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Abstract. When a very fast dynamic event is recorded with a low-framerate cam-
era, the resulting video suffers from severe motion blur (due to exposure time)
and motion aliasing (due to low sampling rate in time). True Temporal Super-
Resolution (TSR) is more than just Temporal-Interpolation (increasing framer-
ate). It can also recover new high temporal frequencies beyond the temporal
Nyquist limit of the input video, thus resolving both motion-blur and motion-
aliasing – effects that temporal frame interpolation (as sophisticated as it may
be) cannot undo. In this paper we propose a “Deep Internal Learning” approach
for true TSR. We train a video-specific CNN on examples extracted directly from
the low-framerate input video. Our method exploits the strong recurrence of small
space-time patches inside a single video sequence, both within and across differ-
ent spatio-temporal scales of the video. We further observe (for the first time) that
small space-time patches recur also across-dimensions of the video sequence –
i.e., by swapping the spatial and temporal dimensions. In particular, the higher
spatial resolution of video frames provides strong examples as to how to increase
the temporal resolution of that video. Such internal video-specific examples give
rise to strong self-supervision, requiring no data but the input video itself. This re-
sults in Zero-Shot Temporal-SR of complex videos, which removes both motion
blur and motion aliasing, outperforming previous supervised methods trained on
external video datasets.

1 Introduction

The problem of upsampling video framerate has recently attracted much attention
[2,15,9,16,24,14]. These methods perform high-quality Temporal Interpolation on sharp
videos (no motion blur or motion aliasing). However, temporal-interpolation methods
cannot undo motion blur, nor motion aliasing. This is a fundamental difference between
Temporal Interpolation and Temporal Super-Resolution.

What is Temporal Super-Resolution (TSR)?

The temporal resolution of a video camera is determined by the frame-rate and by the
exposure-time of the camera. These limit the maximal speed of dynamic events that can
?joint first authors.
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Fig. 1. Visual Comparison on TSR × 8. We compared our method to state-of-the-art methods
(DAIN[2], NVIDIA SloMo[9], Flawless[10]). Blurs of highly non-rigid objects (fire, water) pose
a challenge to all methods. None of the competitors can resolve the motion blur or aliasing
induced by the fast rotating fans. Our unsupervised TSR handles these better. Please view videos
in our project website to see the strong aliasing effects.

Fig. 2. Frame interpolation vs. Temporal-SR. A fan is rotating clockwise fast, while recorded
with a ’slow’ camera. The resulting LTR video shows a blurry fan rotating in the wrong
counter-clockwise direction. Temporal frame interpolation/upsampling methods cannot undo mo-
tion blur nor motion aliasing. They only add new blurry frames, while preserving the wrong
aliased counter-clockwise motion. Please see our project website to view these dynamic effects.
In contrast, true TSR not only increases the framerate, but also recovers the lost high temporal
frequencies, thus resolving motion aliasing and blur (restoring the correct fan motion).

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
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be captured correctly in a video. Temporal Super-Resolution (TSR) aims to increase the
framerate in order to unveil rapid dynamic events that occur faster than the video-frame
rate, and are therefore invisible, or else seen incorrectly in the video sequence [19].

A low-temporal-resolution (LTR) video L, and its corresponding high-temporal-
resolution (HTR) video H , are related by blur and subsampling in time:

L = (H ∗ rect) ↓stemporal

where rect is a rectangular temporal blur kernel induced by the exposure time.
For simplicity, we will assume here that the exposure time is equal to the time be-

tween consecutive frames. While this is a simplifying inaccurate assumption, it is still
a useful one, as can be seen in our real video results (please view Fan video and the
Rotating-Disk video in our project website). Note that the other extreme – the δ expo-
sure model typically assumed by frame interpolation methods [2,9], is also inaccurate.
The true exposure time is somewhere in between those two extremes.

When a very fast dynamic event is recorded with a “slow” camera, the resulting
video suffers from severe motion blur and motion aliasing. Motion blur results from
very large motions during exposure time (while the shutter is open), often resulting in
distorted or unrecognizable shapes. Motion aliasing occurs when the recorded dynamic
events have temporal frequencies beyond the Nyquist limit of the temporal sampling
(framerate). Such an illustrative example is shown in Fig. 2. A fan rotating fast clock-
wise, is recorded with a “slow” camera. The resulting LTR video shows a blurry fan
moving in the wrong direction – counter-clockwise.

Frame-interpolation methods [2,15,9,16,24,14] cannot undo motion blur nor motion
aliasing. They only add new blurry frames, while preserving the wrong aliased counter-
clockwise motion (illustrated in Fig. 2, and shown for real videos of a fan and a dotted
wheel in Fig. 1 & full videos in the project website).

Methods for Video Deblurring (e.g., [7,23]) were proposed for removing motion
blur from video sequences. These, however, do not increase the framerate, hence cannot
resolve motion aliasing.

In contrast, true Temporal Super-Resolution (TSR) aims not only to increase the
framerate and/or deblur the frames, but also to recover the lost high temporal frequen-
cies beyond the Nyquist limit of the original framerate. “Defying” the Nyquist limit in
the temporal domain is possible due to the motion blur in the spatial domain. Consider
two cases: (i) A fan rotating clockwise fast, which due to temporal aliasing appears
to rotate slowly counter-clockwise; and (ii) A fan rotating slowly counter-clockwise.
When the exposure time is long (not δ), the fan in (i) has severe motion blur, while the
fan in (ii) exhibits the same motion with no blur. Hence, while temporally (i) and (ii) are
indistinguishable, spatially they are. Therefore, TSR can resolve both motion-aliasing
and motion-blur, producing sharper frames, as well as the true motion of the fan/wheel
(clockwise rotation, at correct speed). See results in Fig. 1, and full videos in the project
website (motion aliasing is impossible to display in a still figure).

A new recent method, referred to in this paper as ‘Flawless’ [10], presented a Deep-
Learning approach for performing true TSR. It trained on an external dataset containing
video examples with motion blur and motion aliasing. Their method works very well
on videos with similar characteristics to their training data – i.e., strong camera-induced

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
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motion blur on mostly rigid scenes/objects. However, its performance deteriorates on
natural videos of more complex dynamic scenes – highly non-rigid motions and severe
motion-aliasing (see Fig. 1).

Failure to handle non-typical videos is not surprising — generating an inclusive
video dataset containing all possible combinations of spatial appearances, scene dynam-
ics, different motion speeds, different framerates, different blurs and different motion
aliasing, is combinatorially infeasible.

In this work we propose to overcome these dataset-dependant limitations by replac-
ing the External training with Internal training. Small space-time video patches have
been shown to recur across different spatio-temporal scales of a single natural video
sequence [18]. This strong internal video-prior was used by [18] for performing TSR
from a single video (using Nearest-Neighbor patch search within the video). Here we
exploit this property for training a Deep Fully Convolutional Neural Network (CNN)
on examples extracted directly from the LTR input video. We build upon the paradigm
of “Deep Internal Learning”, first coined by [21]. They train a CNN solely on the input
image, by exploiting the recurrence of small image-patches across scales in a single
natural image [5]. This paradigm was successfully used for a variety of image-based
applications [21,20,17]. Here we extend this paradigm, for the first time, to video data.

We further observe (for the first time) that small space-time patches (ST-patches)
recur also across-dimensions of the video sequence, i.e., when swapping between the
spatial and temporal dimensions (see Fig. 3). In particular, the higher spatial resolution
of video frames provides strong examples as to how to increase the temporal reso-
lution of that video (see Fig. 7.b). We exploit this recurrence of ST-patches across-
dimensions (in addition to their traditional recurrence across video scales), to generate
video-specific training examples, extracted directly from the input video. These are used
to train a video-specific CNN, resulting in Zero-Shot Temporal-SR of complex videos,
which resolves both motion blur and motion aliasing. It can handle videos with com-
plex dynamics and highly non-rigid scenes (flickering fire, splashing water, etc.), that
supervised methods trained on external video datasets cannot handle well.
Our contributions are several-fold:
• Extending “Deep Internal Learning” to video data.
• Observing the recurrence of data across video dimensions (by swapping space and

time), and its implications to TSR.
• Zero-Shot TSR (no training examples are needed other than the input video).
• We show that internal training resolves motion blur and motion aliasing of complex

dynamic scenes, better than externally-trained supervised methods.

2 Patch Recurrence across Dimensions

It was shown [18] that small Space-Time (ST) patches tend to repeat abundantly inside
a video sequence, both within the input scale, as well as across coarser spatio-temporal
video scales. Here we present a new observation ST-patches recur also across video
dimensions, i.e., when the spatial and temporal dimensions are swapped. Fig. 3 displays
the space-time video volume (x-y-t) of a running cheetah. The video frames are the
spatial x-y slices of this volume (marked in magenta). Each frame corresponds to the
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Fig. 3. Slices of the space-time video volume. (Top:) xy slices = frames, (Bottom:) ty slices.
The xy slices (video frames) provide high-resolution patch examples for the patches in the low-
resolution ty slices. (See text for more details)

Fig. 4. Slices of the space-time video volume of a complex motion. (Top to bottom:) xy slices,
ty slices, xt slices. Note that patch similarities across-dimensions hold even for highly complex
non-linear motions. See project website for videos of slices across different dimensions.

plane (slice) of the video volume at time t=ti. Swapping the spatial and the temporal
dimensions, we can observe “frames” that capture the information in y-t slices (x=xi
plane) or x-t slices (y=yi plane). Examples of such slices appear in Figs. 3 and 4 (green
and blue slices). These slices can also be viewed dynamically, by flipping the video
volume (turning the x-axis (or y-axis) to be the new t-axis), and then playing as a video.
Such examples are found in the project website.

When an object moves fast, patches in x-t and y-t slices appear to be low-resolution
versions of the higher-resolution x-y slices (traditional frames). Increasing the reso-
lution of these x-t and y-t slices in t direction is the same as increasing the temporal
resolution of the video. The spatial x-y video frames thus provide examples as to how
to increase the temporal resolution of the x-t and y-t slices within the same video. In-

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
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terestingly, when the object moves very slowly, patches in x-t and y-t slices appear as
stretched versions of the patches in x-y frames, indicating that these temporal slices
may provide examples as to how to increase the spatial resolution of the video frames.
This however, is beyond the scope of the current paper.

Fig. 5. 1D illustration of “across dimension” recurrence. A 1D object moves to the right. When
properly sampled in time (∆T=1), temporal slices are similar to spatial slices (1D “frames”).
However, when the temporal sampling rate is too low (∆T=2), temporal slices are undersampled
(aliased) versions of the spatial slices. Thus, spatial frames provide examples for undoing the
temporal aliasing. (See text for more details.)

Fig. 5 explains this phenomenon in a simplified “flat” world. A 1D object moves
horizontally to the right with constant speed. The 2D space-time plane here (xt), is
equivalent to the 3D space-time video volume (xyt) in the general case. If we look at
a specific point x=xi, the entire object passes through this location over time. Hence
looking at the temporal slice through x=xi (here the slices are 1D lines), we can see the
entire object emerging in that temporal slice. The resolution of the 1D temporal slice
depends on the object’s speed compared to the framerate. For example, if the object’s
speed is 1 pixel/second, then taking frames every 1second (∆t = 1) will show the
entire object in the 1D temporal slice at x=xi . However, if we sample slower in time
(which is equivalent to a faster motion with the same framerate), the temporal slice at
x=xi will now display an aliased version of the object (Fig. 5, on the right). In other
words, the spatial frame at t=t0 is a high-resolution version of the aliased temporal
slice at x=xi. The full-resolution spatial frame at t=t0 thus teaches us how to undo the
motion (temporal) aliasing of the temporal slice at x=xi .

The same applies to the 3D video case. When a 2D object moves horizontally with
constant speed, the y-t slice will contain a downscaled version of that object. The higher-
resolution x-y frames teach how to undo that temporal aliasing in the y-t slice. Obvi-
ously, objects in natural videos do not necessarily move in a constant speed. This how-
ever is not a problem, since our network resolves only small space-time video patches,
relying on the speed being constant only locally in space and time (e.g., within a 5×5×3
space-time patch).
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Fig. 6. Similarity Across-Dimensions: Nearest-Neighbor (NN) heat map indicating the percent
of best patch matches (out of 10), found “across-dimensions” vs. “within the same dimension”.
Red color indicates patches for which all 10 best matches were found “across dimension”; Blue
indicates patches for which all 10 best matches were found “within the same dimension”. As can
be seen, a significant portion of the ST-patches found their best matches across dimensions.

Shahar et. al [18] showed empirically that small 3D ST (Space-Time) patches tend
to recur in a video sequence, within/across multiple spatio-temporal scales of the video.
We refer to these recurrences as ‘recurrence within the same dimension’ (i.e., no swap
between the axes of the video volume). Patch ‘recurrence across dimensions’ provides
additional high-quality internal examples for temporal-SR. This is used in addition to
the patch recurrence within the same dimension.

Fig. 6 visually conveys the strength of ‘recurrence across dimensions’ of small ST-
patches in the Cheetah video, compared to their recurrence within the same dimension.
Each 5×5×3 patch in the original video searched for its top 10 approximate nearest-
neighbors (using Patch-Match [4]). These best matches were searched in various scales,
both within the same dimension (in the original video orientation, xyt), and across di-
mensions (tyx, by flipping the video volume so that the x-axis becomes the new t-axis).
The colors indicate how many of these best matches were found across-dimension. Red
color (100%) indicates patches for which all 10 best matches were found across di-
mension; Blue (0%) indicates patches for which all 10 best matches were found within
the same dimension. The figure illustrates that a significant portion of the ST-patches
found their best matches across dimensions (showing here one slice of the video vol-
ume). These tend to be patches with large motions – the background in this video (note
that the background moves very fast, due to the fast camera motion which tracks the
cheetah). Indeed, as explained above, patches with large motions can benefit the most
from using the cross-dimension examples.

Both of these types of patch recurrences (within and across dimensions) are used
to perform Zero-Shot Temporal-SR from a single video. Sec. 3 explains how to exploit
these internal ST-patch recurrences to generate training examples from the input video
alone. This allows to increase the framerate while undoing both motion blur and motion
aliasing, by training a light and simple video-specific CNN.

Fig. 4 shows that patch recurrence across dimensions applies not only to simple
linear motions, but also in videos with very complex motions. A ball falling into a
liquid filled glass was recorded with a circuiting slow-motion (high framerate) camera.
We can see x-t and y-t slices from that video contain similar patches as in the original
x-y frames. Had this scene been recorded with a regular (low-framerate) camera, the
video frames would have provided high-resolution examples for the lower temporal
resolution of the x-t and y-t slices.
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3 Generating an Internal Training Set

Low-temporal-resolution (LTR) & High-temporal-resolution (HTR) pairs of examples
are extracted directly from the input video, giving rise to self-supervised training. These
example pairs are used to train a relatively shallow fully convolutional network, which
learns to increase the temporal resolution of the ST-patches of this specific video. Once
trained, this video-specific CNN is applied to the input video, to generate a HTR output.

The rationale is: Small ST-patches in the input video recur in different space-time
scales and different dimensions of the input video. Therefore, the same network that is
trained to increase the temporal resolution of these ST-patches in other scales/dimensions
of the video, will also be good for increasing their temporal-resolution in the input video
itself. This is a similar logic to that of the ZSSR in images [21].

The creation of relevant training examples is thus crucial to the success of the learn-
ing process. In order for the CNN to generalize well to the input video, the LTR-HTR
training examples should bear resemblance and have similar statistics of ST-patches as
in the input video and its (unknown) HTR version. This process is explained next.

3.1 Example Pairs from “Same Dimension”

The first type of training examples makes use of similarity of small ST-patches across
spatio-temporal scales of the video. As was observed in [18], and shown in Fig. 7.a:
• Downscaling the video frames spatially (e.g., using bicubic downscaling), causes

edges to appear sharper and move slower (in pixels/frame). This generates ST-patches
with higher temporal resolution.
• Blurring and sub-sampling a video in time (i.e., reducing the framerate and increasing

the “exposure-time” by averaging frames), causes an increase in speed, blur, and
motion aliasing. This generates ST-patches with lower temporal resolution. Since the
“exposure-time” is a highly non-ideal LPF (its temporal support is ≤ than the gap
between 2 frames), such temporal coarsening introduces additional motion aliasing.
• Donwscaling by the same scale-factor both in space and in time (the diagonal arrow

in Fig. 7.a), preserves the same amount of speed and blur. This generates ST-patches
with same temporal resolution.

Different combinations of spatio-temporal scales provide a variety of speeds, sizes,
different degrees of motion blur and different degrees of motion aliasing. In particu-
lar, downscaling by the same scale-factor in space and in time (the diagonal arrow in
Fig. 7.a), generates a variety of LTR videos, whose ST-patches are similar to those in
the LTR input video, but for which their corresponding ground-truth HTR videos are
known (the corresponding space-time volumes just above them in the space-time pyra-
mid of Fig. 7.a).

Moreover, if the same object moves at different speeds in different parts of the video
(such as in the rotating fan/wheel video in the the project website), the slow part of the
motion provides examples how to undo the motion blur and motion aliasing in faster
parts of the video. Such LTR-HTR example pairs are obtained from the bottom-left part
of the space-time pyramid (below the diagonal in Fig. 7.a).

To further enrich the training-set with a variety of examples, we apply additional
augmentations to the input video. These include mirror flips, rotations by 90◦, 180◦, 270◦,

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
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Fig. 7. Generating Internal Training Set. (a) Different combinations of spatio-temporal scales
provide a variety of speeds, sizes, different degrees of motion blur & aliasing. This generates
a variety of LTR example videos, for which their corresponding ground-truth HTR videos are
known (the space-time volumes just above them). (b) The xy video frames provide high-resolution
examples for the ty and xt slices. Training examples can therefore be generated from these spatial
frames, showing how to increase the temporal resolution. Please see the video in our project
website for a visual explanation and demonstration of those internal augmentations.

as well as flipping the video in time. This is useful especially in the presence of chaotic
non-rigid motions.

3.2 Example Pairs “Across Dimensions”

In order to make use of the similarity between small ST-patches across dimensions (see
Sec. 2), we create additional training examples by rotating the 3D video volume – i.e.,
swapping the spatial and temporal dimensions of the video. Such swaps are applied
to a variety of spatially (bicubically) downscaled versions of the input video. Once
swapped, a variety of 1D temporal-downscalings (temporal rect) are applied to the new
“temporal” dimension (originally the x-axis or y-axis). The pair of volumes before and
after such “temporal” downscaling form our training pairs.

While at test time the network is applied to the input video in its original orientation
(i.e., TSR is performed along the original t-axis), training the network on ST-patches
with similarity across dimensions creates a richer training set and improves our results.

Here too, data augmentations are helpful (mirror flips, rotations, etc.). For example,
if an object moves to the right (as in the Cheetah video), the y-t slices will bare re-
semblance to mirror-reflected versions of the original x-y frames (e.g., see the cheetah
slices in Fig. 3).

In our current implementation, we use both types of training examples (‘within-
dimension’ and ‘across-dimensions’) – typically with equal probability. Our experi-

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
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ments have shown that in most videos, using both types of training examples is superior
to using only one type while omitting the other type (see also ablation study in Sec. 5).

4 ‘Zero-Shot’ Temporal-SR – The Algorithm

The repetition of small ST-patches inside the input video (aross scales and across di-
mensions), provide ample data for training. Such an internal training-set concisely cap-
tures the characteristic statistics of the given input video: its local spatial appearances,
scene dynamics, motion speeds, etc. Moreover, such an internal training-set has rela-
tively few “distracting” examples which are irrelevant to the specific task at hand. This
is in stark contrast to the external training paradigm, where the vast majority of the
training examples are irrelevant, and may even be harmful, for performing inference on
a specific given video. This high quality training allows us to perform true TSR using
a simple conv net without any bells and whistles; our model has no motion estimation
nor optical flow components, nor does it use any complicated building blocks.

4.1 Architecture

A fully Convolutional Neural Network (CNN) efficiently calculates its output patch by
patch. Each output pixel is a result of a calculation over a patch in the input video.
The size of that patch is determined by the effective receptive field of the net [13].
Patch recurrence across scales and dimensions holds best for relatively small patches,
hence we need to ascertain that the receptive field of our model is relatively small in
size. Keeping our network and filters small (eight 3D conv layers, some with 3×3×3
filters and some with 1×3×3 filters, all with stride 1), we ensure working on small
patches as required. Each of our 8 conv layers has 128 channels, followed by a ReLU
activation. The input to the network is a temporally interpolated video (simple cubic
interpolation), and the network learns only the residual between the interpolated LTR
video to the target HTR video. Fig. 8.a provides a detailed description of our model.

At each iteration, a fixed sized space-time video crop of 36× 36× 16 is randomly
selected from the various internal augmentations (see Sec. 3). A crop is selected with
probability proportional to its mean intensity gradient magnitude. This crop forms a
HTR (High Temporal Resolution) space-time example. It is then blurred and subsam-
pled by a factor of 2 in time, to generate an internal LTR-HTR training pair.

An `2 loss is computed on the recovered space-time outputs. We use an ADAM
optimizer [12]. The learning rate is initially set to 10−4, and is adaptively decreased ac-
cording to the training procedure proposed in [21]. The training stops when the learning
rate reaches 10−6.

The advantage of such video-specific internal training is the adaptation of the net-
work to the specific data at hand. The downside of such Internal-Learning is that it re-
quires training the network from scratch for each new input video. Our network requires
about 2 hours training time per video on a single Nvidia V100 GPU. Once trained, in-
ference time at 720×1280 spatial resolution is roughly 1.7sec for each output frame.
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Fig. 8. Coarse to fine scheme and Architecture. (see text for details).

4.2 Coarse-to-Fine Scheme (in Space & in Time)

Temporal-SR becomes complex when there are large motions and severe blur. As shown
in Fig. 7.a, spatially downscaling the video results in smaller motions and less motion
blur. Denoting the input video resolution by S×1T×1, our goal is to recover a video
with ×8 higher temporal resolution: S×1T×8. To perform our temporal-SR we use a
coarse-to-fine approach (Fig. 8.b).

We start by training our network on a spatially downscaled version of the input video
(typically S×1/8T×1, or S×1/4T×1 for spatially small videos). Fig. 8.b details a coarse-
to-fine upscaling scheme from S×1/4T×1.The scheme to upscale from S×1/8T×1 in-
cludes an additional “Back-Projection” stage at the end. The network trains on this small
video, learning to increase its temporal resolution by a factor of 2. Once trained, the net-
work is applied to S×1/8T×1 to generate S×1/8T×2. We then use “Back-Projection”1 [8]
(both spatially and temporally), to increase the spatial resolution of the video by a factor
of 2, resulting in S×1/4T×2. The spatial Back-Projection guarantees the spatial (bicu-
bic) consistency of the resulting S×1/4T×2 with the spatially smaller S×1/8T×2, and its
temporal (rect) consistency with the temporally coarser S×1/4T×1.

Now, since we increased both the spatial and temporal resolutions by the same fac-
tor (×2), the motion sizes and blurs in S×1/4T×2 remain similar in their characteristics
to those in S×1/8T×1. This allows us to apply the same network again, as-is, to reach
a higher temporal resolution: S×1/4T×4. We iterate through these two steps: increasing
temporal resolution using our network, and subsequently increasing the spatial resolu-
tion via spatio-temporal Back-Projection, going up the diagonal in Fig. 7.a, until we
reach the goal resolution of S×1T×8.

The recurring use of TSRx2 and ”Back-Projection” accumulates errors. Fine-tuning
at each scale is likely to improve our results, and also provide a richer set of training
examples as we go up the coarse-to-fine scales. However, fine-tuning was not used in
our current reported results due to the tradeoff in runtime.

5 Experiments & Results

True TSR (as opposed to simple frame interpolation) is mostly in-need when temporal
information in the video is severely under-sampled and lost, resulting in motion alias-

1 Don’t confuse “Back-Projection” [8] with “backpropagation” [6].
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ing. Similarly, very fast stochastic motions recorded within a long exposure time result
in unrecognizable objects. To the best of our knowledge, a dataset of such low-quality
(LTR) videos of complex dynamic scenes, along with their “ground truth” HTR videos,
is not publicly available. Note that these are very different from datasets used by frame-
interpolation methods (e.g., [24,11,22,1,3]), since these do not exhibit motion blur or
motion aliasing, and hence are irrelevant for the task of TSR.

To address this lacuna, we curated a challenging dataset of 25 LTR videos of very
complex fast dynamic scenes, “recorded” with a ‘slow’ (30 fps) video camera with
full inter-frame exposure time. The dataset was generated from real complex videos
recorded with high speed (mostly 240 fps) consumer cameras. The LTR videos were
generated from our HTR ‘ground-truth’ videos by blurring and sub-sampling them in
time (averaging every 8 frames). Since these 25 videos are quite long, they provide
ample data (a very large number of frames) to compare and evaluate on. We further
split our LTR dataset into two groups: (i) 13 extremely challenging videos, not only
with severe motion blur, but also with severe motion aliasing and/or complex highly
non-rigid motions (e.g., splashing water, flickerig fire, etc.); (ii) 12 less challenging
videos, still with sever motion blur, but mostly rigid motions.

Fig. 1 displays a few such examples for TSR×8. We compared our results (both
visually and numerically) to the leading methods in the field (DAIN [2], NVIDIA
SloMo [9] and Flawless[10]). As can be seen, complex dynamic scenes pose a chal-
lenge to all methods. Moreover, the rotating fan/wheel, which induce severe motion
blur and severe motion aliasing, cannot be resolved by any of these methods. Not only
are the recovered frames extremely distorted and blurry (which can be seen in the fig-
ure), they all recover a false direction of motion (counter-clockwise rotation), and with
a wrong rotation speed. The reader is urged to view the videos in our project website
in order to see these strong aliasing effects. Table 1 provides quantitative comparisons
of all methods on our dataset – compared using PSNR, structural similarity (SSIM),
and a perceptual measure (LPIPS[25]). The full detailed table of all 25 videos can be
found in the project website. Since Flawless is restricted to ×10 temporal expansion
(as opposed to the ×8 of all other methods), we ran it in a slightly different setting, so
that their results could be compared to the same ground truth. Although most closely
related to our work, we could not numerically compare to [18], due to its outdated dys-
functional software. Moreover, our end-to-end method is currently adapted to TSRx8,
whereas their few published results are TSRx2 and TSRx4, hence we could not visually
compare to them either (our TSRx2 network can currently train only on small (coarse)
spatial video scales, whereas [18] applies SRx2 to their fine spatial scale.

The results in Table 1 indicate that sophisticated frame-interpolation methods (DAIN
[2], NVIDIA SloMo [9]) are not adequate for the task of TSR, and are significantly
inferior (-1 dB) on LTR videos compared to dedicated TSR methods (Ours and Flaw-
less [10]). In fact, they are not much better (+0.5 dB) than plain intensity-based linear
interpolation on those videos. Flawless and Ours provide comparable quantitative re-
sults on the dataset, even though Flawless is a pre-trained supervised method, whereas
Ours is unsupervised and requires no prior training examples. Moreover, on the sub-
set of extremely challenging videos (highly complex non-rigid motions), our Zero-Shot
TSR outperforms the state-of-the-art externally trained Flawless [10]. We attribute this

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
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Ours Flawless [10] DAIN [2] Nvidia SloMo [9] linear interp.
PSNR [dB] 28.27 28.22 27.29 27.23 26.79

Entire SSIM 0.913 0.918 0.903 0.901 0.895
Dataset LPIPS†[25] 0.194 0.174 0.214 0.214 0.231

PSNR [dB] 28.05 27.58 27.09 27.03 26.99
Challenging SSIM 0.922 0.918 0.909 0.906 0.907

Videos LPIPS†[25] 0.184 0.188 0.208 0.205 0.212
† LPIPS (percetual distance) – lower is better. PSNR and SSIM – higher is better.

Table 1. Comparing TSR×8 results on our dataset. When applied to challenging videos
with severe motion blur and motion aliasing, sophisticated frame upsampling methods (Nvidia
SlowMo and DAIN) score significantly lower. However, even methods trained to overcome such
challenges (e.g., Flawless), but were pre-trained on an external dataset, struggle to compete on
videos that deviate from the typical motions and dynamic behaviors they were trained on.

to the fact that it is practically infeasible to generate an exhaustive enough external train-
ing set to cover the variety of all possible non-rigid motions. In contrast, highly relevant
video-specific training examples are found internally, inside the LTR input video itself.

Since rigid motions are easier to model and capture in an external training set, Flaw-
less provided high-quality results (better than ours) on the videos which are dominated
by rigid motions. However, even in those videos, when focusing on the areas with
non-rigid motions, our method visually outperforms the externally trained Flawless.
While these non-rigid areas are smaller in those videos (hence have negligible effect
on PSNR), they often tend to be the salient and more interesting regions in the frame.
Such examples can be found in Fig. 1 (e.g., the billiard-ball and hoola-hoop examples),
as well as in the videos in the project website.

5.1 Ablation Study

One of the important findings of this paper is the strong patch recurrence across-
dimensions, and its implication on extracting useful internal training examples for TSR.
To examine the power of such cross-dimension augmentations, we conducted an abla-
tion study. Table 2 compares the performance of our network when: (i) Training only
on examples from same-dimension (‘Within’); (ii) Training only on examples across-
dimensions (‘Across’); (iii) Training each video on its best configuration – ‘within’,
‘across’, or on both.

Since our atomic TSRx2 network is trained only on a coarse spatial scale of the
video, we performed the ablation study at that scale (hence the differences between the
numeric values in Tables 2 and 1). This allowed us to isolate purely the effects of the
choice of augmentations on the training, without the distracting effects of the subse-
quent spatial and temporal Back-Projection steps. Table 2 indicates that, on the aver-
age, the cross-dimension augmentations are more informative than the within (same-
dimension) augmentations. However, since different videos have different preferences,
training each video with its best within and/or across configuration provides an addi-
tional overall improvement in PSNR, SSIM and LPIPS (improvements are shown in
blue parentheses in Table 2).

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR


14 Liad Pollak Zuckerman et al.

Only Within Only Across Best of all configurations
PSNR [dB] 33.96 34.25 (X0.28) 34.33 (X0.37)
SSIM 0.962 0.964 (X0.002) 0.965 (X0.003)
LPIPS† [25] 0.035 0.033 (X0.002) 0.032 (X0.003)
† LPIPS (percetual distance) – lower is better. PSNR and SSIM – higher is better.

Table 2. Ablation study: ‘Within’ vs. ‘Across’ examples (mean values on dataset).
Average results of our atomic TSRx2 network, when trained on examples extracted
from: (i) the same-dimension only (‘Within’); (ii) across-dimensions only (‘Across’);
(iii) best configuration for each video – ‘within’, ‘across’, or both. The ablation results indicate
that on the average, the cross-dimension augmentations are more informative than the within
(same-dimension) augmentations, leading to an overall improvement in PSNR, SSIM and LPIPS
(improvements are shown in blue parentheses). However, since different videos have different
preferences, training each video with its best ‘within’ and/or ‘across’ configuration can provide
an additional overall improvement in all 3 measures.

This suggests that each video should ideally be paired with its best training configu-
ration – a viable option with Internal training. For example, our video-specific ablation
study indicated that videos with large uniform motions tend to benefit significantly more
from cross-dimension training examples (e.g., the falling diamonds video in Fig. 1 and
in the project website). In contrast, videos with gradually varying speeds or with ro-
tating motions tend to benefit from within-dimension examples (e.g., the rotating fan
video in Fig. 1 and in the project website). Such general video-specific preferences can
be estimated per video by using very crude (even inaccurate) optical-flow estimation at
very coarse spatial scales of the video. This is part of our future work. In the meantime,
our default configuration randomly samples augmentations from both ‘within’ (same-
dimension) and ‘across-dimensions’.

6 Conclusion

We present an approach for Zero-Shot Temporal-SR, which requires no training exam-
ples other than the input test video. Training examples are extracted from coarser spatio-
temporal scales of the input video, as well as from other video dimensions (by swapping
space and time). Internal-Training adapts to the data-specific statistics of the input data.
It is therefore more adapted to cope with new challenging (never-before-seen) data. Our
approach can resolve motion blur and motion aliasing in very complex dynamic scenes,
surpassing previous supervised methods trained on external video datasets.

Acknowledgments: The authors would like to thank Ben Feinstein for his invaluable
help with getting the GPUs to run in a smooth and computationally efficient way.
This project received funding from the European Research Council (ERC) Horizon
2020, grant No 788535. Additionally, supported by a research grant from the Carolito
Stiftung. Dr Bagon is a Robin Chemers Neustein Artificial Intelligence Fellow.

http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR
http://www.wisdom.weizmann.ac.il/~vision/DeepTemporalSR


Temporal Super-Resolution using Deep Internal Learning 15

References

1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and eval-
uation methodology for optical flow. International journal of computer vision 92(1), 1–31
(2011) 12

2. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame inter-
polation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 3703–3712 (2019) 1, 2, 3, 12, 13

3. Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: Memc-net: Motion estimation and
motion compensation driven neural network for video interpolation and enhancement. IEEE
transactions on pattern analysis and machine intelligence (2019) 12

4. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchmatch
correspondence algorithm. In: European Conference on Computer Vision (ECCV). pp. 29–
43. Springer (2010) 7

5. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009 IEEE 12th
international conference on computer vision (ICCV) (2009) 4

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016) 11
7. Hyun Kim, T., Mu Lee, K.: Generalized video deblurring for dynamic scenes. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
3

8. Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graphical models
and image processing (1991) 11

9. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super slomo: High
quality estimation of multiple intermediate frames for video interpolation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018) 1, 2,
3, 12, 13

10. Jin, M., Hu, Z., Favaro, P.: Learning to extract flawless slow motion from blurry videos. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019) 2, 3, 12,
13

11. Kiani Galoogahi, H., Fagg, A., Huang, C., Ramanan, D., Lucey, S.: Need for speed: A bench-
mark for higher frame rate object tracking. In: Proceedings of the IEEE International Con-
ference on Computer Vision (CVPR) (2017) 12

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 10

13. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in
deep convolutional neural networks. In: Advances in neural information processing systems
(NeurIPS) (2016) 10

14. Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M., Schroers, C.:
Phasenet for video frame interpolation. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2018) 1, 3

15. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution.
In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
1, 3

16. Peleg, T., Szekely, P., Sabo, D., Sendik, O.: IM-Net for high resolution video frame interpo-
lation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June
2019) 1, 3

17. Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: Learning a generative model from a sin-
gle natural image. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2019) 4



16 Liad Pollak Zuckerman et al.

18. Shahar, O., Faktor, A., Irani, M.: Super-resolution from a single video. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011) 4, 7, 8,
12

19. Shechtman, E., Caspi, Y., Irani, M.: Increasing space-time resolution in video. In: European
Conference on Computer Vision (ECCV) (2002) 3

20. Shocher, A., Bagon, S., Isola, P., Irani, M.: InGAN: Capturing and remapping the “DNA”
of a natural image. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2019) 4

21. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learn-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018) 4, 8, 10

22. Soomro, K., Zamir, A.R., Shah, M.: A dataset of 101 human action classes from videos in
the wild. Center for Research in Computer Vision 2 (2012) 12

23. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring
for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1279–1288 (2017) 3

24. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV) 127(8), 1106–1125 (2019) 1, 3, 12

25. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness
of deep features as a perceptual metric. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018) 12, 13, 14


