Indexing with Unknown Illumination and Pose

Ira Kemelmacher Ronen Basri Weizmann Institute of Science

The task – Shape Indexing

1. Recognize

2. Recover pose+lighting

Why is it hard?

Unknown pose Unknown lighting

0

Occlusion

Clutter

Assumptions

Weak perspective projection

3D rigid transformation

Lambertian model

Previous...

- Identification using alignment Fischler and Bolles, Huttenlocher and Ullman
- "3D to 2D invariants do not exist" Burns *etal.*, Moses *etal.*, Clemens *etal.*
- Indexing faster than alignment Jacobs, Wolfson *etal*.

Previous Indexing Methods

Ignored intensity information

Need many point or line features

Restricted to polyhedral objects

Our algorithm...

- Handles both pose and lighting
- Uses *intensities* to filter out incorrect matches
- Still relies on point features but only very few are needed
- General objects

Indexing with pose - Affine model (Jacobs '96) $p_i = AP_i + t \rightarrow 8 DOF -> 5 points$

Representation in two 2D tables

Modifications – still two 2D spaces

Offline – preprocessing

Online – matching

One 3D space

False Matches

How to eliminate the false matches

• Enforce rigidity using *inverse Gramian Test* - Weinshall, '93

$$\frac{\left|\mathbf{x}^{\mathrm{T}}\mathbf{B}\mathbf{y}\right| + \left|\mathbf{x}^{\mathrm{T}}\mathbf{B}\mathbf{x} - \mathbf{y}^{\mathrm{T}}\mathbf{B}\mathbf{y}\right|}{\left|\mathbf{x}\right| \left\|\mathbf{B}\right\| \left|\mathbf{y}\right|} < \varepsilon$$

• Consistency with lighting \rightarrow NEXT

Harmonic Images – Linear Basis for Lighting (Basri and Jacobs '01, Ramamoorthi and Hanrahan '01)

Representation by harmonics

For corresponding image and model sets this is minimal

Should we apply it on feature points?

"Smooth points"

Voting

- Sets of points that pass the lighting test vote for their respective model
- All models receive scores:
- Score = fraction of image sets for which the model appears min
- Once model is selected its corresponding subsets used to determine its pose and lighting

Experiments

 Real 3d objects acquired using laser scanner

• Feature points collected *automatically* using *Harris* corner detector

Results

dino shark bear hippo pinokio elephant camel face

Results

Results

Results – Indoor scene

Results – Outdoor scene

Results – Night Scene

Results – Night Scene 2

Filtering out matches

How much does lighting help?

Voting based on Affine model

How much does lighting help?

Affine + *Rigidity* test

How much does lighting help?

Affine + Rigidity + *Lighting*

Conclusion

Identify 3d objects in 2d scenes
Unknown pose, light
Clutter, occlusions

- General, real objects
- Fast, efficient
- Combination of *intensity* cues and geometry

Thank you!

