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Abstract. We propose a method for constructing a video sequence of
high space-time resolution by combining information from multiple low-
resolution video sequences of the same dynamic scene. Super-resolution
is performed simultaneously in time and in space. By “temporal
super-resolution” we mean recovering rapid dynamic events that occur
faster than regular frame-rate. Such dynamic events are not visible (or
else observed incorrectly) in any of the input sequences, even if these
are played in “slow-motion”.
The spatial and temporal dimensions are very different in nature, yet are
inter-related. This leads to interesting visual tradeoffs in time and space,
and to new video applications. These include: (i) treatment of spatial
artifacts (e.g., motion-blur) by increasing the temporal resolution, and
(ii) combination of input sequences of different space-time resolutions
(e.g., NTSC, PAL, and even high quality still images) to generate a high
quality video sequence.

Keywords. Super-resolution, space-time analysis.

1 Introduction

A video camera has limited spatial and temporal resolution. The spatial reso-
lution is determined by the spatial density of the detectors in the camera and
by their induced blur. These factors limit the minimal size of spatial features or
objects that can be visually detected in an image. The temporal resolution is de-
termined by the frame-rate and by the exposure-time of the camera. These limit
the maximal speed of dynamic events that can be observed in a video sequence.

Methods have been proposed for increasing the spatial resolution of images by
combining information from multiple low-resolution images obtained at sub-pixel
displacements (e.g. [1,2,5,6,9,10,11,12,14]. See [3] for a comprehensive review).
These, however, usually assume static scenes and do not address the limited tem-
poral resolution observed in dynamic scenes. In this paper we extend the notion
of super-resolution to the space-time domain. We propose a unified framework
for increasing the resolution both in time and in space by combining information
from multiple video sequences of dynamic scenes obtained at (sub-pixel) spatial
and (sub-frame) temporal misalignments. As will be shown, this enables new
visual capabilities of dynamic events, gives rise to visual tradeoffs between time
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(a) (b)

Fig. 1. Motion blur. Distorted shape due to motion blur of very fast moving objects
(the tennis ball and the racket) in a real tennis video. The perceived distortion of the
ball is marked by a white arrow. Note, the “V”-like shape of the ball in (a), and the
elongated shape of the ball in (b). The racket has almost “disappeared”.

and space, and leads to new video applications. These are substantial in the
presence of very fast dynamic events.

Rapid dynamic events that occur faster than the frame-rate of video cameras
are not visible (or else captured incorrectly) in the recorded video sequences.
This problem is often evident in sports videos (e.g., tennis, baseball, hockey),
where it is impossible to see the full motion or the behavior of the fast moving
ball/puck. There are two typical visual effects in video sequences which are
caused by very fast motion. One effect (motion blur) is caused by the exposure-
time of the camera, and the other effect (motion aliasing) is due to the temporal
sub-sampling introduced by the frame-rate of the camera:
(i) Motion Blur: The camera integrates the light coming from the scene during
the exposure time in order to generate each frame. As a result, fast moving
objects produce a noted blur along their trajectory, often resulting in distorted
or unrecognizable object shapes. The faster the object moves, the stronger this
effect is, especially if the trajectory of the moving object is not linear. This
effect is notable in the distorted shapes of the tennis ball shown in Fig. 1. Note
also that the tennis racket also “disappears” in Fig. 1.b. Methods for treating
motion blur in the context of image-based super-resolution were proposed in [2,
12]. These methods however, require prior segmentation of moving objects and
the estimation of their motions. Such motion analysis may be impossible in the
presence of severe shape distortions of the type shown in Fig. 1. We will show
that by increasing the temporal resolution using information from multiple video
sequences, spatial artifacts such as motion blur can be handled without the need
to separate static and dynamic scene components or estimate their motions.
(ii) Motion-Based (Temporal) Aliasing: A more severe problem in video se-
quences of fast dynamic events is false visual illusions caused by aliasing in time.
Motion aliasing occurs when the trajectory generated by a fast moving object is
characterized by frequencies which are higher than the frame-rate of the camera
(i.e., the temporal sampling rate). When that happens, the high temporal fre-
quencies are “folded” into the low temporal frequencies. The observable result
is a distorted or even false trajectory of the moving object. This effect is illus-
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(a) (b) (c)

Fig. 2. Motion aliasing. (a) shows a ball moving in a sinusoidal trajectory. (b) dis-
plays an image sequence of the ball captured at low frame-rate. The perceived motion is
along a straight line. This false perception is referred to in the paper as “motion alias-
ing”. (c) Illustrates that even using an ideal temporal interpolation will not produces
the correct motion. The filled-in frames are indicated by the blue dashed line.

trated in Fig. 2, where a ball moves fast in sinusoidal trajectory of high frequency
(Fig. 2.a). Because the frame-rate is much lower (below Nyquist frequency of the
trajectory), the observed trajectory of the ball is a straight line (Fig. 2.b). Play-
ing that video sequence in “slow-motion” will not correct this false visual effect
(Fig. 2.c). Another example of motion-based aliasing is the well-known visual
illusion called the “wagon wheel effect”: When a wheel is spinning very fast,
beyond a certain speed it will appear to be rotating in the “wrong” direction.

Neither the motion-based aliasing nor the motion blur can be treated by
playing such video sequences in “slow-motion”, even when sophisticated tempo-
ral interpolations are used to increase the frame-rate (as in format conversion
or “re-timing” methods [8,13]). This is because the information contained in a
single video sequence is insufficient to recover the missing information of very
fast dynamic events (due to excessive blur and subsampling). Multiple video
sequences, on the other hand, provide additional samples of the dynamic space-
time scene. While none of the individual sequences provides enough visual infor-
mation, combining the information from all the sequences allows to generate a
video sequence of high space-time resolution (Sec. 2), which displays the correct
dynamic events. Thus, for example, a reconstructed high-resolution sequence will
display the correct motion of the wagon wheel despite it appearing incorrectly
in all of the input sequences (Sec. 4).

The spatial and temporal dimensions are very different in nature, yet are
inter-related. This introduces visual tradeoffs between space and times, which are
unique to spatio-temporal super-resolution, and are not applicable in traditional
spatial (i.e., image-based) super-resolution. For example, output sequences of
different space-time resolutions can be generated for the same input sequences.
A large increase in the temporal resolution usually comes at the expense of a
large increase in the spatial resolution, and vice versa.

Furthermore, input sequences of different space-time resolutions can be mean-
ingfully combined in our framework. In traditional image-based super-resolution
there is no incentive to combine input images of different spatial resolutions,
since a high-resolution image will subsume the information contained in a low-
resolution image. This, however, is not the case here. Different types of cameras of
different space-time resolutions may provide complementary information. Thus,
for example, we can combine information obtained by high-quality still cameras
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(which have very high spatial-resolution, but extremely low “temporal resolu-
tion”), with information obtained by standard video cameras (which have low
spatial-resolution but higher temporal resolution), to obtain an improved video
sequence of high spatial and high temporal resolution. These issues and other
space-time visual tradeoffs are discussed in Sec. 4.

2 Space-Time Super-Resolution

Let S be a dynamic space-time scene. Let {Sl
i}n

i=1 be n video sequences of that
dynamic scene recorded by n different video cameras. The recorded sequences
have limited spatial and temporal resolution. Their limited resolutions are due to
the space-time imaging process, which can be thought of as a process of blurring
followed by sampling in time and in space.

The blurring effect results of the fact that the color at each pixel in each
frame (referred to as a “space-time point” and marked by the small boxes in
Fig. 3.a) is an integral (a weighted average) of the colors in a space-time region
in the dynamic scene S (marked by the large pink (bright) and blue (dark) boxes
in Fig. 3.a). The temporal extent of this region is determined by the exposure-
time of the video camera, and the spatial extent of this region is determined
by the spatial point-spread-function (PSF) of the camera (determined by the
properties of the lens and the detectors [4]).

The sampling process also has a spatial and a temporal components. The
spatial sampling results from the fact that the camera has a discrete and finite
number of detectors (the output of each is a single pixel value), and the temporal
sampling results from the fact that the camera has a finite frame-rate resulting
in discrete frames (typically 25 frames/sec in PAL cameras and 30 frames/sec
in NTSC cameras).

The above space-time imaging process inhibits high spatial and high temporal
frequencies of the dynamic scene, resulting in video sequences of low space-time
resolutions. Our objective is to use the information from all these sequences to
construct a new sequence Sh of high space-time resolution. Such a sequence will
have smaller blurring effects and finer sampling in space and in time, and will
thus capture higher space-time frequencies of the dynamic scene S. In particular,
it will capture fine spatial features in the scene and rapid dynamic events which
cannot be captured by the low-resolution sequences.

The recoverable high-resolution information in Sh is limited by its spatial
and temporal sampling rate (or discretization) of the space-time volume. These
rates can be different in space and in time. Thus, for example, we can recover a
sequence Sh of very high spatial resolution but low temporal resolution (e.g., see
Fig. 3.b), a sequence of very high temporal resolution but low spatial resolution
(e.g., see Fig. 3.c), or a bit of both. These tradeoffs in space-time resolutions and
their visual effects will be discussed in more detail later in Sec. 4.2.

We next model the geometrical relations (Sec. 2.1) and photometric relations
(Sec. 2.2) between the unknown high-resolution sequence Sh and the input low-
resolution sequences {Sl

i}n
i=1.
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2.1 The Space-Time Coordinate Transformations

In general a space-time dynamic scene is captured by a 4D representation
(x, y, z, t). For simplicity, in this paper we deal with dynamic scenes which can
be modeled by a 3D space-time volume (x, y, t) (see in Fig. 3.a). This assumption
is valid if one of the following conditions holds: (i) the scene is planar and the
dynamic events occur within this plane, or (ii) the scene is a general dynamic 3D
scene, but the distances between the recording video cameras are small relative
to their distance from the scene. (When the camera centers are very close to each
other, there is no relative 3D parallax.) Under those conditions the dynamic
scene can be modeled by a 3D space-time representation.

W.l.o.g., let Sl
1 be a “reference” sequence whose axes are aligned with those

of the continuous space-time volume S (the unknown dynamic scene we wish to
reconstruct). Sh is a discretization of S with a higher sampling rate than that of
Sl
1. Thus, we can model the transformation T1 from the space-time coordinate

system of Sl
1 to the space-time coordinate system of Sh by a scaling transfor-

mation (the scaling can be different in time and in space). Let Ti→1 denote the
space-time coordinate transformation from the reference sequence Sl

1 to the i-th
low resolution sequence Sl

i (see below). Then the space-time coordinate transfor-
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Fig. 3. The space-time imaging process. (a) illustrates the space-time continuous
scene and two of the low resolution sequences. The large pink (bright) and blue (dark)
boxes are the support regions of the space-time blur corresponding to the low resolution
space-time measurements marked by the respective small boxes. (b,c) show two different
possible discretizations of the space-time volume resulting in two different high resolu-
tion output sequences. (b) has a low frame-rate and high spatial resolution, (c) has a
high frame-rate but low spatial resolution.
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mation of each low-resolution sequence Sl
i is related to that of the high-resolution

sequence Sh by Ti = T1 · Ti→1.
The space-time coordinate transformation between two input sequences

(Ti→1) results from the different setting of the different cameras. A
temporal misalignment between two sequences occurs when there is a time-shift
(offset) between them (e.g., if the cameras were not activated simultaneously),
or when they differ in their frame rates (e.g., PAL and NTSC). Such temporal
misalignments can be modeled by a 1-D affine transformation in time, and is
typically at sub-frame time units. The spatial misalignment between the two se-
quences results from the fact that the two cameras have different external and
internal calibration parameters. In our current implementation, as mentioned
above, because the camera centers are assumed to be very close or else the scene
is planar, the spatial transformation can thus be modeled by an inter-camera
homography. We computed these space-time coordinate transformations, using
the method of [7], which provides high sub-pixel and high sub-frame accuracy.

Note that while the space-time coordinate transformations between the se-
quences ({Ti}n

i=1) are very simple (a spatial homography and a temporal affine
transformation), the motions occurring over time within the dynamic scene can
be very complex. Our space-time super-resolution algorithm does not require
knowledge of these motions, only the knowledge of {Ti}n

i=1. It can thus handle
very complex dynamic scenes.

2.2 The Space-Time Imaging Model

As mentioned earlier, the space-time imaging process induces spatial and tem-
poral blurring in the low-resolution sequences. The temporal blur in the low-
resolution sequence Sl

i is caused by the exposer-time τi of the i-th camera. The
spatial blur in Sl

i is due to the spatial point-spread-function (PSF) of the i-th
camera, which can be approximated by a 2D spatial Gaussian with std σi. (A
method for estimating the PSF of a camera can be found in [11].)

Let Bi = B(σi,τi,pl
i
) denote the combined space-time blur operator of the i-

th camera corresponding to the low resolution space-time point pl
i = (xl

i, y
l
i, t

l
i).

Let ph = (xh, yh, th) be the corresponding high resolution space-time point
ph = Ti(pl

i) (ph is not necessarily an integer grid point of Sh, but is contained in
the continuous space-time volume S). Then the relation between the unknown
space-time values S(ph), and the known low resolution space-time measurements
Sl

i(p
l
i), can be expressed by:

Sl
i

(
pl

i

)
=

(
S ∗ Bh

i

)
(ph) =

∫
x

∫
y

∫
t

p = (x, y, t) ∈ Support(Bh
i

)
S(p) Bh

i (p − ph)dp (1)

where Bh
i = Ti(B(σi,τi,pl

i
)) is a point-dependent space-time blur kernel repre-

sented in the high resolution coordinate system. Its support is illustrated by the
large pink (bright) and blue (dark) boxes in Fig. 3.a. To obtain a linear equation
in the terms of the discrete unknown values of Sh we used a discrete approxima-
tion of Eq. (1). In our implementation we used a non-isotropic approximation in
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the temporal dimension, and an isotropic approximation in the spatial dimension
(see [6] for a discussion of the different discretization techniques in the context
of image-based super-resolution ). Eq. (1) thus provides a linear equation that
relates the unknown values in the high resolution sequence Sh to the known low
resolution measurements Sl

i(p
l
i).

When video cameras of different photometric responses are used to produce
the input sequences, then a preprocessing step is necessary that histogram-
equalizes all the low resolution sequences. This step is required to guarantee
consistency of the relation in Eq. (1) with respect to all low resolution sequences.

2.3 The Reconstruction Step

Eq. (1) provides a single equation in the high resolution unknowns for each low
resolution space-time measurement. This leads to the following huge system of
linear equations in the unknown high resolution elements of Sh:

A
−→
h = −→

l (2)

where −→
h is a vector containing all the unknown high resolution color values (in

YIQ) of Sh, −→
l is a vector containing all the space-time measurements from all

the low resolution sequences, and the matrix A contains the relative contributions
of each high resolution space-time point to each low resolution space-time point,
as defined by Eq. (1).

When the number of low resolution space-time measurements in −→
l is greater

than or equal to the number of space-time points in the high-resolution sequence
Sh (i.e., in −→

h ), then there are more equations than unknowns, and Eq. (2) can
be solved using LSQ methods. This, however, implies that a large increase in
the spatial resolution (which requires very fine spatial sampling in Sh) will come
at the expense of a significant increase in the temporal resolution (which also
requires fine temporal sampling in Sh), and vice versa. This is because for a
given set of input low-resolution sequences, the size of −→

l is fixed, thus dictating
the number of unknowns in Sh. However, the number high resolution space-
time points (unknowns) can be distributed differently between space and time,
resulting in different space-time resolutions (see 4.2).

Directional space-time regularization. When there is an insufficient num-
ber of cameras relative to the required improvement in resolution (either in the
entire space-time volume, or only in portions of it), then the above set of equa-
tions (2) becomes ill-posed. To constrain the solution and provide additional
numerical stability (as in image-based super-resolution [9,5]), a space-time regu-
larization term can be added to impose smoothness on the solution Sh in space-
time regions which have insufficient information. We introduce a directional (or
steerable [14]) space-time regularization term which applies smoothness only in
directions where the derivatives are low, and does not smooth across space-time
“edges”. In other words, we seek −→

h which minimize the following error term:

min
(||A−→

h − −→
l ||2 + ||WxLx

−→
h ||2 + ||WyLy

−→
h ||2 + ||WtLt

−→
h ||2) (3)
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Where Lj (j = x, y, t) is matrix capturing the second-order derivative oper-
ator in the direction j, and Wj is a diagonal weight matrix which captures the
degree of desired regularization at each space-time point in the direction j. The
weights in Wj prevent smoothing across space-time “edges”. These weights are
determined by the location, orientation and magnitude of space-time edges, and
are approximated using space-time derivatives in the low resolution sequences.

Solving the equations. The optimization problem of Eq. (3) has very large
dimensionality. For example, even for a simple case of four low resolution input
sequences, each one-second long (25 frames) and of size 128 × 128 pixels, we
get: 1282 × 25 × 4 ≈ 1.6 × 106 equations from the low resolution measurements
alone (without regularization). Assuming a similar number of high resolution
unknowns poses a severe computational problem. However, matrix A is sparse
and local (i.e., all the non zero entries are located in a few diagonals), the system
of equations can be solved using “box relaxation” [15].

3 Examples: Temporal Super-Resolution

Empirical Evaluation. To examine the capabilities of temporal super-
resolution in the presence of strong motion aliasing and strong motion blur, we
first simulated a sports-like scene with a very fast moving object. We recorded
a single video sequence of a basketball bouncing on the ground. To simulate
high speed of the ball relative to frame-rate and relative to the exposure-time
(similar to those shown in Fig. 1), we temporally blurred the sequence using a
large (9-frame) blur kernel, followed by a large subsampling in time by factor
of 30. This process results in a low temporal-resolution sequences of a very fast
dynamic event having an “exposure-time” of about 1

3 of its frame-time. We gen-
erated 18 such low resolution sequences by starting the temporal sub-sampling
at arbitrary starting frames. Thus, the input low-resolution sequences are re-
lated by non-uniform sub-frame temporal offsets. Because the original sequence
contained 250 frames, each generated low-resolution sequence contains only 7
frames. Three of the 18 sequences are presented in Fig 4.a-c. To visually display
the event captured in each of these sequences, we super-imposed all 7 frames in
each sequence. Each ball in the super-imposed image represents the location of
the ball at a different frame. None of the 18 low resolution sequences captures the
correct trajectory of the ball. Due to the severe motion aliasing, the perceived
ball trajectory is roughly a smooth curve, while the true trajectory was more
like a cycloid (the ball jumped 5 times on the floor). Furthermore, the shape
of the ball is completely distorted in all input image frames, due to the strong
motion blur.

We applied the super-resolution algorithm of Sec. 2 on these 18 low-resolution
input sequences, and constructed a high-resolution sequence whose frame-rate is
30 times higher than that of the input sequences. (In this case we requested an
increase only in the temporal sampling rate). The reconstructed high-resolution
sequence is shown in Fig. 4.d. This is a super-imposed display of some of the
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Temporal super-resolution. We simulated 18 low-resolution video record-
ings of a rapidly bouncing ball inducing strong motion blur and motion aliasing (see
text). (a)-(c) Display the dynamic event captured by three representative low-resolution
sequences. These displays were produced by super-position of all 7 frames in each low-
resolution sequences. All 18 input sequences contain severe motion aliasing (evident
from the falsely perceived curved trajectory of the ball) and strong motion blur (evi-
dent from the distorted shapes of the ball). (d) The reconstructed dynamic event as
captured by the generated high-resolution sequence. The true trajectory of the ball is
recovered, as well as its correct shape. (e) A close-up image of the distorted ball in
one of the low resolution frames. (f) A close-up image of the ball at the exact corre-
sponding frame in time in the high-resolution output sequence. For color sequences see:
www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

reconstructed frames (every 8’th frame). The true trajectory of the bouncing
ball has been recovered. Furthermore, Figs. 4(e)-(f) show that this process has
significantly reduced effects of motion blur and the true shape of moving ball has
been automatically recovered, although no single low resolution frame contains
the true shape of the ball. Note that no estimation of the ball motion was needed
to obtain these results. This effect is explained in more details in Sec. 4.1.

The above results obtained by temporal super-resolution cannot be obtained
by playing any low-resolution sequence in “slow-motion” due to the strong mo-
tion aliasing. Such results cannot be obtained either by interleaving frames from
the 18 input sequences, due to the non-uniform time shifts between the sequences
and due to the severe motion-blur observed in the individual image frames.

A Real Example – The “Wagon-Wheel Effect”. We used four indepen-
dent PAL video cameras to record a scene of a fan rotating clock-wise very
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fast. The fan rotated faster and faster, until at some stage it exceeded the
maximal velocity that can be captured by video frame-rate. As expected, at
that moment all four input sequences display the classical “wagon wheel effect”
where the fan appears to be falsely rotating backwards (counter clock-wise).
We computed the spatial and temporal misalignments between the sequences
at sub-pixel and sub-frame accuracy using [7] (the recovered temporal misalign-
ments are displayed in Fig. 5.a-d using a time-bar). We used the super-resolution
method of Sec. 2 to increase the temporal resolution by a factor of 3 while
maintaining the same spatial resolution. The resulting high-resolution sequence
displays the true forward (clock-wise) motion of the fan, as if recorded by a
high-speed camera (in this case, 75frames/sec) . Example of a few successive
frames from each low resolution input sequence are shown in Fig.5.a-d for the
portion where the fan appears to be rotating counter clock-wise. A few suc-
cessive frames from the reconstructed high temporal-resolution sequence corre-
sponding to the same time are shown in Fig.5.e, showing the correctly recovered
(clock-wise) motion. It is difficult to perceive these strong dynamic effects via
a static figure (Fig. 5). We therefore urge the reader to view the video clips
in www.wisdom.weizmann.ac.il/∼vision/SuperRes.html where these effects are
very vivid . Furthermore, playing the input sequences in “slow-motion” (using
any type of temporal interpolation) will not reduce the perceived false motion
effects.

4 Space-Time Visual Tradeoffs

The spatial and temporal dimensions are very different in nature, yet are inter-
related. This introduces visual tradeoffs between space and time, which are
unique to spatio-temporal super-resolution, and are not applicable to traditional
spatial (i.e., image-based) super-resolution.

4.1 Temporal Treatment of Spatial Artifacts

When an object moves fast relative to the exposure time of the camera, it induces
observable motion-blur (e.g., see Fig. 1). The perceived distortion is spatial,
however the cause is temporal. We next show that by increasing the temporal
resolution we can handle the spatial artifacts caused by motion blur.

Motion blur is caused by the extended temporal blur due to the exposure-
time. To decrease effects of motion blur we need to decrease the temporal blur,
i.e., recover high temporal frequencies. This requires increasing the frame-rate
beyond that of the low resolution input sequences. In fact, to decrease the effect
of motion blur, the output temporal sampling rate must be increased so that the
distance between the new high resolution temporal samples is smaller than the
original exposure time of the low resolution input sequences.

This indeed was the case in the experiment of Fig. 4. Since the simulated
exposure time in the low resolution sequences was 1/3 of frame-time, an increase
in temporal sampling rate by a factor > 3 can reduce the motion blur. The larger
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(a) (b)

(c) (d)

(e)

Fig. 5. Temporal super-resolution (the “wagon wheel effect”). (a)-(d) display
3 successive frames from four PAL video recordings of a fan rotating clock-wise. Because
the fan is rotating very fast (almost 90o between successive frames), the motion aliasing
generates a false perception of the fan rotating slowly in the opposite direction (counter
clock-wise) in all four input sequences. The temporal misalignments between the input
sequences were computed at sub-frame temporal accuracy, and are indicated by their
time bars. The spatial misalignments between the sequences (e.g., due to differences
in zoom and orientation) were modeled by a homography, and computed at sub-pixel
accuracy. (e) shows the reconstructed video sequence in which the temporal resolution
was increased by a factor of 3. The new frame rate (75 frames

sec
) is also indicated by a

time bars. The correct clock-wise motion of the fan is recovered. For color sequences
see: www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

the increase the more effective the motion deblurring would be. This increase is
limited, of course, by the number of input cameras.

A method for treating motion blur in the context of image-based super-
resolution was proposed by [2,12]. However, these methods require a prior seg-
mentation of moving objects and the estimation of their motions. These methods
will have difficulties handling complex motions or motion aliasing. The distorted
shape of the object due to strong blur (e.g., Fig. 1) will pose severe problems in
motion estimation. Furthermore, in the presence of motion aliasing, the direction
of the estimated motion will not align with the direction of the induced blur.
For example, the motion blur in Fig. 4.a-c. is along the true trajectory and not
along the perceived one. In contrast, our approach does not require separation
of static and dynamic scene components, nor their motion estimation, thus can
handle very complex scene dynamics. However, we require multiple cameras.

Temporal frequencies in video sequences have very different characteristics
than spatial frequencies, due to the different characteristics of the temporal and
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the spatial blur. The typical support of the spatial blur (PSF) is of a few pixels
(σ>1 pixel), whereas the exposure time is usually smaller than a single frame-
time (τ < frame-time). Therefore, if we do not increase the output temporal
sampling-rate enough, we will not improve the temporal resolution. In fact, if we
increase the temporal sampling-rate a little but not beyond 1

exposure time of the
low resolution sequences, we may even introduce additional motion blur.

This dictates the number of input cameras needed for an effective decrease
in the motion-blur. An example of a case where an insufficient increase in the
temporal sampling-rate introduced additional motion-blur is shown in Fig. 6.c3.

4.2 Producing Different Space-Time Outputs

In standard spatial super-resolution the increase in sampling rate is equal in
all spatial dimensions. This is necessary in order to maintain the aspect ratio
of image pixels, and to prevent distorted-looking images. However, this is not
the case in space-time super-resolution. As explained in Sec. 2, the increase in
sampling rate in the spatial and temporal dimensions need not be the same.
Moreover, increasing the sampling rate in the spatial dimension comes at the
expense of increase in the temporal frame rate, and vice-versa. This is because
the number of unknowns in the high-resolution space-time volume depends on
the space-time sampling rate, whereas the number of equations provided by the
low resolution measurements remains fixed.

For example, assume that 8 video cameras are used to record a dynamic
scene. One can increase the spatial sampling rate alone by a factor of

√
8 in x

and y, or increase the temporal frame-rate alone by a factor of 8, or do a bit of
both: increase the sampling rate by a factor of 2 in all three dimensions. Such
an example is shown in Fig. 6. Fig. 6.a1 displays one of 8 low resolution input
sequences. (Here we used only 4 video cameras, but split them into 8 sequences
of even and odd fields). Figs. 6.a2 and 6.a3 display two possible outputs. In Fig.
6.a2 the increase is by a factor of 8 in the temporal axis with no increase in the
spatial axes, and in Fig. 6.a3 the increase is by a factor of 2 in all axes x,y,t. Rows
(b) and (c) illustrate the corresponding visual tradeoffs. The “×1×1×8” option
(column 2) decreases the motion blur of the moving object (the toothpaste in
(c.2)), while the “×2×2×2” option (column 3) improves the spatial resolution
of the static background (b.3), but increases the motion blur of the moving
object (c.3). The latter is because the increase in frame rate was only by factor
2 and did not exceed 1

exposure time of the video camera (see Sec. 4.1). In order to
create a significant improvement in all dimensions, more than 4 video cameras
are needed.

4.3 Combining Different Space-Time Inputs

So far we assumed that all input sequences were of similar spatial and temporal
resolutions. The space-time super-resolution algorithm of Sec. 2 is not restricted
to this case, and can handle input sequences of varying space-time resolutions.
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a.1 a.2 a.3

b.1 b.2 b.3

c.1 c.2 c.3

Fig. 6. Tradeoffs between spatial and temporal resolution. This figure compares
the visual tradeoffs resulting from applying space-time super-resolution with different
discretization of the space-time volume. (a.1) displays one of eight low-resolution input
sequences of a toothpaste in motion against a static background. (b.1) shows a close-up
image of a static portion of the scene (the writing on the poster), and (c.1) shows a
dynamic portion of the scene (the toothpaste). Column 2 (a.2, b.2, c.2) displays the
resulting spatial and temporal effects of applying super-resolution by a factor of 8 in
time only. Motion blur of the toothpaste is decreased. Column 3 (a.3, b.3, c.3) displays
the resulting spatial and temporal effects of applying super-resolution by a factor of 2
in all three dimensions x, y, t. The spatial resolution of the static portions is increased
(see “British” and the yellow line above it in b.3), but the motion blur is also increased
(c.3). See text for an explanation of these visual tradeoffs. For color sequences see:
www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

Such a case is meaningless in image-based super-resolution, because a high res-
olution input image would always contain the information of a low resolution
image. In space-time super-resolution however, this is not the case. One camera
may have high spatial but low temporal resolution, and the other vice-versa.
Thus, for example, it is meaningful to combine information from NTSC and
PAL video cameras. NTSC has higher temporal resolution than PAL (30f/sec
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Fig. 7. Combining Still and Video. A dynamic scene of a rotating toy-dog and vary-
ing illumination was captured by: (a) A still camera with spatial resolution of 1120×840
pixels, and (b) A video camera with 384×288 pixels at 50 f/sec. The video sequence was
1.4sec long (70 frames), and the still images were taken 1.4sec apart (together with the
first and last frames). The algorithm of Sec. 2 is used to generate the high resolution
sequence (c). The output sequence has the spatial dimensions of the still images and
the frame-rate of the video (1120× 840×50). It captures the temporal changes correctly
(the rotating toy and the varying illumination), as well the high spatial resolution of
the still images (the sharp text). Due to lack of space we show only a portion of the
images, but the proportions between video and still are maintained. For color sequences
see: www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

vs. 25f/sec), but lower spatial resolution (640×480 pixels vs. 768×576 pixels). An
extreme case of this idea is to combine information from still and video cameras.
Such an example is shown in Fig. 7. Two high quality still images of high spatial
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resolutions (1120×840 pixels) but extremely low “temporal resolution” (the time
gap between the two still images was 1.4 sec), were combined with an interlaced
(PAL) video sequence using the algorithm of Sec 2. The video sequence has 3
times lower spatial resolution (we used fields of size 384×288 pixels), but a high
temporal resolution (50f/sec). The goal is to construct a new sequence of high
spatial and high temporal resolutions (i.e., 1120×840 pixels at 50 images/sec).

The output sequence shown in Fig. 7.c contains the high spatial resolution
from the still images (the sharp text) and the high temporal resolution from the
video sequence (the rotation of the toy dog and the brightening and dimming of
illumination).

In the example of Fig. 7 we used only one input sequence and two still images,
thus did not exceed the temporal resolution of the video or the spatial resolution
of the stills. However, when multiple video cameras and multiple still images are
used, the number of input measurements will exceed the number of output high
resolution unknowns. In such cases the output sequence will exceed the spatial
resolution of the still images and temporal resolution of the video sequences.

In Fig. 7 the number of unknowns was significantly larger than the number of
low resolution measurements (the input video and the two still images). Yet, the
reconstructed output was of high quality. The reason for this is the following:
In video sequences the data is significantly more redundant than in images,
due to the additional time axis. This redundancy provides more flexibility in
applying physically meaningful directional regularization. In regions that have
high spatial resolution but small (or no) motion (such as in the sharp text
in Fig. 7), strong temporal regularization can be applied without decreasing
the space-time resolution. Similarly, in regions with very fast dynamic changes
but low spatial resolution (such as in the rotating toy in Fig. 7), strong spatial
regularization can be employed without degradation in space-time resolution.
More generally, because a video sequence has much more data redundancy than
an image has, the use of directional space-time regularization in video-based
super-resolution is physically more meaningful and gives rise to recovery of higher
space-time resolution than that obtainable by image-based super-resolution with
image-based regularization.
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