Indexing with Unknown Illumination and Pose

Ira Kemelmacher
Ronen Basri Weizmann Institute of Science

The task - Shape Indexing

1. Recognize
 2. Recover pose+lighting

Why is it hard?

-Unknown pose
 -Unknownilighting

-Occlusion

Assumptions

- Weak perspective projection
- 3D rigid transformation
- Lambertian model

Previous...

- Identification using alignment Fischler and Bolles, Huttenlocher and Ullman
- "3D to 2D invariants do not exist" Burns etal., Moses etal., Clemens etal.
- Indexing faster than alignment Jacobs, Wolfson etal.

Previous Indexing Methods

- Ignored intensity information
- Need many point or line features
- Restricted to polyhedral objects

Our algorithm...

- Handles both pose and lighting
- Uses intensities to filter out incorrect matches
- Still relies on point features but only very few are needed
- General objects

Indexing with pose - Affine model (Jacobs '96)

$\mathrm{p}_{\mathrm{i}}=A \mathrm{P}_{\mathrm{i}}+\boldsymbol{t} \Rightarrow 8 \mathrm{DOF}->5$ points

Representation in two 2D tables

Offline preprocessing

Online matching

Modifications - still two 2D spaces

Offline -
preprocessing

Online matching

One 3D space

Offline preprocessing

$\left(n_{1}^{4}, n_{2}, m\right)$
P_{1}

Online matching

p_{1}

False Matches

How to eliminate the false matches

- Enforce rigidity using inverse Gramian Test - Weinshall, '93

$$
\frac{\left|x^{\mathrm{T}} \mathrm{By}\right|+\left|\mathrm{x}^{\mathrm{T}} \mathrm{Bx}-\mathrm{y}^{\mathrm{T}} \mathrm{By}\right|}{|\mathrm{x}||\mathrm{B} \||\mathrm{y}|}<\varepsilon
$$

- Consistency with lighting \rightarrow NEXT

Harmonic Images - Linear Basis for Lighting (Basri and Jacobs '01, Ramamoorthi and Hanrahan '01)

Representation by harmonics

The consistency measure

For corresponding image and model sets this is minimal

Should we apply it on feature points?

"Smooth points"

Voting

- Sets of points that pass the lighting test vote for their respective model
- All models receive scores:
- Score = fraction of image sets for which the model appears min
- Once model is selected its corresponding subsets used to determine its pose and lighting

Experiments

- Real 3d objects acquired using laser scanner

- Feature points collected automatically using Harris corner detector

Results

Results

Results

Results - Indoor scene

Results - Outdoor scene

Results - Night Scene

Results - Night Scene 2

dino
shark
bear
hippo

pinokio
 elephant camel
 face

\square

Filtering out matches

How much does lighting help?

Voting based on Affine model

How much does lighting help?

Affine + Rigidity test

How much does lighting help?

Affine + Rigidity + Lighting

Conclusion

- Identify 3d objects in 2d scenes
- Unknown pose, light
- Clutter, occlusions
- General, real objects
- Fast, efficient
- Combination of intensity cues and geometry

Thank you!

