
Matching Local Self-Similarities across Images and Videos

Eli Shechtman Michal Irani
Dept. of Computer Science and Applied Math

The Weizmann Institute of Science
76100 Rehovot, Israel

Abstract

We present an approach for measuring similarity be-
tween visual entities (images or videos) based on match-
ing internal self-similarities. What is correlated across
images (or across video sequences) is the internal lay-
out of local self-similarities (up to some distortions), even
though the patterns generating those local self-similarities
are quite different in each of the images/videos. These in-
ternal self-similarities are efficiently captured by a com-
pact local “self-similarity descriptor”, measured densely
throughout the image/video, at multiple scales, while ac-
counting for local and global geometric distortions. This
gives rise to matching capabilities of complex visual data,
including detection of objects in real cluttered images using
only rough hand-sketches, handling textured objects with
no clear boundaries, and detecting complex actions in clut-
tered video data with no prior learning. We compare our
measure to commonly used image-based and video-based
similarity measures, and demonstrate its applicability to ob-
ject detection, retrieval, and action detection.

1. Introduction
Determining similarity between visual data is necessary

in many computer vision tasks, including object detection
and recognition, action recognition, texture classification,
data retrieval, tracking, image alignment, etc. Methods for
performing these tasks are usually based on representing
an image using some global or local image properties, and
comparing them using some similarity measure.

The relevant representations and the corresponding sim-
ilarity measures can vary significantly. Images are of-
ten represented using dense photometric pixel-based prop-
erties or by compact region descriptors (features) often
used with interest point detectors. Dense properties in-
clude raw pixel intensity or color values (of the entire im-
age, of small patches [25, 3] or fragments [22]), texture
filters [15] or other filter responses [18]. Common com-
pact region descriptors include distribution based descrip-
tors (e.g., SIFT [13]), differential descriptors (e.g., local
derivatives [12]), shape-based descriptors using extracted
edges (e.g. Shape Context [1]), and others. For a compre-
hensive comparison of many region descriptors for image
matching see [16].

Figure 1. These images of the same object (a heart) do NOT share
common image properties (colors, textures, edges), but DO share
a similar geometric layout of local internal self-similarities.

Although these representations and their corresponding
measures vary significantly, they all share the same basic
assumption – that there exists a common underlying visual
property (i.e., pixels colors, intensities, edges, gradients or
other filter responses) which is shared by the two images (or
sequences), and can therefore be extracted and compared
across images/sequences. This assumption, however, may
be too restrictive, as illustrated in Fig. 1. There is no ob-
vious image property shared between those images. Nev-
ertheless, we can clearly notice that these are instances of
the same object (a heart). What makes these images similar
is the fact that their local intensity patterns (in each image)
are repeated in nearby image locations in a similar relative
geometric layout. In other words, the local internal lay-
outs of self-similarities are shared by these images, even
though the patterns generating those self-similarities are
not shared by those images. The notion of self similarity
in video sequences is even stronger than in images. E.g.,
people wear the same clothes in consecutive frames and
backgrounds tend to change gradually, resulting in strong
self-similar patterns in local space-time video regions.

In this paper we present a “local self-similarity descrip-
tor” which captures internal geometric layouts of local
self-similarities within images/videos, while accounting for
small local affine deformations. It captures self-similarity
of color, edges, repetitive patterns (e.g., the right image in
Fig. 1) and complex textures in a single unified way. A tex-
tured region in one image can be matched with a uniformly
colored region in the other image as long as they have a
similar spatial layout. These self-similarity descriptors are
estimated on a dense grid of points in image/video data, at
multiple scales. A good match between a pair of images (or
a pair of video sequences), corresponds to finding a match-
ing ensemble of such descriptors – with similar descriptor
values at similar relative geometric positions, up to small
non-rigid deformations. This allows to match a wide vari-
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ety of image and video types which are difficult to match
otherwise: Complex objects in cluttered images are shown
to be detected with only rough hand sketches; Differently
textured instances of the same object are detected even if
there are no clear boundaries; Complex actions performed
by different people wearing different clothes with different
backgrounds, are detected with no prior learning, based on
a single example clip.

Self-similarity is closely related to the notion of statis-
tical co-occurrence of pixel intensities across images, cap-
tured by Mutual Information (MI) [23]. Alternatively, in-
ternal joint pixel statistics are often computed and extracted
from individual images and then compared across images
(e.g., [8, 21, 11]). Most of these methods are restricted to
measuring statistical co-occurrence of pixel-wise measures
(intensities, color, or simple local texture properties), and
are not easily extendable to co-occurrence of larger more
meaningful patterns such as image patches (in some cases,
such as MI, this limitation is due to the curse of dimension-
ality). Moreover, statistical co-occurrence is assumed to be
global (within the entire image) – a very strong assumption
which is often invalid. Some of these methods further re-
quire a prior learning phase with many examples [21, 11].

In our approach, self-similarities are measured locally
(within a surrounding image region), and not globally. Our
framework explicitly models local and global geometric de-
formations of self-similarities. Furthermore, we use patches
(at different scales) as the basic unit for measuring internal
self-similarities (these capture more meaningful image pat-
terns than individual pixels). Local self-similarities of im-
age patterns have also been employed for the purpose of tex-
ture edge detection [25], for detecting symmetries [14], and
for other applications. The use of global self-similarity (be-
tween entire pre-aligned video frames) has also been pro-
posed in video [2] for gait recognition.

Finally, we compare our measure to several commonly
used image-based and video-based similarity measures, and
demonstrate its applicability to object detection, retrieval,
and action detection.

2. Overview of our approach

We would like to compare a “template” image F (x, y)
(or a video clip F (x, y, t)) to another image G(x, y) (or
video G(x, y, t)). F and G need not be of the same size.
In fact, in most of our examples, F is a small template (of
an object or action of interest), which is searched within a
larger G (a larger image, a longer video sequence, or a col-
lection of images/videos).

“Corresponding” points in F and G can look very dif-
ferent (e.g., see Fig. 3). While measuring similarity across
images can be quite complex, the similarity within each im-
age can be easily revealed with very simple similarity mea-
sures, such as a simple SSD (Sum of Square Differences),

(a)

(b)
Figure 2. Extracting the local “self-similarity” descriptor.
(a) at an image pixel. (b) at a video pixel.

resulting in local self-similarity descriptors which can now
be matched across images (see Fig. 3).

We associate a “local self-similarity” descriptor dq with
every pixel q. This is done by correlating the image patch
centered at q with a larger surrounding image region (e.g.,
of radius 40 pixels), resulting in a local internal “correla-
tion surface” (Fig. 2.a). We use the term “local” to denote
a small portion of the image (e.g., 5%) as opposed to the
entire image. The correlation surface is then transformed
into a binned log-polar representation [1] (Fig 2.a). This
representation has two important benefits: (i) It results in a
compact descriptor dq for every pixel q. (ii) This descriptor
accounts for increasing positional uncertainty with distance
from the pixel q, thus accounting for local spatial affine de-
formations [1] (i.e., small variations in scale, orientation,
and shear). On top of that, our descriptor accounts for addi-
tional local non-rigid deformations (see Sec. 3.1).

When matching video data – the patches, regions, cor-
relation surfaces (volumes), and the self-similarity descrip-
tors, are all space-time entities (Fig 2.b). The space-time
video descriptor accounts for local affine deformations both
in space and in time (thus accommodating also small dif-
ferences in speed of action). Sec. 3 describes in detail how
the local self-similarity descriptors are computed for images
and for video data.

In order to match an entire image/video F to G, we com-
pute the local self-similarity descriptors dq densely through-
out F and G . All the local descriptors in F form together
a single global “ensemble of descriptors”, which maintains
their relative geometric positions. A good match of F in G
corresponds to finding a similar ensemble of descriptors in
G – similar both in the descriptor values, and in their rela-
tive geometric positions (up to small local shifts, to account
for small deformations). This is described in Sec. 4.

We show results of applying this approach to detection
of complex objects in cluttered images (Sec. 5), to image
retrieval with simple hand sketches (Sec. 6), and to action
detection in complex videos (Sec. 7).



Figure 3. Corresponding “Self-similarity descriptors”. We
show a few corresponding points (1,2,3) across two images of the
same object, with their “self-similarity”descriptors. Despite the
large difference in photometric properties between the two images,
their corresponding “self-similarity” descriptors are quite similar.

3. The local “self-similarity descriptor”

3.1. The Spatial image descriptor
Fig 2.a illustrates the procedure for generating the self-

similarity descriptor dq associated with an image pixel q.
The surrounding image patch (typically 5 × 5) is compared
with a larger surrounding image region centered at q (typi-
cally of radius 40), using simple sum of square differences
(SSD) between patch colors (we used CIE L*a*b* space).
The resulting distance surface SSDq(x, y) is normalized
and transformed into a “correlation surface” Sq(x, y):

Sq(x, y) = exp
(
− SSDq(x, y)

max (varnoise, varauto(q))

)
(1)

where varnoise is a constant that corresponds to accept-
able photometric variations (in color, illumination or due
to noise), and varauto(q) takes into account the patch con-
trast and its pattern structure, such that sharp edges are more
tolerable to pattern variations than smooth patches. In our
implementation varauto(q) is the maximal variance of the
difference of all patches within a very small neighborhood
of q (of radius 1) relative to the patch centered at q.

The correlation surface Sq(x, y) is then transformed into
log-polar coordinates centered at q , and partitioned into 80
bins (20 angles, 4 radial intervals). We select the maximal
correlation value in each bin. The maximal values in those
bins form the 80 entries of our local “self-similarity descrip-
tor” vector dq associated with the pixel q. Finally, this de-
scriptor vector is normalized by linearly stretching its val-
ues to the range [0..1], in order to be invariant to the differ-
ences in pattern and color distribution of different patches
and their surrounding image regions.

Fig. 3 displays the local self-similarity descriptor com-
puted at several corresponding image locations in two dif-
ferently looking images of the same object. Note that de-

spite the large difference in photometric properties between
the two images, their local self-similarity descriptors at cor-
responding image points (computed separately within each
image) are quite similar.
Properties & benefits of the “self-similarity descriptor”:

(i) Self-similarities are treated as a local image property, and
are accordingly measured locally (within a surrounding im-
age region), and not globally (within the entire image). This
extends the applicability of the descriptor to a wide range of
challenging images.
(ii) The log-polar representation accounts for local affine
deformations in the self-similarities.
(iii) By choosing the maximal correlation value in each bin,
the descriptor becomes insensitive to the exact position of
the best matching patch within that bin (similar to the obser-
vation used for brain signal modelling, e.g. in [19]). Since
the bins increase in size with the radius, this allows for ad-
dition radially increasing non-rigid deformations.
(iv) The use of patches (at different scales) as the basic unit
for measuring internal self-similarities captures more mean-
ingful image patterns than individual pixels. It treats col-
ored regions, edges, lines and complex textures in a single
unified way. A textured region in one image can be matched
with a uniformly colored region or a differently textured re-
gion in the other image, as long as they have a similar spatial
layout, i.e., those regions have similar shapes. Note that this
is done without any explicit segmentation or edge detection,
and can thus also handle regions (textured or uniform) with
unclear boundaries.

3.2. The Space-time video descriptor

The notion of self similarity in video sequences is even
stronger than it is in images. People tend to wear the same
clothes in consecutive video frames and background scenes
tend to change gradually, resulting in strong self-similar
patterns in local space-time video regions.

The self-similarity descriptor presented in Sec. 3.1 is ex-
tended into space-time. Patches, regions, correlation sur-
faces (volumes), and the self-similarity descriptors, become
space-time entities (see Fig 2.b). In our implementation we
used 5 × 5 × 1 patches, correlated against a surrounding
60 × 60 × 5 space-time video region. The resulting “corre-
lation volume” is transformed to a log-log-polar represen-
tation (logarithmic intervals both in space and in time, but
polar only in space, resulting in a cylindrically shaped vol-
ume – see Fig 2.b). The resulting self-similarity descriptor
vector is of size 182.

4. Matching global ensembles of local descriptors

In order to match an entire image/video F to G, we com-
pute the local self-similarity descriptors dq densely through-
out F and G. These descriptors are computed 5 pixels apart



from each other (in every image or video frame). All the
local descriptors in F form together a global “ensemble of
descriptors”. A good match of F in G corresponds to find-
ing a similar ensemble of descriptors in G – similar both in
the descriptor values, and in their relative geometric posi-
tions (up to small local shifts, to account for small global
non-rigid deformations).

However, not all descriptors in the ensemble are in-
formative. We first filter out non-informative descriptors,
namely: (i) descriptors that do not capture any local self-
similarity (i.e., whose center patch is salient, not similar
to any of the other patches in its surrounding image/video
region), and (ii) descriptors that contain high self-similarity
everywhere in their surrounding region (corresponding to
a large homogeneous region, i.e., a large uniformly colored
or uniformly-textured region). The former type of non-
informative descriptors (saliency) are detected as descrip-
tors whose entries are all below some threshold (before nor-
malizing the descriptor vector – see Sec 3.1). The latter
type of non-informative descriptors (homogeneity) are de-
tected by employing the sparseness measure of [9]. Dis-
carding non-informative descriptors is important, as these
may lead to ambiguous matches later in the matching phase.
Note that the remaining descriptors still form a dense collec-
tion (much denser than sparse interest points [13, 16, 12]).
Moreover, typical interest points locations would not neces-
sarily correspond to locations of informative self-similarity
descriptors, whereas a uniform patch or an edge-like patch
may form an informative one.

To find a good match for the “ensemble of descriptors” of
F within G, we use a modified version of the efficient “en-
semble matching” algorithm of [3]. This algorithm employs
a simple probabilistic “star graph” model to capture the rel-
ative geometric relations of a large number of local descrip-
tors. In our applications, we connect all the descriptors in
the template F into a single such ensemble of descriptors,
and employ their search method for detecting a similar en-
semble of descriptors within G (which allows for some lo-
cal flexibility in descriptor positions and values). We used
a sigmoid function on the L1 distance to measure the sim-
ilarity between descriptors. The ensemble search algorithm
generates a dense likelihood map in the size of G, which
corresponds to the likelihood of detecting F at each and
every point in G (i.e., according to its degree of match). Lo-
cations with high likelihood values are regarded as detected
locations of F within G.

Since self-similarity may appear at various scales and in
different region sizes, we extract self-similarity descriptors
at multiple scales. In the case of images we use a Gaus-
sian image pyramid for generating those scales; in case of
video data we use a space-time video pyramid. We use the
same parameters (patch size, surrounding region, etc.) for
all scales. Thus, the physical extent of a small 5 × 5 patch

in a coarse scale, corresponds to the extent of a large image
patch at a fine scale. An ensemble of descriptors is gener-
ated and searched for each scale independently, generating
its own likelihood map. To combine information from mul-
tiple scales, we first normalize each log-likelihood map by
the number of descriptors in its scale (these numbers may
vary significantly from scale to scale). The normalized log-
likelihood surfaces are then combined by a weighted av-
erage with weights corresponding to the degree of sparse-
ness [9] of these log-likelihood surfaces.

5. Object detection in images

We applied the approach presented in the previous sec-
tions to detect objects of interest in cluttered images. Given
a single example image of an object of interest (the “tem-
plate image” – e.g., the flower in Fig. 4.a), we densely com-
puted its local image descriptors of Sec. 3.1 to generate an
“ensemble of descriptors”. We search for this template-
ensemble in several cluttered images (e.g., Fig. 4.b) using
the algorithm of Sec. 4. Image locations with high like-
lihood values were regarded as detections of the template
image and are overlayed on top of the dark gray image. We
used the same threshold for all examples in each of the fig-
ures (but varied it for different templates). No prior image
segmentation was involved, nor any prior learning.

We have applied our algorithm to real image templates
as well as to rough hand-sketched templates – see Figs. 4,
5, 6, 7. Note that in the case of sketched templates, al-
though the sketch is uniform in color, such a global con-
straint is not imposed on the searched objects. This is
because the self-similarity descriptor tends to be more lo-
cal, imposing self-similarity only within smaller object re-

Figure 4. Object detection. (a) A single template image (a flower).
(b) The images against which it was compared with the corre-
sponding detections. The continuous likelihood values above a
threshold (same threshold for all images) are shown superimposed
on the gray-scale images, displaying detections of the template at
correct locations (red corresponds to the highest values).



Figure 5. Detection using a sketch. (a) A hand-sketched template. (b) Detected locations in other images.

gions. (For example, the objects in our examples were typi-
cally 150− 200 pixels in each dimension, whereas the self-
similarity descriptor is constrained to a radius of 40 pix-
els around each pixel). Our method is therefore capable of
detecting similarly shaped objects with global photometric
variability (e.g., people with pants and shirts of different
colors/textures, etc.)

Comparison to other descriptors and measures:

We further compared the matching performance of our
descriptors with some state-of-the-art local descriptors eval-
uated in [16]. We selected a subset of local descriptors
which ranked highest (and used the implementation in [16]).
These included: gradient location-orientation histogram
(GLOH) [16] – a log-polar extension of SIFT [13] that was
shown to be more robust and distinctive, local Shape Con-
text [1] (an extended version with orientations [16]), and
four other descriptors. For a sound comparison of these de-
scriptors with ours, they were extracted densely on edges
(at multiple scales) to avoid homogeneous regions and lack
of interest points, and combined using the same “ensem-
ble matching” method described in Sec. 4. In addition, we
compared our method against Mutual Information, applied
globally to the template (we tried both on color and on gray-
scale representations). We compared our method to the
above methods on many challenging pairs of images (more
than 60 pairs with templates such as flowers, hearts, peace
symbols, etc.; each template was compared against multiple

(a)

(b)
Figure 6. Detection using a sketch. (a) A hand-sketched tem-
plate. (b) The images against which it was compared with the
corresponding detections.

images). Correct detection of the template was declared if
there was a unique high peak detected within the other im-
age, at the correct object. All of the above-mentioned meth-
ods failed in the majority of the cases to find the template in
the correct position in the other image, whereas our method
found it correctly in 86% of them. A few (representative)
examples are displayed in Fig. 7.

6. Image retrieval by “sketching”

We further examined the feasibility of our method for
image retrieval from a database of images using rough
hand-sketched queries. We generated 8 rough hand-
sketches corresponding to various complex human poses.
We also generated a database of 72 images (downloaded
from the internet), with the demand that each of the 8 poses
appears within at least 9 of the database images . Fig. 8
shows the hand-sketched queries (templates) and the 9 top-
ranked images retrieved for each query. The score for
each database image given a query image was computed as
the highest likelihood value obtained for that query image
within that database image. On top of that we have verified
that the peak values were obtained at the correct locations.
False detections are marked by a red frame. Note the high
detection rate: in all cases the 5 top-ranked images were
correct, and for most pose-queries it found 8 out of the 9
database images within its top 9 matches. Note the clut-
tered backgrounds and the high geometric and photometric
variability between different instances of each pose. More-
over, note the high variability of the different instances of
the same pose (different images within a column), vs. the
small differences across different poses (e.g., pose of col-
umn 3 vs. 4, and 5 vs. 6; serving a role similar to that of
distractors).

Previous methods for image retrieval using image
sketches (e.g., [10, 7]) assume that the sketched query im-
age and the database image share similar low-resolution
photometric properties (colors, textures, low-level wavelet
coefficients, etc.). This assumption is not valid for the
database of Fig. 8. Other methods assume similarity of the
contour of objects (e.g., [6]) or proximity of corresponding
extracted edges (e.g., [24]). While many objects are well



Figure 7. Comparison to other descriptors and match measures. We compared our method with several other state-of-the-art local
descriptors and matching methods on more than 60 challenging image pairs. All these methods failed to find the template in Image 2 in the
majority of the pairs, whereas our method found the objects in the correct location in 86% of them. Each method was used to generate a
likelihood surface, and peaks above 90% of its highest value are displayed. Displayed are a few such examples (these are representative
results, each template was compared against multiple images not shown in the figure) – see text for more details. The object in each pair
of images was of similar size (up to +/- 20% in scale), but is often displayed larger, for visibility purposes.

characterized by their edges, there are many other objects
that do not have such clear edges, e.g. see Fig. 1. Our
descriptor captures both edge properties as well as region
properties and therefore can address such cases.

7. Action detection in video

Applying the ensemble matching algorithm of Sec. 4
with the space-time self-similarity descriptors (Sec. 3.2)
gives rise to simultaneous detection of multiple complex
actions in video sequences of different people wearing dif-
ferent clothes with different backgrounds, without requir-
ing any prior learning (i.e., based on a single example clip).
Our approach can be applied to complex video sequences
without requiring any foreground background segmenta-
tion [26], nor any motion estimation [5] or tracking. Un-
like [4, 17, 12], our method requires no prior learning (nor

multiple examples of each action), nor assumes existence of
common space-time features across sequences.

Our approach is probably most closely related to the ca-
pabilities presented in our previous work [20]. However,
unlike [20], our new method can handle highly aliased video
sequences with non-instantaneous motions. Furthermore,
our method can match both stationary and moving objects
(as opposed to only moving objects in [20]).

Fig. 9 shows results of applying our action detection al-
gorithm for detecting a ballet turn in a video clip of [20].
We also compare our results to their results on this video
data. They had 2 miss detections and 4 false alarms (see
figure and video clip). Our new algorithm has detected all
instances of the action correctly, with no false alarms or
missed detections. The superior results are because we can
now handle strong temporal aliasing, and explicitly account



Figure 8. Image retrieval by sketching. 8 hand-sketched template queries (top row) were used to retrieve images from a database of 72
images. Each of these poses appears within 9 database images (see text). The 9 top-ranked images retrieved by each template query are
presented in the column below the template (in decreasing match score). False detections are marked by a red frame.



(a) The action clip:

(b)

(c)

(d)
Figure 9. Action detection and comparison to [20]. (a) A
few sample frames from a template video clip (ballet turn).
(b) A few sample frames from a long ballet video sequence
(25 seconds) with two dancers, against which the template
was compared. (c) In the results obtained by [20] there are
2 missed detections and 4 false alarms. A few frames from
those erroneous video segments are shown here (marked by
”X”). (d) OUR NEW RESULTS: All instances of the action
were detected correctly with no false alarms or missed detec-
tions. These results are easier to grasp in video. Please see:
www.wisdom.weizmann.ac.il/∼vision/SelfSimilarities.html.

(a) Turn 1: Turn 2:

(b)
Figure 10. Action detection. (a) A few sample frames from two
different action templates of different ice-skating turns – turn1 (in
pink) and turn2 (in green). (b) A few sample frames from a long
ballet video sequence (30 seconds) of a different ice-skater, and
the corresponding detection results below. All instances of the two
actions were detected correctly with no false alarms or missed
detections, despite the strong temporal aliasing. Please see:
www.wisdom.weizmann.ac.il/∼vision/SelfSimilarities.html.

for some non-rigid deformations (both spatial and temporal)
between the template action clip and the matched video.

Fig. 10 shows detection of two different types of ice-
skating movements. The template clips (one example clip
for each movement type) were obtained from one ice-skater,
and were used to detect these actions in a long ice-skating
sequence of a different ice-skater wearing different clothes,
at a different place. These sequences contain very strong
temporal aliasing and therefore cannot be handled well by
methods like [20]. Unlike [17] (who also showed results
on ice-skating video sequences), our approach requires no
prior learning from multiple examples of each action, and
does not rely on having common extractable features across
action sequences. Moreover our sequences are character-
ized by a much higher motion aliasing.
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