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Abstract
Statistics of ‘natural images’ provides useful priors for

solving under-constrained problems in Computer Vision.
Such statistics is usually obtained from large collections
of natural images. We claim that the substantial internal
data redundancy within a single natural image (e.g., recur-
rence of small image patches), gives rise to powerful inter-
nal statistics, obtained directly from the image itself. While
internal patch recurrence has been used in various applica-
tions, we provide a parametric quantification of this prop-
erty. We show that the likelihood of an image patch to recur
at another image location can be expressed parametricly as
a function of the spatial distance from the patch, and its gra-
dient content. This “internal parametric prior” is used to
improve existing algorithms that rely on patch recurrence.
Moreover, we show that internal image-specific statistics is
often more powerful than general external statistics, giving
rise to more powerful image-specific priors. In particular:
(i) Patches tend to recur much more frequently (densely) in-
side the same image, than in any random external collection
of natural images. (ii) To find an equally good external rep-
resentative patch for all the patches of an image, requires an
external database of hundreds of natural images. (iii) In-
ternal statistics often has stronger predictive power than ex-
ternal statistics, indicating that it may potentially give rise
to more powerful image-specific priors.

1. Introduction
Visual reconstruction problems (e.g., denoising, inpaint-

ing, super-resolution, etc.), are often under-constrained and
ill-possed, thus rely on having good image priors. Such pri-
ors range from naive and simple “smoothness” priors, to
more sophisticated statistical priors learned from large col-
lections of natural images. To date, natural image statis-
tics are mostly based on models extensively trained on wide
external databases of ‘natural images’. For example, para-
metric models (e.g., [16, 13, 15]) impose parametric dis-
tribution on natural image responses to local filters. The
filters and other parameters of these models are learned us-
ing a large database of natural image examples. Although
the space of all natural images is sparse [11], trying to cap-
ture its wide variety of features with only few parameters
is impossible. As a result the learned models reduce to the
lowest common denominator of all natural images.

We claim that the substantial internal data redundancy
(e.g., recurrence of small 5× 5 image patches) gives rise to
powerful internal statistics, learned directly from the image

itself. Internal patch recurrence has been used in various ap-
plications, e.g. texture synthesis [6], denoising [4, 7], super-
resolution [10, 9]. However, the full extent and behavior of
these internal patch recurrences and their power relative to
external statistics, have never been studied or quantified.

In this paper we parametricly quantify the degree of re-
currence of small image patches. We empirically show that
the patch density decays rapidly as the spatial distance from
the patch location grows, and as its gradient content in-
creases. We further demonstrate that incorporating such
parametric knowledge into existing algorithms (e.g., the
Non-Local Means denoising [4]) provides improved results.

Besides the obvious advantages of internal statistics in
terms of low memory and computation demands, we show
that the internal image-specific statistics is often more pow-
erful than general external image statistics - an observation
not necessarily intuitive. Given a patch extracted from an
image, it will almost surely recur again in the same image.
However, it may not appear in another image. In fact, we
show that in order to find equally good external represen-
tatives for all image patches of a single image, an external
database of hundreds of images is required (which may be
computationally infeasible to search). Moreover, patches
extracted from a natural image, tend to recur much more
frequently (densely) inside the same image, than in any ran-
dom collection of natural images. We further demonstrate
that these observations are particularly true for very detailed
patches (of high gradient content), which usually contain
the most important image details. In addition, we show that
the predictive power of internal image-specific statistics is
often stronger than that of the general external statistics.

Finally, we observe that the patch recurrences within a
single image are characterized by a long-tailed distribution.
Therefore, compact representations of patches (such as K-
SVD [1], Epitome [10] etc.) cannot capture well the full
richness of single-image statistics.

The rest of the paper is organized as follows. Sec. 2
presents the quantification of internal patch recurrences.
Sec. 3 demonstrates how these quantifications can be incor-
porated into existing algorithms to obtain improved results.
Sec. 4 compares the descriptive and predictive properties of
the internal vs. external statistics. Sec. 5 discusses the limi-
tations of sparse representation of patches.

2. Quantifying Internal Statistics
Fig. 1.a (courtesy of [9]) schematically illustrates the

notion of “patch recurrence” within a single natural image
(similar patches are marked by same colors). For illustra-
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(a) Patch Recurrence (Courtesy of [9]) (b) Patch Density (c) NN (dist , |grad |) (d) NN (n, |grad |)
Figure 1. Internal Statistics of a Single Natural Image. (a) Small image patches tend to recur within the source image, and across
its coarser scales; (b)-(c) The empirical Density(dist , |grad |) of patches and the number of “similar” patches, NN (dist , |grad |), as
a function of the mean gradient magnitude |grad | in the patch, and the spatial distance dist from the patch location (Red signifies high
values, Blue signifies low values); (d) The logNN (n, |grad |) shown for various image scales (n = 0, .., 6).

tion purpose, the patches were chosen large and on clearly
repetitive structures. However, when much smaller (5 × 5)
image patches are used, such patch repetitions occur abun-
dantly within and across image scales, even when we do not
visually perceive any obvious repetitive structure in the im-
age. Glasner et al. [9] empirically showed that most of the
patches in a natural image have many similar patches at the
same image scale, and at coarser images scales. In this sec-
tion we provide a formal parametric quantification of the
degree of internal recurrence of small 5× 5 patches.

Most of the patches in a natural image are rather smooth,
and only a small percent contain important image details
(edges, corners, etc.) These differences are expressed in
different spatial gradient magnitudes in patches. We ob-
serve that smooth patches recur much more frequently in
the image than detailed patches. We further observe that an
image patch is much more likely to recur near itself than far
away. Therefore, our experiments (and plotted graphs) are
expressed in terms of the “mean gradient magnitude” |grad |
of a patch, and the “spatial distance” dist to the patch.

Our experiments were conducted on the 300 images
of the Berkeley Segmentation Database1 (BSD). For
each image patch p, we estimated its empirical density
within an image neighborhood Ndist of radius “dist”
around the patch, using Parzen window estimation [12]:
density(p; dist) =

∑
pi∈Ndist

Kh(‖p− pi‖22)/area(Ndist),
where pi are all the image patches within a spatial neigh-
borhood Ndist , and Kh(·) is a Gaussian kernel2. Averaging
these individually-computed patch densities over the set of
all patches with the same gradient magnitude |grad |, we
obtain the following average density:
Density(dist , |grad |) = Meanpjof |grad|density(pj , dist).

The average number of “good Nearest Neighbors” NN
within a distance dist from the patch, is defined as:
NN (dist , |grad |) = Density(dist , |grad |) · area(Ndist)

(1)
Note that the Parzen estimation does not distinguish be-

1www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench
2Although L2-norm may not be an optimal measure for patch similar-

ity, it is often used in existing patch-based applications. Since we want to
show how quantifying internal patch statistics improves such applications,
we follow the L2 convention.

tween 10 perfectly similar patches, and 100 partially similar
patches. We loosely refer to these as 10 good NNs. Fig. 1.b
displays the empirical density Density(dist , |grad |) and
the number of “similar” patches NN (dist , |grad |), both as
a function of the mean gradient magnitude |grad | of the
patch, and the spatial distance dist from the patch location.
(In both maps, red signifies high values, blue signifies low
values.) Observing these maps, we note that:
(i) Smooth patches recur very frequently, whereas highly
structured patches recur much less frequently.
(ii) A patch tends to recur densely in its closest vicinity
(small dist), and its frequency of recurrence decays rapidly
as the distance from the patch increases (see the zoomed-
in part in Fig.1.b). Namely, patches in a natural image are
likely to reside in clusters of similar patches. This explains
why denoising algorithms, such as Non-Local Means [4]
and BM3D [5] work well, despite the fact their patch search
is restricted to small neighborhoods around each patch.
(iii) Various patch-based applications require obtaining
enough similar patches for every image patch (e.g., Super-
Resolution [9], denoising [4], etc.) From Fig. 1.c we note
that for a fixed number of similar patches (NN = const),
patches of different gradient content need to search for near-
est neighbors at different distances. For smooth patches, it
suffices to search locally, whereas the higher the gradient
magnitude, the larger the search region becomes. In fact,
one can observe that the level-sets in Fig. 1.c (which corre-
spond to a fixed number of Nearest Neighbors), have expo-
nential shapes (e.g., see the white and black curves, which
corresponds to a level-sets of NN = 9 and NN = 64). In
other words, the distance dist in which the nearest neighbor
search should be performed grows exponentially with the
gradient content of the patch |grad |.

By empirically fitting an exponential function to the
level-set curves (for many fixedNNs), we obtained the fol-
lowing exponential relation between dist and |grad |:

dist(|grad |) = β1 + β2 · exp(|grad |/10) ,
where β1 and β2 depend on the fixed NN (are second order
polynomials of

√
NN ):

β1(NN ) = 5 · 10−3NN + 0.09
√
NN − 0.044

β2(NN ) = 7.3 · 10−4NN + 0.3235
√
NN − 0.35.
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Search Regions:

21× 21

200× 200

Entire Image

(a) Noisy Image (b) Preferred Search Regions

Figure 2. Preferred Search Regions per patch in NLM: Smooth
patches obtain better denoising results in local search regions; de-
tailed patches benefit from large search regions - See text.

This can be rewritten as:
dist(NN , |grad |) = β1(NN ) + β2(NN ) · e|grad|/10 . (2)

Eq. 2 gives an explicit parametric expression to determine
the search region needed in order to find a desired number
of good nearest neighbors NN s for a patch. In Sec. 3 we
show that this parametric expression can serve as a better
prior in the Non-Local Means denoising algorithm of [4].
We further note that Eq. 2 is quadratic in

√
NN , of the form:

a ·
√
NN

2
+ b ·

√
NN + c = 0,

where : a = 0.001 · (5 + 0.73 · exp(|grad |/10))
b = 0.1 · (0.9 + 3.24 · exp(|grad |/10))
c = −0.1 · (0.44+ 3.5 · exp(|grad |/10)+ dist).

Solving for its single valid root yields a closed-form expres-
sion of NN as a function of dist and |grad |:

NN (dist , |grad |) = (
−b+

√
b2 − 4ac

2a
)2. (3)

Eq. 3 provides an estimate for the expected number of
good neighbors a patch has within a predetermined re-
gion. This parametric expression provides a good ap-
proximation (up to a mean error of 4%) to the empiri-
cal function NN computed using Eq. 1 and visually de-
picted in Fig. 1.c. An equivalent expression can be derived
for Density(dist , |grad |) of Fig. 1.b using Eq. 1. A vi-
sual comparison of the empirical functions in Figs. 1.b,c
and their parametric approximations can be found in
www.wisdom.weizmann.ac.il/~vision/SingleImageStatsitics.html

Finally, we explore the statistics of patch recurrence
across coarser scales of a natural image. We say that an
image patch recurs in another scale, if it appears “as is”
(without down-scaling the patch) in a scaled-down version
of the image. For each image I we generated a pyramid of
images of decreasing resolutions {In}, scaled down by fac-
tors of s= 0.8n, n= 0, .., 6, with I0 = I . For each patch in
I we measured its recurrence density in I0, .., I6 (in the en-
tire image). Surprisingly, the patch recurrence density in I
and in its coarser pyramid levels is approximately the same.
The number of Nearest Neighbors decreases in coarser lev-
els, with the decrease in image area: NN (In, |grad |) ≈

s2NN (I, |grad |) = 0.82nNN (I, |grad |). This entails that:
logNN (In, |grad |) = −0.223n · logNN (I, |grad |). In-
deed, Fig. 1.d displays this linear relation between the log
number of Nearest Neighbors and the scale level n.

3. Using Internal Statistics to Improve Priors
We show that the quantifications presented in Eq. 2 can

be incorporated into existing algorithms that exploit inter-
nal patch redundancy, to improve their results. One such
example is the Non-Local Means (NLM) denoising algo-
rithm [4]. In that algorithm, the central pixel in each patch
is replaced by the mean value obtained from other image
patches, weighted by their degree of similarity to the source
patch. For computational reasons, the authors restrict the al-
gorithm to a local 21× 21 search region around each pixel.

Based on our observations in Sec. 2, that a patch den-
sity is high within its closest vicinity, it is not surprising
that NLM works well, despite its relatively local search.
However, what is surprising, is that the local search is of-
ten preferable over a ‘global’ search in the entire image. A
similar observation was also made by [2]. Fig. 2 visual-
izes these surprising findings. We ran the NLM algorithm
on the noisy image of Fig. 2.a, with 3 different search re-
gions: (i) 21× 21, (ii) 200× 200, (iii) the entire image. For
each pixel in the image, we marked which of the 3 search
regions gave it the smallest error relative to the ground-
truth clean image (Fig. 2.b). Note that smooth patches ben-
efit more from constrained local search, whereas textured
patches with high gradients benefit from global search. We
will later show that incorporating Eq. 2 into NLM can be
used for estimating an ‘optimal’ search region per patch.

Our interpretation of this surprising phenomenon is the
following: Let pn = p + n be a noisy version of an image
patch p. When p is a smooth patch, the noise n dominates
pn, inducing new “patterns”. Moreover, although the global
mean of the noise is 0, its local mean within small 5 × 5
patches is often non-zero, inducing a change in the patch
mean. Extending the search region to the entire image in-
creases the chance of over-fitting the noise, thus preserving
effects of the noise n. In contrast, there is very little chance
of finding a good match to the noise pattern in a small neigh-
borhood. Moreover, the local vicinity of a smooth patch is
sufficient for finding many ‘correct’ nearest neighbors to the
signal p (Sec. 2). Local search thus increases the chance of
fitting the ‘signal’ p and not the ‘noise’ n for such patches.

Unlike smooth patches, high-gradient patches will ben-
efit from a large search region. In such patches, the noisy
patch pn is dominated by the signal p. Therefore, a global
search in the entire image is not risky. Moreover, the search
region must be large in order to find enough nearest neigh-
bors for high-gradient patches (as observed in Sec. 2).

We empirically show that this phenomenon holds for nat-
ural images in general. Our experimental setting was the
following: We applied the NLM algorithm (using the code
of Morel www.mi.parisdescartes.fr/~buades/recerca.html
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Figure 3. Non-Local Means applied to different search region:
Locally, Globally and Adaptively (see text for details).

to many natural images with added Gaussian noise of std
σ = 15. We applied the algorithm once locally to a 21× 21
search region (‘local’ NLM – the default setting of the
code), and once using the entire image as a search region
(‘global’ NLM). Fig. 3 shows the resulting errors relative to
the ground truth clean image (averaged over 100 images).

We next show that incorporating Eq. 2 into NLM can be
used for estimating an ‘optimal’ search region per patch,
yielding improved denoising results. Suppose we want at
least k good representatives per patch (to be averaged to
recover the clean patch p). Eq. 2 provides an explicit ex-
pression for the radius of the search region needed to obtain
k ‘nearest neighbors’ per patch. The exponential white and
black curves in Fig. 1.c show two such examples, for k = 9
and 64. In our experiment we used k = 64. (Note: for
|grad | > 40, the search region is already the entire image.)

Dealing with noisy patches, we approximate their
“clean” gradient content by: |grad |2p = |grad |2pn

− σnoise2 .
This follows from the fact that n (the noise in the patch) and
p (the clean patch) are independent, therefore the variance
of the noisy patch, pn, is the sum of their variances. We ex-
perimentally found that for patches with |grad | < 50 , their
gradient content linearly relates to their variances.

Fig. 3 shows the resulting NLM after incorporating the
adaptive search region based on Eq. 2. As can be seen, it
provides improved results with respect to both ‘local’ and
‘global’ NLM. The purpose of this is not to claim a state-of-
the-art denoising algorithm, but rather to show that incorpo-
rating quantitative knowledge about internal image statistics
can improve existing algorithms that rely on such statistics.

4. Internal vs. External Statistics
Besides the obvious advantages of internal statistics in

terms of lower memory and computation demands, the in-
ternal image-specific statistics is often more powerful than
general external image statistics. We compare these two
types of statistics according to their degree of “expressive-
ness” and “predictive power” (both to be defined shortly).
The internal statistics of an image is based on the collection
of all the patches extracted from the image and its multi-

scale versions (as explained in Sec. 2). The external statis-
tics is based on all the patches extracted from a database of
different natural images (taken from the BSD Train-Set).
The size of the external database ranges from 5 images
(small database) to 200 images (large database)3. Please
note that our analysis does not hold for class-specific ex-
ternal database (which are extremely useful, even if small).
The applicability of such dedicated databases is limited to
handling only images from the same specific class. Our
analysis assumes general natural images.

4.1. Expressiveness
“Expressiveness” measures the degree of similarity of a

5 × 5 patch to its most similar patches found internally vs.
externally. Internally, the patch itself and its immediate lo-
cal vicinity are excluded from a search. We calculate the L2

distance between two patches (after removing their DC4).
Fig. 4 displays the error induced by replacing each patch in
the input image (Fig. 4.a) with its most similar patch, either
from an external database of images (Fig. 4.b-d), or from
the image itself and its multi-scale versions (Fig. 4.e). We
observe that smooth patches can be found quite easily in an
external database, as well as in the image itself. However,
this is not true for detailed patches (edges, corners etc.),
which require as many as 200 images to find equally good
external representatives to those found internally.

Fig. 5 shows the same analysis as in Fig. 4, empirically
conducted over hundreds of images (more than 15 million
5 × 5 patches). The errors were computed separately for
each gradient magnitude (using RMSE, averaged over all
patches with the same gradient magnitude). It can be ob-
served that for small external databases (up to 40 images),
only relatively smooth patches (|grad| < 20) are similarly
represented internally and externally. However, patches
with higher gradient content require external databases of
hundreds of images in order to obtain an external patch of
similar quality to the one found internally.

Note, that we would fail to see the observation of Figs. 4
and 5, if we were to compute the mean error averaged over
the entire image (which is a widely used measure for evalu-
ating algorithms). More than 80% of the patches in natural
images tend to have low mean gradient magnitude (≤ 20).
Therefore, any averaging process that does not take into
account the uneven distribution of gradient magnitudes, is
governed by the errors in the smooth/undetailed regions of
the image. Thus, damages in the most important fine details
of the image are not reflected in a global RMSE measure.

We further compared the density of patch recurrence, ex-
ternally vs. internally. Fig. 6 shows that image patches tend

3One could potentially add multi-scale versions of the external images
to the external database, but this would come at the expense of the variety
of different images (assuming the same number of patches in the external
database is maintained). The external databases benefits more from having
a larger variety of images than multiple scaled versions of the same images.

4When the DC is not removed, the advantage of the internal statistics
over the external one is even more pronounced.
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(a) Input Image (b) Ext. DB - 5 imgs. (c) Ext. DB - 40 imgs. (d) Ext. DB - 200 imgs. (e) Internally (Error values)

Figure 4. External vs. Internal “Expressiveness”. Errors induced by replacing each patch from the input image with its most similar
patch found in: (b)-(d) an external database of 5, 40, 200 images, vs. (e) internally, within the input image (excluding the patch itself and
its immediate local vicinity). Red signifies high errors, blue signifies low errors. Patches obtain lower error internally than externally.

Figure 5. External vs. Internal “Expressiveness” (Statistics on
100 images). Only relatively smooth patches (|grad| < 20) are
well represented using small external databases (up to 40 im-
ages). Other patches, with higher gradient content, require exter-
nal databases of hundreds of images in order to obtain external
representation of similar quality to the internal representation.

to recur much more frequently inside their own image than
in any random collection of natural images, regardless of
its size (Note that the patch density is displayed in log scale
values). This phenomenon is particularly true for highly de-
tailed patches, which are often the most important ones.

4.2. Predictive Power
Statistical priors are often used to constrain ill-posed

problems in Computer Vision. The quality of a prior is
determined by how well it predicts the ‘correct’ solution
among the infinitely many possible solutions of the under-
determined problem. In this section we compare the “pre-
dictive power” of the internal statistics vs. external statis-
tics, when the same prediction method is applied to both of
them. As an example test case, we chose the ill-posed prob-
lem of Super-Resolution (image upsampling), and the pre-
diction method of “Example-based Super-Resolution” [8].

In Example-Based SR, a Database of ‘examples’ of high-

Figure 6. Density of Patch Recurrence: Patches recur more fre-
quently inside the same image than in a random external collec-
tion of natural images (regardless of its size). Note that the patch
density is displayed in log scale values.

res/low-res pairs of image patches {(hi, li)}ni=1 is provided
(usually with a relative scale factor of 2). Given an input im-
age L, its high-resolution (upsampled) version H is gener-
ated (“hallucinated”), by using the example pairs as ‘predic-
tors’ (priors) on how to upsample the low-resolution patches
of L. This yields the most likely high-resolution image H
of L, given the database of examples (predictors).

In order to compare the predictive power of internal vs.
external statistics in the above setting, we performed the
following experiment (repeated for all 100 images of the
BSD Test-set): Given a natural image I (the “ground truth”
high-res image denoted also as HGT ), we downscale I to
half its original resolution, to generate the low-res input L.
We generate an external database of high-res/low-res ex-
amples (from the 200 images in the BSD Train-set), and
an internal database of high-res/low-res examples (from L
and its down-scaled versions). The high-res/low-res pairs
were generated both internally and externally by downscal-
ing the available images by a factor of 2:1, and extracting
all the corresponding pairs of patches from the two scales.

Note that unlike previous experiments, here we are at an
immediate disadvantage, due to the fact that the ‘internal
image’ L is 1/4 of the size (area) of any individual external
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(a) Prediction Error (b) Prediction Uncertainty
Figure 7. External vs. Internal “Predictive Power”, evaluated for “Example-Based Super-Resolution” – See text.

image. A ratio of 1:200 between the internal/external num-
ber of images now translates to a ratio of 1:800 in the num-
ber of examples to learn from (the high-res/low-res pairs of
patches). We therefore add to the internal database rotated
versions of L (at ±45◦), increasing the space of internal
pairs of patches back to its original internal/ external ratio.

Now, for every 5×5 patch, l ∈ L, we search for its k = 9
low-res Nearest-Neighbors {li}ki=1 in the internal/external
databases. Their corresponding high-res patches, {hi}ki=1,
which serve as individual predictors, are averaged to re-
cover the overall high-res estimate ĥ of l:

ĥ =

∑
i wi · hi∑

i wi
, where wi = exp−

‖l − li‖22
2σ2

. (4)

For each high-res ground truth patch, hGT , we measure:
(i) The Prediction Error: ‖hGT − ĥ‖22.
(ii) The Prediction Uncertainty: The weighted vari-
ance of the predictors {hi}ki=1 is approximated using
trace (CovW (hi, hj)) (with the same weights as above).

The second measure serves as a reliability measure of
the prediction. The high-res predictors, {hi}ki=1, should
not only be individually close to the true hGT (low predic-
tion error), but should also be mutually consistent with each
other (low uncertainty). High uncertainty (entropy) among
all the high-res candidates {hi}ki=1 of a given low-res patch
l, indicates high ambiguity in the predicted high-res patch.
This results in visual artifacts, like ‘hallucinations’ and blur-
ring (due to multiple inconsistent high-res interpretations).

Fig. 7 displays the statistics of these two measures, aver-
aged over all the patches from 100 natural images. Note that
it requires hundreds of images to achieve external predic-
tion error similar to the internal one. Moreover, in the high
gradient patches, the internal prediction error is still lower
than the external error, even for large external databases.
Although these patches are relatively sparse in the image,
these are the most critical patches in Super-Resolution (the
edges, corners, and high-detailed image parts). This is
where the increase in resolution is observed.

External SR

Internal SR

External SR Internal SR

Figure 8. Super Resolution using External vs. Internal
examples. External super-resolution exhibits more halluci-
nations and blur artifacts. More results can be found in
www.wisdom.weizmann.ac.il/~vision/SingleImageStatsitics.html

Moreover, the prediction uncertainty is much higher ex-
ternally than internally (for any database size), alluding to
the fact that general external statistics is more prone to ‘hal-
lucinations’ than internal image-specific statistics. Fig. 8 il-
lustrates this, showing visual examples of internal vs. exter-
nal example-based prediction. The external database of 200
general images produces inferior results, displaying hallu-
cination of details and more blurriness.
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Internal Denoising

(e) PSNR: 33.3 dB
Runtime: 0.5 min (f)

Figure 9. External vs. Internal Denoising – See text.

Exploiting Huge Databases: What happens if we push the
envelop to huge external databases, e.g., all the images on
the Internet? Patches will undoubtedly find better matches!
But there are two major problems with huge databases:
(i) Predictive power: Our purpose is not only to find similar
patches, but to use them as predicting priors in ill-posed
problems. Fig. 7.b shows that larger external databases
exhibit lower predictive power (higher uncertainty). Huge
databases are likely to exhibit very low predictive power.
(ii) Computation: High gradient patches (which are the
most informative ones) are rare and have very low density
in an external database, regardless of its size (see Fig. 6).
As such, these patches cannot be captured well by any
compact quantized representation (K-SVD, PCA, etc. –
see Sec. 5). Thus, finding such patches in huge external
databases requires an extensive search. This is computa-
tionally infeasible for any practical application. In contrast,
internally these patches have sufficiently good Nearest-
Neighbors (comparable to hundreds of external images -
Figs. 4,5), and their search space is limited to a single image
(and even better, to the patch local vicinity - Fig. 1.b,c).

The problem of huge databases is further exemplified in
Fig. 9, this time in the context of image denoising. Denois-

ing is performed in the NLM [4] manner, once using in-
ternal (noisy) patches, and once using an external database
of clean images (averaging over similar external patches).
In principal, increasing the number of clean patches in the
database should improve the denoising results, as observed
in Fig. 9.a,c (denoising using 300 external images yields
cleaner results than denoising using 3 external images). Yet,
with 300 images, the external denoising is still inferior to
internal denoising (Fig. 9.e). Moreover, it comes with an
enormous run-time of 4 days (on a Linux 2668 MHz ma-
chine), vs. 0.5 minute run-time for internal denoising.

To reduce the external run time, for each patch in the
noisy image we limit its external averaging to only 1000
external Nearest Neighbors (using KD-tree). While the re-
duced run-times are still high, the limited NN-search in-
duces a new problem: Enlarging the external database (e.g.,
from 3 to 300 – Fig. 9.b,d) now yields worse (noisier)
results! This surprising artifact is due to over-fitting the
noise in smooth image patches (as also occurs in global-
NLM – see Sec. 3). While denoising of the detailed (infre-
quent) patches improves as the database grows, denoising of
smooth patches (the majority) becomes worse. The graph in
Fig. 9f shows that this observation holds in general for noisy
natural images. Note that unlike super-resolution, in image-
denoising the smooth patches are the most important ones
(this is where the noise is most visible). Global PSNR is
thus an adequate measure in denoising (larger dB is better).

5. Limitations of Compact Representation
Compact representations were proposed to take advan-

tage of the redundency of patches within an image (e.g., [7,
10]). While these are very useful for many applications,
they cannot capture well the full richness of single-image
statistics. In fact, as we will see, they harm the most infor-
mative (detailed) patches in the image.

As noted in [14, 3], when image descriptors (e.g, SIFT)
are divided into fine bins, the bin-density follows a power-
law (also known as ‘long-tail’ or ‘heavy-tail’ distributions).
The long-tail behavior holds also for image patches. This
results from the fact that many different high-gradient im-
age patches have very low density (i.e., each of them recurs
rarely in the image). Such patches are found in low-density
regions in the ‘space of all image patches’, rather isolated.
Namely, there are almost no clusters around these patches.
Any quantization/clustering process applied to obtain a
compact representation, will represent well the most fre-
quent clusterable elements (smoother patches), whereas the
infrequent/unclusterable elements (high-gradient patches)
will suffer from high quantization errors. This property is
inherent to long-tailed distributions, independently of the
clustering/quantization method.

To illustrate this we conduct the following experiment.
Each image patch is represented in two ways: (i) Using
K-SVD: Every patch is represented as a linear combina-
tion of 3 elements from a 256-element K-SVD dictionary
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(a) Input Image (b) K-SVD (c) Raw Patches Error Vals. (d) Statistics over 300 natural images
Figure 10. Compact Representation vs. Raw Image Information. K-SVD introduces high errors in the most informative detailed image
patches. In (b) and (c) red corresponds to high errors, blue correspond to low errors; (d) Graph showing mean error and standard deviation
of the errors computed on 300 images.

built from 5 × 5 patches of the image, plus the mean in-
tensity value (DC) of the patch (using the K-SVD code of
www.cs.technion.ac.il/~ronrubin/software.html) (ii) Using
raw image patches: A linear combination of 3 other patches
in the same image (no multi-scale), plus the patch DC.

Fig. 10.a-c shows a visual result on one image. The
‘quantization’ error induced by K-SVD dominates in the
detailed parts of the image, and is significantly higher than
when using raw image patches. Fig. 10.d further shows that
this observation holds in general for natural images (statis-
tics accumulated over the 300 images of the BSD).

Finally, we should note that adding those badly repre-
sented patches to the compact representation will elimi-
nate its compactness. For example (doing a “back-of-the-
envelope” calculations), given a 256 × 256 image (65536
bytes) and a K-SVD dictionary of 256 elements of 5 × 5
(6400 bytes), the initial saving in storage space is 1/10.
Let’s say we add the 3% most isolated image patches (that
are poorly represented by K-SVD). This adds 3% · 2562 · 52
= 49152 bytes (almost the original image size!) In other
words, patches are already represented quite compactly in
the image itself (due to their built-in overlaps with each
other), providing the full richness of all image patches.
Moreover, the raw image preserves geometric information
of where to look for similar patches (Sec. 2), while this in-
formation is lost in compact representations.

6. Conclusions
We show that internal patch redundancy within a single

natural image rapidly decays with the growth of the spatial
distance from the patch, and its gradient content. This
yields a new “internal parametric prior”, which can be used
to improve performance of existing algorithms (e.g., NLM).
We further show that besides the obvious advantages of
internal image statistics (low memory and low computation
costs), it also tends to be more powerful than general
external statistics (e.g., has better predictive power) – an
observation not necessarily intuitive. Finally, we observe
that compact representations of patches (e.g., K-SVD)
cannot capture well the full richness of single-image
statistics; yet, a single raw image is compact enough on

its own, rich enough, and preserves geometric information
of where to look for patches. These observations open the
door to new more powerful image-specific priors.
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