
Example Based 3D Reconstruction from Single 2D Images

Tal Hassner and Ronen Basri
The Weizmann Institute of Science

Rehovot, 76100 Israel
{tal.hassner, ronen.basri}@weizmann.ac.il

Abstract

We present a novel solution to the problem of depth re-
construction from a single image. Single view 3D recon-
struction is an ill-posed problem. We address this prob-
lem by using an example-based synthesis approach. Our
method uses a database of objects from a single class (e.g.
hands, human figures) containing example patches of fea-
sible mappings from the appearance to the depth of each
object. Given an image of a novel object, we combine the
known depths of patches from similar objects to produce
a plausible depth estimate. This is achieved by optimizing
a global target function representing the likelihood of the
candidate depth. We demonstrate how the variability of 3D
shapes and their poses can be handled by updating the ex-
ample database on-the-fly. In addition, we show how we
can employ our method for the novel task of recovering an
estimate for the occluded backside of the imaged objects.
Finally, we present results on a variety of object classes and
a range of imaging conditions.

1. Introduction

Given a single image of an every day object, a sculp-
tor can recreate its 3D shape (i.e., produce a statue of the
object), even if the particular object has never been seen be-
fore. Presumably, it is familiarity with the shapes of similar
3D objects (i.e., objects from the same class) and how they
appear in images, which enables the artist to estimate its
shape. This might not be the exact shape of the object, but
it is often a good enough estimate for many purposes. Mo-
tivated by this example, we propose a novel framework for
example based reconstruction of shapes from single images.

In general, the problem of 3D reconstruction from a sin-
gle 2D image is ill posed, since different shapes may give
rise to the same intensity patterns. To solve this, additional
constraints are required. Here, we constrain the recon-
struction process by assuming that similarly looking objects
from the same class (e.g., faces, fish), have similar shapes.
We maintain a set of 3D objects, selected as examples of a

specific class. We use these objects to produce a database
of images of the objects in the class (e.g., by standard ren-
dering techniques), along with their respective depth maps.
These provide examples of feasible mappings from intensi-
ties to shapes and are used to estimate the shapes of objects
in query images.

Our input image often contains a novel object. It is
therefore unlikely that the exact same image exists in our
database. We therefore devise a method which utilizes the
examples in the database to produce novel shapes. To this
end we extract portions of the image (i.e., image patches)
and seek similar intensity patterns in the example database.
Matching database intensity patterns suggest possible re-
constructions for different portions of the image. We merge
these suggested reconstructions together, to produce a co-
herent shape estimate. Thus, novel shapes are produced
by composing different parts of example objects. We show
how this scheme can be cast as an optimization process, pro-
ducing the likeliest reconstruction in a graphical model.

A major obstacle for example based approaches is the
limited size of the example set. To faithfully represent a
class, many example objects might be required to account
for variability in posture, texture, etc. In addition, unless
the viewing conditions are known in advance, we may need
to store for each object, images obtained under many con-
ditions. This can lead to impractical storage and time re-
quirements. Moreover, as the database becomes larger so
does the risk of false matches, leading to degraded recon-
structions. We therefore propose a novel example update
scheme. As better estimates for the depth are available, we
generate better examples for the reconstruction on-the-fly.
We are thus able to demonstrate reconstructions under un-
known views of objects from rich object classes. In addi-
tion, to reduce the number of false matches we encourage
the process to use example patches from corresponding se-
mantic parts by adding location based constraints.

Unlike existing example based reconstruction methods,
which are restricted to classes of highly similar shapes (e.g.,
faces [3]) our method produces reconstructions of objects
belonging to a variety of classes (e.g. hands, human figures).



We note that the data sets used in practice do not guarantee
the presence of objects sufficiently similar to the query, for
accurate reconstructions. Our goal is therefore to produce
plausible depth estimates and not necessarily true depths.
However, we show that the estimates we obtain are often
convincing enough.

The method presented here allows for depth reconstruc-
tion under very general conditions and requires little, if any,
calibration. Our chief requirement is the existence of a 3D
object database, representing the object class. We believe
this to be a reasonable requirement given the growing avail-
ability of such databases. We show depth from single im-
age results for a variety of object classes, under a variety of
imaging conditions. In addition, we demonstrate how our
method can be extended to obtain plausible depth estimates
of the back side of an imaged object.

2. Related work

Methods for single image reconstruction commonly use
cues such as shading, silhouette shapes, texture, and vanish-
ing points [5, 6, 12, 16, 28]. These methods restrict the al-
lowable reconstructions by placing constraints on the prop-
erties of reconstructed objects (e.g., reflectance properties,
viewing conditions, and symmetry). A few approaches ex-
plicitly use examples to guide the reconstruction process.
One approach [14, 15] reconstructs outdoor scenes assum-
ing they can be labelled as “ground,” “sky,” and “verti-
cal” billboards. A second notable approach makes the as-
sumption that all 3D objects in the class being modelled
lie in a linear space spanned using a few basis objects
(e.g., [2, 3, 7, 22]). This approach is applicable to faces,
but it is less clear how to extend it to more variable classes
because it requires dense correspondences between surface
points across examples. Here, we assume that the object
viewed in the query image has similar looking counterparts
in our example set. Semi-automatic tools are another ap-
proach to single image reconstruction [19, 29]. Our method,
however, is automatic, requiring only a fixed number of nu-
meric parameters.

We produce depth for a query image in a manner rem-
iniscent of example-based texture synthesis methods [10,
25]. Later publications have suggested additional appli-
cations for these synthesis schemes [8, 9, 13]. We note
in particular, the connection between our method, and Im-
age Analogies [13]. Using their jargon, taking the pair A
and A’ to be the database image and depth, and B to be
the query image, B’, the synthesized result, would be the
query’s depth estimate. Their method, however, cannot be
used to recover depth under an unknown viewing position,
nor handle large data sets. The optimization method we use
here is motivated by the method introduced by [26] for im-
age and video hole-filling, and [18] for texture synthesis.
In [18] this optimization method was shown to be compara-

Figure 1. Visualization of our process. Step (i) finds for every
query patch a similar patch in the database. Each patch provides
depth estimates for the pixels it covers. Thus, overlapping patches
provide several depth estimates for each pixel. We use these esti-
mates in step (ii) to determine the depth for each pixel.

ble to the state of the art in texture synthesis.

3. Estimating depth from example mappings

Given a query image I of some object of a certain
class, our goal is to estimate a depth map D for the ob-
ject. To determine depth our process uses examples of
feasible mappings from intensities to depths for the class.
These mappings are given in a database S = {Mi}n

i=1 =
{(Ii,Di)}n

i=1, where Ii and Di respectively are the image
and the depth map of an object from the class. For simplic-
ity we assume first that all the images in the database con-
tain objects viewed in the same viewing position as in the
query image. We relax this requirement later in Sec. 3.2.

Our process attempts to associate a depth map D to the
query image I , such that every patch of mappings in M =
(I,D) will have a matching counterpart in S. We call such
a depth map a plausible depth estimate. Our basic approach
to obtaining such a depth is as follows (see also Fig. 1). At
every location p in I we consider a k× k window around p.
For each such window, we seek a matching window in the
database with a similar intensity pattern in the least squares
sense (Fig. 1.(i)). Once such a window is found we extract
its corresponding k × k depths. We do this for all pixels in
I , matching overlapping intensity patterns and obtaining k2

best matching depth estimates for every pixel. The depth
value at every p is then determined by taking an average of
these k2 estimates (Fig. 1.(ii)).

There are several reasons why this approach, on its own,
is insufficient for reconstruction.

• The depth at each pixel is selected independently of its
neighbors. This does not guarantee that patches in M
will be consistent with those in the database. To obtain



a depth which is consistent with both input image and
depth examples we therefore require a strong global
optimization procedure. We describe such a procedure
in Sec. 3.1.

• Capturing the variability of posture and viewing an-
gles of even a simple class of objects, with a fixed set
of example mappings may be very difficult. We thus
propose an online database update scheme in Sec. 3.2.

• Similar intensity patterns may originate from different
semantic parts, with different depths, resulting in poor
reconstructions. We propose to constrain patch selec-
tion by using relative position as an additional cue for
matching (Sec. 3.3).

3.1. Global optimization scheme

We produce depth estimates by applying a global opti-
mization scheme for iterative depth refinement. We take the
depth produced as described in Fig. 1 as an initial guess
for the object’s depth, D, and refine it by iteratively repeat-
ing the following process until convergence. At every step
we seek for every patch in M , a database patch similar in
both intensity as well as depth, using D from the previous
iteration for the comparison. Having found new matches,
we compute a new depth estimate for each pixel by tak-
ing the Gaussian weighted mean of its k2 estimates (as in
Fig. 1.(ii)). Note that this optimization scheme, is simi-
lar to the one presented for hole-filling by [26], and texture
synthesis in [18].

Fig. 2 summarizes this process. The function
getSimilarPatches searches S for patches of mappings
which match those of M , in the least squares sense. The
set of all such matching patches is denoted V . The function
updateDepths then updates the depth estimate D at every
pixel p by taking the mean over all depth values for p in V .

D = estimateDepth(I , S)
M = (I, ?)
repeat until no change in M
(i) V = getSimilarPatches(M , S)
(ii) D = updateDepths(M , V)

M = (I,D)

Figure 2. Summary of the basic steps of our algorithm.

It can be shown that this process is in fact a hard-EM
optimization [17] of the following global target function.
Denote by Wp a k × k window from the query M centered
at p, containing both intensity values and (unknown) depth
values, and denote by V a similar window in some Mi ∈ S.

Figure 3. Man figure reconstruction. From left to right, input im-
age, five intermediate depth map results from different resolutions,
and a zoomed in view of our output reconstruction.

Our target function can now be defined as

Plaus(D|I, S) =
∑
p∈I

max
V ∈S

Sim(Wp, V ), (1)

with the similarity measure Sim(Wp, V ) being:

Sim(Wp, V ) = exp
(
−1

2
(Wp − V )T Σ−1(Wp − V )

)
,

where Σ is a constant diagonal matrix, its components rep-
resenting the individual variances of the intensity and depth
components of patches in the class. These are provided by
the user as weights (see also Sec. 5.1). To make this norm
robust to illumination changes we normalize the intensities
in each window to have zero mean and unit variance, simi-
larly to the normalization often applied to patches in detec-
tion and recognition methods (e.g., [11]).

We present a proof sketch for these claims in the ap-
pendix. Note that consequently, this process is guaranteed
to converge to a local maximum of Plaus(D|I, S).

The optimization process is further modified as follows:
Multi-scale processing. The optimization is performed in a
multi-scale pyramid representation of M . This both speeds
convergence and adds global information to the process.
Starting at the coarsest scale, the process iterates until con-
vergence of the depth component. Final coarse scale selec-
tions are then propagated to the next, finer scale (i.e., by
multiplying the coordinates of the selected patches by 2),
where intensities are then sampled from the finer scale ex-
ample mappings. Fig. 3 demonstrates some intermediate
depth estimates, from different scales.
Approximate nearest neighbor (ANN) search. The most
time consuming step in our algorithm is seeking a matching
database window for every pixel in getSimilarPatches.
We speed this search by using a sub-linear approximate
nearest neighbor search [1]. This does not guarantee finding
the most similar patches V , however, we have found the op-
timization robust to these approximations, and the speedup
to be substantial.

3.2. Example update scheme

Patch examples are now regularly used in many appli-
cations, ranging from recognition to texture synthesis. The



underlying assumption behind these methods is that class
variability can be captured by a finite, often small, set of ex-
amples. This is often true, but when the class contains non-
rigid objects, objects varying in texture, or when viewing
conditions are allowed to change, this can become a prob-
lem. Adding more examples to allow for more variability
(e.g. rotations of the input image in [8]), implies larger stor-
age requirements, longer running times, and higher risk of
false matches. In this work, we handle non-rigid objects
(e.g. hands), objects which vary in texture (e.g. the fish) and
can be viewed from any direction. Ideally, we would like
our examples to be objects whose shape is similar to that
of the object in the input image, viewed under similar con-
ditions. This, however, implies a chicken-and-egg problem
as reconstruction requires choosing similar objects for our
database, but for this we first need a reconstruction.

We thus propose the idea of online example set update.
Instead of committing to a fixed database at the onset of re-
construction, we propose updating the database on-the-fly
during processing. We start with an initial seed database of
examples. In subsequent iterations of our optimization we
drop the least used examples Mi from our database, replac-
ing them with ones deemed better for the reconstruction.
These are produced by on-the-fly rendering of more suit-
able 3D objects with better viewing conditions. In our ex-
periments, we applied this idea to search for better example
objects and better viewing angles. Other parameters such as
lighting conditions can be similarly resolved. Note that this
implies a potentially infinite example database (e.g. infinite
views), where only a small relevant subset is used at any one
time. We next describe the details of our implementation.

Searching for the best views. Fig. 4 demonstrates a re-
construction using images from a single incorrect viewing
angle (Fig. 4.a) and four fixed widely spaced viewing an-
gles (Fig. 4.b). Both are inadequate. It stands to reason that
mappings from viewing angles closer to the real one, will
contribute more patches to the process than those further
away. We thus adopt the following scheme. We start with a
small number of pre-selected views, sparsely covering parts
of the viewing sphere (the gray cameras in Fig. 4.c). The
seed database S is produced by taking the mappings Mi of
our objects, rendered from these views, and is used to obtain
an initial depth estimate. In subsequent iterations, we re-
estimate our views by taking the mean of the currently used
angles, weighted by the relative number of patches selected
from each angle. We then drop from S mappings originat-
ing from the least used angle, and replace them with ones
from the new view. If the new view is sufficiently close to
one of the remaining angles, we instead increase the num-
ber of objects to maintain the size of S. Fig. 4.c presents a
result obtained with our angle update scheme.

Although methods exist which accurately estimate the
viewing angle [20, 21], we preferred embedding this esti-

Input image

(a) (b) (c)

Figure 4. Reconstruction with unknown viewing angle. A
woman’s face viewed from (α, β) = (0◦,−22◦). (a) S ren-
dered from (0◦, 0◦). (b) Using the angles (−20◦, 0◦), (20◦, 0◦),
(−20◦,−40◦), and (20,−40), without update. (c) Reconstruction
with our on-the-fly view update scheme. Starting from the angles
in (b), now updating angles until convergence to (−6◦,−24◦).

mation in our optimization. To understand why, consider
non-rigid classes such as the human body where posture
cannot be captured with only a few parameters. Our ap-
proach uses information from several viewing angles simul-
taneously, without pre-committing to any single view.

Searching for the best objects. Although we have col-
lected at least 50 objects in each database, we use no more
than 12 objects at a time for the reconstruction, as it be-
comes increasingly difficult to handle larger sets. We select
these as follows. Starting from a set of arbitrarily selected
objects, at every update step we drop those leased refer-
enced. We then scan the remainder of our objects for those
who’s depth, Di, best matches the current depth estimate
D (i.e., (D − Di)2 is smallest, D and Di center aligned)
adding them to the database instead of those dropped. In
practice, a fourth of our objects were replaced after the first
iteration of every scale of our multi-scale process.

3.3. Preserving global structure

The scheme described in Sec. 3.1, makes an implicit sta-
tionarity assumption [25]: Put simply, the probability for
the depth at any pixel, given those of its neighbors, is the
same throughout the output image. This is generally untrue
for structured objects, where depth often depends on posi-
tion. For example, the probability of a pixel’s depth being
tip-of-the-nose high is different at different locations of a
face. To overcome this problem, we suggest enforcing non-
stationarity by adding additional constraints to the patch



(a) (b) (c)

Figure 5. Preserving relative position. (a) Input image (b) re-
constructed without position preservation constraints and (c) with
them.

Figure 6. Example database mappings. In the top row, two
appearance-depth images, out of the 67 in the Fish database. Bot-
tom row, two of 50 pairs from our Human-posture database.

matching process. Specifically, we encourage selection of
patches from similar semantic parts, by favoring patches
which match not only in intensities and depth, but also in
position relative to the centroid of the input depth. This is
achieved by adding relative position values to each patch of
mappings in both the database and the query image.

Let p = (x, y) be the (normalized) coordinates of a pixel
in I , and let (xc, yc) be the coordinates of the center of
mass of the area occupied by non background depths in the
current depth estimate D. We add the values (δx, δy) =
(x− xc, y − yc), to each patch Wp and similar values to all
database patches (i.e., by using the center of each depth im-
age Di for (xc, yc)). These values now force the matching
process to find patches similar in both mapping and global
position. Fig. 5 demonstrates a reconstruction result with
and without these constraints.

If the query object is segmented from the background,
an initial estimate for the query’s centroid can be obtained
from the foreground pixels. Alternatively, this constraint
can be applied only after an initial depth estimate has been
computed (i.e., Sec. 3).

4. Backside reconstruction

We have found that our method can be easily extended
to produce estimates for the shape of the occluded backside
of objects. This is achieved by simply replacing our map-
pings database with a database containing mappings from
front depth to a second depth layer, in this case the depth
at the back. Having recovered the visible depth of an ob-
ject (its depth map, D), we define the mapping from visible
to occluded depth as M ′(p) = (D(p),D′(p)), where D′ is
a second depth layer. We produce an example database of
such mappings by taking the second depth layer of our 3D
objects, thus getting S′ = {M ′

i}n
i=1. Synthesizing D′ can

now proceed similarly to the synthesis of the visible depth
layers. We note that this idea is similar in spirit to the idea
behind image completion schemes.

5. Implementation and results

5.1. Representing mappings

The mapping at each pixel in M , and similarly every
Mi, encodes both appearance and depth (See examples in
Fig. 6). In practice, the appearance component of each pixel
is its intensity and high frequency values, as encoded in the
Gaussian and Laplacian pyramids of I [4]. We have found
direct synthesis of depths to result in low frequency noise
(e.g. “lumpy” surfaces). We thus estimate a Laplacian pyra-
mid of the depth instead, producing the final depth by col-
lapsing the depth estimates from all scales. In this fashion,
low frequency depths are synthesized in the course scale of
the pyramid and only sharpened at finer scales.

Different patch components, including relative positions,
contribute different amounts of information in different
classes, as reflected by their different variance. For exam-
ple, faces are highly structured, thus, position plays an im-
portant role in their reconstruction. On the other hand, due
to the variability of human postures, relative position is less
reliable for that class. We therefore amplify different com-
ponents of each Wp for different classes, by weighting them
differently. We use four weights, one for each of the two
appearance components, one for depth, and one for relative
position. These weights were set once for each object class,
and changed only if the query was significantly different
from the images in S.

5.2. Implementation

Our algorithm was implemented in MATLAB, except
for the ANN code [1], which was used as a stand alone
executable. We experimented with the following data
sets. Hand and body objects, produced by exporting
built-in models from the Poser 6 software, the USF head
database [24], and a fish database [23]. Our objects are
stored as textured 3D models. We can thus render them



(a) (b)

Figure 7. Failures. (a) Hand reconstructions are particularly chal-
lenging, as they are largely untextured, and can vary greatly in
posture. (b) The uniform black shirt differed greatly from the ones
worn by our database objects (see Fig. 6). No reliable matches
could thus be found, resulting in a lumpy surface. Resulting sur-
face presented from a zoomed-in view.

to produce example mappings using any standard rendering
engine. Example mappings from the fish and human pos-
ture data-sets are displayed in Fig. 6. We used 3D Studio
Max for rendering. We preferred pre-rendering the images
and depth maps instead of rendering different objects from
different angles on-the-fly. Thus, we trade rendering times
with disk access times and large storage. Note that this is
an implementation decision; at any one time we load only a
small number of images to memory. The angle update step
(Sec. 3.2) therefore selects the existing pre-rendered angle
closest to the mean angle.

5.3. Experiments

We found the algorithm to perform well on structured
rigid objects, such as faces. However, hands, having lit-
tle texture and varying greatly in shape, proved more dif-
ficult, requiring more parameter manipulations. In general
the success of a reconstruction relies on the database used,
the input image, and how the two match (some failed re-
sults are presented in Fig. 7). Results are shown in Fig-
ures 5, 4, 8– 11. In addition, Fig. 8 and 9 present results for
the backside of imaged objects (i.e., Sec. 4). The query
objects were manually segmented from their background
and then aligned with a single preselected database image
to solve for scale and image-plane rotation differences.

Our running time was approximately 40 minutes for a
200× 150 pixel image using 12 example images at any one
time, on a Pentium 4, 2.8GHz computer with 2GB of RAM.
For all our results we used three pyramid levels, with patch
sizes taken to be 5 × 5 at the coarsest scale, 7 × 7 at the
second level, and 9 × 9 for the finest scale.

6. Conclusions and future work

This paper presents a method for reconstructing depth
from a single image by using example mappings from ap-
pearance to depth. We show that not only is the method
applicable to many diverse object classes, and images ac-

(a) (b)

(c) (d)
Figure 8. Hand reconstruction. (a) Input image. (b) Four most
referenced database images in the last iteration of the algorithm.
(c) Our output. (d) Output estimate for the back of the hand.

quired under a range of conditions, it can additionally be
used for the novel task of estimating the depth of the back
of the object in the image. We further address the problems
of global structure preservation, handling large databases,
and viewing angles estimation.

We believe our method can be extended in many ways.
First, the process itself can be improved to produce better
results, consuming less time and memory. Second, we be-
lieve it will be interesting to examine if this approach can be
extended to handle other vision related problems, in partic-
ular to combine segmentation with the reconstruction (e.g.
by adding binary segmentations to the example mappings.)

7. Acknowledgements

This research has been supported in part by the European
Community grant IST-2002-506766 Aim@Shape. The vi-
sion group at the Weizmann Institute is supported in part by
the Moross Foundation. The authors also thank Eli Shecht-
man, Lihi Zelnik-Manor, and Michal Irani for helpful com-
ments and discussions, and additionally Shachar Weis for
his help implementing the system.

References

[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate near-
est neighbor searching in fixed dimensions. Journal of
the ACM, 45(6), 1998. Source code available from
www.cs.umd.edu/∼mount/ANN/. 3, 5

[2] J. Atick, P. Griffin, and A. Redlich. Statistical approach to
shape from shading: Reconstruction of three-dimensional
face surfaces from single two-dimensional images. Neural
Computation, 8(6):1321–1340, 1996. 2



Figure 9. Full body reconstructions. Left to right: Input image, the output depth without and with texture, input image of a man, output
depth, textured view of the output, output estimate of the depth at the back. Man results shown zoomed-in.

Figure 10. Two face reconstructions. Left to right: Input image, four most referenced database images in the last iteration, our output
without and with texture, input image, four most referenced database images in the last iteration, our output without and with texture.

Figure 11. Two fish reconstructions. Left to right: Input image (removed from the example database); recovered depth and a textured
view of the output; Input image; recovered depth and a textured view of the output.

[3] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3D faces. In SIGGRAPH, 1999. 1, 2

[4] P. Burt and E. Adelson. The laplacian pyramid as a compact
image code. In IEEE Trans, on Communication, 1983. 5

[5] R. Cipolla, G. Fletcher, and P. Giblin. Surface geometry from
cusps of apparent contours. In ICCV, 1995. 2

[6] A. Criminisi, I. Reid, and A. Zisserman. Single view metrol-
ogy. IJCV, 40(2), Nov. 2000. 2

[7] R. Dovgard and R. Basri. Statistical symmetric shape from
shading for 3D structure recovery of faces. In ECCV, 2004.
2

[8] I. Drori, D. Cohen-Or, and H. Yeshurun. Fragment-based
image completion. In SIGGRAPH, 2003. 2, 4

[9] A. Efros and W. Freeman. Image quilting for texture synthe-
sis and transfer. In SIGGRAPH, 2001. 2

[10] A. Efros and T. Leung. Texture synthesis by non-parametric
sampling. In ICCV, 1999. 2

[11] R. Fergus, P. Perona, and A. Zisserman. A sparse object cate-
gory model for efficient learning and exhaustive recognition.
In CVPR, 2005. 3

[12] F. Han and S.-C. Zhu. Bayesian reconstruction of 3D shapes
and scenes from a single image. In Workshop on Higher-
Level Knowledge in 3D Modeling and Motion Analysis,
2003. 2

[13] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and
D. Salesin. Image analogies. In SIGGRAPH, 2001. 2

[14] D. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-
up. In SIGGRAPH, 2005. 2

[15] D. Hoiem, A. Efros, and M. Hebert. Geometric context from
a single image. In ICCV, 2005. 2

[16] B. Horn. Obtaining Shape from Shading Information.
McGraw-Hill, 1975. 2

[17] M. Kearns, Y. Mansour, and A. Ng. An information-theoretic
analysis of hard and soft assignment methods for clustering.
In UAI, 1997. 3, 8



[18] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture opti-
mization for example-based synthesis. In SIGGRAPH, 2005.
2, 3

[19] B. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based
modeling and photo editing. In SIGGRAPH, 2001. 2

[20] R. Osadchy, M. Miller, and Y. LeCun. Synergistic face detec-
tion and pose estimation with energy-based model. In NIPS,
2004. 4

[21] S. Romdhani, V. Blanz, and T. Vetter. Face identification by
fitting a 3D morphable model using linear shape and texture
error functions. In ECCV, 2002. 4

[22] S. Romdhani and T. Vetter. Efficient, robust and accurate
fitting of a 3D morphable model. In ICCV, 2003. 2

[23] Toucan virtual museum, free fish models, available at:
http://toucan.web.infoseek.co.jp/3DCG/3ds/FishModelsE.html. 5

[24] USF. DARPA Human-ID 3D Face Database: Courtesy of
Prof. Sudeep Sarkar. University of South Florida, Tampa,
FL. http://marthon.csee.usf.edu/HumanID/. 5

[25] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In SIGGRAPH, 2000. 2, 4

[26] Y. Wexler, E. Shechtman, and M. Irani. Space-time video
completion. In CVPR, 2004. 2, 3

[27] Y. Wexler, E. Shechtman, and M. Irani. Space-time
video completion. Submitted as a journal version. See
www.wisdom.weizmann.ac.il/∼vision/VideoCompletion.html. 8

[28] A. Witkin. Recovering surface shape and orientation from
texture. AI, 17(1–3):17–45, 1981. 2

[29] L. Zhang, G. Dugas-Phocion, J.-S. Samson, and S. M. Seitz.
Single view modeling of free-form scenes. In CVPR, 2001.
2

A. Plausibility as a likelihood function

We now sketch how Plaus(D|I, S) of Eq. 1 can be de-
rived as a likelihood function from a graphical model rep-
resentation of our problem (Fig. 12). In addition, we show
that our optimization (Fig. 2) is a hard-EM variant, produc-
ing the local maximum of this likelihood. This derivation is
similar to the one in [27], presented here in the context of
our scheme.

In Fig. 12 we represent the intensities of the query image
I as observables and the matching database patches V and
the sought depth values D as hidden variables. The joint
probability of the observed and hidden variables can be for-
mulated through the edge potentials by

f(I,V;D) =
∏
p∈I

∏
q∈Wp

φI(Vp(q), I(q)) · φD(Vp(q),D(q))

where Vp is the database patch matched with Wp by the
global assignment V . Taking φI and φD to be Gaussians
with different covariances over the appearance and depth
respectively, implies

f(I,V;D) =
∏
p∈I

Sim(Wp, Vp).

Figure 12. Graphical model representation. Please see text for
more details.

Integrating over all possible assignments of V we obtain the
likelihood function

L = f(I;D) =
∑
V

f(I,V;D) =
∑
V

∏
p∈I

Sim(Wp, Vp).

We approximate the sum with a maximum operator. Note
that this is common practice for EM algorithms, often called
hard-EM (e.g., [17]). Since similarities can be computed in-
dependently, we can interchange the product and maximum
operators, obtaining the following maximum log likelihood:

max log L ≈
∑
p∈I

max
V ∈S

Sim(Wp, V ) = Plaus(D|I, S),

which is our cost function (1).
The function estimateDepth (Fig. 2) maximizes this

measure by implementing a hard-EM optimization. The
function getSimilarPatches performs a hard E-step by
selecting the set of assignments Vt+1 for time t + 1 which
maximizes the posterior:

f(Vt+1|I;Dt) ∝
∏
p∈I

Sim(Wp, Vp)

Here, Dt is the depth estimate at time t. Due to the inde-
pendence of patch similarities, this can be maximized by
finding for each patch in M the most similar patch in the
database, in the least squares sense.

The function updateDepths approximates the M-step
by finding the most likely depth assignment at each pixel:

Dt+1(p) = arg max
D(p)

(−
∑

q∈Wp

(D(p) − depth(V t+1
q (p))2)).

This is maximized by taking the mean depth value over all
k2 estimates depth(V t+1

q (p)), for all neighboring pixels q.


