
Minimal-Cut Model Composition

T. Hassner1 L. Zelnik-Manor2 G. Leifman3 R. Basri1
1. Dept. of Computer Science & Applied Math 2. Faculty of Electrical Engineering 3. Faculty of Electrical Engineering

The Weizmann Institute of Science California Institute of Technology Technion - Israel Institute of Technology

Abstract

Constructing new, complex models is often done by re-
using parts of existing models, typically by applying a se-
quence of segmentation, alignment and composition opera-
tions. Segmentation, either manual or automatic, is rarely
adequate for this task, since it is applied to each model in-
dependently, leaving it to the user to trim the models and
determine where to connect them. In this paper we propose
a new composition tool. Our tool obtains as input two mod-
els, aligned either manually or automatically, and a small
set of constraints indicating which portions of the two mod-
els should be preserved in the final output. It then automat-
ically negotiates the best location to connect the models,
trimming and stitching them as required to produce a seam-
less result. We offer a method based on the graph theoretic
minimal cut as a means of implementing this new tool. We
describe a system intended for both expert and novice users,
allowing easy and flexible control over the composition re-
sult. In addition, we show our method to be well suited for
a variety of model processing applications such as model
repair, hole filling, and piecewise rigid deformations.

1. Introduction

Computer graphics systems are becoming ubiquitous,
posing a growing demand for both realistic and fictitious 3D
models. Constructing new models from scratch is a tedious
process, requiring either a careful scan of real objects or the
artistic skills of trained graphics experts. This process can
potentially be enhanced, as more and more models become
available, by reusing parts of existing models. With current
methods, however, the process of composing new models
from existing ones is still laborious, requiring a user to man-
ually segment the input models, align them, and determine
where to connect their parts. Automatic segmentation tools
exist, but they are largely inadequate for this task. Segmen-
tation tools are applied to each of the input models inde-
pendently, and so they often produce results that require the

1Confidential - Proprietary Information

Figure 1. Centaur. An output of our model com-
position framework.

user to further trim the parts to eliminate undesired protru-
sions or to significantly extend the parts so that they can be
connected properly. In this paper we present a new, model
composition tool. This tool, which is intended for use by
both novice and expert modelers, automates much of the
manual labor often associated with creating complex mod-
els. We further show the new operation to be particularly
suitable for an assortment of model processing applications.

To illustrate our motivation consider for example the
centaur in Fig. 1. Using our system, creating such a model
from those of a horse and a man (Fig. 2) is as easy as (1)
stating how the two models are to be positioned with re-
spect to each other and (2) indicating to the system that the
man’s head and the horse’s legs must be included in the fi-
nal composition. The computer then automatically negoti-
ates the best location for cutting and stitching the two mod-
els, in order to produce a seamless result. With existing
methods, creating such a model is rarely that easy. Cur-



rent methods can produce excellent model composition re-
sults by Boolean operators, mesh stitching, morphing and
more. However, none of these methods addresses the ques-
tion where would be the best place to connect two mod-
els, under user specified constraints, without prior trimming
(e.g., [12]). This is particularly important when the two
models overlap and can connect in many places.

In designing our tool, we are faced with the follow-
ing challenges: 1) Creating an intuitive interface to aid the
user in positioning the models and influencing the appear-
ance of the final composition. 2) Automatically finding
the best place to connect the models, under the user given
constraints, such that the result is smooth. 3) Keeping the
design fast and simple, with processing kept at interactive
speeds.

At the heart of our system is the graph theoretic minimal-
cut operation [7]. This operation has been used in the past
for both image [2, 17] and video [17] composition, and
3D model segmentation [16]. In fact, our work is inspired
by [17]. Here we apply the minimal-cut operation to the
task of 3D model composition. We present a system provid-
ing the user with an easy interface for defining how the out-
put should be composed. Then, a graph representing local
differences between the two models is automatically cre-
ated. The minimal cut in this graph indicates the location
where the two models are closest and most similar. Clip-
ping the two models at this location and then stitching the
obtained parts across the cut produces the final result.

Our work claims the following contributions: First, we
describe a new model composition tool: Finding the best
place to clip and connect overlapping models under user
specified constraints. Second, we describe a novel algo-
rithm based on graph cuts, as a means of implementing the
new tool. Next, we detail a system designed for easy manip-
ulation of this tool. Lastly, we show novel solutions to exist-
ing applications, based on our proposed framework. These
applications include model restoration (Fig. 5), hole filling
(Fig. 6), and rigid model deformations (Fig. 7).

The rest of this document is organized as follows. We
review related work in Section 2. We then give an overview
of our system in Section 3 and provide a detailed description
of its components in Section 4. Having defined the new
composition framework we show in Section 5 how it can
be applied to other problems besides model composition.
Implementation issues and a summary of results are given
in Section 6. We conclude in Section 7.

2. Related work

A framework for constructing new models by reusing
parts of existing models has been recently proposed in [12].
In their “Modeling by Example” system, new models are
created by cutting each input model separately, using semi-

automatic segmentation tools (i.e., “Intelligent scissors”),
then stitching them to form the composition result. As mod-
els are cut independently of each other, large gaps often sep-
arate their borders. These gaps must then be interpolated by
the stitching algorithm. Our system, on the other hand, clips
models against each other, leaving only the smallest of gaps
between their borders, allowing them to be connected with
little or no visible artifacts. In addition, our interface does
not rely on prior segmentation of the models (although we
do provide semi-automatic model alignment which can use
prior segmentation when available) and is simple enough to
allow for automation, to a large extent, for certain applica-
tions (see Section 5).

In Constructive Solid Geometry (CSG) model primitives
are combined using Boolean operations including union,
intersection and subtraction (see overview in [13]). Such
operations were adapted for numerous model representa-
tions [1, 5, 18, 19]. Although very intuitive, our pro-
posed tool cannot generally be specified as a sequence of
Boolean operations. Specifically, reproducing our results
using Boolean operations requires preprocessing of the in-
put models in order to remove all undesired parts (see for
example the centaur result of [1] where the horse’s head
and the man’s waist were removed before union.)

The problem of mesh stitching has enjoyed much atten-
tion, ranging from the Zippering system of [24], to more
recent methods such as [6, 15, 26]. These produce seamless
model compositions even if the input models have signif-
icantly different borders, separated by large gaps. These
methods, however, assume that there is no ambiguity about
where the two models should connect (e.g., [15, 26]), or al-
ternatively blend the two models in all locations where they
connect(e.g., [24]). Our method, on the other hand, handles
practical cases where two overlapping models can connect
smoothly in many places. Given user constraints, it selects
a single location through which the two models should con-
nect, cutting and stitching them when necessary.

In addition to model composition, we propose our tool
as a new solution to problems such as hole filling, restora-
tion, and piecewise rigid deformations. Existing methods
solve these problems in a variety of ways. Hole filling
and restoration are often performed using diffusion based
methods (e.g., [10, 25]). Diffusion, however, can only com-
plete smooth surfaces. For example, if a nose were missing
from a face, a diffusion based approach would fill the hole
smoothly, generating a nose-less face. Two recent methods,
[4] and [22], were shown to produce excellent results even
for non-smooth models. The former morphs an ideal model
prototype onto the flawed model. The latter covers flaws in
the input model with surface patches taken from un-flawed
parts of the same model. Our method shares some ideas
with [22], however, all the methods mentioned above are
specific to hole filling, and it is unclear how to extend them



(step I) (step II)

(step III) (step IV)

(step V) (step VI)

Figure 2. A typical composition session. The
stages involved in creating the centaur model from
those of a man and horse. (I) Input. (II) Placement
(semi-automatic or manual). (III) Constraint se-
lection (manual). (IV) Transition volume selection
(manual or automatic). (V) The recovered transi-
tion surface (automatic). (VI) Clipped models (au-
tomatic). Final result after stitching (automatic) is
given in Fig. 1.

to other applications, such as general model composition.
There are multitudes of existing methods for deform-

ing models. These include morphing (e.g., [3]), skeleton
based methods (see survey in [8]), example based methods
(e.g., [23]), and more. We do not presume to replace these
sophisticated methods, however, we have found that often
our tool offers a simple, “quick and dirty” alternative for
applying piecewise rigid deformations to models. The sim-
plicity of our tool can be highly beneficial to unskilled users
as it can easily deform models using a trivial interface (e.g.,
it does not require assigning skin elasticity properties etc.).

3. System overview

A typical model composition session, using our system,
would proceed as follows (see also Fig. 2): The user starts
by (step I) selecting two models to be composed, and (step
II) placing them according to the required output, aided by
our semi-automatic alignment tool (details in Section 4.1).
We assume here that models are represented as meshes.

The user then specifies the composition constraints (step
III). These are locations on each of the two input models
that are desired to be included in the output model. This
can be done, for instance, by selecting a cube in space that
contains the constraint region, selecting a segment from a
segmentation output, or even marking a single point. The
constraints for each input model are thus a subset of its sur-
face and as such are independent of the global position of
the model. To constrain our algorithm to produce the cen-
taur in Fig. 1, for example, we selected the man’s head and
the horse’s legs (Fig. 2, step III). The rest of the centaur was
extracted automatically by the algorithm.

A transition volume can also be specified (step IV). This
is an additional means of controlling the final output, by
confining where the models are allowed to connect. By de-
fault models can connect anywhere, which is to say the de-
fault transition volume is the bounding box of the models’
union. The user may specify a different transition volume
by drawing an appropriate box. The models would then be
allowed to connect only within this user defined volume.

The system then proceeds to automatically cut and stitch
the models. First, a weighted graph is constructed, (details
in Sections 4.2 and 4.3) reflecting local differences between
the two models in the transition volume. This graph is then
cut using a minimal cut method. The graph cut represents
a surface separating the transition volume into disjoint sub-
volumes (step V). We call this the transition surface, as it
determines where the models should be cut and stitched,
or rather, where the transition from one model to the other
occurs. The weights associated with each edge in the graph
ensure that this surface passes where the models are closest
and most similar, which in return ensures that the resulting
composition will be smooth. Both models are then clipped
(Section 4.4) at the transition surface (step VI) and stitched
(Section 4.5) across it to produce the final result (Fig. 1).

The user is now free to accept the composition or make
further changes to either position, constraints or transition
volume. Note that in making subsequent changes to any of
the positions, there is no need to reselect constraints. The
constraints, being parts of input models’ surfaces, are unaf-
fected by the particular position of each model. This allows
quick review of different model arrangements.

Our interface is trivial, requiring only a few intuitive
boxes to be roughly drawn around parts of the models. As a
consequence, this tool can easily be automated, opening up



the possibility of using it for a variety of applications (a few
are suggested in Section 5). We next offer a detailed look at
the different stages in our system.

4. Composition framework

4.1. Part-in-whole model placement

We provide the modeler with a graphical interface capa-
ble of applying rigid transformations (i.e., translation, ro-
tation, scale and mirror) to each model, allowing anyone
with passing knowledge of modeling software to arrange
them as required in a few short minutes. In addition, having
designed our system for both expert and novice users, we
provide a tool for semi automatic model alignment.

Most work on alignment is based on searching for an op-
timal alignment of complete models [21]. However, for our
purposes we found this often to be inappropriate. For exam-
ple, aligning the man and horse from Fig. 2 will place the
man horizontally along the horse’s back. Our goal is there-
fore different. We wish to find an optimal “part-in-whole”
alignment. In other words, we require an optimal alignment
of “emphasized” parts (e.g., the heads of the cow and dog
in Fig. 3), and not of whole models. Models thus aligned,
share overlapping surfaces in the selected parts, which can
then be smoothly connected (Fig. 3).

Unlike alignment methods proposed in computer vision
which use mostly feature points and lines, we use segmen-
tation [16] as an aid. This segmentation can be semi-manual
or automatic. All the user needs to do is select the empha-
sized parts and the system then aligns the whole models au-
tomatically. For the actual part-to-part alignment algorithm,
we use PCA [14] to obtain a coarse guess for the rigid trans-
formation between the selected parts. Standard ICP [21] is
then used to refine the guess and recover the final part to
part alignment.

4.2. The minimal-cut of models

Once the user arranges models A and B (either manually
or by using an alignment tool) and selects the constraints,
the system proceeds automatically to cut and stitch them.
This is achieved by running an optimization procedure to
find the best location for a transition from one model to an-
other, on each of the two models (within the transition vol-
ume). To implement this optimization procedure we con-
struct a weighted graph G = (V,E) with nodes in V repre-
senting locations, edges in E encoding neighborhoods, and
weights associated with the edges, expressing the (inverse)
likelihood of transitions (i.e., low cost implies smooth tran-
sition from one model to another). Auxiliary source and
target nodes are added to this graph and are connected to
the constrained regions in each model. The best transition

Body-to-body alignment:

Head-to-head alignment:

Figure 3. Part-in-whole model placement.
Composition after part-in-whole alignment. Left
column shows input models overlayed after align-
ment. Right column shows final results.

is then found by computing the minimal cut in the graph
(using a max flow algorithm). A detailed description of our
graph is provided in Section 4.3.

A graph cut can be considered as a labeling L of all nodes
in V , where in our case Li, the label associated with node
i, can either be “Model A” or “Model B”. A cut passes be-
tween two neighboring nodes p and q, and is said to separate
them if Lp �= Lq . We call a cut minimal if the sum of all
weights w(p, q) for all nodes p and q separated by the cut,
is minimal.

Computing a minimal cut has long since been known to
have polynomial time worst case algorithms, such as the
Ford and Fulkerson type methods [11]. Recently, Boykov
et. al [7] have developed a variant of these methods which
has been shown to have linear running time in practice for
regular lattice graphs. This has made this method popular in
applications involving images and video. We use this same
algorithm in our implementation.

4.3. Weighted graph representation

There are several ways to implement an automatic,
graph-based compositing scheme. We chose the follow-
ing simple approach (see also Fig. 11). We jointly raster-
ize the boundaries of the models within the transition vol-
ume. Each voxel in the joint rasterization is represented by
a node in the graph and two N6 neighboring voxels are con-
nected by an edge (we use the terms “voxel” and “node”
interchangeably as they correspond). Our graph also con-
tains two special nodes, the source and sink nodes, s and t.



If constrained faces from model A pass through voxel i we
add an edge connecting node i to the source s (Fig. 11.b).
Similarly, if constrained faces in B pass through a voxel,
we connect it to the sink t.

Edges connected to either source or sink nodes (s or t)
are assigned infinite weights as they are not allowed to be
cut. Otherwise, the weight w(p, q) associated with the edge
connecting nodes p and q is defined as:

w(p, q) = min{dist(Ap, Bp), dist(Aq, Bq)} (1)

Where Ai and Bi represent the parts of the surfaces of A
and B respectively, in volume voxel i, and dist(Ai, Bi)
measures their distance.

The notion of a best place to connect two models is cap-
tured by the choice of a function dist(Ai, Bi). Different
functions reflect different user preferences for a best tran-
sition location (e.g., based on local surface curvature, tex-
ture etc.). We have tested several such functions, but found
the following function particularly useful. Intuitively, we
seek to cut and stitch the models where the least amount
of “glue” is needed to connect them. Specifically, we at-
tempt to cut the two models where they are closest (approxi-
mately intersecting), while at the same time minimizing the
cut itself. To this end, we consider three types of voxels.
A boundary voxel contains a boundary of only one of the
two models; an empty voxel contains no boundary at all; an
intersection voxel contains boundaries from both models.
These three types are color coded in Fig. 11.c.

A smooth cut should connect the two models approxi-
mately through their intersection and avoid cutting where
only one surface passes. Therefore, high distances are as-
signed to boundary voxels and low distances are assigned to
intersection voxels. Moreover, intersection voxel distances
are chosen such that the accumulative distance of all inter-
section voxels is still smaller than the distance assigned to
a single boundary voxel. Since we prefer not to cut any
boundary at all, we assign an even lower distance to empty
voxels such that the accumulative distance of all the empty
voxels is smaller than any intersection voxel. Our assign-
ment of values is:

dist(Ai, Bi) =




1 i is a boundary voxel
1

10k i is an intersection voxel
1

100nk i is an empty voxel
(2)

where k is the total number of intersection voxels and n is
the total number of voxels.

The minimal cut provides us with a partition of the vox-
els to those labeled “Model A” and those labeled “Model
B”. Our composition result contains those parts of the
boundary of model A located in “Model A” labeled vox-
els, and similarly parts of model B in “Model B” labeled

voxels (Fig. 11.d-f). Note that this guarantees that the result
will contain no self intersecting surfaces, as long as there
were none in the original models.

The transition surface is defined as the surface made up
of all voxel sides shared by voxels p and q, separated by the
cut (i.e., voxels p and q for which Lp �= Lq). Note that this
does not have to be a single connected surface.

4.4. Mesh clipping

Given the transition surface, we clip the two meshes and
stitch them into a single model, by improving on the Zip-
pering method of Turk et al. [24]. Their system clips the
faces of one model against the other’s by intersecting them.
Searching for intersecting faces can be very expensive com-
putationally. To avoid this, Turk et al. assume that both
models have regularly spaced, dense point clouds, which
is often true for models acquired by a range scanner. We
avoid this assumption while still maintaining a low compu-
tational cost by using additional information available to us
- the transition surface. We clip both models not against
each other, but rather against the transition surface. As the
transition surface passes where the two models are closest
(approximately intersecting), we are guaranteed that models
clipped against it will have tightly matching borders.

Our clipping procedure is illustrated in Fig. 4. A face
belonging to model A is called a border face (Fig. 4.a) if it
contains at least one vertex in a voxel labeled A (an inside
vertex) and at least one in a voxel labeled B (outside vertex).
We clip all such faces by traversing edges leading from in-
side to outside vertices. This is done using the fast, integer
based voxel traversal algorithm of Cohen [9]. The traver-
sal terminates once a voxel label changes (i.e., the traversal
along the face edge crosses the transition surface). We inter-
sect the mesh edge with the last voxel side through which
it passed, obtaining a new end vertex (Fig. 4.b). Border
faces having one inside vertex are thus cropped by replac-
ing their outside vertices with new vertices on the transition
surface. Border faces having two inside vertices produce
tetrahedrons which we then triangulate (Fig. 4.c). This pro-
cedure is then repeated for model B. Some clipping results
are displayed in Fig. 5.c and Fig. 12.

4.5. Mesh stitching

Having clipped the two meshes, we now stitch them into
a single model. Stitching can proceed by applying any stan-
dard method (e.g., [15, 26]). In fact, as the two models
now share close matching borders, even a simple method
would most likely do well. In practice we adopt the stitch-
ing method used in [12], based on [15]. This is not a contri-
bution of our work, but for completeness, we now quickly
review this method.



(a) (b) (c)

Figure 4. Mesh clipping. (a) Model A border
faces crossing the transition surface (thick line).
Inside vertices as circles; outside vertices as “X”s
(displayed as a 2D sketch). (b) Mesh edges cross-
ing the transition surface are clipped against it. (c)
The clipped mesh.

Let CA and CB be two matching border contours of the
two models A and B. We start by selecting two vertices nA

and nB , one from CA and the other from CB , which are the
closest of all such pairs. Let n′

A be the vertex 10% of the
way around CA starting at nA, and n′

B be similarly defined
on CB . The dot product of the two vectors, the one from
nA to n′

A and the other from nB to n′
B , gives us the orien-

tation around CA and CB . Vertex correspondences are then
set between CA and CB iteratively. Starting at nA and nB

and proceeding along the curve for which the next vertex is
closest, we match vertices by adding edges between them,
creating new faces. Having thus sealed the gap between the
two models, we allow the user to further smooth the new
boundary by averaging vertex positions by their neighbors
a user specified number of iterations, applied to vertices at a
distance no larger than a user specified threshold, using user
defined weights.

Figures 12, 9 and 10 illustrate various charasteristics of
the suggested composition framework.

5. Applications

The system we described thus far has a trivial interface.
It can therefore be easily automated, to a large extent, and
applied as a unified solution to a variety of model processing
tasks. We next describe a few such examples.

5.1. Model restoration

We allow a modeler easy means of repairing flawed mod-
els (e.g., scarred models) by replacing its defective bound-
ary patches with perfect surfaces obtained from a model
database. The user selects the flawed boundary (the query)
by drawing a box around it (Fig. 5.a). Our system then
searches a database of models for a surface most similar to
the one selected by the user (we describe our search method

Chin fix:

Cheek fix:

Nose fix:

Input Overlay Clipped models
(a) (b) (c)

(d)

Figure 5. Model restoration. Fixing the scars
and broken nose on the Igea model, in three steps.
(a) Input model and the user drawn boxes around
the flaws. (b) Overlay of the input model and the
aligned database model chosen to fix each flaw. (c)
Clipped models. (d) Input (left) and result (right).

below). Once found, the recovered surface patch is then au-
tomatically cut and pasted into the original model using the
minimal cut tool . Our results in Fig. 5 can be compared to
those of [22] and [18] obtained on the same bust model.

To automate the process, we take the user drawn box
around the flaw as the transition volume. Constraints are
selected by the system as follows: We assume that the flaw
in the input model is roughly at the center of the user drawn
box (i.e., the center of the query). Constraints on the flawed



model are therefore selected to be faces furthest from the
flaw, i.e., faces closest to the sides of the transition volume.
Constraints on the database model chosen to repair the flaw
are selected closest to the flaw, in other words, closest to
the center of the transition volume. Both constraints are il-
lustrated in Fig. 13.a. The actual distances from the center
of the volume, and its sides are governed by a user defined
parameter. We found the results to be robust to these values.

Searching for the best surface patch. We search the
database for the best fitting surface patch in progressively
finer and finer resolutions. Resolution defaults are set for
the whole database in advance and do not require changing
from one query to the next. At each resolution we rasterize
both the query surface and each database model. We then
perform a weighted sum of squared distances search for
the sub-volume most similar to the query volume. Weights
equal the number of occupied voxels in each search site.

From one scale to the next we limit the search in two
ways. First, we remove half the models searched in the pre-
vious scale, for which the best score was lowest. Second,
searching finer scales is performed only in the area of the
best match from the previous coarse scale.

Having selected a best match we then translate the whole
model to align the match’s position with that of the user’s
query. Part-in-whole alignment (section 4.1) can now be
used to further refine the surface to surface alignment, tak-
ing the query and the selected database surface as empha-
sized parts. Fig. 5.b displays overlays of the input models
(in blue) and the obtained database models (in red) after
alignment.

5.2. Hole filling

Holes in meshes are a common phenomena often the
product of using 3D range scanners. Given a model with
holes, the user can select the area around the hole by draw-
ing a box around it. The system then attempts to fill the
hole using a database of complete models. We use the same
implementation as the one used for model restoration (Sec-
tion 5.1) but with a different constraint selection.

Unlike model restoration, here we have additional infor-
mation about the model selected by the user: We know that
parts of it are missing (i.e., it contains a hole). We there-
fore select constraints on the database model, to be surface
patches that are furthest from the surface of the input model.
This idea is illustrated in Fig. 13.b. Actual face selection
is performed by calculating the discrete distance transform,
DQ, of the user’s query. We further obtain the binary raster-
ization, RS , of the selected database surface. The compo-
nentwise multiplication of DQ and RS gives us an estimate
of the distance of each face in the database model from the
query surface. We then choose as constraints, faces passing
through voxels whose distance is larger then a user specified

Nose Completion:

Head Completion:

Input Result

Figure 6. Hole filling. Artificial holes opened in a
bust model by removing both the nose and the top
of the head. These were automatically repaired in
two steps. In each row on the left is the input model
(with the user drawn box around the hole) and on
the right is the final result (the little lump on the
man’s head is not an artifact. It is the tip of the
cap worn by the scanned subjects in the database).

distance.
In practice the user can choose between the two meth-

ods of constraining the database surface, depending on the
application. Fig. 6 displays two hole filling results.

5.3. Model deformations

In this Section we suggest our tool as a simple, “quick
and dirty” method for applying piecewise rigid deforma-
tions to models and for generating simple 3D animations.
Our idea is to take a straightforward approach to defor-
mation. That is, we clone the model and allow the user
to change the clone’s position with respect to the original
model (i.e., apply rotation, translation etc.) Our system then
automatically cuts and stitches the two models, producing
the desired deformation.

See for example the arm model in Fig. 7. Having cloned
it, the user is only required to select the shoulder of one
clone, and the hand of the other, as constraints. Rotating
the cloned arm results in a bent arm model. Note, that
once constraints are selected, there is no need to reselect
them for subsequent deformations. We are therefore able
to quickly create models of arms bent at different angles,



or heads looking in different directions (Fig. 8). Although
limited in comparison to more sophisticated methods, our
tool does allow even unskilled users to easily deform mod-
els. Compare, for example, our arm results (Fig. 7) to those
obtained by interpolating models in [23].

Figure 7. Model deformations - arms. The right
arm is the original. The center and left were ob-
tained by our system.

Figure 8. Model deformations - head. The cen-
ter model is the original. Left and right were ob-
tained by our system.

6. Implementation and results

Our system is currently implemented in C++ and MAT-
LAB. The minimal cut is obtained using the code made
available by Boykov et. al [7]. The user interface for model
arrangement, constraints and transition volume selection is
3D Studio Max.

Model composition. Figures 1, 3, 11, 12, 9 and 10 all
display composition results. Transition volume dimensions
and running times for some examples are reported in table 1.
We set transition volume dimensions by hand, although the
system provides default values based on available memory.
We have found our results to be robust to the resolution
scale, and thus, often changed it to coarser resolutions to
reduce running times.

Model restoration. Fig. 5 displays three steps in restor-
ing the scars and nose of Cyberware’s Igea bust model. Our
search database for completion consisted of 18 male and fe-
male models available as free samples from the CEASAR
database and aligned using the Scanalyze software [20].

Hole filling. We removed one model from the database
used for restoration, and manually cut off its nose and the
top of its head. We then used the other 17 database models
to repair both holes. The results are presented in Fig. 6.

Input Result

Figure 9. Minimizing user intervention. Each
row shows a different example. In all examples we
constrained the glasses and the hat to be included
as a whole in the result. We only constrain the cen-
ter of the bush allowing the system to trim it freely.
As constraints are common to all three examples
they were set only once, thus eliminating the need
for repeated user intervention. Stitching was not
applied as we required separate output models.

7. Conclusions and future work

We described a new model composition tool and showed
it to be flexible enough to be used as a unified solution to
various modeling problems, including hole filling, restora-
tion and rigid deformations. In addition, this tool can be
plugged into such systems as the Modeling By Example
framework [12], providing an alternative to mesh segmen-
tation prior to composition.

We have plans to extend this work in several directions.



Example Dim. Time
Centaur (Fig. 1) 34×56×26 1 sec
Dog-cow (Fig. 3) 84×61×37 4 sec
Shades (Fig. 9) 155×71×142 16 sec
Top hat (Fig. 9) 104×76×92 40 sec
Cerberus (Fig. 10) 29×32×29 0.3 sec

Table 1. Transition volume dimensions and mini-
mal cut average run times for various results. All
run times were obtained on a standard 2.6MHz
processor PC running WinXP.

These include alternative graph representations. For exam-
ple, one method would be to define a graph representing
the models’ meshes rather than their rasterizations. Such a
graph is often more compact and does not suffer the draw-
backs of our sampling method.

A different direction is to investigate using our composi-
tion tool for additional applications (e.g., super resolution of
models, model synthesis, etc.), and improving its interface.
This can include addition of morphing methods (e.g., [3]),
a better part-in-whole search method etc.

8. Acknowledgements

The bust models used for object composition, the
Igea artifact, and the man model were all courtesy of
Cyberware Inc. Our bust database contains free sam-
ples from the CAESAR database which can be found at
http://www.hec.afrl.af.mil/HECP/Card1b.shtml. T.H., G.L.,
and R.B. were supported in part by the European Commu-
nity grant IST-2002-506766 Aim Shape. The vision group
at the Weizmann Institute is supported in part by the Mo-
ross Foundation. L.Z.M. was supported by the MURI award
number SA3318 and by the Center of Neuromorphic Sys-
tems Engineering award number EEC-9402726. G.L. was
also supported by the Israeli Ministry of Science, grant 01-
01-01509. The authors also thank Ayellet Tal and Daniel
Cohen-Or for helpful comments and discussions.

References

[1] B. Adams and P. Dutre. Interactive boolean operations on
surfel-bounded solids. In Proc. of SIGGRAPH. ACM, 2003.

[2] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker,
A. Colburn, B. Curless, D. Salesin, and M. Cohen. Inter-
active digital photomontage. In Proc. of SIGGRAPH. ACM,
2004.

[3] M. Alexa. Local control for mesh morphing. In Proc. of
SMI, 2001.

[4] B. Allen, B. Curless, and Z. Popović. The space of all body
shapes: Reconstruction and parameterization from range
scans. In Proc. of SIGGRAPH. ACM, 2003.

[5] H. Biermann, D. Kristjansson, and D. Zorin. Approximate
boolean operations on free-form solids. In Proc. of SIG-
GRAPH. ACM, 2001.

[6] H. Biermann, I. Martin, F. Bernardini, and D. Zorin. Cut-
and-paste editing of multiresolution subdivision surfaces. In
Proc. of SIGGRAPH. ACM, 2002.

[7] Y. Boykov and V. Kolmogorov. An experimental compar-
ison of min-cut/max-flow algorithms for energy minimiza-
tion in computer vision. In EMMCVPR, 2001.

[8] M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann, and
D. Thalmann. Survey: Motion control of virtual humans.
IEEE Computer Graphics & Applications, 18(5), 1998.

[9] D. Cohen. Voxel traversal along a 3d line. Graphics gems
IV, pages 366–369, 1994.

[10] J. Davis, S. Marschner, M. Garr, and M. Levoy. Filling holes
in complex surfaces using volumetric diffusion. In Proc. Int.
Symp. on 3D Data Processing, Visualization, 2002.

[11] L. Ford and D. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[12] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer,
A. Tal, S. Rusinkiewicz, and D. Dobkin. Modeling by ex-
ample. In Proc. of SIGGRAPH. ACM, 2004.

[13] C. M. Hoffmann. Geometric and Solid Modeling: An Intro-
duction. Morgan Kaufmann, 1989.

[14] I. Jolliffe. Principal Component Analysis. Springer-Verlag,
New-York, 1988.

[15] T. Kanai, H. Suzuki, J. Mitani, and F. Kimura. Interactive
mesh fusion based on local 3d metamorphosis. In Graphics
Interface, 1999.

[16] S. Katz and A. Tal. Hierarchical mesh decomposition using
fuzzy clustering and cuts. In Proc. of SIGGRAPH. ACM,
2003.

[17] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: Image and video synthesis using graph
cuts. In Proc. of SIGGRAPH. ACM, 2003.

[18] K. Museth, D. Breen, R. Whitaker, and A. Barr. Level set
surface editing operators. In Proc. of SIGGRAPH. ACM,
2002.

[19] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape mod-
eling with point-sampled geometry. In Proc. of SIGGRAPH.
ACM, 2003.

[20] K. Pulli and M. Ginzton. Scanalyze.
http://graphics.stanford.edu/software/scanalyze, 2002.

[21] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In Int. Conf. on 3D Digital Imaging and Model-
ing (3DIM), 2001.

[22] A. Sharf, M. Alexa, and D. Cohen-Or. Context-based sur-
face completion. In Proc. of SIGGRAPH. ACM, 2004.

[23] P.-P. Sloan, C. Rose, and M. Cohen. Shape by example. In
Symp. on Interactive 3D Graphics, 2001.

[24] G. Turk and M. Levoy. Zippered polygon meshes from range
images. In Proc. of SIGGRAPH. ACM, 1994.

[25] J. Verdera, V. Caselles, M. Bertalmio, and G. Sapiro. In-
painting surface holes. In IEEE Int. Conf. on Image Process-
ing, 2003.

[26] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-
Y. Shum. Mesh editing with poisson-based gradient field
manipulation. In Proc. of SIGGRAPH. ACM, 2004.



Step 1 Step 2 Step 3 Step 4

Figure 10. Multi-step composition. Cerberus, the mythical guardian of the gates of hell, is created here in
four steps. The top row shows overlays of the models used to create the result in each step (shown in the bottom
row). In step 1 we deform the dog’s head (Section 5.3). Additional heads were created by cloning and rotating
the whole dog. The tail was added by composing the existing tail with a serpent model (in blue).

(a) (b)

(c) (d)

(e) (f)

Figure 11. Weighted graph construction. (a)
Input models and constraints. The transition vol-
ume is the bounding box of the models’ union. (b)
Voxel representation (displayed as a simplified 2D
sketch). Source and sink nodes connected to con-
strained voxels. (c) Colors represent voxel types.
Empty voxels in white, boundary voxels in light
blue and intersection voxels in purple. (d) The
minimal cut. Voxel labels are color coded. (e) Ac-
tual transition surface for the two tori. (f) Result.

Figure 12. Reversing constraints. From left to
right: The two busts; The models overlayed; First
example, taking the blue face and red head; Sec-
ond example, reversing constraints, now choosing
the red face and blue head. In both, top is the cut
result (clipped models) bottom is the final result.

(a) (b)

Figure 13. Automatic constraints. A 2D sketch
of the automatically selected constraints. (a) The
scarred surface from the Igea bust (Fig. 5). (b)
The nose hole filling example (Fig. 6). The query
surface is in blue; the selected database surface is
in red. Query constraints are the faces closest to
the transition volume sides (thick blue). Dark red
patches are constraints on the selected database
model. For restoration, these are faces closest to
the center of the volume. For hole filling, these are
faces furthest from the query (blue) surface.


