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1. We discuss the mapping between the error-ratio measure computed with the nonblind
deblurring algorithm of Levin et al. [11] and the error-ratio measure computed with the
nonblind-deblurring method of Zoran and Weiss [22].

2. We explain why down-sampling an image using a sinc kernel has an effect of aliasing-
aware sharpening.

1 Mapping Between Different Types of Error Ratios

The error-ratio measure r (Eq. (15) in the paper), which is standardly used to quan-
tify the performance of blind-deblurring methods, depends on the type of non-blind
deblurring algorithm used for the final deblurring stage. The error-ratios reported in our
paper (and also used in [18]) were computed with the current state-of-the-art non-blind
deblurring method of Zoran and Weiss [22]. Previous studies (e.g., [12,13]) reported
error-ratios computed with the non-blind deblurring method of Levin et al. [11] (the
state-of-the-art at that time). In the figure below we re-plot the cumulative distribution
of error-ratios, but this time computed with [11]. As can be seen, the absolute error-
ratio values are different than those in the corresponding graph (Fig. 5 in the paper) of
error-ratios computed with [22]. Nonetheless, the two graphs reflect the same relative
behavior of all the methods.

In the table below we report the average performance, worst-case performance and
success rate of all algorithms, this time using error-ratios computed with the non-blind
deblurring of [11]. We note that for this setting, the blind deblurring paper of Levin et
al. [13] reported a threshold of 3 between good and bad visual results. Consequently,
we regard success rate in this context as the percent of images with error-ratio smaller
than 3. As in the corresponding table (Table 1 in the paper) of error-ratios computed
with the non-blind deblurring of [22], this table shows that our method and the method
of Sun et al. [18] outperform all other methods in all three categories. The average
performance of our method is close to that of Sun et al. [18], while our worst-case
performance is significantly better. Note that also when using this measure, only three
methods (the same three) attain an average error ratio smaller than 3: Our method, Sun
et al. [18], Xu and Jia [19].

The figure below further shows a scatter-plot of both types of error-ratios. Each
point in this plot corresponds to a kernel produced by one of the 7 tested blind-deblurring
methods on one of the 640 blurry images in the database (once used with the non-blind
deblurring of [22] and once with the non-blind deblurring of [11]). In other words, 4480
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Figure: Cumulative distribution of error ratios (similar to Fig. 5 in the paper), but this time the
error-ratios are computed with the nonblind deblurring algorithm of Levin et al. [11].

Table: Quantitative comparison of all methods over the entire database (640 blurry images),
based on error-ratios computed with [11]

Average performance Worst-case performance Success rate
(mean error ratio) (highest error-ratio) (percent of images

with error ratio < 3)
Our 1.9 5.4 93.3%

Sun et al. [18] 1.8 17.2 93.1%
Xu & Jia [19] 2.7 60.4 84.5%

Levin et al. [13] 4.1 26.5 46.7%
Cho & Lee [1] 6.5 107.9 64.1%

Krishnan et al. [10] 8.8 167.5 20.5%
Cho et al. [2] 19.7 145.9 23.8%

points (640 × 7). This figure indicates that there is very strong correlation between
the error-ratios computed with [22] and those computed with [11]. The best linear fit
(shown in red) suggests that an error ratio of 3 with [11] corresponds to an error-ratio of
approximately 5 with [22]. This further supports our visual observations that an error-
ratio of approximately 5 with [22] corresponds to the threshold between good and bad
visual results.

2 Aliasing-Aware Sharpening by a Factor of α

For simplicity, we focus on 1D signals. The extension to 2D is trivial. Suppose that the
continuous-space scene is convolved with a continuous-space kernel k(ξ) and sampled
at integer locations to yield the discrete-space blurry image1 y[n]. Let f(ξ) be a small
pattern in the scene that recurs elsewhere α-times larger as f(ξ/α) for some factor

1 We use parentheses for continuous-space signals and square brackets for discrete-space sig-
nals.
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Figure: Error ratios computed with the nonblind deblurring algorithm Zoran and Weiss [22]
vs. error ratios computed with the nonblind deblurring algorithm of Levin et al. [11].

α > 1. These two regions appear in the image as two patches:

q[n] =

∫
f(ξ)k(n− ξ)dξ, (1)

r[n] =

∫
f(ξ/α)k(n− ξ)dξ. (2)

We assume that k(ξ) is bandlimited to π, so that no aliasing occurs when sampling the
continuous scene (i.e., we assume the blurry input image is aliasing free). This implies
that the discrete-space Fourier transforms (DSFTs) of q[n] and r[n] are given by2

Q
(
eiω
)
= F (ω)K(ω), −π ≤ ω ≤ π (3)

R
(
eiω
)
= αF (αω)K(ω), −π ≤ ω ≤ π (4)

where F (ω) and K(ω) are the continuous-space Fourier transforms (CSFTs) of the
pattern f(ξ) and the kernel k(ξ), respectively.

Consider the following α-times coarser version of r[n], which we obtain by re-
sampling r[n] on the grid {αn}n∈Z with an ideal sinc kernel:

rα[n] =
∑
m

r[m]
1

α
sinc

(
mα− n

α

)
. (5)

As we show below (see the subsection on “Sinc Re-Sampling”), the DSFT of rα[n] is
given by

Rα
(
eiω
)
=

1

α
R
(
eiω/α

)
, −π ≤ ω ≤ π. (6)

2 We use the argument eiω in DSFTs as a reminder that they are 2π-periodic. Furthermore, we
always specify the contents of DSFTs only for ω ∈ [−π, π]. Values outside this range are
obtained by a 2π-periodic extension.
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Substituting (4) into (6), we have that

Rα
(
eiω
)
= F (ω)K(ω/α), −π ≤ ω ≤ π. (7)

Thus, rα[n] corresponds to samples of the continuous pattern f(ξ), after it has been
convolved with K(ω/α) rect(ω), where rect(ω) = 1 for ω < π, and is zero elsewhere
(the CSFT of sinc(ξ)). In other words, rα[n] is exactly the aliasing-aware α-times
sharper version of q[n]. This is visualized in the figure below.

F (ω)

K(ω)

αF (αω)

K(ω)

F (ω)

K(ω/α)rect(ω)

π−π π −π π

Q(eiω) = F (ω)K(ω) R(eiω) = αF (αω)K(ω) Rα(eiω) = F (ω)K(ω/α)

−π

Figure: Formation of the discrete-space Fourier transforms of the patches q[n], r[n], and
rα[n], from the continuous-space Fourier transforms of f(ξ) and k(ξ). The patches rα[n] and
q[n] correspond to samples of the same continuous-space structure f(ξ), but filtered with differ-
ent kernels. The patch q[n] is associated with the blur K(ω), while the patch rα[n] is associated
with the aliasing-aware blur K(ω/α) rect(ω).

2.1 Sinc Re-Sampling

To prove (6), note that we can write the sinc resampling formula (5) as

rα[n] = r̃(nα), (8)

where r̃(ξ) is the continuous-space interpolated signal

r̃(ξ) =
∑
n

r[n]
1

α
sinc

(
ξ − n
α

)
. (9)

Now, the CSFT of r̃(ξ) is given by

R̃(ω) =

∫ (∑
n

r[n]
1

α
sinc

(
ξ − n
α

))
e−iωξdξ

=
∑
n

r[n]
1

α

∫
sinc

(
ξ − n
α

)
e−iωξdξ

=
∑
n

r[n] rect(αω)e−iωn

= rect(αω)
∑
n

r[n]e−iωn

= rect(αω)R
(
eiω
)
, (10)
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where R
(
eiω
)

is the DSFT of r[n]. Since R̃(ω) is bandlimited to π/α, sampling it on
the grid {αn}n∈Z introduces no aliasing. Therefore, according to the Shannon Sampling
Theorem, the DSFT of rα[n] is given by

Rα(eiω) =
1

α
R̃
(ω
α

)
=

1

α
R
(
eiω/α

)
, −π ≤ ω ≤ π, (11)

proving (6).


