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Abstract—Human action in video sequences can be seen as silhouettes of a
moving torso and protruding limbs undergoing articulated motion. We regard
human actions as three-dimensional shapes induced by the silhouettes in the
space-time volume. We adopt a recent approach [14] for analyzing 2D shapes and
generalize it to deal with volumetric space-time action shapes. Our method utilizes
properties of the solution to the Poisson equation to extract space-time features
such as local space-time saliency, action dynamics, shape structure, and
orientation. We show that these features are useful for action recognition, detection,
and clustering. The method is fast, does not require video alignment, and is
applicable in (but not limited to) many scenarios where the background is known.
Moreover, we demonstrate the robustness of our method to partial occlusions,
nonrigid deformations, significant changes in scale and viewpoint, high irregularities
in the performance of an action, and low-quality video.

Index Terms—Action representation, action recognition, space-time analysis,
shape analysis, poisson equation.
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1 INTRODUCTION

RECOGNIZING human action is a key component in many computer
vision applications, such as video surveillance, human-computer
interface, video indexing and browsing, recognition of gestures,
analysis of sports events, and dance choreography.

Despite the fact that good results were achieved by traditional
action recognition approaches, they still have some limitations.
Many of them involve computation of optical flow [3], [11], whose
estimation is difficult due to, e.g., aperture problems, smooth
surfaces, and discontinuities. Others, [31], [7] employ feature
tracking and face difficulties in cases of self-occlusions, change of
appearance, and problems of reinitialization. Methods that rely on
key frames (e.g., [9]) or eigenshapes of foreground silhouettes (e.g.,
[13]) lack information about the motion. Some approaches are
based on periodicity analysis (e.g., [21], [24], [13]) and are thus
limited to cyclic actions.

Some of the recent successful work done in the area of action
recognition [10], [33], [17], [25], [16] have shown that it is useful to
analyze actions by looking at a video sequence as a space-time
volume (of intensities, gradients, optical flow, or other local
features).

On the other hand, studies in the field of object recognition in
2D images have demonstrated that silhouettes contain detailed
information about the shape of objects, e.g., [23], [1], [14], [8]. When a
silhouette is sufficiently detailed people can readily identify the
object, or judge its similarity to other shapes. One of the well-known
shape descriptors is the Medial Axis Distance Transform [5], where
each internal pixel of a silhouette is assigned a value reflecting its
minimum distance to the boundary contour. The Medial Axis
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Transform opened the way to the advent of skeleton-based
representations such as [26], [23]. Recently, [14] presented an
alternative approach based on a solution to a Poisson equation. In
this approach, each internal point is assigned with the mean time
required for a particle undergoing a random-walk process starting
from the point to hit the boundaries. In contrast to the distance
transform, the resulting scalar field takes into account many points
on the boundaries and, so, reflects more global properties of the
silhouette. In addition, it allows extracting many useful properties of
a shape, including part structure as well as local orientation and
aspect ratio of the different parts simply by differentiation of the
Poisson solution. Moreover, unlike existing pairwise comparison
measures such as Chamfer and Hausdorff, which are designed to
compute a distance measure between pairs of shapes, the Poisson-
based descriptor provides description for single shapes and, so, it is
naturally suitable for tasks requiring class modeling and learning.

Our approach is based on the observation that in video sequences
ahuman action generates a space-time shape in the space-time volume
(see Fig. 1). These shapes are induced by a concatenation of
2D silhouettes in the space-time volume and contain both the
spatial information about the pose of the human figure at any
time (location and orientation of the torso and limbs, aspect ratio
of different body parts), as well as the dynamic information (global
body motion and motion of the limbs relative to the body).

A similar approach was recently presented in [32], where
human actions were presented as 3D spatio-temporal surfaces and
analyzed using differential geometric surface properties. While our
space-time volume representation is essentially derived from the
same input (concatenation of silhouettes), it is robust to noise at the
bounding contour of the extracted silhouettes as opposed to the
local surface features in [32]. Our volumetric space-time features
allow us to avoid the nontrivial and computationally expensive
problem of surface parameterization (i.e., contour parameteriza-
tion and frame-to-frame point correspondences) and surface-to-
surface point correspondence between actions as described in [32].

Several other approaches use information that could be derived
from the space-time shape of an action. Bobick and Davis [6] uses
motion history images representation and [20] analyzes planar
slices (such as x-t planes) of the space-time intensity volume. Note
that these methods implicitly use only partial information about the
space-time shape. Methods for 3D shape analysis and matching
have been recently used in computer graphics (see survey in [28]).
However, in their current form, they do not apply to space-time
shapes due to the nonrigidity of actions, the inherent differences
between the spatial and temporal domains, and the imperfections
of the extracted silhouettes.

In this paper, we generalize a method developed for the analysis
of 2D shapes [14] to deal with volumetric space-time shapes induced
by human actions. This method exploits the solution to the Poisson
equation to extract various shape properties that are utilized for
shape representation and classification. We adopted some of the
relevant properties and extend them to deal with space-time shapes
(Section 2.1). The spatial and temporal domains are different in
nature and therefore are treated differently at several stages of our
method. The additional time domain gives rise to new space-time
shape entities that do not exist in the spatial domain, such as a space-
time “stick,” “plate,” and “ball.” Each such type has different
informative properties that characterize every space-time point. In
addition, we extract space-time saliency at every point, which
detects fast moving protruding parts of an action (Section 2.2).

Unlike images, where extraction of a silhouette might be a
difficult segmentation problem, the extraction of a space-time
shape from a video sequence can be simple in many scenarios. In
video surveillance with a fixed camera as well as in various other
settings, the appearance of the background is known. In these
cases, using a simple change detection algorithm usually leads to
satisfactory space-time shapes. Moreover, in cases of motion
discontinuities, motion aliasing, and low-quality video, working
with silhouettes may be advantageous over many existing
methods ([3], [7], [10], [11], [15], [16], [17], [21], [20], [24], [25],
[31], [33]) that compute optical flow, local space-time gradients, or
other intensity-based features.
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Fig. 1. Space-time shapes of “‘jumping-jack,” “walk,” and “run” actions.

Our method is fast, does not require prior video alignment and
is not limited to cyclic actions. We demonstrate the robustness of
our approach to partial occlusions, nonrigid deformations, im-
perfections in the extracted silhouettes, significant changes in scale
and viewpoint, and high irregularities in the performance of an
action. Finally, we report the performance of our approach in the
tasks of action recognition, clustering, and action detection in a
low-quality video (Section 3).

A preliminary version of this paper appeared in ICCV 05 [4].

2 REPRESENTING ACTIONS AS SPACE-TIME SHAPES

2.1 The Poisson Equation and Its Properties

Consider an action and its space-time shape S surrounded by a
simple, closed surface. Below, we generalize the approach in [14]
from 2D shapes in images to to deal with volumetric space-time
shapes. We assign each space-time point within the shape with the
mean time required for a particle undergoing a random-walk
process starting from the point to hit the boundaries. This measure
can be computed [14] by solving a Poisson equation of the form:
AU(z,y,t) = —1, with (x,y,t) € S, where the Laplacian of U is
defined as AU = U,, + Uy, + Uy, subject to the Dirichlet boundary
conditions U(z,y,t) = 0 at the bounding surface 0.5. In order to cope
with the artificial boundary at the first and last frames of the video,
we impose the Neumann boundary conditions requiring U; = 0 at
those frames [29]. The induced effect is of a “mirror” in time that
prevents attenuation of the solution toward the first and last frames.

Note that space and time units may have different extents, thus
when discretizing the Poisson equation we utilize space-time grid
with the ratio ¢;; = hy/h; where (hy, h;) are the meshsizes in space
and in time. Different values of ¢, affect the distribution of local
orientations and saliency features across the space-time shape and,
thus, allows us to emphasize different aspects of actions. In the
following, we assume c¢;; is given. (See more discussion in
Section 3.1.)

Numerical solutions to the Poisson Equation can be obtained
by various methods. We used a simple “w-cycle” of a geometric
multigrid solver which is linear in the number of space-time
points [29].

Fig. 2 shows a spatial cross-cut of the solution to the Poisson
equation obtained for the space-time shapes shown in Fig. 1. High
values of U are attained in the central part of the shape, whereas the
external protrusions (the head and the limbs) disappear at relatively
low values of U. The isosurfaces of the solution U represent
smoother versions of the Dirichlet bounding surface and are
perpendicular to the Neumann bounding surfaces (first and last
frames) [14]. If we now consider the 3 x 3 Hessian matrix H of U at
every internal space-time point, H will vary continuously from one
point to the next and we can treat it as providing a measure that
estimates locally the space-time shape near any interior space-time
point. The eigenvectors and eigenvalues of H then reveal the local
orientation and aspect ratio of the shape [14].

A 2 x 2 Hessian and its eigenvalues have been used before for
describing 3D surface properties [2], [12], [32], [30]. This requires
specific surface representations, e.g., surface normals, surface
triangulation, surface parameterization, etc. Note, that converting
our space-time binary masks to such surfaces is not a trivial task. In
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Fig. 2. The solution to the Poisson equation on space-time shapes of shown in
Fig. 1. The values are encoded by the color spectrum from blue (low values) to red
(high values).

contrast, we extract local shape properties at every space-time
point including internal points by using a 3 x 3 Hessian of the
solution U without any surface representation.

2.2 Extracting Space-Time Shape Features

The solution to the Poisson equation can be used to extract a wide
variety of useful local shape properties [14]. We adopted some of the
relevant properties and extended them to deal with space-time
shapes. The additional time domain gives rise to new space-time
shape entities that do not exist in the spatial domain. We first show
how the Poisson equation can be used to characterize space-time
points by identifying space-time saliency of moving parts and locally
judging the orientation and rough aspect ratios of the space-time
shape. Then, we describe how these local properties can be
integrated into a compact vector of global features to represent an
action.

2.2.1 Local Features

Space-Time Saliency. Human action can often be described as a
moving torso and a collection of parts undergoing articulated
motion [7], [15]. Below, we describe how we can identify portions
of a space-time shape that are salient both in space and in time.

In the space-time shape induced by a human action, the highest
values of U are obtained within the human torso. Using an
appropriate threshold, we can identify the central part of a human
body. However, the remaining space-time region includes both the
moving parts and portions of the torso that are near the
boundaries, where U has low values. Those portions of boundary
can be excluded by noticing that they have high gradient values.
Following [14], we define

3
®=U+5 VU, (1)

where VU = (U,,U,, Uy).

Consider a sphere which is a space-time shape of a disk growing
and shrinking in time. This shape has no protruding moving parts
and, therefore, all of its space-time points are equally salient. Indeed,
it can be shown that, in this case, ® is constant. In space-time shapes
of natural human actions, ¢ achieves its highest values inside the
torso and its lowest values inside the fast moving limbs. Static
elongated parts or large moving parts (e.g., head of a running
person) will only attain intermediate values of ®. We define the
space-time saliency features as a normalized variant of ®

L log(1 + ®(x,y,t))
) = e a1 + 00,0, 0) (2’

which emphasizes fast moving parts. Fig. 3 illustrates the space-time
saliency function we computed on the space-time shapes of Fig. 1.
For actions in which a human body undergoes a global motion
(e.g., a walking person), we compensate for the global translation of
the body in order to emphasize motion of parts relative to the torso.
This is done by fitting a smooth trajectory (2nd order polynomial) to
the centers of mass collected from the entire sequence and then by
aligning this trajectory to a reference point (similarly to figure-
centric stabilization in [11]). This essentially is equivalent to
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Fig. 3. Examples of the local space-time saliency features—ws. The values
are encoded by the color spectrum from blue (low values) to red (high values).

redirecting the low-frequency component of the action trajectory to
the temporal axis. Linear fitting would account for global translation
of a shape in the space-time volume. We chose however to use
second order fitting to allow also acceleration. A third order
polynomial would overcompensate and attenuate the high fre-
quency components as well, which is undesired.

Space-Time Orientations. We use the 3 x 3 Hessian H of the
solution to the Poisson equation to estimate the local orientation
and aspect ratio of different space-time parts. Its eigenvectors
correspond to the local principal directions and its eigenvalues are
related to the local curvature in the direction of the corresponding
eigenvectors and therefore inversely proportional to the length
[14]. Below, we generalize this approach to space-time.

Let A\; > Xy > A3 be the eigenvalues of H. Then, the first principal
eigenvector corresponds to the shortest direction of the local space-
time shape and the third eigenvector corresponds to the most
elongated direction. Inspired by earlier works [22], [18] in the area of
perceptual grouping, and 3D shape reconstruction, we distinguish
between the following three types of local space-time structures:

e )\ =\ > \3—corresponds to a space-time “stick” struc-
ture. For example, a small moving object generates a
slanted space-time “stick,” whereas a static object has a
“stick” shape in the temporal direction. The informative
direction of such a structure is the direction of the “stick”
which corresponds to the third eigenvector of H.

e )\ > )\ = A\3—corresponds to a space-time “plate” struc-
ture. For example, a fast moving limb generates a slanted
space-time surface (“plate”), and a static vertical torso/limb
generates a “plate” parallel to the y-t plane. The informative
direction of a “plate” is its normal which corresponds to the
first eigenvector of H.

e )\ =\ = A\3—corresponds to a space-time “ball” structure
which does not have any principal direction.

Using the ratio of the eigenvalues at every space-time point we

define three continuous measures of “plateness” S, (z,y,t),
“stickness” Sg(x,y,t), and “ballness” Sy, (z,vy,t), where

A3

Sy=e N, Sy=(1-8)e %, Sp=(1-S5y (1 7 e‘%).
(3)

Note that S, + 54+ S, =1 and the transition between the
different types of regions is gradual (we use a = 3).

We then identify regions with vertical, horizontal, and temporal
“plates” and “sticks.” Let v(z, y, t) be the informative direction (of a
“plate” or a “stick”) computed with Hessian at each point. The
deviations of the informative direction from the principal axes
directions can be measured by Dj(z,y,t) = |v-e;| with e;, je€
{1,2,3} denoting the unit vectors in the direction of the principal
axes (X, y, and t). Eventually, we define the orientation local features
to be

Wi,j(l‘7y, t) = S’i(x7 Y, t) 'D]‘(J},y., t)v (4)

where i € {pl,st} and j e {1,2,3}. We have found the isotropic
“ball” features to be redundant and, therefore, did not use them.
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Fig. 4. Space-time orientations of plates and sticks for “jumping-jack” (first two
rows) and “walk” (last row) actions. The first two rows illustrate three sample
frames of two different persons performing the “jumping-jack” action. In the third
row, we show a person walking. The left three columns show a schematic
representation of normals where local plates were detected. The right three
columns show principal directions of local sticks. In all examples, we represent
with the blue, red, and green colors regions with temporal, horizontal, and vertical
informative direction accordingly. The intensity denotes the extent to which the
local shape is a plate or a stick. For example, fast moving hands of a “jumping-
jack” are identified as plates with normals oriented in temporal direction (appear in
blue on the left). Whereas slower moving legs are identified as vertical sticks
(appear in green on the right). Note the color consistency between the same action
of two different persons, despite the dissimilarity of their spatial appearance.

Fig. 4 demonstrates examples of space-time shapes and their
orientation measured locally at every space-time point.

2.2.2 Global Features

In order to represent an action with global features, we use
weighted moments of the form

oo 00 00

m,)qrz/ / /w(w,y,t)g(l',y,t).z"’y“trdxdydt, (5)

—00 —00 —00

where g(z, y, t) denotes the characteristic function of the space-time
shape, w(z, y,t) is a one of the seven possible weighting functions:
w; j(x,y,t) (4) or we(z,y,t) (2). Note that 0 < w(z,y,t) < 1V(z,y,1).
In the following section, we demonstrate the utility of these
features in action recognition and classification experiments.

3 RESULTS AND EXPERIMENTS

For the first two experiments (action classification and clustering),
we collected a database of 90 low-resolution (180 x 144, deinter-
laced 50 fps) video sequences showing nine different people, each
performing 10 natural actions such as “run,” “walk,” “skip,”
“jumping-jack” (or shortly “jack”), “jump-forward-on-two-legs”
(or “jump”), “jump-in-place-on-two-legs” (or “pjump”), “gallop-
sideways” (or “side”), “wave-two-hands” (or “wave2”), “wave-
one-hand” (or “wavel”), or “bend.” To obtain space-time shapes of
the actions, we subtracted the median background from each of the
sequences and used a simple thresholding in color-space. The
resulting silhouettes contained “leaks” and “intrusions” due to
imperfect subtraction, shadows, and color similarities with the
background (see Fig. 5 for examples). In our view, the speed of
global translation in the real world (due to different view points or,
e.g., different step sizes of a tall versus a short person) is less
informative for action recognition than the shape and speed of the
limbs relative to the torso. We therefore compensate for the
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Fig. 5. Examples of video sequences and extracted silhouettes from our database.
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Fig. 6. (a) Action confusion in classification experiment using our method. (b) Action confusion in classification experiment using the method in [33]. (a1-“walk,” a2-“run,”

a3-“skip,” a4-“jack,” a5-“jump,” a6-“pjump,” a7-“side,” a8-“wave1l,”

translation of the center of mass by aligning the silhouette
sequence to a reference point (see Section 2.2.1). The database, as
well as the extracted silhouettes, are available for download at [27].

For each sequence, we solved the Poisson equation using
meshsizes (h; =1,h, =3) and computed seven types of local
features: “stick” and “plate” features, measured at three directions
each (as in (4)), and the saliency features (as in (2)). In order to treat
both the periodic and nonperiodic actions in the same framework
as well as to compensate for different length of periods, we used a
sliding window in time to extract space-time cubes, each having
eight frames with an overlap of four frames between the
consecutive space-time cubes. Moreover, using space-time cubes
allows a more accurate localization in time while classifying long
video sequences in realistic scenarios. We centered each space-time
cube about its space-time centroid and brought it to a uniform
scale in space preserving the spatial aspect ratio. Note that the
coordinate normalization above does not involve any global video
alignment. We then computed global space-time shape features
with spatial moments up to order m, = 2 and time moments up to
order m; = 2 (i.e., with p + ¢ < m, and r < m, in (5)), giving rise to
a7x(m+1)x (ms+1)(ms+2)/2=7x18 =126 feature vector
representation per space-time cube. (The maximal order of
moments was chosen empirically by testing all possible combina-
tions of m, and m; between 1 and 5.)

3.1 Action Classification

For every video sequence, we perform a leave-one-out procedure,
i.e., we remove the entire sequence (all its space-time cubes) from

a9-“wave2,” and a10-“bend”).

the database while other actions of the same person remain. Each
cube of the removed sequence is then compared to all the cubes in
the database and classified using the nearest neighbor procedure
(with Euclidian distance operating on normalized global features).
Thus, for a space-time cube to be classified correctly, it must
exhibit high similarity to a cube of a different person performing
the same action. Indeed, for correctly classified space-time cubes,
the distribution of the person labels, associated with the retrieved
nearest neighbor cubes, is fully populated and nonsparse,
implying that our features emphasize action dynamics, rather
than person shape characteristics.

The algorithm misclassified 20 out of 923 space-cubes (2.17 per-
cent error rate). Fig. 6a shows action confusion matrix for the entire
database of cubes. Most of the errors were caused by the “jump”
action which was confused with the “skip.” This is a reasonable
confusion considering the small temporal extent of the cubes and
partial similarity between dynamics of these actions.

We also ran the same experiment with ordinary space-time shape
moments (i.e., substituting w(z,y,t) =1 in (5)). The algorithm
misclassified 73 out of 923 cubes (7.91 percent error rate) using
moments up to order m, = 4 in space and m; = 7 in time resulting in
(my + 1) X (mg + 1)(ms +2)/2 — 4 = 116 features (Where —4 stands
for the noninformative zero moment and the first-order moments in
each direction). Further experiments with all combinations of
maximal orders between 2 and 9 yielded worse results. Note that
space-time shapes of an action are very informative and rich as is
demonstrated by the relatively high classification rates achieved
even with ordinary shape moments.
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Fig. 7. Evaluation of our method in different settings: sensitivity to the
meshsize ratio ¢ (black line), contribution of different features to the overall
performance (color-coded bars).

In Fig. 7 (black line), we evaluate the sensitivity of our method to
the meshsize ratio ¢, by plotting the classification error rate as a
function of ¢;;. As can be seen, the method is quite robust to this
parameter. We found that ¢;; = 3 works best for our collection of
human actions. We used deinterlaced sequences of 180 x 144, 50 fps,
with average person size (width) of 12 pixels. We expect the optimal
ratio ¢, to grow linearly with the change in frame rate or the size of
the person performing the action. Moreover, in the same Fig. 7
(color-coded bars), we demonstrate how each of the local shape
features contributes to the overall classification performance by
evaluating our method in three different settings: using moments
extracted from “stick” features only, “stick” and “plate” features
only and using all of them (“stick,” “plate,” and “salience” features).
These are compared to the performance obtained with ordinary
space-time moments.

For comparison with our method, we applied the method of [33]
to our database using the original implementation obtained from the
authors. We used the same sliding window size of eight frames
every four frames. The algorithm with the best combination of
parameters (16 equally spaced bins, 3 pyramid levels) misclassified
336 out 923 cubes (36.40 percent error rate). The confusion matrix in
Fig. 6b shows that most of the errors of the method of [33] occur
between “run” and “skip,” “side” and “skip,” and “wavel” and
“wave2” actions. The latter can be easily explained since location of
a movement is not grasped by looking at histograms alone.
Moreover, only absolute values of the gradient are taken in [33]
and, thus, two motions performed in opposite directions will be
similar.

3.2 Action Clustering

In this experiment, we applied a common spectral clustering
algorithm [19] to 90 unlabelled action sequences. We defined the
distance between any two sequences to be a variant of the Median
Hausdorff Distance

Dy (s', s*) =median <mjn lle} —c§||> +median (rn_in lleh - c?||>, (6)
J i i j

where {c]} and {¢}} denote the space-time cubes belonging to
the sequences s' and s? accordingly. In contrast to assigning a label
to the entire space-time shape, separate classifying of the
overlapping cubes allows more flexibility since it accounts explicitly
for occasional occlusions and other imperfections in the space-time
shape of the action. As a result, we obtained ten separate clusters of
the 10 different actions with only four of the sequences erroneously
clustered with other action sequences, (see Fig. 8).
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Fig. 8. Results of spectral clustering. Distance matrix, reordered using the
results of spectral clustering. We obtained 10 separate clusters of the 10 different
actions. The rows of the erroneously clustered sequences are marked with arrows
and the label of the misclassified class.

3.3 Robustness

In this experiment, we demonstrate the robustness of our method to
high irregularities in the performance of an action. We collected
10 test video sequences of people walking in various difficult
scenarios in front of different nonuniform backgrounds (see Fig. 9 for
a few examples). We show that our approach has relatively low
sensitivity to partial occlusions, nonrigid deformations, and other
defects in the extracted space-time shape. Moreover, we demon-
strate the robustness of our method to substential changes in
viewpoint. For this purpose, we collected ten additional sequences,
each showing the “walk” action captured from a different viewpoint
(varying between 0 degree and 81 degree relative to the image plane
with steps of 9 degree). Note, that sequences with angles approach-
ing 90 degree contain significant changes in scale within the
sequence. See the upper left sequence in Fig. 9, showing “walk” in
the 63 degree direction. The rest of the sequences can be found at [27].

For each of the test sequences s, we measured its Median
Hausdorff Distance to each of the action types a;, k€ {1...9} in
our database

Dy (s, a;) = median(min [|¢; — ), (7)
i J

where ¢; € sis a space-time cube belonging to the test sequence and
¢j € aj, denotes a space-time cube belonging to one of the training
sequences of the action a;. We then classified each test sequence as
the action with the smallest distance. Fig. 10a, shows for each of the
test sequences the first and second best choices and their distances as
well as the median distance to all the actions. The test sequences are
sorted by the distance to their first best chosen action. All the test
sequences in Fig. 10a were classified correctly as the “walk” action.
Note the relatively large difference between the first (the correct)
and the second choices (with regard to the median distance). Fig. 10b
shows similar results for the sequences with varying viewpoints. All
sequences with viewpoints between 0 degree and 54 degree were
classified correctly with a large relative gap between the first (true)
and the second closest actions. For larger viewpoints, a gradual
deterioration occurs. This demonstrates the robustness of our
method to relatively large variations in viewpoint.

3.4 Action Detection in a Ballet Movie

In this experiment, we show how given an example of an action we
can use space-time shape properties to identify all locations with
similar actions in a given video sequence.

We chose to demonstrate our method on the ballet movie
example used in [25]. This is a highly compressed (111 Kbps, wmv
format) 192 x 144 x 750 ballet movie with effective frame rate of
15 fps, moving camera and changing zoom, showing performance
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Fig. 9. Examples of sequences used in robustness experiments. We show three sample frames and their silhouettes for the following sequences (left to right):
“Diagonal walk” (63 degree), “Occluded legs,” “Knees up,” “Swinging bag,” “Sleepwalking,” and “Walking with a dog.”

Test Seq. 15 best 27 best | Med. Test Seq. 15t best 274 pest Med.
Normal walk walk 5.6 | run 82 | 11.2 Dir. 0° |walk 8.3 | run 10.8 | 12.6
Walking in a skirt |walk 5.6 | side 8.1 9.9 Dir. 9° |walk 7.9 | side 99 | 122
Carrying briefcase |walk 6.6 | side 8.5 | 104 Dir. 18° |walk 8.2 | side 10.2 | 121
Limping man walk 7.0 | skip 88 | 103 Dir. 27° |walk 8.2 | side 9.7 | 115
Occluded legs walk 82 | skip 11.0 | 11.3 Dir. 36° |walk 8.3 | side 103 | 11.7
Knees Up walk 83 | side 9.6 | 10.1 Dir. 45° |walk 9.0 | side 10.7 | 11.6
Walking with a dog| walk 8.4 | run 99 | 114 Dir. 54° |walk 9.1 | side 106 | 11.3
Sleepwalking walk 84 |run 98 | 12.1 Dir. 63° |walk 11.1 | side 11.6 | 129
Swinging a bag walk 9.6 | side 11.1 | 129 Dir. 72° |walk 113 | pjump 12.1 | 129
Occluded by a pole|walk 10.6 | jack 11.6 | 12.5 Dir. 81° |walk 12.6 | pjump 12.7 | 133

(@)

(b)

Fig. 10. Robustness experiment results. The leftmost column describes the test action performed. For each of the test sequences, the closest two actions with the
corresponding distances are reported in the second and third columns. The median distance to all the actions in the database appears in the rightmost column. (a) Shows
results for the sequences with high irregularities in the performance of the “walk” action. (b) Shows results for the “walk” sequences with varying viewpoints.

of two (female and male) dancers. We manually separated the
sequence into two parallel movies each showing only one of the
dancers. For both of the sequences, we then solved the Poisson
equation and computed the same global features as in the previous
experiment for each space-time cube.

We selected a cube with the male dancer performing a “cabriole”
pa (beating feet together at an angle in the air) and used it as a query
to find all the locations in the two movies where a similar movement
was performed by either a male or a female dancer. Fig. 11
demonstrates the results of the action detection by simply thresh-
olding euclidian distances computed with normalized global
features. These results are comparable to the results reported in
[25]. Accompanying video material can be found at [27].

4 CONCLUSION

In this paper, we represent actions as space-time shapes and show
that such a representation contains rich and descriptive informa-
tion about the action performed. The quality of the extracted
features is demonstrated by the success of the relatively simple

classification scheme used (nearest neighbors classification and
Euclidian distance). In many situations, the information contained
in a single space-time cube is rich enough for a reliable
classification to be performed, as was demonstrated in the first
classification experiment. In real-life applications, reliable perfor-
mance can be achieved by integrating information coming from the
entire input sequence (all its space-time cubes), as was demon-
strated by the robustness experiments.

Our approach has several advantages: First, it does not
require video alignment. Second, it is linear in the number of
space-time points in the shape. The overall processing time
(solving the Poisson equation and extracting features) in Matlab
of a 110 x 70 x 50 presegmented video takes less than 30 sec-
onds on a Pentium 4, 3.0 GHz. Third, it has a potential to cope
with low-quality video data, where other methods that are
based on intensity features only (e.g., gradients), might
encounter difficulties.

As our experiments show, the method is robust to significant
changes in scale, partial occlusions, and nonrigid deformations of
the actions. While our method is not fully view invariant, it is
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Fig. 11. Results of action detection in a ballet movie. The green and the red lines denote the distances between the query cube and the cubes of the female and the male
dancers accordingly. The ground truth is marked with the green squares for the female dancer and the red squares for the male dancer. A middle frame is shown for every
detected space-time cube. Correct detections are marked with blue “v,” whereas false alarms and misses are marked with blue “x.” The algorithm detected all locations with

Gy, »

actions similar to the query except for one false alarm of the female dancer and two misses (male and female), all marked with blue “x.” The two misses can be explained by
the difference in the hand movement, and the false alarm—by the high similarity between the hand movement of the female dancer and the query. Additional “cabriole” pa of
the male dancer was completely occluded by the female dancer, and therefore ignored in our experiment. Full video results can be found at [27].

however robust to large changes in viewpoint (up to 54 degree).
This can be further improved by enrichment of the training
database with actions taken from a few discrete viewpoints.
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