ~. When considering dispersion of 
particles, this distinction is important, hence we keep 8 E [0, r ) .  By the evenness 
of A(¢),  the Poincar~ map in 8 at 80 is symmetric with respect to: 

i. ¢ - - ~ - ¢ ,  v ~ - v  for all 80. 

ii. ¢ ~ - ¢ ,  8 --~ - 8 ,  t -* - t  when 80 = j~r/2k + r / 4 k  for some integer j .  

However, (2.13) is not symmetric with respect to reflections in D: when 
D ~ - D  the equation for 8 changes in a non invariant manner (though for the 
unper turbed case, the system in (¢,v) is symmetric with respect to reflections 
in D). This asymmetry is due to the unidirectional rotation of the earth. 

3. T h e  E n e r g y  Surfaces 

Equations (2.13) constitute a weakly coupled two-degrees-of-freedom Hamil- 
tonian system, so their solutions lie on three dimensional energy surfaces in 
(v, ¢, D, 8) phase space, given by level sets of H of (2.14). The structure of the 
energy surface serves as a backbone for understanding the solution structure in 
the different regions of parameter and phase space. 

Below, the construction of the energy surfaces for c > 0 ( Figure 1) and 
c < 0 ( Figure 2) is described. Then we discuss the implications of the surface 
s tructure on the dynamical behavior in the different regimes in phase space and 
the analysis of these regimes. 

3.1 Construct ion of  the Energy Surfaces 

We construct the surfaces at the cross-section O -= 0, so that the O(c) 
term vanishes. The actual energy surfaces are three dimensional, and may be 
represented symbolically as the cross-sections presented in Figure 1 or Figure 2, 
multiplied by a circle on which the variable 0 varies. Other cross-sections on 
the circle, corresponding to different values of 8 may be viewed as changing the 
value of H by an O(c) amount and as slight deformation of the surface if A(¢) 
is not constant. This effect is especially significant near values of H for which 
the singularities of the energy surface change. 

To present the motion in the 8 direction in a compact fashion we color the 
regions on the energy surface for which d0 ~7 is positive along the unperturbed 
orbits by light shading and the regions on which it is negative by dark shading. 
This coloring scheme enables us to read of the structure of the four-dimensional 
flow from the two dimensional energy surface plot. 

The  energy surfaces of Figure 1 and Figure 2 are plotted for increasing 
values of H - picking the typical structure in each regime of H values as described 
below. 

To find the minimal relevant H value, we use (2.14) to conclude that at the 
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origin 
Ho(D) = H(O, O, O, D) = ~(D - 1) 2 - ~D, (3.1) 

Hence, the minimal value of H for which an energy surface includes the origin 
is given by: 

Hmin = minHo(D) = -½c(1 + c). (3.2) 
D 

The  value of D at the origin for a given H value is: 

D+(H) = (1 + 2c) 4- 2x /2H + c(1 + c). (3.3) 

It follows that  the minimizing D value (i.e. the value of D at Hmi,~) is: 

Dr = 1 + 2c. (3.4) 

Consider the case c > 0. Then, D+(H) > 1 for all H > Hmin, and D_(H) > 1 
for H E [Hmin, H-c~2] where 

g_c/2 = m~n{D_sign(c) = 1} = - c / 2 .  (3.5) 

From (2.14), for 0 = 0, 

Y~2 _- H - ! (  D___D__s cos ¢ -- c°s¢)  2 + 4 O, (3.6) 

so, for D E (D_(H),D+(H))  the r.h.s, of (3.6) is positive at ¢ = 0, hence the 
energy surfaces for these values of H are as depicted in Figure 1 a. Moreover, 
for c > 0, (3.6) has a real solution for some D value iff H > Hmin so we need 
not consider smaller values of H.  

To color Figure 1 a, we investigate the behavior of dO It follows from (2.13a -~. 
) that 

! 

[ =¼(D-1-2c) dO 

-~ ¢=0 

hence dO is positive at ¢ = 0 for D > 1 + 2c and negative for D < 1 + 2c. ~7 
dO changes sign when ~ = 0, and this may happen iff ¢ = Cr where Moreover, -~ 

cos 26r  = D (3.7) 
2 c + 1  " 

Hence, dO may change sign along orbits only if 0 < D < Dr where Dr = 1 + 2c 
as in (3.4). Substituting (3.7) (and e = 0) in (2.14) we restrict D so that v 2 is 
non-negative at ¢ = Cr; since 

c(1A-c)D v 2 = 2 H +  1+2~ , 

and the r.h.s, vanishes for D = DA(H) where 

D R ( H ) =  2H(1 + (3.8) 
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dO vanishes on a given energy surface, H, for ¢ = ¢~ only when we find tha t  
D e [max{0, On(H)} ,  Dr] for c > 0 and when D e [0, D~] for c < 0. 

It follows that for c = 0.5, Hmi, = -0.375, H_c/2 = -0.25, hence Figure 1 a 
falls into this regime. Now we describe briefly the changes in the energy surfaces 
for c > 0 as H is further increased from its minimal value Hm~,~. At H = H-c~2, 
D - ( H )  = 1, namely the bifurcation point lies on this energy surface. Increasing 
H further brings the separatrix and the elliptic points onto the energy surface. 
Equations (2.5) and (2.14) imply, in this case, that the elliptic points on the 
energy surface H have angular momentum: 

-2H H > 0 (3.9) 
Del l (H)=  -~H H < 0 .  

c+1 

Also, equation (3.3) implies that ID-(H)I < 1 for H-¢/2 < H < Hmax where 

Hm~x = rn~x {HID_(tt  ) >_ -1}  = Ho(-1)  = ½(c + 1), (3.10) 

hence the separatrices emanating from (0,0, D_(H),0)  and the elliptic points 
are contained in the energy surface with energy H for such H values, as depicted 
in Figure 1 b-e. 

The difference between the first three figures Figure 1 b,c,d is the different 
behavior of ~ in the vicinity of the separatrices; Indeed, as long as D_(H)  < 
DA(H) ,  dO may not vanish along the separatrix, as shown in Figure 1 b. Since 
D _ ( H )  = D/ , (H)  when ¢~ = C h , ~ ,  we use (2.6) and (3.7) to conclude that at 
that  point D _ ( H )  = D/ , (H)  = Dc, where 

(3.11) 2 cUI- 1, 

and this determines the critical value of H: 

- 1). (3.12) 

Hence, for H E (H-c/2,Hc),  dO ~/ is negative for all (¢h, Vh) aS depicted in Fig- 
ure 1 b, for H = He, dO vanishes at one point along the separatrix, namely, 
at ¢ = ¢hm~x, and otherwise it is negative, and for H > Hc, there is a region 
of ¢ values, ¢~ < ¢ < Chm~x, for which dO is positive whereas for ¢ < ¢~ d0 d-X 
is negative, as shown in Figure 1 c (Hc(c = 0.5) = -3 /32  m 0.094). When 
H = O, Dell = DA(H) --- 0, corresponding to the degenerate behavior at the 
poles. When 0 < H < ~, D_(H)  > 0 and Dell < 0, all orbits with 0 < D < 1 
have regions of back-flow where dO > 0, while the periodic orbits with D < 0 
have none. The intersection of the energy surface with D = 0 surface consists of 
interior orbits, corresponding to periodic motions restricted to one hemisphere, 

1 the separatrix reaches D = 0, passing through the poles with v < ½. At H = 
1 connecting the equator and the poles ( Figure 1 d). For ~ < H The intersection 



80 

%%%, 
%: 

C = 0 . 5  C = 0 . 5  
HI = - 0 . 3 0  H = ~ 0 . 2 0  D 

l )  

T)~ 14,~{.~" 1 1 = t + 2 ( . ' .  

.... i :: ::t! ..... d:<<=: 

~'~ ~ I ...................... 
.~.:~:,,~ ",%. 

C = 0 . 5  1 D 
H = 0 . 3  I~ ..... 

i i~i::iiiih 

~ , .  

i!!!!: 
--... 

C = 0 .5  ~ °1:~ 

> : : <  ............ . 

................. , : { : . .  [ } ~ . ~  %" 

Figure  1. The energy surfaces for c > O, 0 = O. 
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of the energy surface with D = 0 surface contains exterior orbits, corresponding 
to periodic motions going through both hemispheres, passing through both the 

1 These motions correspond to high kinetic north and south poles with v > 5" 
energies and are not expected to be encountered in observed oceanic or atmo- 
spheric flows. For ~ < H < Hm~x the separatrix and the elliptic points have 
negative angular momentum (0 > D-(H),D~zz(H) > -1)  where de does not 
change sign ( Figure 1 e). When H > Hmax the energy surface includes only 
exterior periodic orbits, and the periodic orbits with 0 < D < Dr have regions 
of back-flow ( Figure 1 f). 

Similar analysis for the c < 0 case results in Figure 2. Clearly new structures 
of the energy surface appear. Most notably, for 0 < H < H , ~ ,  there exist 
an energy surface consisting of two connected components ( Figure 2 a). At 
H = Hmin the two components coalesce at the origin ( Figure 2 b), and for 
Hm~n < H < min{-c/2,0.125} there exist two homoclinic orbits emanating 
from D±(H) with 0 < D± < 1 (F igure  2 c). For 0.125 < H < Hma, the 
lower homoclinic orbit has D_(H) C (0 , -1)  ( Figure 2 d,e) whereas for Hm~ < 
H < -c /2  the upper homoclinic orbit has D+(H) E (Dr, 1) (Figure 2 c,d). The 
behavior near D = Dr for H ~ Hmi,~ is of special interest. 

3.2 Regimes  of analysis: 

The series of energy surfaces of Figure 1, Figure 2 and the structure of 
the unperturbed motion on them reveals that there are three types of typical 
structures which emerge for small non vanishing pressure waves. Moreover, 
the critical values of H and D for which a certain degenerate behavior appears 
arise naturally as the limiting values for which the boundary separating different 
subregions is approached. 

T y p i c a l  S t r u c t u r e s  

A.  K A M  surfaces :  The KAM surfaces correspond, in the unperturbed 
case, to the motion on tori composed of the periodic motion in ¢ on the presented 
cross-section and the periodic motion in 0, with irrationally related period. By 
KAM theory, even for nonzero perturbation (yet sufficiently small) most of these 
tori persist. These tori are two dimensional surfaces which divide the energy 
surfaces, hence their persistence guarantees stability in the D direction (as is 
the standard case for two-degrees-of freedom systems). 

B. R e s o n a n c e s :  The coupling between the rationally related periodic mo- 
tion in the angles ¢ and 0 creates resonances. When d0 is nonvanishing these 
resonances are necessarily of rotational nature in 0, namely 0 covers the in- 
terval [0, ~r]. When de changes sign along an orbit, (i.e. the orbits containing 
two-colors in Figure 1 or Figure 2) there exists the possibility of oscillatory reso- 
nance, which, under the perturbation, results in localized structures with respect 
to the travelling wave. Moreover, one expects that the size of these oscillatory 
resonances will be the most significant (in future work we plan to indicate the 
values of D on which strong resonances are to occur on the energy surface). 
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F i g u r e  2. T h e  energy  surfaces for c < 0, 0 = 0. 



83 

C.  N e a r  s e p a r a t r i x  behav ior :  

i. Monotonic to dependence: when de is bounded away from zero over an 
invariant region which includes the separatrix, the system (2.13) is reduced, as 
in Marsden and Holmes 5, to a one-and-a-half degrees-of-freedom Hamiltonian 
system, where tO replaces time. The reduction and the analysis of the reduced 
system will be presented elsewhere. From Figure 1 and Figure 2 we identify 
the intervals in H for which the unperturbed solutions in to near the separatrix 
are monotonic in t (for these intervals the neighborhood of the separatrix has 
only one color shading in the figure): 

I . c > 0 :  

In. For H E (-c/2, TIc) the component to(t) is monotonic near the sepa- 
ratrix emanating from D_(H), as depicted in Figure 1 b. For these 
values of H,  D_(H) E (De, 1). 

Ib. For H E (1/8, 1 ~(c + 1)), the component O(t) is monotonic near the 
separatrix emanating from D_(H), as depicted in Figure 1 L For these 
values of H, D_(H) E (-1 ,  0). 

II. c < 0  

IIa. For H E (Hmin,-c/2), the component O(t) is monotonic near the sep- 
aratrix emanating from D+(H), as depicted in Figure 2 b,c. For these 
values of H, D+(H) E (Dr, 1). 

IIb. For H E (1/8, 1 ~(c + 1)), the component to(t) is monotonic near the 
separatrix emanating from D_(H), as depicted in Figure 2 c,e. For 
these values of H, D_(H) E (-1,0) .  

ii. Non monotonic to dependence: when 40 changes sign along orbits in 
the vicinity of the separatrix (but not at the origin) the system is fully three 
dimensional on each energy surface. The methods developed by Wiggins ~ may 
be used to analyze the behavior of the separatrices. The geometrical interpre- 
tat ion of the results in terms of the transport in the four dimensional system is 
challenging. Such a behavior occurs in the following regimes: 

I . c > 0 :  

Ic. For H E (Hc, 1/8), the component to(t) is non-monotonic near the sep- 
aratrix emanating from D_(H), as depicted in Figure I d,e. For these 
values of H, D_(H) E (O,D~). 

II. c < 0  

IIc. For H E (Hmln, 1/8), the component to(t) is non-monotonic near the 
separatrix emanating from D_(H),  as depicted in Figure 2 b,d. For 
these values of H,  D_ (H) E (0, Dr). 

D e g e n e r a t e  b e h a v i o r  

The interesting degenerate cases are listed below: 
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dO vanishes on the unstable fixed point A.  H y p e r b o l i c  r e s o n a n c e :  When 
(¢, v) = (0, 0), a strong resonance (1:1) occurs between the inertial trajectories 
and the forcing. Recent results by Kovacic and Wiggins and their extensions by 
Haller and Wiggins and Kaper and Kovacic 7 may be used to analyze this case. In 
these works the authors concentrated on finding criteria and proving theorems 
regarding the existence of transverse homoclinic orbits of various geometrical 
nature (analogously to finding the Melnikov integral in the one-and-a-half d.o.fi 
Hamiltonian systems). Such a behavior occurs in the following regime: 

II. - 0 . 5  < c < 0 

IId. For e = 0 and H = Hmin, d....~0 ---- 0 at D _ ( H )  = D+(H)  = Dr, as 
dt 

depicted in Figure 2 b. 

B.  B e h a v i o r  n e a r  P a r a b o l i c  po in t :  For e > 0 and all values of the 
other parameters,  the behavior near the origin at [D[ = I is mathematically 
non-trivial as it involves a perturbation of a parabolic point. It is expected to 
find exponentially small splitting of the separatrices near this point s. In terms 
of the energy surfaces, this region corresponds to the behavior near H = Hmin 

and H = Hmax where the energy surfaces change their topology. 

C.  B e h a v i o r  on  t h e  D = 0 su r face .  For e > 0 and all values of the 
other parameters ,  the behavior near the separatrix for D = 0 is non-trivial, 
as, in the spherical coordinate system, in the limit D ~ 0 the separatrices are 
discontinuous in v (reflecting the fact that v changes sign at the poles). 

dO D. Z e r o  wave  speed .  When c = 0, ~ = 0 at the elliptic fixed points 

((¢, v) = ( ±  arccos v ~ ,  0)), hence strong resonances are expected to occur along 
this surface. Moreover, since Dr = Dc = 1, these resonances end near D --- 1 
where a p a r a b o l i c  r e s o n a n c e  appears. 

E .  C r i t i c a l  wave  speed .  When c = -½,  the hyperbolic resonance (case 
IIb) occurs for Dr = 0, combining the two degenerate phenomena (A + C) which 
were discussed above. 

4 .  Forcing wi th  infinite wavelength (k = 0) 

It follows from (2.9) that  the (¢, v) system may be treated as a one-and-a- 
half d.o.f. Hamiltonian systems depending on the parameters D, ~r and e, and 
D may be taken to be positive as the (¢, v) system is invariant under D -* - D .  

Interpretat ion in terms of the motion in the (A,¢) has no such invari- 
ance; when D < 0 or D > 1 A is monotonic in t, and when 0 < D < 1, A 
changes its direction when ¢ = arccos x/~.  In particular, the system (2.9)  pos- 
sesses a two dimensional surface of fixed points given by: {D, )'1(¢, v, D, )~) = 
(arccos x/D, 0, D, A), 0 <_ D < 1}. This situation is highly degenerate, especially 
at D -- 1, hence additional perturbation, coupling the A coordinate to the (¢, v) 
system (e.g. small k) is expected to cause strong resonances in addition to the 
k = 0 resonances discussed next. 
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Mathematically, one views the perturbed system as three dimensional in 
(¢, v, t) and considers the dynamics of the Poincar~ map, a map found by sam- 
pling the solutions at t = 2j~r/~r + to for fixed to. For D > 1 the solutions to 
the unperturbed problem are periodic in t. In the Poincarfi map, the orbits with 
periods which are rationally related to 2~r/cr (these are called resonant orbits) 
appear as periodic orbits of the mapping, and those which are irrationally related. 
trace a continuous curve. For small enough perturbation "most" of these curves 
survive (the ones which have periods sufficiently far from being resonant). When 
resonance of order n/m occurs, i.e., when the period of the periodic motion in 
the (¢, v) plane, P¢(¢max, D), satisfies: 

p c  _ ~ 2_~ (4 .1 )  
- -  m 

a chain of islands in the (¢, v) plane appears. Namely, a stable periodic orbit 
emerges, crossing the equator 2m times as t covers the interval [0, 2nlr/a] and or- 
bits which are sufficiently close to this solution - namely belong to the resonance 
band - oscillate about it (the width of the resonance band is proportional to v/e 
and is exponentially decreasing with n/m). It follows that strong resonances 
near the elliptic points occur when cr --, 0 near [D I = 1 and as o- --. 1 near 
D = 0. The latter limit is especially interesting as the elliptic points approach 
the separatrices as D ---* 0. 

For [D[ < 1 the separatrix breaks down enabling orbits to spend several 
rounds in the north hemisphere and then hop to the south hemisphere and 
vice versa. The breakup of the separatrix is quantified by calculating the dis- 
tance between the stable and unstable manifolds of the fixed point (¢, v, D) = 
(0, 0, cos Chm~) along the C-axis. In the Poincar~ map t = to this distance is 
given by: 

d(t0; c~, Chinas) = C SM(to;~,¢hma~)l + O(c~) (4.2) 
I sin(2¢h'~°~)(1-- ¢os2 Chmo~ )1 

Where M(to; o-, Chm~) is the Melnikov function 9,~, a periodic function in t of 
period T = 2r/~r: 

fo °° sin(~t)q~(t) dt M(t0; o', Chinas) = 2 cos(o-t0) vA'(¢) = M0(~r, Chm~) cos(at0). 

(4.3) 
As long as Mo (cr, Chm~) does not vanish the Melnikov function has simple zeroes, 
and the stable and unstable manifolds intersect transversely. It is customary 
to present the amplitude of the Melnikov function, M 0 ( ~ r , ¢ h ~ ) .  However, 
the normalization factor in (4.2) reflects the changes of the vector field on the 
homoclinic loop with Ch,~, hence a t r u e  m e a s u r e  to  t he  size of  t he  chaot ic  
zone  m u s t  inc lude  th is  factor .  Moreover, this factor changes the nature 
of the dependence on Chm~ as M0(o', Chm~) is monotonically increasing with 
Ch,~x whereas the maximal distance, d(cr,¢hm~x ) is not. In fact d attains a 
global maxima at Chm~ ~ 0.4, a ..~ 0.25. As ~r is increased the "maximal 
chaos latitude" slightly increases as well. The width of the stochastic layer 
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is monotonically increasing with d ( a , ¢ h , ~ )  (though not linearly), hence its 
magnitude measures, roughly, the extent of the chaotic region. 

The  most  rapid mixing between states bounded to one hemisphere and 
states visiting both hemispheres occurs whe~ the flux per unit time, given by 
the lobe area 1° divided by the period, normalized by the homoclinic loop area 
is maximal: 

Lobe area 
F(c~, Chma,) = period . homoclinic loop area 

_ 21M0(~,¢hm~,)l/o _ ]Mo(~,¢h~o,)l 
- -  27r " R  " - -  7 r ( s i n C h m a ~ - - ¢ h m a x C O S C h m a ~ )  

(4.4) 

Computing this function, we find that F(~,  ~ghmaz  c )  attains its maxima at cr 
0.25 and Chmax "~ 0.5. Hence the most rapid exchange of bounded to un- 
bounded motion occurs for these values. To obtain more accurate estimates of 
the t ranspor t  rates between the North and South hemisphere, the TAM may be 
employed 11 . 

5. S u m m a r y  

Using the angular momentum and the Hamiltonian we have constructed 
energy surfaces, colored according to the zonal direction of propagation. This 
construction enabled us to classify readily the different regions in phase space 
in which the behavior is qualitatively different. In this initial study we have 
discussed the behavior in one particular case of infinite wavelength perturbation. 
For a fixed small strength of the pressure wave, we have identified the parameters 
and lat i tudes for which the chaotic zone is maximal and the values for which 
the mixing is most intense. The application of these results to observations on 
the dispersal of passive particles in the atmosphere and ocean is left for a sequel 
study. 
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