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Abs t rac t ,  Sufficient conditions are found so that a family of smooth Hamiltonian 
flows limits to a billiard flow as a parameter e --~ 0. This limit is proved to be 
C 1 near non-singular orbits and C o near orbits tangent to the billiard boundary. 
These results are used to prove that scattering (thus ergodic) billiards with tangent 
periodic orbits or tangent homoclinic orbits produce nearby Hamiltonian flows with 
elliptic islands. This implies that ergodicity may be lost for smooth potentials which 
are arbitrarily close to ergodic billiards. Thus, in some cases, anomoulous transport 
associated with stickiness to stability islands is expected 

1 I n t r o d u c t i o n  

The billiard model is concerned with the motion of a point particle traveling 
with a constant speed in a region and undergoing elastic collisions at the 
region's boundary. This motion is very much like in tha t  of a real billiard 
table - the main difference is that  there is no friction in the model (so the 
ball never stops nor rolls). In the two-dimensional setting of our model, the 
ball is actually a small disk (a two-dimensional ball). Different shapes of the 
billiard table, and the number of balls that  one considers influence the type 
of motion a ball may execute. Ergodic billiards are billiard tables in which 
the balls execute a uniformly disordered motion: all possible positions and 
velocities are realized by the traveling billiard balls (for almost all initial 
positions). 

The billiard problem has been extensively studied both in its classical and 
quantized formulation. Numerous applications lead to study such a model 
problem; First, there exist direct mechanical realizations of this model (e.g. 
the motion of N rigid d-dimensional spheres in a d-dimensional box may 
be reduced to a billiard problem, possibly in higher dimensions [21, 22, 7]. 
See also [6] for the inelastic case.). Second, it serves as an idealized model 
for the motion of charged particles in a potential, a model which enables 
the examination of the relation between classical and quantized systems, 
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see [14] and references therein. Finally, and most important, this model has 
been suggested [21] as a first step for substantiating the basic assumption of 
statistical mechanics - the ergodic hypothesis of Boltzmann (see especially 
the discussion and references in [22, 24]). 

In all the applications of this model, of special interest are so-called scat- 
tering billiards, i.e., billiards in a complement to the union of a finite number 
of closed convex regions. For example - the two-dimensional idealization of a 
gas in the form of a lattice of rigid disks produces a scattering billiard (" the 
Sinai billiard"). The motion in a scattering billiard is highly unstable thus 
produces strong mixing in the phase space. More precisely, it has been shown 
[21, 11, 1] that the corresponding dynamical system is (non-uniformly) hy- 
perbolic, it is ergodic with respect to the natural invariant measure and it 
possesses K-property. Based on this theory, statistical properties of various 
scattering systems have been analyzed (see [5, 4]). 

Fig. 1.1. Tangent trajectories 

a) Singular (tangent) periodic trajectory 
b) non-singular periodic trajectory, 

Tangent homoclinic trajectory to the periodic orbit. 

Do small perturbations ruin the ergodicity property of a scattering bil- 
liard? In this paper we consider the perturbation caused by the "natural" 
smoothening of a billiard flow, by which the step-function potential at the 
billiard boundary is replaced by a family of smooth potentials approaching 
the step function, preserving the correct reflection law near the boundary. 
We stress that the billiard reflection rule (" angle of reflection equals angle 
of incidence") appears as a limit only, and the billiard itself is, of course, 
an idealized model to the real motion. Therefore, the problem of relating 
the statistics manifested by the billiard dynamical systems to actual physi- 
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cal applications must inevitably include the study of the smoothening of the 
billiard potential. 

The influence of such smoothening is a non-trivial question, since the 
dynamical system associated with the billiard we consider (in the simplest 
setting, this is a two-dimensional area-preserving mapping [21]) is singular. 
In particular, as explained more precisely in section 2.1, singularities appear 
near trajectories which are tangent to the billiard's boundary - like the ones 
shown in figure 1.1. Thus, even though the scattering billiard is hyperbolic 
almost everywhere, theoretically, there exists a possibility that the singular 
set (e.g. singular periodic orbits) will produce stability islands under small 
perturbation. While such a phenomenon seems to be quite common, general 
theory does not exist. Indeed, it is clear that the results are not straightfor- 
ward - namely it is not true that all smooth systems approaching a singular 
hyperbolic and mixing system have stable periodic orbits nor is the converse 
- that they have the same ergodic properties as the singular system. (As an 
example, consider an analogous problem for one dimensional maps; For a 
family of tent maps of an interval which are known to be ergodic and mix- 
ing, the ergodicity property may be easily destroyed in an arbitrarily close 
smooth family: if the maximum of the interval image produces a periodic or- 
bit, it is clearly stable. However, the smooth one-dimensional map does not 
always possess stable periodic orbits: there may be a positive measure set of 
parameter values for which the smooth maps are ergodic and mixing [16]). 

In this paper we prove that, indeed, a perturbation of a scattering billiard 
to a smooth Hamiltonian flow may create stability islands near singular pe- 
riodic and homoclinic orbits of the billiard. An important ingredient of the 
proof is the established connection between the limiting smooth Hamiltonian 
flows and the singular billiard flow. This connection, which seems to be fun- 
damental for understanding the applicability and limitations of the billiards 
to more realistic models of particle motion has not been previously formalized 
(to the best of our knowledge), and has received surprisingly little attention. 

In the physics community it has been assumed to exist; For example, in 
[15] the qualitative behavior of orbits of the diamagnetic Kepler problem has 
been analyzed by studying the four-disk billiard system which has similar 
spatial structure. Furthermore, in that paper, the correspondence between 
elliptic periodic orbits of the smooth Itamiltonian system and singular peri- 
odic orbits of the modeling billiard was noticed. Nevertheless, our analysis 
reveals non-trivial requirements on smooth potentials approaching the bil- 
liard potential, which are essential for the dynamics of the corresponding 
Hamiltonian system to follow the dynamics of the billiard flow. Therefore, a 
rigorous proof of a correspondence between billiard and "smooth" orbits can 
not be immediate. 

Mathematically, Marsden [19] has studied a more general question of the 
behavior of the symplectic structure when a family of smooth Hamiltonians 
approaches a singular limit, and related these problems to the general study 
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of distributions on manifolds. In this setting, he showed that  some properties 
of the smooth Hamiltonians are preserved by the singular one. For example, 
he proved that  if the families of Hamiltonians are uniformly mixing then the 
mixing property carries to the singular system as well. Here we investigate 
the other direction of the above result - namely given a singular system which 
is mixing - what can be said on the natural family of smooth Hamiltonian 
which approaches this limiting system. 

Recently, an example of another kind of smooth analogue of a scattering 
billiard with elliptic islands was constructed [9]; namely, for the motion of a 
point-wise particle in a finite-range smooth potential, where the potential 's 
support consists of a finite number of non-overlapping disks on a plane torus. 
It  was shown that  in this geometry the smooth potential  effect is to create 
a finite-length-travel along the scattering disks, and this produces focusing 
shifts near tangent trajectories even in the limit of high energies. Thus, it 
was proved that  for any given energy level, there exists an arrangement of 
the disks for which elliptic islands exist. Here, a completely different approach 
is taken, which in particular, does not assume any specific geometry of the 
scatterers note that  the potential is of a finite-range. 

Another type of natural  perturbation of a billiard is achieved by a de- 
formation of the billiard's boundary (in a non-smooth fashion for scatter- 
ing billiards with a piece-wise smooth boundary).  While such deformations 
have been extensively studied numerically, we are not aware of theoretical 
approaches for studying the near-ergodic regime. On the other end, pertur- 
bations of near-integrable billiards may be studies using Melnikov technique 
[8]. 

Traditionally, transport  properties of the extended Sinai billiard were 
studied in terms of the decay of the correlation function [5]. More recently 
(see [27] and references therein), Poincar@ recurrences and stickiness in phase 
space of both Sinai billiards and Casini billiards were numerically studied. 
It has been demonstrated that  the appearance of sticky islands for some pa- 
rameter values causes anomoulous transport  - specifically power-law decay for 
the Poincar~ recurrences distribution. To produce the anomoulos transport  
a parameter  controlling the shape of the billiard was carefully tuned to pro- 
duce self-similar sticky island structure. Moreover, it has been observed that  
such a tuning is possible near any parameter value for which islands exist. 
Here, we prove that islands may be produced by smoothening of the billiard 
boundary. Combining these results implies that by tuning the smoothening 
one can obtain sticky islands and thus anomonlous transport for the Lorenz 
gas model with arbitrarily sharp smooth potentials. 

The general scheme of the paper is as follows: In 2.1 we introduce the 
billiard flow in a general domain, and describe its nature near regular and 
tangent collision points and its relation to the standard billiard map. Then, 
in 2.2, we introduce a class of one-parameter families of Hamiltonians and 
formulate sufficient conditions on this class so that  as the parameter  c --* 0 
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they approach the billiard flows. In section 2.3 some examples of families of 
smooth tIamiltonians satisfying our assumptions are presented. In section 2.4 
we formulate the main theorems which establish in which sense the IIamilto- 
nian flows approach the billiard flow. In section 3 we utilize these theorems 
to prove the existence of elliptic islands in IIamiltonian flows which approx- 
imate scattering (Sinai) billiards; First, we study the phase space structure 
of the billiard map near singular periodic orbits and near singular homo- 
clinic orbits. We prove that existence of such orbits implies the appearance 
of a non-smooth analogue of the Smale horseshoe, similar to the horseshoe 
in the H~non map. Then, using the closeness results of section 2.4 we estab- 
lish that if a singular periodic orbit/homoclinic orbit exists for the billiard 
map, then necessarily there exist nearby Hamiltonians with elliptic periodic 
orbits. The appearance of persistent singular homoclinics and singular (tan- 
gent) periodic orbits for scattering billiards is conjectured and the former is 
numerically demonstrated. Section 4 is devoted to a discussion on the im- 
plication of these results. In appendix A examples showing the necessity of 
some of the conditions imposed on the family of IIamiltonians are presented. 

2 C l o s e n e s s  o f  p l a n e  b i l l i a r d s  

a n d  s m o o t h  H a m i l t o n i a n  f l o w s  

2.1 Bil l iard flow 

Consider an open bounded region D on a plane with a piecewise smooth 
(C r+l, r > 2) boundary S. On S there is a finite set C of so-called corner 
points cl, c2 , . . ,  such that the arc of the boundary that connects two neigh- 
boring corner points is C~+Lsmooth. Let us call these arcs the boundary arcs 
and denote them by $1, $2,. . . .  The set C includes all the points where the 
boundary loses smoothness and all the points where the curvature of the 
boundary vanishes. Thus, the curvature has a constant sign on each of the 
arcs Si. Being equipped with the field of inward normals, the arc is called 
convex if its curvature is negative (with respect to the chosen equipment) and 
it is called concave if its curvature is positive (see figure 2.1). 

Consider the billiard flow on /9 which describes the motion of a point 
mass moving with a constant velocity between consecutive elastic collisions 
with S. The phase space of the flow is co-ordinatized by (z, y ,p , ,p~)  where 
(z, y) is the position of the particle in/9 and (px, p~) is the velocity vector: 

i =py. (2.i) 
IIenceforth, to distinguish between the phase space and the configuration 
space D we reserve the term "orbit" for the orbits in the phase space and the 
term "trajectory" for the projection of an orbit to the (x, y)-plane. 

The flow is defined by the condition that the velocity vector (px,py) is 
constant in the interior, and at the boundary it changes by the elastic reflec- 
tion rule so p~ + p~ = const and the angle of reflection equals the angle of 
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incidence with the opposite sign. Taking the point of reflection as the origin of 
the coordinate frame and the boundary's  normal at that  point as the y-axis, 
the reflection rule is simply 

(2.2) 

namely, the angle of incidence ¢ is arctanpy/p~:. This law is well defined only 
when the normal can be well defined: it is invalid at the corners where the 
boundary looses its smoothness. 

Generally, the incidence angle ¢ belongs to [-~,-~] ,  but  if the boundary is 
convex, I¢1 < 7" If the boundary arc is concave, it is possible to have ¢ = q-~ 
(figure 2.1) which corresponds to a trajectory tangent to S. 

A special case is a tangent trajectory (¢ = =t:-~) which reaches the bound- 
ary at an inflection point. One can easily see that  any close trajectory un- 
dergoes an unboundedly large number of collisions before leaving a small 
neighborhood of the inflection point, and for the trajectory tangent to the 
boundary at the inflection point itself there is no reflection at all (figure 2.1). 
The trajectory is terminated at the moment of such tangency and the corre- 
sponding orbit of the flow is not defined for greater times. Tha t  is the reason 
for excluding the inflection points from consideration by putting them into 
the corner set. 

Denote points in the phase space of the billiard flow as q = (x, y , p , , p ~ )  
and the time t map of the flow as bt : qo(xo, Yo, p~0, p~0) ~-* qt(xt,  yt, p~:t, pyt). 
Recall that  the reflection law is not defined at the corner points; thus, by 
writing qt = btqo, we mean, in particular, that  the piece of trajectory that  
connects (z0, y0) and (zt, yt) is on a finite distance of the corner set C. At 
the same time we allow the trajectory to have one or more points of tangency 
with concave components of S. 

A point q(z,  y, p~, py) in the phase space is called an inner  point if (x, y) ¢ 
S, and a collision point if (x, y) E ( S \ C ) .  Obviously, if q0 and qt = btqo are 
inner points, then qt depends continuously on q0 and t. Otherwise, if qt is a 
(non-tangent) collision point, the velocity vector undergoes a jump: denoting 
by qt-o = bt-oqo and qt+o = bt+oqo the points just  before and just after the 
collision, it follows that  (p~t+0,p~t+0) and (p~:t-o,P~t-o) are related by the 
elastic reflection law. To avoid ambiguity we assume that  at a collision point 
the velocity vector is oriented inside D; thus, we put bt _~ bt+o. 

Further, if qt is an inner point and if the piece of trajectory that  connects 
(z0, Y0) and (xt ,  Yt) does not have tangencies with the boundary, then qt de- 
pends Cr-smoothly on q0 and t. On the other hand, it is well known [21] that  
the map bt loses smoothness at any point q0 whose trajectory is tangent to 
the boundary at least once on the interval [0, t]. Indeed, choosing coordinates 
so that  the origin is a point on a concave boundary arc Si, the y-axis is the 
normal to Si and the z-axis is tangent to Si, the arc is locally given by the 
equation 

y = - z  2 + . . .  
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Fig.  2.1. Billiard flow 

a) • - standard corner points, ta- inflection corner points 
$1,3,5 - concave boundary arcs, $2,4,~,7 - convex arcs 

- -  Regular reflection, - - - Tangent trajectory 
b) . . . .  Tangent trajectory terminated at an inflection point 

I t  follows tha t  for small  5 > 0 the t ime t = 5 map  of  the slanted line (x0 = 
- 5 / 2  + ayo,P~o = 1,py0 = 0) has a square root  s ingulari ty in the l imit  
y0 --* - 0  which corresponds to the tangent  t ra jec tory  (see figure 2.2; a ~ 0 
for graphical  purposes):  

(x6, Y6, Pz~ ~ Py~) = 

(15 q- ayo, Yo, 1, 0) at  Y0 >_ 0 

1 
(2 5 + ayo + O(Syo), 2~:--~5 + O(Syo), 1 + O(yo) 

, 2 v / ~ + O ( y o ) )  at y 0 < 0  

If  q0 and qt = btqo are inner points,  then for a rb i t rary  two small  cross- 
sections in the phase space, one th rough  q0 and the other  th rough  qt, lhe local 
Poincard map is defined by the orbits of the billiard flow. If  no tangency  to 
the b o u n d a r y  arcs is encountered between q0 and qt, then the Poincard map 
is locally a Cr-diffeomorphism. 

One can easily prove tha t  the same remains valid if q0, or qt, or bo th  
of  t h e m  are collision points,  provided the corresponding cross-sections are 
composed of  the nearby collision points.  In fact, the collision set (the surface 
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Fig. 2.2. Singularity near a tangent trajectory 

(x, y) E S in the phase space) provides a global cross-section for the billiard 
flow. The corresponding Poincar~ map relating consecutive collision points is 
called the billiard map. A point on the surface is determined by the position s 
on the boundary S and by the reflection angle ¢ which yields the direction of 
the outgoing velocity vector (the absolute value of the velocity does not mat- 

2 2 ter because p~ q-py is a conserved quantity - the energy - and it may be taken 
arbitrary by rescaling the time). The initial conditions, corresponding to a 
trajectory directed to a corner or tangent to a boundary arc at the moment 
of the next collision, form the singular set on the (s, ¢)-surface. Generically, 
the singularity set is a collection of lines which may be glued at some points. 
The billiard map is a Cr-diffeomorphism outside the singular set; it may be 
discontinuous at the singular points. Near a singular point corresponding to 
the tangent trajectory the continuity of the map can be restored locally by 
taking two iterations of the map on a half of the neighborhood of the singular 
point (see figure 2.2). The obtained map will, nevertheless, be non-smooth at 
the singular point, having the square root singularity described above. 

2.2 Class  o f  s m o o t h  H a m i l t o n i a n s  

Formally, the billiard flow may be considered as a Hamiltonian system of the 
form 

Hb = -~ + + Vb(x, y) (2.3) 

where the potential vanishes inside the billiard region D and equals to infinity 
outside: 

0 (x, y) e D (2.4) 
Vb(x, y) = y) ¢ D 

Clearly, this is an approximate model of the motion of a pointwise particle 
in a smooth potential which stays nearly constant in the interior region and 
grows very fast near the boundary. However, it is not obvious immediately 
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when (and in which sense) this motion is indeed close to the billiard motion. 
We examine this question in this section and describe a class of potentials for 
which the billiard approximation (2.4) is correct in some reasonable sense. 

Consider a Itamiltonian system associated with 

H = - -  + + V(x ,y ;e )  (2.5) 

where the potential V(x,  y; e) tends to zero inside the region D as e --* 0 and 
it tends to infinity outside. Specifically, we require that  
I. For any compact region K C D the potential V(x,  y; e) diminishes along 
with all its derivatives as c --* O: 

lim I I v (x ,  y; e)l<(~,~)eK}llc,+, = 0. (2.6) 
e,--*+0 

The growth of the potential to infinity across the boundary is a more 
delicate issue. The crucial construction here is that  V is evaluated along the 
level sets of some finite function near the boundary. Namely, putt ing the set 
C of corner points ei out of consideration, we suppose that  in a neighborhood 
of the set ( D \ C )  there exists a function Q(x, y; e) which is C ~+I with respect 
to (z, V) and it depends continuously on ~ (in Cr+l- topology) at c > 0. 
Specifically, Q(x, y; e) along with its derivatives have a proper limit as e -~ 0. 
Assume that  
I I a  On the boundary, the function Q(x,y;O) is constant between any two 
neighboring corner points: 

Q(z, y; ~ = O)l(~,~)~s, -= Q~ (2.7) 

We call Q a pattern function. For each boundary component Si, for Q 
close to Qi, let us define a barrier function Wi(Q; e) which does not depend 
explicitly on (x, y) and assume that: 
I I b  There ezists a small neighborhood Ni of the arc Si on which the potential 
V is given by Wi evaluated along the level sets of the pattern function Q: 

V(z ,  y; e)l(,,u)~N, - W,(Q(z, y; e); e) (2.8) 

I I c  The gradient of V does not vanish in a finite neighborhood of the boundary 
arc .8:  

VVl(~,~)~N, # o (2.9) 

which is equivalent to the following conditions 

and 

vol(~,~)cN, # o (2.to) 

d 
--~w,(o;e) # o. (2.1t) 
at¢ 
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Conditions I Ia ,b ,c  formalize the requirement that  the direction of the 
gradient of the potential must be normal to the boundary as e ~ +0. Ob- 
viously, this is necessary for having a proper reflection law in the limit: if 
the reflecting force has a component tangent to the wall, then the tangent 
component p~ of the momentum will not be preserved during the collision 
(see (2.2)). 

Now we may describe the rapid growth of the potential across the bound- 
ary in terms of the barrier functions Wi only. Choose any of the arcs Si and 
henceforth suppress the index i. Without loss of generality assume Q = 0 
on S. By (2.10), the pattern function Q is monotonically increasing across S 
and we assume Q is positive inside D near S and negative outside (otherwise, 
change inequalities in (2.12) to the opposite ones). Assume 
I I I  As e ~ +0 the barrier function increases from zero to infinity across the 
boundary Si : 

lim W(Q;  e) = { +co O < 0 (2.12) 
,~+o 0 Q > 0 

Note that  according to I. and I Ib . ,  for any Q0 > 0 

lim IIW(Q, ~)lq>Q011cr+, -- O. (2.13) 
e~+0  

Clearly, it will cause no troubles if one allows W to take infinite values: 
by (2.11), the function W is monotonic and if it is infinite at some Q, it is 
infinite for all smaller Q; on the other hand, trajectories always stay in the 
region where W is bounded: since the energy given by (2.5) is conserved, the 
value of the potential is bounded by the initial value of H. We will study 
limiting behavior (as e --* +0) of the smooth Hamiltonian system (2.5) in a 
given, fixed energy level, H = H*. This implies that  all trajectories stay in 
the region W < H* for any e. It follows that  the symbol +c~ in (2.12) may 
be replaced by any value greater than H*. 

It is immediately evident that  the particle in the potential V satisfying 
condition I moves in the interior of D with essentially constant velocity along 
a straight line until it reaches a thin layer near the boundary S where the 
potential runs from small to very large values (the smaller the value of e, 
the thinner the boundary layer). By virtue of condition I I I ,  if the particle 
enters the layer near an interior point of some boundary arc (corner points are 
not considered in this paper), it can not penetrate the layer and go outside - 
because fixing the value of the energy bounds the potential from above. Thus, 
the particle is either reflected, exiting the boundary layer near the point where 
it entered, or it might, in principle, stick into the layer, traveling along the 
boundary far away from the entrance point. As simple arguments show (see 
the proof of theorem 1 below), condition I I  guarantees that  when a reflection 
does occur it will be of the right character, approximately preserving the 
tangential component (p~) of the momentum and changing sign of the normal 
component (p~). However, as argued below, and shown by an example in 
Appendix A, conditions I - I I I  are insufficient for preventing the existence of 
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non-reflecting trajectories. Since such finite length travels along the boundary 
layer must be forbidden in the limit e --* 0, we impose an additional restriction 
on the shape of the potential near the boundary. Denote the normal force 

function by F(Q; e) = ~---~W(Q, e) and require the following: 

IVThe normal force is a monotonic funclion of Q: 

W"(Q) =_ F'(Q) > O. (2.14) 

(According to condition I I I ,  since W decays rapidly across Q = 0, it follows 
that  its derivative F(Q) is close to - o o  at small Q. Then, as Q grows, F(Q) 
0 by (2.13). Thus, F(Q) can not be strictly decreasing function and the 
monotonicity of F(Q) is indeed equivalent to the positiveness of F'(Q).) 

To see how a violation of the monotonicity condition can lead to the ap- 
pearance of non-reflecting trajectories suppose that  for arbitrarily small c 
there is an interval of values of Q, arbitrarily close to the boundary, on which 
the graph of absolute value of F(Q) is as shown in figure 2.3: it grows from 
zero to very large values, then decays back to nearly zero at a value Q~which 
approaches zero as e --. 0, and only after that  it grows to infinity. Since the 
force is the gradient of the potential and, according to condition II ,  it is 
proportional to F(Q) whereas the distance to the wall is proportional to Q, 
it follows that  the graph of the normal component of the reflecting force vs 
the distance to the wall has the same shape as in figure 2.3. Thus, the initial 
velocity of the particle can be taken such that  the normal component of the 
velocity is completely damped when moving through the region of the first 
peak of F(Q), leading to the trapping of the particle in the zone where the 
reflecting force is nearly zero with the normal component of velocity close to 
zero too. In this case the distance to the wall will change very slowly and 
the particle may stay at a small distance to the wall for a long time, travel- 
ing Mong the boundary instead of making reflection. An explicit example of 
such trapping in a circular billiard is presented in Appendix A. In fact, the 
geometry of the boundary plays a crucial role here: one can show that  the 
finite length travels along a concave boundary arc are forbidden even for the 
non-monotonic F(Q) (though the reflection time may still be unboundedly 
large in this case). 

Conditions I - IV guarantee, as is precisely formulated in section 2.4, a 
correct reflection law only in the C°-topology and not in the Cl-topology. 
As this issue is very important for the sequel, we explain its intuitive impli- 
cation now. Let us take a point (Xo, Yo) and momentum (P~0, Pro) as initial 
conditions for an orbit of the Hamiltonian system (2.5) and let us take the 
same initial conditions for the billiard orbit. Consider a time interval t for 
which the billiard orbit collides with the boundary S only once, at some point 
(xc, y~) (see figure 2.4). Here, the incidence angle ¢i~ is the angle between the 
vector (zo - x,, Y0 - Y,) and the inward normal to S at the point (x¢, Yc); the 
reflection angle ¢°~ is the angle between the vector (zt - zc, yt - ye) and the 
normal, where (xt, yt) is the point reached by the billiard trajectory at the 
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Q 

Fig. 2.3. Non-monotonic normal force 

time t. In the same way one may define the incidence and reflection angles 
for the trajectory of the Hamiltonian system where (x0, Y0) and (x¢, y~) are 
taken the same as for the billiard trajectory and (zt(e), yt(e)) is now defined 
by the Hamiltonian flow (see figure 2.4). We expect the trajectory of the 
Hamiltonian system to be close to the billiard trajectory; in particular, it 
should demonstrate a correct reflection law 

¢ i . ( , )  + ¢ o . , ( 0  . 0 

for sufficiently small e. Note, however, that  (¢i" + ¢o~t) is a function of the 
initial conditions. Conditions L I V  give only C°-closeness of these functions to 
zero and to ensure a Cl-correct reflection law we need the following additional 
condition on W(Q): 
V There exists an ~ E (0, 1) such that the following holds for any interval 
[Ql(e), Q2(e)] on which W ( Q )  is bounded away from zero and infinity for all 

lim W " ( Q )  - O, (2.15) 
,40 IW'(Q)I3+  

uniformly on the interval [Q1, Q2]. 
This condition is used directly in the proof of theorem 1 (see [25]). To 

give the reader a feeling of how the smoothness may. be lost, consider a one- 
dimensional reflection described by the equation Q + W' (Q;e)  = 0 where 
Q > 0, W(0; e) = +c~, lim,_0 W(Q; e) = 0 at Q > 0. Here, Q is the position 
of a particle moving inertially until a collision with the wall at Q = 0, after 
which the particle reflects elastically and moves back. The time of collision 

/ ( i .  v'~dO where H is the value of and Q" (e) is given by r = ~f H - W ( Q ) energy 

is such that  W(Q*; e) = H. Differentiation with respect to H gives 
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(zo, Yo) (%, Yt) 

I " ~ ( z ,  y) ,~ (s,q (z, y) .~.~. /  
( z ~ - - Y / ( z , ~ , ) , , ~  (s,~) 

Fig. 2.4. Reflection by Hamiltonian flow 

dT ~ "H 
- w , ~ , ) (  - w ( 1 ) ) - 1 / ~  dH 

1 /Q. W'(Q*) - W'(Q)(H - W(Q))-~12dV. (2.16) 
~ W , ( Q * )  _ w - - ~ - w ( o )  

Note that (W'(Q*) - W'(Q))/(W(Q*) - W(Q)) "~ W " / W ' ,  therefore re- 
strictions should be imposed on W' ,  like in condition V, to have dr/dH 
bounded. 

2.3 Examples  for smoo th  Hami l ton ians  l imi t ing  to bi l l i ards  

Conditions I-V are in fact quite general, and they are fulfilled by many rea- 
sonable choices of the pattern and barrier functions. For the pattern function, 
consider any smooth function Q depending on two variables (~e, y). Corners 
are created at the singularities of the level sets and at the points of inflection. 

For the barrier function conditions I-V need to be fulfilled. For example, 
the following barrier functions W(Q, e) satisfy them (for fl > 0): 

£ 

Q--Z, (1-QZ)~, c~-~,  cflnQI ~, cln...tlnQI. 

One may easily produce more examples because there is no restriction on 
the growth rate: given any potential V satisfying conditions I-V the poten- 
tial ¢(V) also satisfies these conditions provided ¢ is a smooth monotonic 
function of V such that ¢(0) = 0, ¢(cx)) = ~ .  

In section 3 we consider the billiard corresponding to the following family 
of pattern functions: 

1 1 Q(~, 7) 7t ~ ' + ( y _ ¼ ) ~ _ R ~ + x ~ + ( y + ~ ) ~ _ R ~  Y; 

1 + 1 )-1 
(~ - ~)~ + ~ - R~ (~ + ¼)2 + y~ _ R~ (2.17) 
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where R ~ = 1 + (1 - 1)2 and 7 is a parameter (not necessary small). The 

billiard domain is bounded by the level set Q(x,  y) = 0. For 7 --~ 0 this defines 
a square whereas for 7 > 0 it defines a concave shape bounded by the four 
circles of radius R which intersect at the four corner points (x, y) = (+1, +1). 

Taking the barrier function in the simplest form W ( Q ,  e) = ~ produces 
the following Hamiltonian system: 

1 2  1 2  
H.r,e( x, y, p~, pv ) = -~p~ + -~Pv + 

( 1 1 
+ - 2) + 2(1 - v)  + + - 2)  + 2(1 + v) 

1 1 

7 ( x ~ + y ~ - 2 ) + 2 ( 1 - x )  + 7 ( x 2 + y ~ - 2 ) + 2 ( 1 + x ) )  

Notice that  for 7 --* 0, the square geometry produces separable - hence inte- 
grable - Hamiltonian flow. This is, of course, a very interesting limit, which is 
not studied in this paper. Notice also that  here the limit e ~ 0 is equivalent 
to the limit H ~ oc with e held fixed. 

2.4  C l o s e n e s s  t h e o r e m s  

Denote the Hamiltonian flow of (2.5) by ht(e). Given t and c, the flow maps 
a phase point q0 = (x0, yo,P~o,p~o) to qt(e) = (xt(e), yt(e),p~t(e),pv~(e)). We 
will call qt(e) the smooth orbit of q0 and will examine how close is it to the 
billiard orbit btqo = qt( O ). The corresponding trajectories ( x t ( c ), yt( e ) ) and 
(xt(O), yt(O)) on the (x, y)-plane will be called the smooth and, respectively, 
the billiard trajectories. 

Let (x¢, y¢) be the first point of collision of the billiard trajectory with 
the boundary S; by definition, (x¢, Yc) = (Xo, Yo) + (pxo,Pvo)tc, where t = tc 
is the moment of collision. Since the potential V is nearly zero in the inte- 
rior of the billiard domain D, the smooth orbit of q0 is arbitrarily close (as 
e ~ 0) to the billiard orbit before the collision: namely, the point (xt (e), Yt (e)) 
moves with essentially constant velocity until reaching a small neighbor- 
hood of (x¢, y¢). Take a small 5 > 0 and consider the boundary layer $6 -- 
{IQ(x,  y; e ) - Q ( x c ,  y¢; e)l _< 5}, where Q is the pattern function. For any small 
5, if e is sufficiently small, the smooth trajectory enters the boundary layer at 
some time t,,~(e). Denote qi,(e) = q,,.(e); by definition, IQ(xi,(e),  yi,(e); e) - 
Q(x¢, y¢; c)l = 5. The closeness of the billiard and the smooth orbits (before 
the collision) implies the existence of the limits (see figure 2.4) 

tin = ,li~mootin(E)' qin ~-- ~in~ qin(£); 

moreover, 

limti~ = t~ ,  }i~(xi,~,yi,~) = (x~,y~), }in~(p~,in,pv,i,~) = (P~o,Pvo). 
,%--*0 
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Analogously, denote the moment  when the smooth trajectory exits the 
boundary layer as tout(e) (we will prove that  such a moment exists) and 
denote the corresponding value of qt(e) as qout(e). The time interval ( tout(e)-  
tin(e)) will be cMled the collision time. For fixed 6, the limiting values of the 
introduced quantities as c -~ 0 will be denoted as tout, qo,t (the existence of 
the limits is given by Theorem 1 below). 

It is natural  to call the relation between the limits qout and qi, the reflec- 
tion law. By definition, qout(e) and tout(e) are functions of qin. If the conver- 
gence of lim,--.0(qout, to,t)(e) is uniform in some neighborhood of a given q;,,  
then the reflection law is C °. If, moreover, there is a uniform convergence for 

the derivatives with respect to qin, then these limit to -0(q°ut't°"t) , so the 
Oqin 

reflection law is C t. 
Note that  the relation between the reflection laws corresponding to dif- 

ferent values of 6 is found trivially for the billiard flow, and it is absolutely 
the same for the Hamiltonian flow because it limits to the billiard flow out of 
any fixed boundary layer. Therefore, no information is lost if one considers 
the limit of the reflection law as 6 ~ O, as it is done in the following theorem. 

T h e o r e m  1. For the Hamiltonian system (2.5) where the potential V (z, y; e) 
satisfies conditions I - IV ,  if initial conditions qo are such that for the billiard 
orbit btqo the point of reflection is not a corner: (zc, yc) E S \ C ,  then for any 
sufficiently small 6 the limits (as e --~ O) qout and to~t are well defined. As 

--* 0, the collision time tends to zero: 

t , , )  = o 

and the limiting C O reflection law is: 

Uout) = u , . )  

(Px,out,Py,out)+(P~,in,pu,in) = 2(p . , ine .+Pu, lneu)(e . ,e  ~) 

(2.18) 

(2.a9) 

where ~ = (e=,e~) is the unit vector tangent to the boundary at the point 

If, additionally, condition V is fulfilled and the ingoing velocity vector 
(P~,~n,Py,in) is not tangent to the boundary at the point (xc,yc), then the re- 
flection law is C 1. 

One may check that  the above reflection law is exactly the reflection law 
associated with the billiard flow. In other words, theorem 1 says that  

lira ] im II(qout(e),tou,(e)) - (qou,(O),tou,(O))(I = 0 (2.20) 
6 ~ 0  e--~O 

where the norm is C O- or Cl-norm in a small neighborhood of qi~. Since 
out of the boundary layer the Hamiltonian flow limits to the billiard flow as 
• --* O, this local result implies immediately the following global version. 
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Theor e m 2: I f  qo and qt : btqo are inner phase points, then, as e ~ O, the 
time t map ht(e) of the flow defined by Hamiltonian (2.5) where V(x ,  y;e) 
satisfies assumptions I - I V  limits to the map bt in the C°-topology in a small 
neighborhood of qo. If, additionally, condition V is fulfilled and if  the billiard 
trajectory of qo has no tangencies to the boundary for the time interval [0, t], 
then ht(e) ---+ bt in the C 1 sense. 

Theorem 2 follows from theorem 1, and vice versa. The proof of the theo- 
rems (in fact, a C r -convergence proof) is given in [25]. Namely, the following 
is proved there 

limlimsupll(qo,,t(e),tout(e)) - (qout(O),to~t(O))ll = 0 (2.21) 
~--*0 e---*O 

which is formally weaker than (2.20), but it is, obviously, also sufficient for 
the validity of theorem 2. 

The general idea of the proof is as follows (see details in [25]). By condi- 
tion II ,  the gradient of the potential is close to normal to the boundary near 
the point of reflection. This implies, almost immediately, that  the tangential 
component p~ of the momentum is approximately preserved during the col- 
lision. Essentially, this means that  the motion described by the Hamiltonian 
system (2.5) can be thought as a sum of two almost independent motions: in- 
ertial motion parallel to the boundary and reflection in the normal direction. 
In the limit e ~ 0, the parallel motion prevails in some sense for the nearly 
tangent trajectories, whereas for the non-tangent trajectories its contribu- 
tion can be neglected. Thus, in both cases the consideration is essentially 
one-dimensional and this makes the proof of the C o part  of theorem 1 pretty 
simple. The proof of the C 1 version is more involved and it requires estimates 
of some integrals along the orbit of the Hamiltonian system, necessary for the 
evaluation of the solution of the linearized equations. 

A more specified way to formulate closeness of  the I/amiltonian system 
under consideration to the billiard approximation is to use the Poincar~ sec- 
tions. Let q0 and qt ~- ht(e)qo (e > 0) be inner phase points and w0 and wl be 
small surfaces transverse to the flow near q0 and qt. Then the flow defines the 
local Poincard map hts (e) : wo ~ wl where t / (e)  is the flight time from ~o0 to 
wl. The Poincard map preserves the foliation of the cross-sections by the lev- 
els of equal energy. Therefore, reduced Poincar$ maps are defined taking fixed 
energy levels on w0 onto the levels of the same energy on $1. For e > 0 (respec- 
tively e = 0) the reduced Poincard map is a two-dimensional area-preserving 
Cr-diffeomorphism (respectively - almost everywhere Cr-diffeomprphism). 
Obviously, the flow is recovered by the set of reduced Poincard maps along 
with the corresponding flight times, and vice versa. Thus, theorem 2 admits 
the following reformulation. 

T h e o r e m  3. I f  qo and qt = btqo are inner phase points and wo and wl 
are small cross-sections through qo and qt respectively, then at all small e 
the Hamiltonian flow (2.5) satisfying conditions I - I V  defines the reduced 
Poincard map of the the energy level of qo in ~o into ~1. As e ~ 0 this map 
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limits (in C °) to the reduced Poincard map of the billiard flow as does the 
flight time. In addition, if condition V is satisfied and the segment of billiard 
trajectory between qo and qt does not have tangencies to the boundary of the 
billiard domain, then the convergence is C 1. 

The last theorem allows one to utilize persistence theorems regarding two- 
dimensional area preserving diffeomorphisms in order to establish relations 
between periodic orbits of the billiard flow and of the Hamiltonian flows under 
consideration. 

Recall that an orbit (e.g., a periodic orbit) of the billiard flow is called non- 
singular if its trajectory in the (x, y)-plane does not have tangencies with the 
boundary of the billiard domain (and by definition the trajectory cannot hit 
a corner either). For a non-singular periodic orbit, for a cross-section through 
an inner point on it, the reduced Poincar6 map of the billiard flow is locally 
a diffeomorphism and the intersection of the periodic orbit with the cross- 
section in the phase space is a fixed point of the diffeomorphism. Generally, 
the fixed point is either hyperbolic or elliptic. Fixed points of both types are 
preserved under small smooth perturbations in the class of area preserving 
diffeomorphisms. Thus, theorem 3 implies the following statement. 

Coro l la ry  1 - pe r s i s t ence  of  pe r iod ic  orbi ts :  I f  a non-singular periodic 
orbit Lo of the billiard flow is hyperbolic or elliptic, then at e sufficiently small 
the Hamiltonian flow ht(c) has a unique continuous family of hyperbolic or, 
respectively, elliptic periodic orbits L, in the fixed energy level of Lo which 
limit to Lo as e ~ O. 

If L0 is hyperbolic, the local stable (Wl~c(L,)) and unstable (Wl~oc(L,)) 
manifolds of L~ depend continuously on ¢ (as smooth manifolds) and limit to 
l/V~c(L0 ) and Wl~c(L0 ) respectively. The global stable and unstable manifolds 

- WU(L,) and W ' ( L , )  - are obtained as the continuation of Wl~o¢(L,) and 
WI~c(L¢) by the orbits of the flow. Note that for the billiard flow, by applying 
the continuation process tangencies to the boundary and corner points are 
bound to be encountered by some points belonging to the manifolds. Using 
local cross-sections as above, it is easy to see that the following result holds. 

Coro l la ry  2 - ex tens ions  of  s tab le  and  uns t ab l e  manifolds:  Any piece 
No of WU(Lo) or W~(Lo) obtained as a time t > 0 shift of some region in 
VVI~¢(Lo ) (respectively, a time t < 0 shift of some region in Wl'o¢(Lo)) is a 
C o- or, if no tangencies to the boundary are encountered in the continuation 
process, Cl-limit of a family of surfaces K,  C W"(L , )  (resp. K,  C W ' ( L , ) ) .  

The above persistence results apply only to non-singular periodic orbits; 
near the singular periodic orbits the billiard flow is non-smooth and the 
standard theory is not valid. However, it is of interest to study the behavior 
near a singular periodic orbit for ~ > 0. We consider this problem in the 
next section for the case of so-called scattering billiards. Here, the billiard 
flow is hyperbolic whence all non-singular periodic orbits are hyperbolic. We, 
nevertheless, show that the singular periodic orbits give rise to stable (elliptic) 
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periodic orbits in the Hamiltonian systems (2.5) limiting to the scattering 
billiards. 

3 Appearance of elliptic islands in the smooth 
Hamiltonian approximation of scattering billiards 

Consider scattering billiards - namely billiards which are composed of concave 
arcs with the curvature bounded away from zero, and non-zero angles between 
the arcs at the corner points. The corresponding billiard flows are hyperbolic 
and exhibit strong ergodic properties (they are K-systems) [21, 1, 11]. In 
particular, almost every orbit covers the whole phase space densely. In this 
section we examine how these properties may be lost by the approximating 
smooth Hamiltonian flows for arbitrarily small positive e values. We propose 
two mechanisms for the appearance of elliptic islands which destroy these 
properties: one mechanism is controlled by the existence, in the billiard flow, 
of a singular periodic orbit and another mechanism is controlled by the exis- 
tence of a singular homoclinic orbit. To be specific, from here on, we consider 
only simple singular orbits; i.e., those for which the corresponding trajecto- 
ries in the billiard domain have exactly one tangency to the billiard boundary 
and do not approach corner points. 

First, we study the phase space structure of the local Poincar~ map near 
such orbits, showing that  locally these create a "sharp" horseshoe which, em- 
bedded in a one parameter family of billiard maps, unravels as the parameter 
3' varies (see figure 3.3). Then, using theorem 3, we establish that  the two 
parameter family of IIamiltonian flows ht(¢; 7) which approach the family of 
billiards as e ~ 0 undergoes, for sufficiently small e, a series of bifurcations 
associated with the disappearance of a Smale's horseshoe. It is well estab- 
lished that  in this process elliptic islands are created. Thus, it follows that  
for each sufficiently small e there exist intervals of 7 values for which elliptic 
islands exist. 

We end the section with some conjectures on the genericity of the phe- 
nomena mentioned above: we expect that  singular homoclinic and periodic 
orbits are, in fact, unavoidable in scattering billiards. Apparently, systems 
possessing simple singular homoclinic and periodic orbits are dense among 
all scattering billiards. We provide a numerical example which supports such 
a conjecture regarding the density of billiards with singular homoclinic orbits. 
A proof of this conjecture combined with the results presented here would 
imply that for any given scattering billiard on a plane, there exists a nearby 
Hamiltonian flow possessing elliptic islands. 

3.1 Singular periodic orbits. 

The hyperbolic structure of the scattering billiards plays a crucial role in the 
understanding of the behavior near a singular periodic orbit. For the billiard 
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map B (the map relating two consecutive collision points; see section 2.1), the 
presence of hyperbolic structure implies that for almost every point P(s,  ¢) 
in the phase space there exist stable and unstable directions E~,, and E~,, 
depending continuously on P.  The system of stable and unstable directions 
is invariant with respect to the linearized map: d p B E  "(u) = EB(~ ), which is 
uniformly expanding along the unstable direction and uniformly contracting 
along the stable direction: if v e E" (v E E ' ) ,  then I]dpBv]] > e xr I lvll (resp., 
lidpBvll <_ e-x'llvll) in a suitable norm; here, r is the flight time from P 
to P B ,  the uniformity means that  the value ~ > 0 is independent of P (see 
details in [3]). 

Equivalently, there is an invariant family of stable and unstable cones: 
the unstable cone at a point P is taken by the linearized map d p B  into 
the unstable cone at the point BP; the image is stretched in the unstable 
direction and shrinks in the stable direction. Similar behavior appears for 
the stable cone under backward iterations. There is an explicit geometrical 
description of these cones for scattering billiards [26]. Consider a point (s, ¢) 
in the phase space and a small curve passing through this point. Taking two 
points on this curve defines two inward directed rays emanating from the 
billiard boundary near s (see figure 3.1). If these rays intersect, then the 
tangent direction to this curve belongs to the stable cone of (s, ¢); otherwise, 
it belongs to the unstable cone (in other words, the unstable cones are given 
by ds • de > 0 and the stable cones by ds • de < 0). Moreover, it can also 
be shown that  if the intersection of the rays with each other occurs before 
the first intersection of the rays with the billiard boundary, then the tangent 
direction to the forward image of the small curve under consideration belongs 
to the unstable cone of the image of (s, ¢). 

It follows from the simple geometry above that the tangents to a line 
of singularity at any point lies in the stable cone, and the tangent to any 
iteration of the singularity line by the billiard map lies in the corresponding 
unstable cone. In particular, this implies that  intersections of the singularity 
lines with their images are always transverse. 

Next, we find the normal form of the first return map of the billiard 
map near a simple singular periodic orbit (a periodic orbit with only one 
tangency). More precisely, consider a periodic orbit L with the corresponding 
sequence of collision points P i (s i ,¢~)( i  = 0 , . . . n -  1): Pi+l = BP~ where 
Pn = P0. Since L is a simple singular periodic orbit, assume that  P = P0 
belongs to the singular set (so [¢11 = ~). Take a small neighborhood U of P 
and denote as S the line of singular points in U (it is the line composed of 
the points whose trajectories are tangent to the billiard boundary near Sl). 
Then, we prove the following proposition: 

P r o p o s i t i o n  3.1 Given a simple singular periodic orbit L as above, the local 
return map near t9o may be reduced to the form: 

~(v - x/max(v, 0)) - u + . . .  
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Fig. 3.1. Hyperbolic structure - the stable and unstable cones 

a) Geometrical interpretation of stable/unstable directions 
b) Phase space structure 

where v = 0 gives the singularity line, u = 0 is its image, and [~1 > 2. 
As will be apparent by the proof, it is useful to define an auxiliary billiard 

B (r), for which the boundary arc by which the tangency of the periodic orbit 
occurs (i.e. near so) is pushed slightly backwards so that  the singular periodic 
orbit becomes a regular orbit for the auxiliary system. The quantity ~ in 
(3.1) is simply the trace of the linearization matr ix  of the first return map of 
the auxiliary billiard about the periodic orbit. Since the auxiliary billiard is 
scattering, its regular periodic orbits are hyperbolic, hence [~[ > 2. 

P r o o f  o f  P r o p o s i t i o n  3.1 Consider the local structure in U, near the sin- 
gularity line ,U. The line Z divides U into two parts, Ur and Us; the orbits 
starting on U, (e.g. Pg' in figure 3.2) do not hit the boundary near sl and 
approach it near the point s2, the orbits starting on Us (e.g. Pg in figure 
3.2) have a nearly tangent collision with the boundary in a neighborhood 
of sl.  Without  loss of generality we assume that  Z is locally a straight line 
(s - So) + k(¢ - ¢0) = 0, where k > 0 because ~ must lie in the stable cone 
(s - s0)(¢ - ¢0) < 0, and that  U~ is given by (s - so) + k(¢ - ¢0) < 0 and Us 
by ( s -  so) + k ( ¢ -  ¢0) ~ 0. 

Consider the first return map [~ defined on U. The map B equals 
B n - 1 . . .  B2B1Bo on Us and B , - 1 . . .  B2Bo on U~ where Bi is a restriction of 
the billiard map on a small neighborhood of Pi. According to section 2.1.1, 
/~ is a continuous map but it loses smoothness on ~ .  Namely, the restriction 
B0s of B0 on Us exhibits the square root singularity described in section 2.1.1 
whereas the map Blur is regular and it can be continued onto the whole U 
as a smooth map B0~: erasing a small piece of the boundary containing the 
tangency point sl,  B0r will simply be the billiard map from U to a small 
neighborhood of P2 (see the action of B0~ on Pg i n  figure 3.2). Obviously, 
B0r~U = BIBosZ,  therefore the first return map B is continuous. One may 
represent the map /~  as a superposition of regular and singular maps: 

= B(~). B (~) 
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B 0 a t ~  0 ' 

Fig. 3.2. Structure near singular periodic orbit 

a) Action of billiard map near a singular segment of trajectory 
b) Phase space structure near singular periodic orbit: 1234 is mapped onto 1~21314 r 

where 

and 

B (') = Bn_z . . .B2Bo , .  

B(S) = ~ id on U~ 
[ Bo~IB1Bo, on U, 

The singular par t  B (') : U --* U may be obtained by inverted reflection near 
the tangency point 81 (see the action of B(~) on P~ in figure 3.2). I t  is not 
hard to calculate that  B(") is given by 

S' = S +  kx/max(S + k¢,O) + . . .  
• ' = • - X/ a (S + O) + . . .  

where S ---- s - so, ¢ -- ¢ - ¢0 are coordinates in U, and the dots stand for 
the quantities infinitely small in comparison with S, • or x /max(S  + k~, 0) 
as S , ¢  --- 0. 

The regular part  B (r) is, by definition, the first return map  for the aux- 
iliary billiard obtained by pushing the boundary near the tangency point sl 
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slightly aside the trajectory of L. The point P is a fixed point for B(r) (as 
well as for the map /3). Since the auxiliary billiard is still scattering, the 
point P is a hyperbolic fixed point for B (r). Moreover, the unstable cone 
S • 4i > 0 must be mapped inside itself by the linearization of B (~) at P.  

If \{' b21bll b12)b22 is the corresponding linearization matrix, the last condition is 

equivalent to the requirement that all bij are of same sign. Recall that  B(~) 
is an area-preserving diffeomorphism, so 

bllb22-b12b~l = 1. 

Superposition of B (r) and BO) gives, to leading order in S, 4~ and 
~//max(S + k~, 0), the following formula for the map/3:  

( ~ = b11S + b~24~ - ( b12 - bllk )~/max( S + k~, O) + . . .  
= b21SWb22q ~ (b22 b~lk)k/max(SWkq~,O)-4- 

(3.2) 

Provided inequalities 3.5 are satisfied, as proved in the lemma below, the 
normal form 3.1 is obtained from the above expression by changing to the 
new coordinates u, v where u is aligned with the singularity line (v ~ S + k~) 
and v is aligned with its image. From the calculation, it follows that  the 
quantity ~ is (bxl + b22), namely the sum of eigenvalues of the linearization of 
the regular part B (~) of/3 at P. Since the product of the eigenvalues equals 
to 1 and since they do not lie on the unit circle, it follows that  

I~1 > 2, (3.3) 

as indicated in the Proposition. D. 
L e m m a  3.1: The coefficients bij in (3.2) obey the inequa~ties: 

(b12-bllk)(b22-b21k) > 0 (3.4) 

Ibx21 < Ibl~lk (3.5) 
Jbezl < Ib=xlk. 

(3.6) 

Proof." Since the image /3L: of the singularity line S + k@ = 0 must lie 
in the unstable cone S • 45 > 0, it follows from 3.2 that  the first inequality 
(b12 - b11k)(b22 - b21k) > 0 holds. Moreover, it is geometrically evident that  
for a small piece I of a straight line through P which lies in the unstable cone, 
i.e., for which the increase of s is followed with the increase of ¢ (see figure 
3.2 - imagine a line going through P~, 1°0, P~) the image of I fq Ur by B0 and 
the image of I f3 Us by B1 B0 lie both to one side of the point P2 (or s2 when 
projected to the configuration plane). In other words, these images belong 
both to the same half of the unstable cone of P2 corresponding to a definite 
sign of (s - s2). Since the linearization of each of the maps Bi preserves the 
decomposition into the stable and unstable cones, it follows that  the image 
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of I by /3  is a folded line with the vertex at P which divides/~1 in two parts 
belonging both to the same half of the unstable cone of P; i.e., S and ~ have 
the same sign on /} ( l  f3 Ur) and /~( l  n U,). By (3.2), it is equivalent to the 
condition that  the sign of (b12 - bllk) is opposite to the sign of b12 and bll 
and the sign of (b22 - b~lk) is opposite to the sign of b22 and b21 (recall that  
all bij are of same sign). Thus, the second and third inequalities Ib121 < Ibll Ik 
and [b22[ < [b~lIk hold. ~. 

Now, embed the billiard under consideration in a one parameter family of 
scattering billiards bt(.; 7) for which all arcs depend smoothly on the param- 
eter 7, while the corner points are held fixed; we suppose that  the billiard 
with the simple singular periodic orbit L is realized at 7 = 0. The regular 
part B(r) of the first return map of U depends smoothly on 7, hence its hy- 
perbolic fixed point P(~) is also a smooth function of % The same is valid 
for the position of the singularity line ~.y. For a general family of billiards, 

the parameterization by "7 may be chosen so that  the distance between P(~) 
and 2Yx is proportional to 7 (it is true if, for instance, one changes the bil- 
liard boundary locally, near the tangency point sl only: such a perturbation 
moves the singularity line but the map B(~) and the position of its fixed point 

remain unchanged). Assume, with no loss of generality, that  p(r) E Ur for 

7 > 0 and that  P~(r) E Us for 7 < 0. Therefore, by the definition of B (r), its 
fixed point is a fixed point of /}  for 7 > 0, and its fixed point is imaginary 
when 7 < 0. 

Thus, for such a family of billiards, the normal form (3.1) of the first 
return m a p / 3  is now rewritten as 

~(7 -b v - v/max(v, 0)) - u + . . .  

In this form, the map/3~ looks similar to the well-known Hdnon map but it 
has another type of nonlinearity. In fact we show below: P r o p o s i t i o n  3.2 

Consider the map (3.7). For a small fized neighborhood U of the origin, let 
~ be the set of all orbits of B-r which never leave U. Then there exist 7 + 
values such that ~7 -= 0 for 7 < 7-  < O, and i f7  > 7 + > 0 and small, then 
g27 is in one-to.one correspondence with the set of all sequences composed 
of two symbols (r, s): "r" corresponds to entering Ur and "s" corresponds to 
entering Us. 

Proof :  Indeed, take a small 6 > 0 and let the neighborhood U be a 
1 1 

rectangle { -6  < u < ~6, - 6  < v < ~6} where x = ~ ( ~ l ~ l -  1) > 0 (recall 

that  1(I > 2). Let 7 + = (2 - )6 > 0 and 7-  = - ~-~6. Then, for sufficiently 

small 6, one may check that  for the given choice of U the map (3.'/) takes 
the horizontal boundaries of U (marked 1 and 3 in figure 3.3) on a finite 
distance of U for all 7 E [7-, 7+]. The images of the vertical boundaries 2 
and 4 which intersect the singularity line, fold as indicated in figure 3.3: the 
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segments 2a,4a are mapped to 2a',4a' and the segments 2b,4b are mapped to 
2b',4b'. The folded lines 2',4' may intersect U but they lie on a finite distance 
of their preimages (the boundaries 2 and 4) for all 7 E [7- ,  7+] . Thus, the 
image of U by/~7 has a specific shape of a sharp horseshoe. Changing 7 shifts 
the horseshoe along the v-axis, so at 7 = 7 + the intersection of the horseshoe 
with U consists of two distinct connected components (figure 3.3b). On each 
component the map/~7 is smooth and hyperbolic. The statement regarding 
the one-to-one correspondence to Bernoulli shift on two symbols follows as 
in the standard construction of the horseshoe map [23, 18]. In particular, it 
implies that each of the two components has a hyperbolic fixed point. On the 
other hand, at 7 = 7 -  the intersection o f / ~  U with U is empty (figure 3.3c) 
and no fixed points may exist in U. n. 

Notice the following three important  conclusions from the proof of the 
above proposition: first that  there exist 7 + values such that  for 7 + two hy- 
perbolic fixed points exist and for 7 -  no fixed points exist in the square region 
U near the intersection of the singularity line with its image. Second that  7 + 
may be chosen arbitrarily small (by taking smaller U). Third, no fixed points 
can pass through the boundary of U as 7 varies from 7 -  to 7 + because the 
image of the horizontal boundaries of U never intersects the boundary of U 
and the image of the vertical boundaries U may intersect only the horizontal 
parts of the boundary. 

Now, take a two-parameter family of Hamiltonians H(.;  e,7) which ap- 
proach the family of billiard flows bt(.; 7) as e ~ 0, in the sense that  condi- 
tions I -V  are satisfied uniformly with respect to 7. Note that  for the billiard 
flow, the structure of the Poincard map of an arbitrary small cross-section 
w through an inner point on the simple singular periodic orbit L is abso- 
lutely the same as described above (because the ma p / ~  is a particular case 
of the Poincar$ map, corresponding to the cross-section made of collision 
points, and different Poincar~ maps are smoothly conjugate near L; see sec- 
tion 2.1.1). Due to the C°-closeness result of theorem 3, it follows that  for e 
sufficiently small the corresponding Poincar$ m a p / / c 7  for the Hamiltonian 
system transforms a rectangle U' C w (analogous to the rectangle U) to a 
horseshoe shape (which is now smooth because the Hamiltonian system is 
smooth at all e > 0). At 7 = 7 -  the intersection IIe.rU' n U' is empty for 
small e whence //e~- has no fixed points in U'. Moreover, no fixed points 
can pass through the boundary of U' as 7 varies from 7 -  to 7 + because the 
fixed points of the first return billiard map stay on a finite distance from the 
boundary of U' for all 7 E [7-,  7+] • 

The two fixed points of the Poincar~ map of the billiard flow which exist 
at 7 = 7 + are hyperbolic and do not belong to the singularity line. Thus, by 
the corollary 1 to theorem 3, each of these hyperbolic fixed points exists for 
the map He.r+ at all sufficiently small e. Now, fixing any e small enough, a 
fixed point of//eT+ changes continuously as 7 decreases, until it merges with 
some other fixed point (as we argued, the fixed point must disappear before 
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Fig.  3.3. Sharp horseshoe bifurcation near singular periodic orbit 

One iterate of the indicated box by the truncation 
(0 = v, ~ = ~(3' + v - ~ )  - u) of the normal form (3.7) 

in all figures ~ = 3, 6 = 0.05. 
a) 7 - - 0 b )  7---0.015 > 7  + = 1 / 1 6 0 c )  7 - - - -7 - - - - -1 /30 .  

• - period n point. 

7 = 7 -  and it can not  leave U'  via crossing the boundary) .  In a general 
family  of  sufficiently smoo th  Hamil tonian  systems, one o f  the merging fixed 
points  is necessary saddle and another  is elliptic. Thus,  we have established 
tha t  

generically, for each e small enough, there exists an interval of values of 7 
for which the smooth Hamiltonian system possesses an elliptic periodic orbit. 

W i t h o u t  genericity assumptions,  we m a y  conclude the following. T h e o r e m  
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4: I f  a scattering billiard has a simple singular periodic orbit L, then there 
exists a one-parameter family of smooth Hamiltonian flows he(e) limiting to 
the billiard flow as e--* 0 (i.e. satisfying conditions I - V )  and for which there 
exists a sequence of intervals of e values converging to 0 on which elliptic 
periodic orbits Lt exist in the energy level of L. These elliptic periodic orbits 
limit to the singular periodic orbit as e ~ O. 

3.2 Singular homoclinic orbits 

Consider a non-singular hyperbolic periodic orbit L0 of the billiard flow. 
Suppose, its stable and unstable manifolds intersect along some orbit F. 
This is a homoclinic orbit; i.e., it asymptotes L0 exponentially as t --+ +co.  
Assume that  F is simple singular which means that  its trajectory has one 
point of tangeney with the billiard's boundary (see figure 1.1 b). 

Let P(s,  ¢) and/3(g,  ~) be collision points on F: P is the last before the 
tangency and/3  is the first after the tangency. By definition, t5 = B 2 p  where 
B is the billiard map. Consider, in the (s, 4) plane, the local segment W u 
of the unstable manifold of L0 to which P belongs. Since the tangent to 
W ~' at P belongs to the unstable cone, it must intersect the singularity line 
transversely at P.  Thus, as explained in the proof of lemma 3.1, the image 
of W ~' in a neighborhood of P under the billiard map folds with a sharp 
square root singularity a t /3 ,  see figure 3.4. Now, the poin t /3  belongs to the 
stable manifold as well. Since the tangent to W s belongs to the stable cone, 
it follows that  the folded image of W u lies to one side of W s, so a sharp 
homoclinic tangency is created a t /5 ,  as shown in figure 3.4. 

In a general family of scattering billiards (as in section 3.1), two trans- 
verse homoclinie intersections appear at 7 > 0 and none at 7 < 0. For the 
corresponding two-parameter Hamiltonian family, arguments analogous to 
those in the proof of theorem 4 show that  
generically, for any e sufficiently small there exists 7* (e) for which a quadratic 
homoclinic tangency occurs. 

Recall that  the occurrence of homoclinic tangencies is a well-known mech- 
anism for the creation of elliptic islands [20]. Thus we have established: 

T h e o r e m  5: I f  a scattering billiard has a simple singular homoclinic orbit F, 
then there exists a one-parameter family of smooth Hamiltonian flows he(e) 
satisfying conditions I -V,  which limits to the billiard flow as e --+ 0 and for 
which there exist a sequence of intervals of e values converging to zero for 
which elliptic periodic orbits exist in the energy level of 1". 

The period of the elliptic periodic orbits mentioned in Theorem 5 goes to 
infinity as e --* 0. In fact, in the two-parameter family of smooth Hamilto- 
nians elliptic periodic orbits of bounded period limit, as e --+ 0, to singular 
periodic orbits corresponding to 7 ¢ 0. Thus Theorems 5 and 4 are very 
much related. Indeed, like the appearance of stable periodic orbits near a 
homoclinic tangency is proved in smooth situation (see [12, 20, 13]), one may 
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a) 7 = 0 near/7 b) 7 = 0 near Z's image 
~ ~  B2ws 
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B w J  " . . . . . . . . . . . . . . . .  

Fig. 3.4. Bifurcation of singular homoclinic orbit 

c) 7 > 0 d) 7 < 0, near ~'s image 
• - homocllnic points. 

show that 
in a general family of scattering billiards having a sharp homoclinic tangency 
at 7 = 0 there is a sequence of values of 7 accumulating at 7 = 0 for which 
singular periodic orbits exist. 
Now the reference to theorem 4 gives another proof of theorem 5. 

3.3 On the  generic i ty  o f  the  el l iptic is lands creation 

It is well known [17, 2, 3] that  for scattering billiards the hyperbolic non- 
singular periodic orbits are dense in the phase space. The stable/unstable 
manifolds of such orbits cover the phase space densely and the orbits of their 
homoclinic intersections also form a dense set. 

It follows that  the periodic orbits and the homoclinic orbits get arbitrar- 
ily close to the singularity set. It seems thus intuitively clear that  for any 
scattering billiard very small smooth perturbations may be applied to place 
a specific periodic orbit or a specific homoclinic orbit exactly on the singu- 
larity line, so that  Theorem 4 and 5 may be applied. Proving these intuitive 
statements turns out to be quite a delicate issue, thus we formulate these as 
conjectures: 

C o n j e c t u r e  1: Any scattering billiard may be slightly perturbed to a scatter- 
ing billiard for which a singular (tangent) periodic orbit exists. 

C o n j e c t u r e  2: Any scattering billiard may be slightly perturbed to a scat- 
tering billiard for which there e~:isls a non-singular hyperbolic periodic orbit 
which has a singular homoclinic orbit. 
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3.4 N u m e r i c a l l y  produced singular homoclinic orbits 

$ 

Fig. 3.5. Billiard between four disks 

To examine the appearance of singular homoclinic orbits we consider the 
billiard in a domain bounded by four symmetrical circles 

x2 +(y-4-1)2= R2; (x:t:l)2 +y2 = R 2 

where R 2 1 + ( 1 -  1 2 = ~) . The quantity 7 (which is, approximately, the 

curvature of the circles) serves as the free parameter for unfolding the singu- 
larity. We find explicitly the corresponding billiard map, and using DSTOOL 
package[10], we find numerically hyperbolic periodic orbits of this mapping 
and their stable and unstable manifolds. The billiard map is found on the 
fundamental  domain of the billiard - a triangular region cut by an arc as 
shown in the figure 3.5. We find the return map to the slanted side of 
the triangle, which is parameterized by s, the horizontal coordinate, and 
by ¢, the outgoing angle to the normal vector ( - 1 , - 1 ) ,  see figure 3.5. We 
choose an arbitrary value of 7 and the simplest hyperbolic non-singular pe- 
riodic orbit, as shown in the figure (the fixed point of the return map to 
the slanted side of the reduced domain). Then, we construct the stable and 
unstable manifolds for this periodic orbit. We examine how these manifolds 
vary by small variation of 7, until we find a value of 7 for which singu- 
lar homoclinic orbit appears. The success (see figure 3.6 and figure 3.7) of 
the very crude search for such a delicate phenomena, near every 7 value 
we have chosen, supports conjecture 2 regarding the density of systems for 
which such orbits exist. In fact we have found, by such a search near 7i = 
i * 0.05, i = 1 , . . . ,  10, eleven sharp homoclinics to this specific periodic orbit 
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(at 7 = 0.0837, 0.10165, 0.1018, 0.153, 0.2077, 0.2552, 0.29245, 0.3329, 0.3832, 
0.4143, 0.4692). 

J in  (¢) 

O • 1 

Fig. 3.6. Numerically produced sharp homoclinics 

4 C o n c l u s i o n s  

There are two main results in this paper; First, we have found sufficient 
conditions for establishing that a family of smooth Hamiltonian flows limits 
to the singular billiard flow (see Theorem 1, 2 and 3). These conditions are 
fulfilled by smooth Hamiltonians with potentials approaching a step function 
in almost arbitrary way (see section 2.3); they fail, nevertheless, when the 
potentials are highly oscillatory (i.e., condition IV or V fails). 

Second, we have established that if a scattering billiard (we use the par- 
ticular hyperbolic structure associated with such billiards) has a singular pe- 
riodic orbit or a singular homoclinic orbit, then there exist arbitrarily close 
to it smooth Hamiltonian flows which possess elliptic islands, hence these are 
not ergodic (Theorem 4 and 5). Finally, we have conjectured, and have pro- 
vided numerical support to these conjectures, that in fact scattering billiards 
with singular periodic orbits and singular homoclinic orbits are dense among 
scattering billiards (conjectures 1 and 2 of section 3.3). If these conjectures 
are correct, then theorems 4 and 5 will imply that arbitrarily close to any 
scattering billiard there exists a family of non-ergodic smooth Hamiltonian 
f lOWS. 

Such statements imply that ergodicity and mixing results concerning two- 
dimensional non-smooth systems cannot be directly applied to the smooth dy- 
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Fig. 3.7. Magnification near numerically produced sharp homocfinics 

a) ~ = 0.28 b) 7 = 0.29245 c) 7 = 0.31 

namics they model• Whether the same holds for higher dimensional systems, 
e.g. three-dimensional billiards or multi-particle billiards, is yet to be studied. 

On the other hand, eventhough stability islands may appear in smooth 
billiard-like problems, the size of an individual island is expected to be very 
small. Thus,with no doubt, while the smooth flow may be non-ergodic, it 
will "seem" to be ergodic for a very long time; Statistics (e.g. correlation 
function) which are based upon finite time realizations may appear to behave 
as in the scattering billiards (e.g. fall off quasi-exponentially [5]). Whether  
longer realizations will reveal very different statistical properties, depends on 
the number of elliptic islands, the total area they cover in the phase space 
and on the "typical" period of the islands. Thus, estimates of the islands 
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sizes, their periods, and of the real potential steepness (the "physical e")  are 
necessary to supply estimates on the time scale for which the mixing property 
will appear to hold. 

We may try to estimate the periodicity of the elliptic periodic orbits of 
smooth flows approaching generic scattering billiards, by very naive argu- 
ments. Indeed, since stable periodic orbits are generated from singular peri- 
odic orbits of the billiard, one may expect (if conjecture 1 is correct) that 
the least period of stable periodic orbits of a smooth Hamiltonian system 
which is e-close to the billiard is of the order of the Poincar4 return time 
to an e-neighborhood of the singularity surface for the billiard flow. Notice 
that the billiard flow is a hyperbolic system; therefore, the return time in the 
billiard and, correspondingly, the typical period of the stable periodic mo- 
tions in its smooth approximation must, essentially, be l o g a r i t h m i c  in e and 
not of a power-law type. Namely, very small e values, corresponding to very 
steep potentials, may still produce stability islands which are observable on 
physical time-scales. 
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A A n  e x a m p l e  o f  s m o o t h  H a m i l t o n i a n  a p p r o x i m a t i o n  

o f  t h e  c i r c u l a r  b i l l i a r d  w i t h  n o n - r e f l e c t i n g  t r a j e c t o r i e s  

Consider the Hamiltonian 

1 2  1 2  H = -~p:: + -~p~ + e V ( 1  - x 2 - y2) (A.1) 

where the potential V is given by 

v ( Q )  = e x p  - A Q  + - -  , 
IQ 

with some positive constant A. The potential is of the form e V ( Q )  where the 
pattern function is defined by Q ( x ,  y; e) - 1 - x 2 - y 2 for all e. As e --* 0, 
the above Itamiltonian satisfies conditions I - I I I ,  which garuantee that 
near the boundary, x ~ + y~ = r ~ = 1, the correct elastic reflection rules are 
approached. Thus one may expect that the motion described by (A.1,A.2) 
limits to the billiard in the unit circle. We show that this is not the case; 
there exist initial conditions inside the unit circle for which the orbits of the 
Hamiltonian system ( A . 1 , A . 2 )  stick to the circle boundary for infinitely long 
time at arbitrarily small e. Notice that condition IV is violated. 
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The specific choice of V is not too important.  Essentially, we use that  

W W 
liminfl-~-- ] = A < co whereas aim sup J--I  = oo. (A.3) 

u - , 0  V 

Hamiltonian (A.1) is rotationally invariant, thus the particle's angular 
momentum 12: 

12 = r20 (A.4) 

is preserved. It follows that  the system is integrable and may be easily ana- 
lyzed. In polar coordinates (z = r cos 8, y -- r sin 0) the equations of motion 
are of the form 

F = r(02 + 2eV'(1 - r2)) = r(~-~ - + 2eV'(1 - r2)) (A.5) 
ii = 

r 

The radial motion decouples, and is governed by the Hamiltonian: 

1.2 1 122 1.2 
H = - ~ r  + - ~ - - ~ - + e V ( 1 - r ~ ) = ~ r  +Yell ( r ;12,  Q (A.6) 

The maximal polar radius, r*, reached by an initial condition (r0, ÷0) with 
/2 ¢ 0 is found from: 

1 122 1.2 1 ~22 
Veil(r*; 12, e) = eV(1 - r .2) + -~ -~  = ~r  o + 5~o2 + eV(1 - r~) = h (A.7) 

As e -+ 0, the value of r* tends to 1. The time spent by the orbit near r = r* 
is given by 

/ ~ ds (A.8) 
2 . - V e i l  ( s ;  12, 

thus it is infinite if: 

# * .  * 122 
V/ys(r ,12, e ) = - r  (~ -~ +  2 e V ' ( 1 - r * ~ ) ) - O  (A.9) 

(i.e. if F = 0 at r = r*). It follows, that  if there exist (r*(r0, F0, 12; e) > r0, e) 
solving (A.7) and (A.9) simultaneously, then, the phase point will move for 
infinitely .long time close to the unit circle with non-zero angular velocity 
( l i r n t . _ + ~  O = (r0/r*)~00). 

Next, we show that  such a solution exist for many initial condition and 
for a sequence of e --~ 0 values. First, since V(Q) is a monotonic function, for 
any r* > r0 one may find e such that (A.7) is satisfied; moreover, e --* 0 as 
r* ~ 1. Resolving (A.7) with respect to e and plugging the result in (A.9) 
we get 

,~ I V ' ( i  - r * 2 ) l  i . ( A . I O )  
r V(1 - r .2) - V(1 - r0 2) = + ( r * / r 0 )  2 - 1 
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According to (A.3), this equation is solved by an infinite number  of values of 
r* (with their corresponding e(r*; r0, ÷0,/~0)) limiting to r* = 1, provided 

r ~  1 (A.11) ( )2 A- 1 < ro2(1 -4- ~ ) .  

any given A > 0, and for any r0 < I ~ A  < Clearly, for 1 such initial 

conditions exist. Summarizing: if the initial conditions satisfy (A.11), then 
there exist an infinite number  of values of e, approaching e = 0, for which the 
orbit  sticks to the boundary for infinitly long time. 
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