Appendix (of the paper "Similarity by Composition")

I. Proof of Claim1 in Section 2.3 of the paper

Claim 1. Upper and lower bounds on GES:

$$
\max _{S}\left\{\log P\left(S \mid H_{r e f}\right)+\sum_{R_{i} \in S} L E S\left(R_{i} \mid H_{r e f}\right)\right\} \leq G E S\left(Q \mid H_{r e f}\right) \leq \sum_{q \in Q} P E S\left(q \mid H_{r e f}\right)
$$

Proof.

Lower Bound:

The lower bound is immediate:

$$
\begin{aligned}
& G E S\left(Q \mid H_{r e f}\right)=\log \frac{P\left(Q \mid H_{r e f}\right)}{P\left(Q \mid H_{0}\right)}=\log \sum_{S} \frac{P\left(Q \mid S, H_{r e f}\right) P\left(S \mid H_{r e f}\right)}{P\left(Q \mid H_{0}\right)} \\
& \quad \geq \log \max _{S} \frac{P\left(Q \mid S, H_{r e f}\right) P\left(S \mid H_{r e f}\right)}{P\left(Q \mid H_{0}\right)}=\max _{S}\left\{\log P\left(S \mid H_{r e f}\right)+\sum_{R_{i} \in S} L E S\left(R_{i} \mid H_{r e f}\right)\right\}
\end{aligned}
$$

Upper Bound:
$G E S\left(Q \mid H_{r e f}\right)=\log \frac{P\left(Q \mid H_{r e f}\right)}{P\left(Q \mid H_{0}\right)}=\log \sum_{S} \frac{P\left(Q \mid S, H_{r e f}\right) P\left(S \mid H_{r e f}\right)}{P\left(Q \mid H_{0}\right)} \leq \log \max _{S} \frac{P\left(Q \mid S, H_{r e f}\right)}{P\left(Q \mid H_{0}\right)}$
The last inequality is valid because the maximal element is always higher than the average one (average weighted by $P\left(S \mid H_{r e f}\right)$). Swapping $l o g$ and max in the last expression we get
$G E S\left(Q \mid H_{r e f}\right) \leq \max _{S} \log \frac{P\left(Q \mid S, H_{r e f}\right)}{P\left(Q \mid H_{0}\right)}=\max _{S} G E S\left(Q \mid H_{r e f}, S\right)=\max _{S=R_{1}, . ., R_{k}} \sum_{i=1}^{k} L E S\left(R_{i} \mid H_{r e f}\right)$
For every non-overlapping regions R_{1}, \ldots, R_{k} :

$$
\sum_{i=1}^{k} \operatorname{LES}\left(R_{i} \mid H_{r e f}\right)=\sum_{i=1}^{k} \sum_{q \in R_{i}} \frac{\operatorname{LES}\left(R_{i} \mid H_{r e f}\right)}{\left|R_{i}\right|}=\sum_{q \in Q} \frac{\operatorname{LES}\left(R^{q} \mid H_{r e f}\right)}{\left|R^{q}\right|}
$$

where R^{q} is the region in S which contains q (this is not necessarily the maximal region $R_{[q]}$ of q). Note that there is only one such region because the regions in S are disjoint. From the definition of $\operatorname{PES}\left(q \mid H_{r e f}\right)$ as the maximal saving per point and $R_{[q]}$ as the region obtaining this saving we get:

$$
\sum_{q \in Q} \frac{\operatorname{LES}\left(R^{q} \mid H_{r e f}\right)}{\left|R^{q}\right|} \leq \sum_{q \in Q} \frac{\operatorname{LES}\left(R_{[q]} \mid H_{r e f}\right)}{\left|R_{[q]}\right|}=\sum_{q \in Q} \operatorname{PES}\left(q \mid H_{r e f}\right)
$$

This applies for every segmentation (including the maximal segmentation). From the last three equations we get the upper bound on $G E S$.

II. Estimating the segmentation length $\log P\left(S \mid H_{\text {ref }}\right)$:

Computing the lower bound on $G E S$ requires estimation of $\log P\left(S \mid H_{r e f}\right)$, which is also -length $\left(S \mid H_{r e f}\right)$. In our implementation, we assume that the "description length" of the segmentation length $(S)=\sum_{i=1}^{k}$ length $\left(s_{i}\right)+$ const, where s_{i} is the shape of the region R_{i} (including
its position in Q), and const is a constant overhead needed for specifying the number of regions in a segmentation S. For example, in images we computed length $\left(s_{i}\right)$ as the length of the chain code required to describe the perimeter of the region (plus the position in Q). In video it was the surface area of the region. Alternatively, we can estimate $\operatorname{length}\left(s_{i}\right)=-\log \left(P\left(s_{i} \mid H_{r e f}\right)\right)$ according to any given prior on shapes. To bound const, we assume that the number of regions in a segmentation is bounded by N (e.g., 1000). Thus, const $\leq \log N$.

