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Chapter I. Algebraic geometry

§1. F1-algebras

1.1. Definition and examples. First of all, a semigroup is a set provided with an associative

binary operation. If a semigroup contains a neutral element, it is called a monoid. A homomorphism

of semigroups (resp. monoids) is a map compatible with the operations on them (resp. and taking

the neural element to the neutral element).

1.1.1. Definition. (i) An F1-algebra is a commutative multiplicative monoid A provided

with elements 1 = 1A and 0 = 0A such that 1 · f = f and 0 · f = 0 for all f ∈ A.

(ii) A homomorphism of F1-algebras ϕ : A → B is a map from A to B which is compatible

with the operations on A and B and takes 0A and 1A to 0B and 1B , respectively.

The category of F1-algebras admits final and initial objects. Namely, the trivial F1-algebra,

which consists of only one element (which is 0 as well as 1), is its final object, and the field F1,

which consists of precisely two elements 0 and 1, is its initial object. Notice that the sets of homo-

morphisms of F1-algebras Hom(A,B) are provided with the canonical structure of a commutative

semigroup.

1.1.2. Definition. (i) An element f of an F1-algebra A is said to be a zero divisor if it is

nonzero and there exists a nonzero element g ∈ A with fg = 0.

(ii) An F1-algebra A is said to be integral if the equality fh = gh implies that either f = g or

h = 0.

(iii) An F1-algebra A is said to be F1-field if every nonzero element of A is invertible.

If A has no zero divisors, then the subset Ǎ = A\{0} is preserved under multiplication, i.e., it

is a submonoid of A. The correspondence A 7→ Ǎ gives rise to an equivalence between the category
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of F1-algebras without zero divisors and that of commutative monoids without zero. Furthermore,

the correspondence A 7→ Ǎ gives rise to an equivalence between the category of integral F1-algebras

and that of commutative monoids with the cancellation property. Finally, an F1-algebra A is an

F1-field if and only if Ǎ = A∗, and the correspondence A 7→ A∗ gives rise to an equivalence between

the category of F1-fields and that of abelian groups.

Let S be a sub-semigroup of an F1-algebra A. The localization of A with respect to S is a

homomorphism of F1-algebras A → S−1A such that the image of every element of S in S−1A is

invertible and any homomorphism A→ B to an F1-algebra B with the latter property goes through

a unique homomorphism S−1A → B. The homomorphism A → S−1A is unique up to a unique

isomorphism, and S−1A can be constructed as the set of equivalences classes of pairs (f, s) ∈ A×S

with respect to the following equivalence relation: (f, s) ∼ (f ′, s′) if there is t ∈ S with fs′t = f ′st.

The equivalence class of a pair (f, s) is denoted by f
s . If S is generated by one element f ∈ A,

S−1A is denoted by Af . If A has no zero divisors, the localization of A with respect to Ǎ is called

the fraction F1-field of A and denoted by Frac(A).

1.1.3. Examples. (i) The multiplicative monoid A· of any commutative ring A with unity

(e.g., Z) can be considered as an F1-algebra. If the ring is a field, the corresponding F1-algebra is

an F1-field. For example, F1 corresponds to the field of two elements, i.e., F1 = F·2.

(ii) The sets of non-negative numbers R+ and of non-negative integers Z+ and the unit interval

[0, 1], provided with the usual multiplication, are F1-algebras. The F1-algebra R+ is an F1-field.

(iii) Given a set I, let F1[Ti]i∈I be the set consisting of 0 and expressions of the form Tµ1

i1
·. . .·Tµnin

with i1, . . . , in ∈ I and µ1, . . . , µn ∈ Z+ (the latter are called monomials in the variables {Ti}i∈I).

It is an integral F1-algebra with respect to the evident multiplication. More generally, for an F1-

algebra A, let A[Ti]i∈I denote the set consisting of 0 and expressions of the form aTµ1

i1
· . . . · Tµnin

with a ∈ Ǎ, i1, . . . , in ∈ I and µ1, . . . , µn ∈ Z+. It is also an F1-algebra with respect to the evident

multiplication, and its elements are said to be terms over A (or terms with coefficients in A). Notice

that there is an isomorphism of F1-algebras F1[Tn]n≥1
∼→ Z+ induced by the map that takes Tn to

the n-th prime number, and it extends to an isomorphism F·3[Tn]n≥1
∼→ Z·.

(iv) Let I be a poset (i.e., partially ordered set) which has unique maximal and minimal

elements and in which every pair of elements e, f ∈ I has supremum sup(e, f) (i.e., a unique

minimal element that is greater or equal than each of them). Then I can be considered as an F1-

algebra in which the supremum sup(e, f) is the product of e and f and the maximal and minimal

elements are zero and one, respectively. In this F1-algebra every element e is idempotent, i.e.,

2



e2 = e. Conversely, every idempotent F1-algebra I (i.e., an F1-algebra in which all elements are

idempotents) can be considered as a poset with the above properties with respect to the following

partial ordering: e ≤ f if ef = f (see §1.6).

1.2. Ideals and spectra.

1.2.1. Definition. An ideal of an F1-algebra A is an equivalence relation which is compatible

with the operation on A, i.e., a subset E ⊂ A × A which is an equivalence relation and an F1-

subalgebra. (The latter is what is usually called a congruence relation.)

Given an ideal E ⊂ A × A, the set of equivalence classes A/E provided with the evident

multiplication is an F1-algebra. For example, if ∆ denotes the diagonal homomorphism A→ A×A,

then ∆(A) is an ideal which is contained in all other ideals of A (it is therefore called the minimal

ideal of A). If G is a subgroup of A∗, then the set of pairs of the form (f, fg) with f ∈ A and g ∈ G

is an ideal, and the corresponding quotient is the set A/G of orbits under the action of G on A.

An ideal E ⊂ A× A is generated by a subset S ⊂ A× A if it is the minimal ideal that contains S.

(Notice that the intersection of any family of ideals is again an ideal.) An ideal E is nontrivial if

it does not coincide with A×A, i.e., the quotient F1-algebra A/E is nontrivial.

1.2.2. Definition. A Zariski ideal is a subset a ⊂ A with the property that fg ∈ a whenever

f ∈ a and g ∈ A.

A Zariski ideal a gives rise to the ideal Ea = ∆(A) ∪ (a × a). (For example, E(0) = ∆(A).)

The corresponding quotient A/Ea is denoted by A/a. A Zariski ideal a is nontrivial if it does not

coincide with A. Notice that the union of any family of nontrivial Zariski ideals is also a nontrivial

Zariski ideal. In particular, there is a unique maximal Zariski ideal mA, it coincides with A\A∗.

For an ideal E ⊂ A×A, the set aE = {f ∈ A
∣∣(f, 0) ∈ E} is a Zariski ideal. For example, aEa = a.

Let ϕ : A→ B be a homomorphism of F1-algebras.

1.2.3. Definition. (i) The kernel of ϕ is the ideal Ker(ϕ) = {(f, g) ∈ A×A
∣∣ϕ(f) = ϕ(g)}.

(ii) The Zariski kernel of ϕ is the Zariski ideal Zker(ϕ) = {f ∈ A
∣∣ϕ(f) = 0}.

(iii) The preimage of an ideal F of B is the ideal ϕ−1(F ) = {(f, g) ∈ A×A
∣∣(ϕ(f), ϕ(g)) ∈ F}.

(iv) The preimage ϕ−1(b) of a Zariski ideal b ⊂ B is defined as the preimage of the associated

ideal Eb. The Zariski preimage of b is the Zariski ideal zϕ−1(b) = {f ∈ A
∣∣ϕ(f) ∈ b}.

Notice that the quotient A/Ker(ϕ) is canonically isomorphic to the image of ϕ, and that the

ideal associated with zϕ−1(b) does not necessarily coincide with ϕ−1(b).
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1.2.4. Definition. (i) An ideal Π ⊂ A × A is prime if it is nontrivial and possesses the

property that, if (fh, gh) ∈ Π, then either (f, g) ∈ Π or (h, 0) ∈ Π, i.e., the quotient A/Π is a

nontrivial integral F1-algebra. The set of prime ideals of A is called the spectrum of A and denoted

by Fspec(A).

(ii) A Zariski ideal p ⊂ A is prime if it is nontrivial and possesses the property that, if fg ∈ p,

then either f ∈ p or g ∈ p, i.e., the quotient A/p is nontrivial and has no zero divisors. The set of

Zariski prime ideals of A is called the Zariski spectrum of A and denoted by Zspec(A).

Notice that the union of any family of Zariski prime ideals is a Zariski prime ideal. The

maximal Zariski prime ideal is the maximal Zariski ideal mA.

Given a Zariski prime ideal p ⊂ A, the fraction F1-field of A/p is denoted by κ(p), and the

localization of A with respect to the submonoid A\p is denoted by Ap. The maximal Zariski ideal of

Ap coincides with pAp, and one has A∗p
∼→ κ(p)∗. There is a canonical map Fspec(A)→ Zspec(A) :

Π 7→ pΠ = {f ∈ A
∣∣(f, 0) ∈ Π}. The prime ideals from the preimage of a Zariski prime ideal p ⊂ A

are said to be p-prime.

1.2.5. Proposition. Given a Zariski prime ideal p ⊂ A, there is a canonical bijection between

the set of p-prime ideals and the set of subgroups of the group κ(p)∗.

Proof. Given a p-prime ideal Π, the set GΠ of elements of κ(p)∗ of the form f
g , where f, g 6∈ p

and (f, g) ∈ Π, is a subgroup of κ(p)∗. Conversely, given a subgroup G ⊂ κ(p)∗, the set ΠG of pairs

(f, g) with either f, g ∈ p, or f, g 6∈ p and f
g ∈ G is a p-prime ideal of A. We claim that the maps

Π 7→ GΠ and G 7→ ΠG are inverse to each other. (It is clear that the maps preserve the inclusion

relation.)

The equality G = GΠG and the inclusion Π ⊂ ΠGΠ
are trivial. Let (f, g) ∈ ΠGΠ

. If f, g ∈ p,

then (f, g) ∈ Π. Assume therefore that f, g 6∈ p. Then f
g ∈ GΠ, i.e., there exists an element

(u, v) ∈ Π with u, v 6∈ p and f
g = u

v . The latter means that fvh = guh for some h 6∈ p. Since the

ideal Π is p-prime, it follows that (fv, gu) ∈ Π. But (gu, gv) ∈ Π and, therefore, (fv, gv) ∈ Π.

Again, since Π is prime, aΠ = p and v 6∈ p, it follows that (f, g) ∈ Π.

1.2.6. Corollary. Let A → B be an injective homomorphism of F1-algebras. Then for the

induced commutative diagram

Zspec(B)
ψ−→ Zspec(A)x xπ

Fspec(B)
ϕ−→ Fspec(A)

one has Im(ϕ) = π−1(Im(ψ)). In particular, surjectivity of ϕ is equivalent to that of ψ.
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Proof. The inclusion Im(ϕ) ⊂ π−1(Im(ψ)) is trivial. Let p be a Zariski prime ideal of A from

the image of ψ. We have to show that all p-prime ideals of A lie in the image of ϕ. The assumption

implies that pB ∩ A = p and, therefore, the canonical homomorphism A/p → B/pB is injective.

We may therefore replace A by A/p and B by B/pB and assume that A has no zero divisors and

p = 0. Furthermore, let F = κ(p) be the fraction F1-field of A. Then the canonical homomorphism

from F to the localization of B with respect to Ǎ = A\{0} is injective. We may therefore replace

A by F and B by that localization and assume that A is an F1-field. By Proposition 1.2.5, prime

ideals correspond to subgroups of A∗. If G is such a subgroup, then the corresponding prime ideal

is the intersection Π ∩ (A × A), where Π is the prime ideal of B which is the union of mB ×mB

with the set of pairs (f, g) ∈ B∗ ×B∗ with f
g ∈ G.

The prime ideal that corresponds to the unit subgroup and the whole group κ(p)∗ will be

denoted by Πp and Π(p), respectively. One has Πp = {(f, g)
∣∣ either f, g ∈ p, or f, g 6∈ p and

fh = gh for some h 6∈ p}, and Π(p) = (p × p) ∪ (A\p × A\p). Notice that Πp = Ker(A → κ(p)),

and the set of ideals of the form Π(p) coincides with the set of maximal ideals of A as well as with

the set of ideals E such that A/E = F1.

In what follows, we will consider Zspec(A) as a partially ordered set (or, briefly, a poset) with

respect to the partially ordering opposite to the inclusion relation (i.e., p ≤ q if q ⊂ p). We notice

that this partial ordering possesses the following property: every subset S ⊂ Zspec(A) has the

infimum inf S (i.e., a unique maximal element x with the property that x ≤ y for all x ∈ S).

Namely the infimum corresponds to the union of the Zariski prime ideals from the subset. We call

a poset X with the latter property an inf-poset. Thus, Zspec(A) is an inf-poset. Notice that, if

a subset S of an inf-poset X admits an element x ∈ X with y ≤ x for all y ∈ S, then it has the

supremum supS (i.e., a unique minimal element with the latter property).

1.2.7. Lemma. Let p1, . . . , pn be Zariski prime ideals of A. Then

(i) if a Zariski prime ideal p contains p1 ∩ . . . ∩ pn, then p ⊃ pi for some 1 ≤ i ≤ n;

(ii) if a prime ideal Π contains Πp1
∩ . . .∩Πpn , then there is a nonempty subset J ⊂ {1, . . . , n}

such that Π ⊃ Πq, where q =
⋃
i∈J pi.

Proof. (i) Suppose that p 6⊃ pi for all 1 ≤ i ≤ n. Let hi ∈ pi\p and h =
∏n
i=1 hi. then

h ∈ p1 ∩ . . . ∩ pn and h 6∈ p, which contradicts the assumption.

(ii) If p = pΠ, then p ⊃ p1 ∩ . . . ∩ pn, and (i) implies that p ⊃ pi for some 1 ≤ i ≤ n. Let J

be the set of all 1 ≤ i ≤ n with p ⊃ pi. We claim that Π ⊃ Πq, where q =
⋃
i∈J pi. Indeed, let

(f, g) ∈ Πq. If f, g ∈ q ⊂ p, then (f, g) ∈ Π. Assume therefore that f, g 6∈ q. Then the inclusion
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(f, g) ∈ Πq implies that (f, g) ∈ Πpi for all i ∈ J . If i 6∈ J , take an element hi ∈ pi\p and set

h =
∏
i 6∈J hi. Then h ∈ pi for all i 6∈ J . It follows that (fh, gh) ∈ Πp1

∩ . . . ∩Πpn ⊂ Π. Since Π is

a prime ideal and h 6∈ p, we get (f, g) ∈ Π.

1.3. Modules over an F1-algebra and K-vector subspaces.

1.3.1. Definition. (i) A module over an F1-algebra A (or an A-module) is a set M provided

with an element 0 = 0M and an action of A on M , i.e., a map A ×M → M : (f,m) 7→ fm,

satisfying the following conditions: (fg)m = f(gm), 1Am = m and 0Am = 0M for all f, g ∈ A and

m ∈M .

(ii) A homomorphism of A-modules is a map M → N compatible with the action of A.

Notice that such a homomorphism M → N takes 0M to 0N , and the set HomA(M,N) of

homomorphisms of A-modules has a canonical structure of an A-module. The category of A-

modules is denoted by A-Mod. An A-module is trivial if it has only one element 0. The trivial

A-module is the initial and final object of the category A-Mod. An A-algebra is an F1-algebra B

which is also an A-module. The structure of an A-algebra on B gives rise to a homomorphism of

F1-algebras A→ B and, conversely, the latter defines the former. If the canonical homomorphism

A → B is injective, we will say that we are given an extension of F1-algebras B/A, and we will

identify A with its image in B. An A-module M is said to be integral if the equality am = an with

a ∈ A and m,n ∈M implies that either a = 0, or m = n, and the equality am = bm with a, b ∈ A

and m ∈ M implies that either a = b, or m = 0. For example, an F1-algebra A is integral as an

A-module if it is an integral F1-algebra.

1.3.2. Definition. An A-submodule of an A-module M is an equivalence relation E ⊂M×M

such that (fm, fn) ∈ E for every f ∈ A and (m,n) ∈ E.

For example, A-submodules of A, considered as an A-module, are ideals of A. Given an A-

submodule E ⊂M ×M , the set of equivalence classes M/E provided with the evident action of A

is an A-module. An A-submodule E ⊂M ×M is generated by a subset S ⊂M if it is the minimal

A-submodule that contains S. (Notice that the intersection of any family of A-submodules is again

an A-submodule.) An A-submodule E is nontrivial if it does not coincide with M ×M , i.e., the

quotient M/E is nontrivial.

1.3.3. Definition. A Zariski A-submodule of an A-module M is a subset N ⊂ M such that

fn ∈ N whenever f ∈ A and n ∈ N .
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A Zariski A-submodule N gives rise to an A-submodule EN , which consists of the pairs (m,n)

with either m = n or m,n ∈ N . The corresponding quotient is denoted by M/N . The intersection

and the union of any family of Zariski A-submodules over A is a Zariski A-submodule. For an

A-submodule E ⊂ M ×M , the set NE = {m ∈ M
∣∣(m, 0) ∈ E} is a Zariski A-submodule. For

example, A itself is an A-module, and its A-submodules and Zariski A-submodules over A are

precisely ideals and Zariski ideals, respectively.

Let ϕ : M → N be a homomorphism of A-modules.

1.3.4. Definition. (i) The kernel of ϕ is the A-submodule Ker(ϕ) = {(m1,m2)
∣∣ϕ(m1) =

ϕ(m2)}.

(ii) The Zariski kernel of ϕ is the Zariski A-submodule Zker(ϕ) = {m ∈M
∣∣ϕ(m) = 0}.

(iii) The preimage of an A-submodule F of N is the A-submodule ϕ−1(F ) = {(m,n) ∈ M ×

N
∣∣(ϕ(m), ϕ(n)) ∈ F}.

(iv) The preimage ϕ−1(P ) of a Zariski A-submodule P ⊂ N is defined as the preimage of the

associated A-submodule EP . The Zariski preimage of P is the Zariski A-submodule zϕ−1(P ) =

{m ∈M
∣∣ϕ(m) ∈ P}.

(v) The image of ϕ is the Zariski A-submodule of N defined by Im(ϕ) = ϕ(M).

Notice that ϕ gives rise to an isomorphism of A-modules, M/Ker(ϕ)
∼→ Im(ϕ).

The category of A-modules admits projective and inductive limits. The projective limits

coincide with the corresponding set theoretic projective limits provided with the evident structure

of an A-module. As for inductive limits, it suffices to construct coequalizers of two homomorphisms

and direct sums. First of all, given two homomorphisms ϕ,ψ : M → N of A-modules, their

coequalizer is the quotient of N by the A-submodule generated by the pairs (ϕ(m), ψ(m)) for

m ∈ M . Furthermore, if {Mi}i∈I is a family of A-modules, their direct sum ⊕i∈IMi is the union

of Mi’s in which their zeros are identified and which is provided with the evident action of A. An

example of the latter is the direct sum A(I) of copies of A taken over a set I. A module over A

isomorphic to A(I) for some I is called free. If I is a finite set of n elements, it is denoted by A(n).

An A-module is said to be finite if there is a surjective homomorphism of A-modules A(n) → M .

If n = 1, M is said to be cyclic. An A-algebra is said to be finite if it is finite as an A-module.

1.3.5. Lemma. The following properties of an A-module M are equivalent:

(a) M is free;

(b) there exists an A-module N such that the A-module M ⊕N is free;

(c) for any epimorphism π : P → Q and any homomorphism ϕ : M → Q, there exists a
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homomorphism ψ : M → P with πψ = ϕ.

Proof. The implications (a)=⇒(b)=⇒(c) are trivial. Suppose that M possesses the property

(c). We take an arbitrary epimorphism π : F →M from a free A-module F = A(I). By the property

(c) applied to the identity homomorphism M →M , the epimorphism π has a section σ : M → F .

For i ∈ I, let Ai be the corresponding free A-module of rank one, and we set J = {i ∈ I
∣∣ there

exists m ∈M\{0} with σ(m) ∈ Ai}. We claim that π induces an isomorphism A(J) ∼→M . Indeed,

surjectivity of the latter homomorphism follows from that of π. For i ∈ J , let ei be the canonical

generator of Ai and set mi = π(ei). Let also m be a nonzero element of M with σ(m) ∈ Ai, i.e.,

σ(m) = aei for some a ∈ A. It follows that m = ami and, therefore, aei = aσ(mi). The latter

implies that σ(mi) ∈ Ai and, in fact, σ(mi) = ei. The claim follows.

The category of A-modules is a symmetric strict monoidal category with respect to the tensor

product which is defined as follows. Given A-modules M , N and P , a map ϕ : M×N → P is called

A-bilinear if ϕ(fm, n) = ϕ(m, fn) = fϕ(m,n) for all f ∈ A and (m,n) ∈ M × N . The tensor

product of M and N over A is an A-module M ⊗A N provided with a bilinear homomorphism

M ×N → M ⊗A N such that, for any A-bilinear homomorphism ϕ : M ×N → P , there exists a

unique homomorphism of A-modules M⊗AN → P which is compatible with ϕ. The tensor product

is unique up to a unique isomorphism, and is constructed as follows. It is the quotient of M ×N

by the A-submodule generated by the relations (fm, n) ∼ (m, fn) for f ∈ A, m ∈ M and n ∈ N .

If A′ is an A-algebra, then M ′ = M ⊗A A′ is an A′-module. Notice that, for an A-submodule

E of M , there is a canonical isomorphism of A′-modules M/E ⊗A A′
∼→ M ′/E′, where E′ is the

A′-submodule of M ′ generated by the image of E. Furthermore, if B and C are A-algebras, then

so is B ⊗A C.

Modules over an F1-field K are said to be K-vector spaces. Every K-vector space M has a

canonical decomposition into a direct sum of cyclic K-vector spaces. Indeed, if I = M̌/K∗ is the

set of orbits of the multiplicative group K∗ acting on the set M̌ = M\{0} and {mi}i∈I is a set of

representatives, then M = ⊕i∈IKmi. Such a set of representatives, called a basis of M , defines a

surjective homomorphism of K-vector spaces K(I) →M which is bijective if and only if M is a free

K-vector space, or if and only if the action of K∗ on M̌ is free. If M is a cyclic K-vector space, the

stabilizers of any two nonzero elements of M in K∗ coincide (and are called the stabilizer of M),

and the isomorphism class of M is determined by this stabilizer. If, in addition, K ′ is an F1-field

that contains K, then the K ′-vector space M ⊗K K ′ is also cyclic, and its stabilizer coincide with

the stabilizer of M . Thus, if M is an arbitrary K-vector space and M = ⊕i∈IKmi is its canonical
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decomposition into a direct sum of cyclic K-vector spaces, then M ⊗K K ′ = ⊕i∈IK ′mi, then the

isomorphism class of M is determined by the family {Gi}i∈I of stabilizers of the cyclic K-vector

spaces Kmi, and the stabilizer of each K ′mi in K ′∗ coincides with that in K∗ (i.e., Gi). We are

now going to describe the above canonical decomposition for finite modules over finitely generated

K-algebras.

Let A be the F1-algebra F1[T1, . . . , Tn]. We consider the free A-module A(m) for m ≥ 1. Its

basis elements will be denoted by e1, . . . , em, and its nonzero elements will be called monomials.

Let us fix a monomial order ≤ on the set of monomials, i.e., a total order that possesses the property

that, if f < g and Tµ 6= 1, then f < Tµf < Tµg (see [Eis, §15]). We extend this order to a total

order on the whole A(m) by 0 < f for all f 6= 0. The simple but important fact is that every

nonempty subset of A(m) has a unique minimal element (see [Eis, 15.2]).

Let now K be an F1-field, and B = K[T1, . . . , Tn]. Nonzero elements of B(m) will be called

terms. For a nonzero term f = aTµei ∈ B(m), we set in(f) = Tµei ∈ A, and we set in(0) = 0. For a

B-submodule E of B(m), let in(E) denote the Zariski A-submodule of A(m) whose nonzero elements

are of the form max{in(f), in(g)} for (f, g) ∈ E with in(f) 6= in(g). For example, in(∆(B(m))) = 0

and, for a Zariski B-submodule N ⊂ B(m), in(N) = in(EN ) consists of elements of the form in(f)

with f ∈ N . Notice that in(NE) ⊂ in(E). The following is a version of a theorem of Macaulay

([Eis, 15.3]).

1.3.6. Lemma. For any B-submodule E of B(m), the images of monomials from A(m)\in(E)

in the quotient B(m)/E form a basis of its canonical decomposition into a direct sum of cyclic

K-vector spaces.

Proof. First of all, the inclusion (f, ag) ∈ E for a ∈ K∗ and two distinct elements f, g ∈

A(m)\in(E) is impossible since max{in(f), in(ag)} is f or g, but both of them are outside in(E).

It remains to show that for every element f ∈ B(m)\NE there exist elements g ∈ A(m)\in(E) and

a ∈ K∗ with (f, ag) ∈ E. Multiplying f by an element of K∗, we may assume that f ∈ A(m). If

f ∈ A(m)\in(E), there is nothing to prove, and so assume that f ∈ in(E). Then there exists an

element (f, ag) ∈ E with a ∈ K∗, g ∈ A(m) and f > g. We may assume that for such a pair g is

minimal, and in this case we claim that g ∈ A(m)\in(E). Indeed, if this is not true, then g ∈ in(E)

and, therefore, there exists an element (g, bh) ∈ E with b ∈ K∗, h ∈ A and g > h. It follows that

(f, abh) ∈ E, and this contradicts the minimality of g.

For a B-submodule E of B(m), let in(E) denote the Zariski A-submodule of A(m) whose nonzero

elements are of the form max{in(f), in(g)} for (f, g) ∈ E with f 6= g. One has in(E) ⊂ in(E). If
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K = F1, then in(E) always coincides with in(E).

1.3.7. Corollary. The following properties of a B-submodule E of B(m) are equivalent:

(a) in(E) = in(E);

(b) the quotient B(m)/E is a free K-vector space.

Proof. (a)=⇒(b). Suppose (b) is not true. By Lemma 1.3.6, we can find a minimal element

f ∈ A(m)\in(E) with (f, af) ∈ E for some a ∈ K∗\{1}. By the assumption, there exists an element

(f, bg) ∈ E with g ∈ A(m), b ∈ K∗ and g < f . It follows that (g, ag) ∈ E, which contradicts the

minimality of f .

(b)=⇒(a). Suppose there exists an element f ∈ in(E)\in(E). This implies that (f, af) ∈ E

for some a ∈ K∗\{1}, i.e., a stabilizes the image of f in B(m)/E, which is a contradiction.

1.4. The F1-algebra of terms.

1.4.1. Proposition. Let A be an F1-algebra, B the A-algebra of terms A[Ti]i∈I , and P(I)

the set of all subsets of I. Then there is an isomorphism of partially ordered sets Zspec(A)×P(I)
∼→

Zspec(B) : (p, J) 7→ pJ .

Proof. For a Zariski primes ideal p ⊂ A and a subset J ⊂ I, let pJ be the Zariski ideal

generated by p and the elements Ti for i 6∈ J . It is a Zariski prime ideal, and B/pJ
∼→ A/p[Ti]i∈J .

(For example, (mA)∅ = mB , and (0)I = (0).) The map (p, J) 7→ pJ is evidently injective and

preserves the partial orderings of both sets. Let now q be a nonzero Zariski prime ideal of B, and

let p = q ∩ A and J = {i
∣∣Ti 6∈ q}. We claim that q = pJ . Indeed, it is clear that pJ ⊂ q. Assume

that fT ν = fT ν1
i1
· . . . · T νnin ∈ q, where f ∈ A\p and νj ≥ 0. Then there exists 1 ≤ k ≤ n with

νk ≥ 1 and Tik ∈ q. By the definition of J , one has ik 6∈ J and, therefore, fT ν ∈ pJ , i.e., q ⊂ pJ .

1.4.2. Corollary. If A is an F1-algebra whose Zariski spectrum is finite, then the Zariski

spectrum of any finitely generated A-algebra is finite.

For example, let A be an F1-algebra finitely generated over an F1-field K. Every surjective

homomorphism ϕ : K[T1, . . . , Tn]→ A gives rise to an isomorphism between the partially ordered

set Zspec(A) and a subset I(A) ⊂ P({1, . . . , n}) which is preserved under intersections. Namely,

for a Zariski prime ideal p ⊂ A let Ip be the subset of {1, . . . , n} for which zϕ−1(p) is generated by

Ti with i 6∈ Ip. One evidently has p ⊂ q if and only if Iq ⊂ Ip and Ip∪q = Ip ∩ Iq, and so Zspec(A)

is identified with the set I(A) = {Ip
∣∣p ∈ Zspec(A)}. We are now going to deduce from the above

observation an additional property of the Zariski spectra.
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We say that a poset X is sup-complete if it possesses the following property: if every finite

subset of a set S ⊂ X has the supremum, then S itself has the supremum.

1.4.3. Proposition. The Zariski spectrum Zspec(A) of any F1-algebra A is a sup-complete

inf-poset.

First of all, we remark the following fact which easily follows from the definition of the spectra.

1.4.4. Lemma. Suppose that A is a filtered inductive limit lim
−→

Ai of a family of F1-

algebras {Ai}i∈I . Then there are canonical bijections Zspec(A)
∼→ lim
←−

Zspec(Ai) and Fspec(A)
∼→

lim
←−

Fspec(Ai).

Proof of Proposition 1.4.3. That Zspec(A) is an inf-poset was already noticed in §1.2. This

implies that, to prove the statement, it suffices to show if, a subset S ⊂ Zspec(A) possesses the

property that the intersection of every finite family of elements from S contains a Zariski prime

ideal, then the intersection of all elements from S contains a Zariski prime ideal. Let {Ai}i∈I
be the filtered family of F1-subalgebras of A which are finitely generated over F1. By Corollary

1.4.2, the Zariski spectra Zspec(A) are finite sets. The assumption implies that the image of S in

Zspec(Ai) has the supremum pi ∈ Zspec(Ai). If j ≥ i, then the preimage pji of pj in Ai lies in pi,

i.e., pi ≤ pji. Using again the finiteness of Zspec(A), we can find such j ≥ i that, for every k ≥ j,

one has pki = pji. We denote the latter Zariski prime ideal of Ai by qi. Then for every pair j ≥ i

the preimage of qj in Ai coincides with qi. By Lemma 1.4.4, the tuple {qi}i∈I defines a Zariski

prime ideal q ⊂ A which has the property that p ≤ q for all p ∈ S. It follows that the set S has

the supremum.

Let now A be the ring of integers of a finite extension of Q. Every nonzero prime ideal p ⊂ A

is a Zariski prime ideal of the F1-algebra A· with κ(p) = Up ∪ {0}, where Up is the group of

units of Ap, the localization of A with respect to the complement of p. The image of p under the

canonical map Spec(A) → Fspec(A·) corresponds to the subgroup U1
p = {a ∈ Up

∣∣a ≡ 1(mod p)}.

Furthermore, the union pS of any set S of nonzero prime ideals of A is a Zariski prime ideal of A·,

and one has κ(p) = US ∪ {0}, where US is the group of units of the localization of A with respect

to the complement of pS .

1.4.5. Proposition. In the above situation, each nonzero Zariski prime ideal of A· is of the

form pS for some set S of prime ideals of A.

1.4.6. Lemma. Let A be an F1-algebra, and let B be an F1-algebra that contains A and

such that, for every element g ∈ B, there exists n ≥ 1 with gn ∈ A. Then Zspec(B)
∼→ Zspec(A).
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Proof. Let p is a Zariski prime ideal of A. Then q = {g ∈ B
∣∣gn ∈ p for some n ≥ 1} is a

Zariski prime ideal of B. Indeed, if gh ∈ q, then there exists n ≥ 1 with gn, hn ∈ A and gnhn ∈ p. It

follows that either gn ∈ p, i.e., g ∈ q, or hn ∈ p, i.e., h ∈ q. Thus, the map considered is surjective.

Let now q′ be another Zariski prime ideal of B over p. If g ∈ q, then gn ∈ p ⊂ q′ for some n ≥ 1

and, therefore, q ⊂ q′. On the other hand, if g ∈ q′, then gn ∈ q′ ∩ A = p for some n ≥ 1 and,

therefore, g ∈ p, i.e., q′ ⊂ q.

Proof of Proposition 1.4.5. Since the class number of A is finite, there exists n ≥ 1 such

that n-th power pn of every prime ideal of A is a principal ideal. We fix its generator fp. Let K be

the F1-field A∗ ∪ {0}. Then there is an injective homomorphism of F1-algebras B = K[Tp]p → A·

that takes Tp to the element fp. Since A is a Dedekind ring and its class number is finite, it follows

that gn ∈ B for all elements g ∈ A. Lemma 1.4.6 implies that Zspec(A·)
∼→ Zspec(B), and the

required fact follows from Proposition 1.4.1.

1.5. Finitely generated integral K-algebras. Let K be an F1-field, and let A be a finitely

generated integral K-algebra. It can be considered as a K-subalgebra of its fraction F1-field L.

To relate Zspec(A) to a familiar object, consider the finitely generated abelian group L∗/K∗ as an

additive group N . The cone C of NR = N ⊗Z R generated by the image of Ǎ is a rational convex

polyhedral cone. Let face(C) denote the set of faces of C. It is a partially ordered set with respect

to the inclusion relation which admits the infimum of every pair of elements.

1.5.1. Proposition. For every Zariski prime ideal p ⊂ A, the cone Fp of NR generated by

the image of A\p is a face of C, and the correspondence p 7→ Fp gives rise to an isomorphism of

partially ordered sets Zspec(A)
∼→ face(C) : p 7→ Fp.

Proof. Since Zspec(A/K∗)
∼→ Zspec(A) and L/K∗ is the fraction F1-field of the integral

F1-algebra A/K∗, we can replace A by A/K∗ and assume that K = F1. In this case the monoid

Ǎ is finitely generated and, therefore, the same is true for the monoid B̌ = {λ ∈ L∗
∣∣λn ∈ Ǎ for

some n ≥ 1} (the saturation of Ǎ). It follows that B = B̌ ∪ {0} is also a finitely generated integral

F1-algebra and, by Lemma 1.4.6, Zspec(B)
∼→ Zspec(A). We can therefore replace A by B and

assume that the monoid Ǎ is saturated. Furthermore, since Zspec(A/A∗tors)
∼→ Zspec(A), we can

replace A by A/A∗tors, and so we may also assume that the group L∗ has no torsion. In particular,

we can identify the monoid Ǎ with the monoid of integral points C ∩ N in the cone C. If now p

is a Zariski prime ideal of A, then the cone Fp generated by the monoid A\p is a face of C. Since

A\p = Fp ∩ N , it follows that the map p 7→ Fp is injective. On the other hand, if F is a face of
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C, then p = A\F is a Zariski prime ideal of A with Fp = F , i.e., the above map is bijective. Since

p ⊂ q if and only if Fq ⊂ Fp, the required fact follows.

The Zariski-Krull dimension of an F1-algebra A is the maximal length n of a chain of Zariski

prime ideals p0 ⊂ p1 ⊂ . . . ⊂ pn (with pi 6= pi+1 for 0 ≤ i ≤ n − 1). The height ht(p) (resp.

depth dt(p)) of a Zariski prime ideal p is the maximal length n of a chain of Zariski prime ideals

p0 = p ⊃ p1 ⊃ . . . ⊃ pn (resp. p0 = p ⊂ p1 ⊂ . . . ⊂ pn). One evidently has ht(p) = dim(Ap) and

dt(p) = dim(A/p).

1.5.2. Corollary. In the situation of Proposition 1.5.1, the following is true:

(i) for every Zariski prime ideal p ⊂ A, one has dim(Fp) = dt(p) + rk(A∗/K∗);

(ii) if n ≥ 1 (i.e., A is not an F1-field) and fi(A) denotes the number of Zariski prime ideals

of depth i, then
∑n
i=0(−1)ifi(A) = 0.

Here dim(Fp) is the (topological) dimension of the face Fp, and rk(A∗/K∗) is the (rational)

rank of the abelian group A∗/K∗.

Proof. The statement (i) is a direct consequence of Proposition 1.5.1, and (ii) is a consequence

of the Euler relation for polytopes.

1.6. Idempotent F1-algebras. Let I be an idempotent F1-algebra. By Example 1.1.3(iv),

I can be considered as a poset. The restriction of the partial ordering to the subset of nonzero

elements Ǐ gives a poset with the following two properties: Ǐ has a unique minimal element and

every pair of elements x, y ∈ Ǐ, for which there exists z ∈ S with x, y ≤ z, has supremum sup(x, y).

Conversely, any poset with the latter two properties can be considered as the subset of nonzero

elements of an idempotent F1-algebra.

Let I be an idempotent F1-algebra. Then κ(p) = F1 for all Zariski prime ideals p of I and,

therefore, the canonical map Fspec(I) → Zspec(I) is a bijection. Let M be an I-module (e.g.,

M = I). For a Zariski prime ideal p ⊂ I, let Fp denote the I-submodule of M generated by the

prime ideal Πp = {(e, f)
∣∣ either e, f ∈ p, or e, f 6∈ p}, i.e., Fp is generated by pairs of the form

(em,m) and (fm, 0) with m ∈M , e 6∈ p and f ∈ p.

1.6.1. Lemma. (i) Fp = {(m,n)
∣∣ there exists e 6∈ p with either em = en, or em, en ∈ pM};

(ii)
⋂
p∈Zspec(I) Fp = ∆(M).

Proof. (i) The set on the right hand side is an I-submodule of M that contains the above

generators of Fp and, therefore, it contains Fp. If (m,n) is a pair with em = en (resp. em, en ∈ pM)
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for some e 6∈ p, then the inclusions (m, em), (n, en) ∈ Fp imply that (m,n) ∈ Fp, i.e., the set on

the right hand side is contained in Fp.

(ii) Let (m,n) be a pair from the intersection, and suppose m 6= 0. Let p be the maximal

Zariski ideal of I with m 6∈ pM . We claim that p is prime. Indeed, assume that fg ∈ p for some

f, g 6∈ p. By the maximality of p, we have m = fu = gv for some u, v ∈ M . It follows that

m = fm = gm and, therefore, m = fgm ∈ pM , which is a contradiction. Since (m,n) ∈ Fp, there

exists e 6∈ p with either em = en, or em, en ∈ pM . By the maximality of p again, we have m = eu

for some u ∈ M and, therefore, em = eu = m 6∈ pM . It follows that en 6∈ pM and m = em = en.

If q is the similar Zariski prime ideal of I that corresponds to the element n, then q ⊃ p and there

exists an element f 6∈ qM with n = fn = fm. It follows that m = efm = efn = n.

1.6.2. Corollary. Let A be an F1-algebra that contains I (and so Fp is an ideal of A), E an

ideal of I, and F the ideal of A generated by E. Then

(i) Fp ∩ (I × I) = Πp and, in particular, the ideal Fp is nontrivial;

(ii) F =
⋂
E⊂Πp

Fp;

(iii) E = F ∩ (I × I).

Proof. (i) Let (f, g) ∈ Fp ∩ (I × I). By Lemma 1.6.1(i), one has there exists e 6∈ p with either

fe = ge, or fe, ge ∈ pA. In the latter case, one has fe = ua and ge = vb for some u, v ∈ p and

a, b ∈ A and, therefore, fe = feu ∈ p and ge = gev ∈ p. Since p is prime and does not contain e, it

follows that f, g ∈ p, i.e., (f, g) ∈ Πp. Assume therefore that fe, ge 6∈ pA. Then fe = ge 6∈ p and,

therefore, f, g 6∈ p, i.e., (f, g) ∈ Πp.

(ii) The statement follows from Lemma 1.6.1(ii) applied to the I-module A/F .

(iii) By (ii), one has E =
⋂
E⊂Πp

Πp and F =
⋂
E⊂Πp

Fp and, therefore, the required fact

follows from (i).

Furthermore, every element e ∈ Ǐ defines the Zariski prime ideal pe = {f ∈ Ǐ
∣∣f 6≤ e} (it is

the maximal Zariski ideal that does not contain the element e), and so we get an injective map

Ǐ → Zspec(I) : e 7→ pe, which preserves the partial orderings of both sets. The prime ideal that

corresponds to pe is denoted by Πe (instead of Πpe), and one has Πe = {(f, g) ∈ I × I
∣∣ either

f, g ≤ e, or f, g 6≤ e}.

1.6.3. Lemma. In the above situation, if Ǐ is an inf-poset, then the map Ǐ → Zspec(I) is an

inf-map.

A map of inf-posets is said to be an inf-map if it takes the infimum of a family of elements to

the infimum of their images.
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Proof. Let J be a subset of Ǐ, and set f = inf(J) and p =
⋃
e∈J pe. The inclusion pf ⊃ p is

trivial. Suppose they do not coincide, i.e., there exists an element g ∈ pf\p. Then pg ⊃ pe for all

e ∈ J . This implies that g ≤ e for all e ∈ J and, therefore, g ≤ f . But the latter is impossible since

g ∈ pf .

Every element e ∈ I defines a map Zspec(I)→ F1 = {0, 1}. If we consider {0, 1} as a poset in

which 0 < 1, then the above map belongs to Hominf(Zspec(I), {0, 1}) where, for inf-posets P and

Q, Hominf(P,Q) denotes the set of maps P → Q that commute with the partial orderings and take

the infimum of any family of elements of P to the infimum of their images in Q. In this way we

get an injective homomorphism of idempotent F1-algebras I ↪→ Hominf(Zspec(I), {0, 1}).

The latter idempotent F1-algebra can be described as follows. Let Σ(I) denote the set

Zspec(I) ∪ {0Σ} in which the image of p ∈ Zspec(I) is denoted by pΣ. We provide Σ(I) with

multiplication as follows: if the intersection p ∩ q does not contain a Zariski prime ideal of I, then

pΣ · qΣ = 0Σ and, otherwise, pΣ · qΣ = rΣ, where r is the maximal Zariski prime ideal lying in

p ∩ q. An element pσ ∈ Σ(I) defines a map ϕp : Zspec(I) → {0, 1} that takes q ∈ Zspec(I) to

1, if p ≤ q ( i.e., q ⊂ p) and to 0, otherwise. The correspondence pΣ 7→ ϕp gives rise to a ho-

momorphism of idempotent F1-algebras and if, for ϕ ∈ Hominf(Zspec(I), {0, 1}), p is the minimal

element of Zspec(I) with ϕ(p) = 1, then ϕ = ϕp. Thus, there is a canonical isomorphism of idem-

potent F1-algebras Σ(I)
∼→ Hominf(Zspec(I), {0, 1}). The composition of the latter with the map

I → Σ(I) : e 7→ pe gives rise to an injective homomorphism I ↪→ Hominf(Zspec(I), {0, 1}).

1.6.4. Lemma. The following properties of an idempotent F1-algebra I are equivalent:

(a) the poset Ǐ is noetherian;

(b) Ǐ
∼→ Zspec(I);

(c) I
∼→ Hominf(Zspec(I), {0, 1}).

A poset is called noetherian if any ascending sequence of elements stabilizes.

Proof. (a)=⇒(b). The assumption implies that any subset of Ǐ has a maximal element. In

particular, given a Zariski prime ideal p ⊂ I, there exists a maximal element e in the subset I\p.

It follows that e is a unique maximal element outside p and that p is a maximal Zariski ideal of I

that does not contain e, i.e., p = pe.

(b)=⇒(c). Let ϕ be a map of partially ordered sets Zspec(I) → {0, 1} that commutes with

the infimum operation, and assume that it is not identically zero. Since the partially ordered set

Zspec(I) admits the infimum of any set of elements, there is a unique minimal element p ∈ Zspec(I)
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with ϕ(p) = 1. By the assumption, one has p = pe for some element e ∈ Ǐ, and it is easy to see

that ϕ is precisely the map associated to the element e.

(c)=⇒(a). Let e1 ≤ e2 ≤ . . . be an ascending sequence of elements of Ǐ, and let p be the

maximal Zariski ideal of I with ei 6∈ p for all i ≥ 1. Then the map ϕ : Zspec(I) → {0, 1}, defined

by ϕ(q) = 1, p ≤ q (i.e., q ⊂ p), and ϕ(q) = 0, otherwise, belongs to Hominf(Zspec(I), {0, 1}) and,

therefore, it corresponds to an element e ∈ Ǐ, i.e., ϕ(q) = 1, if e 6∈ q, and ϕ(q) = 0, otherwise. It

follows that p = pe, i.e., e is a unique maximal element outside p. In particular, ei ≤ e for all i ≥ 1.

If e 6= ei for all i ≥ 1, then ei 6∈ p∪ Ie for all i ≥ 1, which contradicts maximality of p. Thus, e = ei

for some i ≥ 1 and, therefore, the sequence stabilizes.

Of course, if I is finite, the poset Ǐ is noetherian. But the converse is not true in general. For

example, this is not true for the idempotent F1-algebra I = {0, 1, e1, e2, . . .} with eiej = 0 for i 6= j.

An idempotent F1-algebra possessing the equivalent properties of Lemma 1.6.4 will be said to be

almost finite.

Notice that a noetherian poset is an inf-poset if and only if it has a unique minimal element.

1.6.5. Corollary. The correspondence I 7→ Ǐ gives rise to an anti-equivalence between the

category of almost finite idempotent F1-algebras and the category of noetherian inf-posets (with

inf-maps as morphisms).

Proof. A homomorphism of almost finite idempotent F1-algebras ϕ : I → I ′ induces a map

between their spectra Zspec(I ′) → Zspec(I), and Lemma 1.6.4 implies that the correspondence

considered is a contravariant functor. The map αϕ : Ǐ ′ → Ǐ, induced by the latter map, takes an

element e′ ∈ Ǐ ′ to the maximal element e ∈ Ǐ with ϕ(e) ≤ e′. Conversely, any inf-map α : Ǐ ′ → Ǐ

is induced by the homomorphism ϕα : I → I ′ that takes an element e ∈ Ǐ to zero, if there is no an

element e′ ∈ Ǐ ′ with e ≤ ψ(e′), and to the infimum of all e′ ∈ Ǐ ′ with e ≤ ψ(e′), otherwise. It is easy

to see that one has ϕαϕ = ϕ and αϕα = α and, in particular, the functor considered is fully faithful.

Let now Ǐ be a noetherian inf-poset. We introduce the structure of an idempotent F1-algebra on

the set I = {0} ∪ {ei}i∈Ǐ as follows: eiej = 0, if sup(i, j) does not exist in Ǐ, and eiej = esup(i,j),

otherwise. The multiplication operation defined in this way is associative and commutative, and

the unit for it is the idempotent ei for the minimal element i of Ǐ. The poset associated with this

idempotent F1-algebra is the poset Ǐ. It follows that I is almost finite, and we get the required

statement.

§2. Commutative algebra of F1-algebras
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2.1 Noetherian F1-algebras.

2.1.1. Definition. A module M over an F1-algebra A is said to be noetherian (resp. Zariski

noetherian) if any increasing sequence of A-submodules (resp. Zariski A-submodules) of M stabi-

lizes. If M = A, A is said to be noetherian (resp. Zariski noetherian).

An A-module M is noetherian (resp. Zariski noetherian) if and only if all of its A-submodules

(resp. ZariskiA-submodules) are finitely generated. IfM is noetherian, then it is Zariski noetherian,

but the converse is not true in general. For example, any F1-field K is Zariski noetherian but, if

the group K∗ is not finitely generated, K is not noetherian. The proof of the following analog of

Hilbert Basis Theorem for Zariski ideals imitates the proof of the latter.

2.1.2. Proposition. If an F1-algebra A is Zariski noetherian, then any finite module over a

finitely generated A-algebra is Zariski noetherian.

Proof. It suffices to prove the statement for the A-algebra B = A[T ]. Every nonzero element

g ∈ B has the form fTn with f ∈ A and n ≥ 0. The integer n is the degree of g, and the element f

is the initial coefficient of g. Let b be an ideal of B. We construct as follows a sequence of elements

g0, g1, . . . of b. First of all, g0 is an element of b of minimal degree. Assuming that elements

g0, . . . , gn are already constructed and the ideal generated by them does not coincide with b, we

choose an element gn+1 ∈ b\ ∪ni=0 giA of minimal degree. Consider the ideal a of A generated by

the initial coefficients fi of gi. By the assumption, a = ∪ni=1fiA for some n ≥ 0, and we claim that

b = ∪ni=1gnB. Indeed, if the latter is not true, then for the element gn+1 ∈ b\ ∪ni=0 giB one has

fn+1 = fih for some 1 ≤ i ≤ n and h ∈ A. Since the degree of gi is at most the degree of gn+1, the

latter implies that gn+1 ∈ giB ⊂ b, which is a contradiction.

2.1.3. Corollary. Let A be a Zariski noetherian F1-algebra. Then for every Zariski ideal

a ⊂ A and every finite A-module M one has

∞⋂
i=1

aiM = {m ∈M
∣∣m = am for some a ∈ a} .

Proof. Let a1, . . . , an be generators of the ideal a. The homomorphism of A-algebras ϕ :

A[T1, . . . , Tn]→ A that takes Ti to ai makes A an A[T1, . . . , Tn]-algebra, and the homomorphism of

A-modules ϕ : M [T1, . . . , Tn]→M : Tim 7→ aim is in fact a homomorphism of finite A[T1, . . . , Tn]-

modules. If m ∈
⋂∞
i=1 aiM , for every i ≥ 1 there exists Fi ∈ M [T1, . . . , Tn] of degree i with

ϕ(Fi) = m. By Proposition 2.1.2, the Zariski submodule of M [T1, . . . , Tn] generated by the Fi’s

is generated by F1, . . . , Fk for some k ≥ 1. It follows that Fk+1 = GFi for some 1 ≤ i ≤ k and

G ∈ A[T1, . . . , Tn], and we get m = ϕ(G)m with ϕ(G) ∈ a.
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The proof of the following analog of Hilbert Basis Theorem for ideals (Proposition 2.1.6) is

based on Proposition 2.1.2 and the idea of Gröbner bases (see [Eis, §15]), which was already used

in the previous subsection. Let K be an F1-field.

2.1.4. Definition. A K-vector subspace of a K-vector space M is a K-submodule E ⊂M×M

possessing the following property: if (f, λf) ∈ E for λ ∈ K, then either f = λf or f ∈ NE (i.e.,

(f, 0) ∈ E).

In other words, a K-vector subspace is a K-submodule E with the property that for every

element f 6∈ NE the stabilizer of f in K∗ coincides with that of its image in M/E. For example,

if M is a free K-vector space, the latter condition on E means that the quotient M/E is also a

free K-vector space. Furthermore, the K-submodule EN associated with any Zariski K-submodule

N ⊂M is a K-vector subspace. The intersection of any family of K-vector subspaces is a K-vector

subspace. If A is a K-algebra, its ideals which are K-vector subspaces are said to be K-ideals. For

example, the ideals of K[T1, . . . , Tn] that possess the equivalent properties of Corollary 1.3.7 are

precisely K-ideals.

2.1.5. Lemma. The following properties of a module M over a K-algebra A are equivalent:

(a) every increasing sequence of A-submodules, which are K-vector subspaces, stabilizes;

(b) every A-submodule, which is a K-vector subspace, is finite.

Proof. First of all, we notice that the union of any increasing sequence of K-vector subspaces

of a K-vector space is a K-vector subspace. This immediately gives the implication (b)=⇒(a).

Assume that (a) is true. Since the A-submodules of M associated with Zariski A-submodules are

K-vector subspaces, it follows that any such A-submodule is finite. Let now E be an arbitrary

A-submodule of M , which is a K-vector subspace. By the above remark, NE is is finite. If E

is not finitely generated, we can find an increasing sequence of finitely generated A-submodules

E1 ⊂ E2 ⊂ . . . which does not stabilize. Since NE is finite, we can increase the A-submodules Ei

and assume that NEi = NE for all i ≥ 1. Then all Ei’s are K-vector subspaces of M , and we get

a contradiction.

A module M over a K-algebra A possessing the equivalent properties of Lemma 2.1.5 is said

to be K-noetherian. The K-algebra itself is said to be K-noetherian if it is K-noetherian as an

A-module. If K = F1, this definition coincides with that introduced at the beginning of this

subsection.

2.1.6. Proposition. Any finite module over a finitely generated K-algebra is K-noetherian.
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In particular, any finitely generated K-algebra is K-noetherian.

Let us set B = K[T1, . . . , Tn] and A = F1[T1, . . . , Tn], and fix a monomial order on A(m) as in

§1.3. A Gröbner basis of an B-submodule E of B(m) is a system of elements (f1, g1), . . . , (fk, gk) ∈ E

with in(fi) 6= in(gi) for all 1 ≤ i ≤ k and such that the monomials max{in(f1), in(g1)}, . . .,

max{in(fk), in(gk)} generate the Zariski A-submodule in(E) of A(m). By Proposition 2.1.2, all

Zariski A-submodules of A(m) are finite and, therefore, every B-submodule of B(m) admits a

Gröbner basis.

2.1.7. Lemma. Let E be a B-submodule of B(m) which is a K-vector subspace. Then any

Gröbner basis of E generates E.

Proof. Let (f1, g1), . . . , (fk, gk) be a Gröbner basis of a B-submodule E with in(fi) > in(gi)

for all 1 ≤ i ≤ m, and let E′ be the ideal generated by them. Multiplying each pair (fi, gi) by an

elements of K, we may assume that fi = T νieσ(i) ∈ A for all 1 ≤ i ≤ m and some 1 ≤ σ(i) ≤ m. If

E′ 6= E, we can find a pair (f, g) ∈ E\E′ with in(f) ≥ in(g) and minimal in(f). Then f 6= g, and

since E is a K-vector subspace, it follows that in(f) > in(g). Multiplying (f, g) by an element of K,

we may assume that f = Tµej ∈ A. By the assumption, the monomial Tµej is divisible by T νieσ(i)

for some 1 ≤ i ≤ m. (In particular, ej = eσ(i).) It follows that (f, giT
µ−νi) = (fiT

µ−νi , giT
µ−νi) ∈

E′ and, therefore, (g, giT
µ−νi) ∈ E\E′. This contradicts the minimality of in(f). Indeed, we have

f > in(g), and since fi = T νiej > in(gi), then f = fiT
µ−νi > in(gi)T

µ−νi .

Proof of Proposition 2.1.6. Lemma 2.1.7 and Proposition 2.1.2 imply the required fact in

the case K = F1. We reduce the general case to this one as follows.

For a K-vector space M , let M denote the quotient M/K∗ which is an F1-vector space, and,

for an element m ∈ M , let m denote its image in M . Furthermore, for a K-vector subspace E of

M , let E denote the F1-vector subspace of M that consists of the pairs (m,n) with (m,n) ∈ E.

We claim that, if E′ ⊂ E′′ are K-vector subspaces of M such that E
′

= E
′′
, then E′ = E′′. Indeed,

since NE′ and NE′′ are the preimages of N
E
′ and N

E
′′ , respectively, it follows that NE′ = NE′′ .

Furthermore, let (m,n) ∈ E′′\(NE′′ ×NE′′). By the assumption, there exists an element λ ∈ K∗

with (m,λn) ∈ E′. Since E′ ⊂ E′′, it follows that (n, λn) ∈ E′′. Since E′′ is a K-vector subspace,

we get n = λn and, therefore, (m,n) ∈ E′, i.e, the claim is true.

Let M be a finite module over a finitely generated K-algebra A, and assume we are given

an increasing sequence E1 ⊂ E2 ⊂ . . . of A-submodules which are K-vector subspaces of M . By

Step 1, the finitely generated F1-algebra A = A/K∗ and the finite A-module M = M/K∗ are

noetherian. It follows that the sequence E1 ⊂ E2 ⊂ . . . of A-submodules of M stabilizes, i.e., there
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is n ≥ 1 with En = En+1 = . . .. Step 2 implies that En = En+1 = . . ., i.e., M is K-noetherian.

2.2. Radicals of F1-algebras and modules. Let A be an F1-algebra, and M an A-module

(e.g., M = A).

2.2.1. Definition. (i) The the Zariski annihilator of a subset N ⊂ M is the Zariski ideal

zann(N) = {f ∈ A
∣∣fm = 0 for all m ∈ N}.

(ii) The Zariski nilradical of M is the Zariski ideal zn(M) = {f ∈ A
∣∣fn ∈ zann(M) for some

n ≥ 1}.

(iii) The Zariski radical zr(N) = zrM (N) of a Zariski A-submodules N ⊂ M is the Zariski

ideal zn(M/N). The Zariski radical zr(E) of an A-submodule E is the Zariski ideal zn(M/E).

For example, zann(A) = 0, and zn(A) is the set of nilpotent elements of A. An A-module is

said to be Zariski reduced if zn(M) = zann(M). Furthermore, zrM (0) = zn(M).

2.2.2. Proposition. One has zn(M) =
⋂
p p, where p runs through Zariski prime ideals that

contain zann(M).

Proof. Let f be an element of A which is not nilpotent at M . By Zorn’s Lemma, there exists

a Zariski ideal a maximal among those which do not intersect with the set {fk}k≥1. We claim that

a is prime. For this we assume that gh ∈ a and that both g and h are not in a. Then the Zariski

ideals of A generated by a and g and h, respectively, contain some powers of f , i.e., fk = ag and

f l = bh for some k, l ≥ 1 and a, b ∈ A. It follows that fk+l = abgh ∈ a which is a contradiction.

It remains to show that every element g ∈ zann(M) lies in a. If g 6∈ a, then the maximality of

a implies that fk = ga for some k ≥ 1 and a ∈ A. It follows that fk annihilates M , which is a

contradiction.

2.2.3. Corollary. For a Zariski A-submodule N ⊂ M , one has zr(N) =
⋂
p p, where p runs

through Zariski prime ideals that contain zann(M/N).

2.2.4. Definition. (i) The annihilator of a subset N ⊂M is the ideal

ann(N) = {(f, g) ∈M ×M
∣∣fm = gm for all m ∈ N}.

(ii) The nilradical of M is the ideal

n(M) = {(f, g) ∈M ×M
∣∣ there exists k ≥ 1 with f im = gim for all i ≥ k and m ∈M} .

(iii) The radical r(E) of an A-submodule E of M is the preimage of n(M/E) in A×A.
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Notice that it is enough to require that the actions of f i and gi on M coincide for two successive

values of i. Indeed, assume that fkm = gkm and fk+1 = gk+1m for some k ≥ 0 and all m ∈ M .

Then fkgm = gk+1m = fk+1m and, therefore, f igm = f i+1m for all i ≥ k. By induction on j,

we get f igjm = f i+jm for all i ≥ k and j ≥ 0 and, by symmetry, we have f igjm = gi+jm for all

i ≥ 0 and j ≥ k. It follows that f im = gim for all i ≥ 2k. Notice also that aann(M) = zann(M)

and an(M) = zn(M).

An A-module M is said to be reduced if n(M) = ann(M). For example, any integral F1-algebra

A is reduced. Indeed, if for non-nilpotent elements f and g one has f i = gi for all i ≥ n, then

f · f i = f i+1 = gi+1 = g · f i and, therefore, f = g. Notice that for any Zariski prime ideal p of an

F1-algebra A the canonical map n(A) → n(A/p) is surjective. In particular, if A is reduced, then

the quotient A/p is reduced for any Zariski prime ideal p ⊂ A.

2.2.4. Proposition. One has n(M) =
⋂

Π, where Π runs through prime ideals that contain

ann(M); in particular, one has n(A) =
⋂

Πp, where p run through Zariski prime ideals of A.

Proof. We can replace A by A/ann(M) and assume that ann(M) = ∆(A). It follows that

n(M) = n(A) and, therefore, it suffices to show that n(A) =
⋂

Πp, where p run through Zariski

prime ideals of A. That n(A) is contained in the intersection is trivial. Let (f, g) be an element

from the intersection. If both f and g are contained in all Zariski prime ideals of A, then, by

Proposition 2.2.2, they are nilpotent and, in particular, (f, g) ∈ n(A). Assume therefore that it

is not the case. It is easy to see that the image of (f, g) in Af × Af is contained in the similar

intersection for Af . Since the image of f in Af is invertible, it follows that the image of g in Af

is also invertible. Since (f, g) ∈ ΠmAf
, there exists an element h ∈ (Af )∗ with fh = gh in Af

and, therefore, the images of f and g in Af coincide, i.e., there exists m ≥ 0 with fmg = fm+1.

By symmetry, there exists n ≥ 0 with fgn = gn+1. It follows that f i = gi for all i ≥ m + n, i.e.,

(f, g) ∈ n(A).

Proposition 2.2.4 implies that the radical of an ideal coincides with the intersection of all prime

ideals that contain it. An ideal E of A is said to be radical if E = r(E).

For an F1-algebra A, let IA denote the set of all idempotents in A. It is an idempotent

F1-subalgebra of A (the idempotent F1-subalgebra of A).

2.2.5. Proposition. Let A be an F1-algebra, and let B = A/n(A). Then IA
∼→ IB .

Proof. The injectivity of the map considered is trivial. Suppose that an element f ∈ A

represent an idempotent in B. This means that (f2, f) ∈ n(A), i.e., there exists n ≥ 1 with

f2i = f i for all i ≥ n. We claim that fn+i = fn+1 for all i ≥ 1. Indeed, if i = 1, there is nothing
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to prove, and so assume that i ≥ 2 and that the claim is true for all smaller values of i. We have

fn+i+1 = fn+i−1 · f2 = f2(n+i−1) · f2 = f2(n+i) = fn+i, and so the claim is true. It follows that

for the idempotent e = fn+1, one has ei = f i for all i ≥ i+ 1, i.e., (e, f) ∈ n(A).

2.3. Primary decomposition for Zariski ideals and Zariski modules. Let A be an

F1-algebra, and M an A-module (e.g., M = A).

2.3.1. Definition. A Zariski A-submodule N ⊂ M is said to be primary if it is nontrivial

and possesses the property that, if fm ∈ N , then either m ∈ N or f ∈ zr(N).

If N is primary, the Zariski radical zr(N) is a Zariski prime ideal p and N is said to be p-

primary. For example, any Zariski A-submodule N ⊂M with zr(N) = mA is primary. Notice that

the intersection of two Zariski p-primary A-submodules is a Zariski p-primary A-submodule.

A Zariski A-submodule N ⊂M is said to be decomposable if it admits a primary decomposition,

i.e., a representation in the form
⋂k
i=1Ni, where Ni are primary Zariski A-submodules. A primary

decomposition N =
⋂k
i=1Ni is said to be minimal if all of the Zariski prime ideals pi = zr(Ni) are

pairwise distinct and, for every 1 ≤ i ≤ k,
⋂
j 6=iNj 6⊂ Ni. Notice that every decomposable Zariski

A-submodule admits a minimal primary decomposition.

For a Zariski A-submodule P ⊂ M and a subset Q ⊂ M , one denotes by (P : Q) the Zariski

ideal {f ∈ A
∣∣fQ ⊂ P}. For example, (0 : Q) = zann(Q).

2.3.2. Proposition (The first uniqueness theorem). Let N be a decomposable Zariski A-

submodule provided with a minimal primary decomposition
⋂n
i=1Ni, and let pi = zr(Ni). Then

{pi}1≤i≤n coincides with the set of Zariski prime ideals of the form zr(N : m) with m ∈ M . In

particular, the set {pi}1≤i≤n does not depend on the choice of the minimal primary decomposition.

2.3.3. Lemma. (i) (P : Q) = A if and only if Q ⊂ P ;

(ii) (
⋂n
i=1 Pi : Q) =

⋂n
i=1(Pi : Q);

(iii) if P is p-primary and Q 6⊂ P , then (P : Q) is a Zariski p-primary ideal of A.

Proof. (i) One has (P : Q) = A if and only if 1 ∈ (P : Q), i.e., Q ⊂ P .

(ii) One has f ∈ (
⋂n
i=1 Pi : Q) if and only if fQ ⊂

⋂n
i=1 Pi. The latter is obviously equivalent

to the inclusion f ∈
⋂n
i=1(Pi : Q).

(iii) We claim that zr(P : Q) = p. Indeed, the inclusion p ⊂ zr(P : Q) is trivial. Suppose

that f ∈ zr(P : Q), i.e., there is k ≥ 1 with fkm ∈ P for all m ∈ Q. If m ∈ Q\P , the latter

inclusion implies that (fk)l ∈ zr(P ) = p for some l ≥ 1, and the claim follows. Assume now that
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fg ∈ (P : Q), i.e., fgm ∈ P for all m ∈ Q. If g 6∈ p, then fm ∈ P for all m ∈ Q and, therefore,

f ∈ (P : Q).

Proof of Proposition 2.3.2. By Lemma 2.3.3, one has zr(N : m) = ∩m6∈Nipi for every

element m ∈M . If the intersection is a Zariski prime ideal, Lemma 1.2.7(i) implies that it coincides

with some pi. Conversely, if m ∈ (
⋂
j 6=iNj)\Ni, then zr(N : m) = pi, and the required statement

follows.

In the situation of Proposition 2.3.2, pi are said to be the Zariski prime ideals associated to

N , the minimal (resp. non-minimal) elements of {p1, . . . , pn} are said to be the isolated (resp.

embedded) Zariski prime ideals associated to N .

2.3.4. Corollary. Suppose that the zero ideal of A is decomposable, and let p1, . . . , pm (resp.

pm+1, . . . , pn) be the associated isolated (resp. embedded) Zariski prime ideals. Then

(i) p1, . . . , pm are precisely the minimal Zariski prime ideals of A;

(ii) the set of zero divisors in A coincides with
⋃n
i=1 pi;

(iii) if f 6∈
⋃m
i=1 pi and fg = 0, then g ∈ zn(A).

Proof. (i) Let p1, . . . , pm be the isolated ideals. Then zn(A) =
⋂m
i=1 pi. If p is a Zariski prime

ideal of A, then it contains the latter intersection and, therefore, it contains pi for some 1 ≤ i ≤ m.

(ii) The set of zero divisors of A is a Zariski ideal which coincides with the union
⋃
f 6=0(0 : f).

On the other hand, it coincides with its own radical, i.e., with the union
⋃
f 6=0 zr(0 : f). By

Proposition 2.3.2, the Zariski ideals pi are among sets in the union. Since zr(0 : f) =
⋂
f 6∈pi

pi, the

required fact follows.

(iii) If g 6∈ zn(A), (i) implies that g 6∈ pi for some 1 ≤ i ≤ m. Since f 6∈ pi, it follows that

fg 6∈ pi which contradicts the assumption fg = 0.

2.3.5. Corollary. Let ϕ : A → B be a homomorphism of F1-algebras, and suppose that

Zspec(A) is finite. Then a Zariski prime ideal p ⊂ A lies in the image of Zspec(B) if and only if

ϕ−1(pB) = p.

Proof. The direct implication is trivial. To prove the converse implication, we can replace

A by A/p and B by B/pB, and so we may assume that A has no zero divisors, p = 0 and the

homomorphism ϕ is Zariski injective, i.e., Zker(ϕ) = 0. Consider first the case when B is finitely

generated over A. By Corollary 1.4.2, the Zariski spectrum of B is finite and, in particular, the

Zariski nilradical zn(B) is decomposable, i.e., zn(B) =
⋂n
i=1 qi for some Zariski prime ideals of

B. Since ϕ is Zariski injective, it follows that
⋂n
i=1 ϕ

−1(qi) = 0. Corollary 2.3.4 implies that

at least one of the Zariski prime ideals ϕ−1(qi) should coincide with 0. In the general case, let
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{Bi}i∈I be the filtered system of finitely generated A-subalgebras of B. By the previous case, for

every i ∈ I the finite set of Zariski prime ideals q ⊂ Bi with ϕ−1(q) = 0 is nonempty. Since

Zspec(B)
∼→ lim
←−

Zspec(Bi), it follows that there is a Zariski prime ideal q ⊂ B with ϕ−1(q) = 0.

2.3.5. Proposition (The second uniqueness theorem). In the situation of Proposition 2.3.2,

let p be a Zapiski prime ideal of the form pi1 ∪ . . . ∪ pik , and set N (p) =
⋂
pi⊂p

Ni. Then N (p) =

{m ∈M
∣∣fm ∈ N for some f ∈ A\p}. In particular, the Zariski A-submodules Ni that correspond

to the isolated Zariski prime ideals associated to N are determined by N .

Proof. Assume first that m ∈ N (p). We pick up an element fj ∈ pj\p for every j with pj 6⊂ p,

and denote by f their product. Then we can replace f by its power so that fm ∈ Nj for all j with

pj 6⊂ p. It follows that fm ∈ N . Conversely, assume that fm ∈ N for some f ∈ A\p. Since for

every i with pi ⊂ p one has fm ∈ Ni and f 6∈ pi, it follows that m ∈ Ni, i.e., m ∈ N (p).

2.3.6. Definition. An A-module M is said to be Zariski decomposable if the zero Zariski

A-submodule of M is decomposable. In this case, the corresponding associated Zariski prime ideals

will be said to be Zariski associated to M , and their set is denoted by Zass(M) = ZassA(M).

2.3.7. Lemma. If M is a Zariski decomposable A-module, then for any sub-semigroup S ⊂ A

the S−1A-module S−1M is also Zariski decomposable and Zass(S−1M) = Zass(M)∩Zspec(S−1A).

Proof. Let p be a Zariski prime ideal of A with p ∩ S = ∅. We claim that, if N is a p-

primary Zariski A-submodule of M , then S−1N is a S−1p-primary Zariski S−1A-submodule of

S−1M . Indeed, suppose that f
s ·

m
t ∈ S

−1N , where s, t ∈ S. It follows that αfm ∈ N for some

α ∈ S and, therefore, one has either m ∈ N or αf ∈ p. Since p∩S = ∅, the latter inclusion implies

that f ∈ p, and the claim follows. Let 0 =
⋂k
i=1Ni be a minimal primary decomposition with

pi = zr(Ni), and suppose that pi ∩ S = ∅ for only 1 ≤ i ≤ l. It follows that 0 =
⋂l
i=1 S

−1Ni and,

by the above claim, each S−1Ni is S−1pi-primary. In particular, the Zariski S−1A-module S−1M

is decomposable and Zass(S−1M) ⊂ Zass(M) ∩ Zspec(S−1A). Finally, by Proposition 2.3.1, each

pi is of the form zr(0 : m) for some m ∈ M . This easily implies that zrS−1A(0 : m) = S−1pi, and

the converse inclusion follows.

2.3.8. Proposition. Let A be a Zariski noetherian F1-algebra, and M a Zariski noetherian

A-module. Then

(i) M is Zariski decomposable;

(ii) Zass(M) coincides with the set of Zariski prime ideals of the form zann(m) with m ∈M .

Proof. (i) A Zariski A-submodule N ⊂M is said to be irreducible, if it possesses the property

that if N = P ∩Q then either N = P or N = Q. To prove (i), it suffices to verify the following two
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facts:

(1) every Zariski A-submodule is the intersection of a finite number of irreducible Zariski

A-submodules;

(2) every irreducible Zariski A-submodule is primary.

(1) If the statement is not true, then the set of all Zariski A-submodules for which it does not

hold is nonempty and, therefore, contains a maximal element N . Since N is not irreducible, there

exist Zariski A-submodules P and Q different of N and such that N = P ∩Q. Then P and Q can

be represented as intersections of finite sets of irreducible Zariski A-submodules, and so the same

is true for N , which is a contradiction.

(2) If N is an irreducible Zariski A-submodule, then replacing M by M/N , we may assume

that N = 0. Assume that fm = 0 and m 6= 0. For k ≥ 1, let Pk denote the Zariski A-submodule of

M that consists of the elements n with fkn = 0. The chain of Zariski A-submodules P1 ⊂ P2 ⊂ . . .

stabilizes and, therefore, Pk = Pk+1 for some k ≥ 1. We claim that fkM ∩ Am = 0. Indeed, if

fkn = gm for some n ∈M and g ∈ A, then fk+1n = gfm = 0, i.e., n ∈ Pk+1. We get n ∈ Pk, i.e.,

fkn = 0, and the claim follows. Since the zero ideal is irreducible, it follows that fkM = 0.

(ii) First of all, we claim that every Zariski ideal maximal among nontrivial Zariski ideals of the

form zann(m) = (0 : m) with m ∈M is Zariski prime. Indeed, let zann(m) be such a Zariski ideal,

and suppose that fg ∈ zann(m) and g 6∈ zann(m), i.e., fgm = 0 and gm 6= 0. Then fgm = 0 and,

therefore, Af∪p ⊂ zann(gm). The maximality of zann(m) implies that f ∈ zann(m), and the claim

follows. Let now p ∈ Zass(M). To prove the required property of p, consider first the case when

p is the maximal Zariski ideal of A, i.e., A\p = A∗. By Proposition 2.3.2, one has p = zr(0 : m)

for some m ∈ M . Since A is Zariski noetherian, the above claim implies that there is a Zariski

prime ideal q of the form zann(n) with n ∈ M that contains zann(m). For the same reason, there

is k ≥ 1 with pk ⊂ zann(m) and, since p is the maximal Zariski ideal of A, it follows that p = q. In

the general case, we can use Lemma 2.3.7 and apply the previous case to the localizations Ap and

Mp. It follows that there is an element m
s ∈ Mp such that pAp = zann(ms ). This easily implies

that p = zann(m).

2.4. Primary decomposition for ideals and submodules. Let A be an F1-algebra and

M an A-module (e.g., M = A).

2.4.1. Definition. (i) An A-submodule E of M is said to be primary if it is nontrivial and

possesses the property that, if (fm, fn) ∈ E, then either (m,n) ∈ E or f ∈ zr(E) = zn(M/E).

(ii) An A-module M is said to be quasi-integral if the minimal A-submodule ∆(M) is primary.
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An A-submodule E of an A-module M is primary if and only if the A-module M/E is quasi-

integral. If E is a primary A-submodule of M , then ann(M/E) is a primary ideal of A. In this case,

the radical and the Zariski radical of the latter, which coincide with r(E) and zr(E), are a prime

ideal Π and a Zariski prime ideal p, respectively, and E is said to be Π-primary or p-primary. If E is

a p-primary A-submodule, then ann(M/E) is a p-primary ideal. Notice that, given a finite system

of p-primary A-submodules {Ei}i∈I with Πi = r(Ei), the intersection
⋂
i∈I Ei is a Π-primary A-

submodule with Π =
⋂
i∈I Πi. Notice also that an A-module M is primary if and only if zn(M) is

a Zariski prime ideal p of A and the canonical homomorphism M →Mp is injective.

2.4.2. Lemma. Let M be a nonzero A-module, p a Zariski prime ideal of A, N a nontrivial

Zariski Ap-submodule of Mp with zr(N) = pAp, and E = Ker(M →Mp/N). Then

(i) E is a p-primary A-submodule of M ;

(ii) if M = A, then E is Πp-primary;

(iii) the Zariski ideal a = zannA(Mp/N) is p-primary, and F = Ker(M →Mp/aMp) is unique

minimal among primary A-submodules of M with zann(M/F ) = a.

Proof. (i) The assumption zr(N) = pAp implies that zr(E) = p. Assume now that (fm, fn) ∈

E. If f 6∈ zr(E) = p, then the image of f in Ap is invertible and, therefore, the images of m and n

in Mp/N coincide, i.e., (m,n) ∈ E. Thus, the A-submodule E is p-primary.

(ii) Let (f, g) ∈ r(E), i.e., there exists k ≥ 1 such that (f i, gi) ∈ E for all i ≥ k. It follows

that, if fg ∈ p, then f, g ∈ p and, therefore, (f, g) ∈ Πp. Assume therefore that f, g 6∈ p. Then

their images in Ap are invertible. Since the images of f i and gi in Ap/N are equal for all i ≥ k, it

follows that the same is true for the images of f i and gi in Ap, and this implies that the images of

f and g in Ap coincide, i.e., (f, g) ∈ Πp.

(iii) Since a = zann(M/E), (i) implies that the Zariski ideal a is p-primary and the ideal F

is p-primary. Furthermore, if an element f ∈ A annihilates Mp/aMp, it annihilates Mp/N and,

therefore, f ∈ a, i.e., zann(M/F ) = a. That the p-primary ideal F is minimal with the latter

property is trivial.

2.4.3. Definition. (i) An A-submodule E of M is said to be decomposable if it admits

a primary decomposition, i.e., a representation in the form
⋂k
i=1Ei, where Ei are primary A-

submodules. It is said to be weakly decomposable if its radical r(E) is decomposable.

(iii) A primary decomposition E =
⋂k
i=1Ei is said to be minimal if all of the Zariski prime

ideals zr(Ei) are pairwise distinct and, for every 1 ≤ i ≤ k,
⋂
j 6=iEj 6⊂ Ei.

For example, if the Zariski spectrum of A is finite then, by Corollary 2.2.5, all ideals of A
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are weakly decomposable. Notice also that every decomposable A-submodule admits a minimal

primary decomposition. Indeed, let E =
⋂k
i=1Ei be a primary decomposition of an A-submodule

E of M , and let Πi = r(Ei) and pi = zr(Ei). If pi = pj , we replace the pair of ideals Ei, Ej by their

intersection Ei∩Ej , which is a pi-primary ideal. Furthermore, withdrawing from the decomposition

all of the ideals Ei that contain
⋂
j 6=iEj , we get a minimal primary decomposition.

For an A-submodule E ⊂M ×M and a subset F ⊂M ×M , we denote by (E : F ) the Zariski

ideal {f ∈ A
∣∣(fm, fn) ∈ E for all (m,n) ∈ F}. For example, (∆(M) : F ) = ann(F ).

2.4.4. Proposition (The first uniqueness theorem). Let E be a decomposable A-submodule

of M provided with a minimal primary decomposition E =
⋂k
i=1Ei, and let pi = zr(Ei). Then

{pi}1≤i≤k coincides with the set of Zariski prime ideals of the form zr(E : (m,n)) with m,n ∈M .

In particular, this set does not depend on the choice of the minimal primary decomposition.

2.4.5. Lemma. (i) (
⋂k
i=1Ei : F ) =

⋂k
i=1(Ei : F );

(ii) (E : F ) = A if and only if F ⊂ E;

(iii) if F 6⊂ E and E is p-primary, then (E : F ) is a Zariski p-primary ideal.

Proof. (i) One has f ∈ (
⋂k
i=1Ei : F ) if and only if (fm, fn) ∈

⋂k
i=1Ei for all (m,n) ∈ F .

The latter is obviously equivalent to the inclusion f ∈
⋂k
i=1(Ei, F ).

(ii) One has (E : F ) = A if and only if 1 ∈ (E : F ), i.e., (m,n) ∈ E for all (m,n) ∈ F .

(iii) First of all, we show that zr(E : F ) = p. Since zann(M/E) ⊂ (E : F ), it follows that

p = zr(E) ⊂ zr(E : F ). Conversely, assume that f ∈ zr(E : F ). Then fk ∈ (E : F ) for some k ≥ 1,

i.e., (fkm, fkn) ∈ E for all (m,n) ∈ F . Since there exists (m,n) ∈ F\E, it follows that fk ∈ p and,

therefore, f ∈ p. Thus, zr(E : F ) = p. Assume now that fg ∈ (E : F ), i.e., (fgm, fgn) ∈ E for all

(m,n) ∈ F . If g 6∈ p, it follows that (fm, fn) ∈ E for all (m,n) ∈ F and, therefore, f ∈ (E : F ),

i.e., (E : F ) is a Zariski p-primary ideal.

Proof of Proposition 2.4.4. By Lemma 2.4.5, one has

zr(E : (m,n)) =

k⋂
i=1

zr(Ei : (m,n)) =
⋂

(m,n)6∈Ei

pi .

If the latter is a Zariski prime ideal, it coincides with some pi. Conversely, if (m,n) ∈ (
⋂
j 6=iEj)\Ei,

then zr(E : (m,n)) = pi, and the required statement follows.

In the situation of Proposition 2.4.4, pi are said to be the Zariski prime ideals associated to E.

2.4.6. Proposition. (The second uniqueness theorem). In the situation of Proposition

2.4.4, let p be a Zariski prime ideal of the form pi1 ∪ . . . ∪ pil , and set E(p) =
⋂
pi⊂p

Ei. Then
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E(p) = {(m,n)
∣∣(fm, fn) ∈ E for some f 6∈ p}. In particular, the ideals Ei that correspond to the

Zariski prime ideals pi minimal among {pi}1≤i≤k are determined by E.

Proof. Assume first that (m,n) ∈ E(p). For every pj 6⊂ p, take an element fj ∈ pj\p.

Replacing fj by its power, we may assume that fj ∈ zann(M/Ej). Then (fjm, fjm) ∈ Ej . If f is

the product of the above elements fj , we get (fm, fn) ∈ E and f 6∈ p. Conversely, assume that

(fm, fn) ∈ E for some f 6∈ p. It follows that, for every 1 ≤ i ≤ k, either (m,n) ∈ Ei or f l ∈ pi for

some l ≥ 1. If pi ⊂ p, the second inclusion is impossible and, therefore, (m,n) ∈ E(p).

2.4.7. Definition. (i) An A-module M is said to be decomposable (resp. weakly decomposable)

if the minimal A-submodule ∆(M) is decomposable (resp. weakly decomposable).

(ii) If M is decomposable, the Zariski prime ideals associated to ∆(M) are said to be associated

to M , and their set is denoted by Ass(M) = AssA(M).

Notice that, if M is decomposable, it is also Zariski decomposable and Zass(M) ⊂ Ass(M).

2.4.8. Lemma. If an A-module M is decomposable, then for any sub-semigroup S ⊂ A the

S−1A-module S−1M is also decomposable, and one has Ass(S−1M) = Ass(M) ∩ Zspec(S−1A).

Proof. For an A-submodule E, let S−1E be the preimage of E in S−1A. Suppose that E is

Π-primary with a p-prime ideal Π. We claim that

(1) if p ∩ S 6= ∅, then the S−1A-submodule S−1E is trivial;

(2) if p ∩ S = ∅, then the S−1A-submodule S−1E is S−1Π-primary.

(1) Let f ∈ p ∩ S. Then there is k ≥ 1 with (fkm, 0) ∈ E for all m ∈ M . This implies that

(ms , 0) ∈ S−1E for all m ∈M and s ∈ S, i.e., S−1E is a trivial S−1A-submodule.

(2) Suppose that ( fα ·
m
s ,

f
α ·

n
t ) ∈ S−1E. Then (fαβtm, fαβsn) ∈ E for some β ∈ S and,

therefore, one has either (tm, sn) ∈ E, i.e., (ms ,
n
t ) ∈ S−1E, or fαβ ∈ p. Since p∩S = ∅, the latter

inclusion implies that f ∈ p, and the claim follows.

Let ∆(M) =
⋂k
i=1Ei be a minimal primary decomposition with pi = zr(Ei), and suppose

that pi ∩ S = ∅ precisely for 1 ≤ i ≤ l. By the above claim, ∆(S−1M) =
⋂l
i=1 S

−1Ei is a

primary decomposition and, in particular, S−1M is decomposable and Ass(S−1M) ⊂ Ass(M) ∩

Fspec(S−1A). By Proposition 2.4.4, each pi is of the form zr(∆(M) : (f, g)) for some (f, g) ∈

M ×M . This easily implies that zrS−1A(∆(S−1(M) : (f, g)) = S−1pi, and the converse inclusion

follows.

The following proposition summarizes properties of minimal primary decompositions for de-

composable F1-algebras.
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2.4.9. Proposition. Suppose that A is decomposable, and let ∆(A) =
⋂n
i=1Ei be a minimal

primary decomposition, and pi = zr(Ei). Then

(i) the set {pi}1≤i≤n contains all minimal Zariski prime ideals of A;

(ii) for every 1 ≤ i ≤ n, Ei is Πpi-primary and the pi-primary ideal E′i = Ker(A→ Api/aiApi)

with ai = {f ∈ A
∣∣(f, 0) ∈ Ei} lies in Ei; in particular, ∆(A) =

⋂n
i=1E

′
i is also a minimal primary

decomposition;

(iii) if A is reduced, then ∆(A) =
⋂n
i=1 Πpi , and so it is also a minimal primary decomposition,

and all of the ideals Πp1
, . . . ,Πpn lie in the set of minimal prime ideals of A.

Proof. (i) follows from Corollary 2.3.4(i).

(ii) By Lemma 2.4.2, E′i = Ker(A→ Api/aiApi) is a unique minimal among primary ideals F

with ai = {f ∈ A
∣∣(f, 0) ∈ F} and, therefore, E′i ⊂ Ei. Since E′i is Πpi-primary, then so is Ei.

(iii) Suppose (a, b) ∈
⋂n
i=1 Πpi . Then there exists m ≥ 1 such that, for every 1 ≤ i ≤ n, the

images of am and bm in Api lie in aiApi . It follows that (aj , bj) ∈
⋂n
i=1E

′
i for all j ≥ m. Since the

latter is ∆(A) and A is reduced, we get a = b.

2.4.10. Example. Let A be a decomposable F1-algebra isomorphic to the quotient B/b of

an integral domain B by a Zariski ideal b. Then Ass(A) = Zass(A). Indeed, let p ∈ Ass(A). By

Proposition 2.4.4, there exist elements f, g ∈ B such that the preimage q of p in B coincides with

the set {b ∈ B
∣∣ either bnf = bng, or bnf, bng ∈ b for some n ≥ 1}. Since B is an integral domain,

it follows that q = {b ∈ B
∣∣bnf ∈ b for some n ≥ 1}, i.e., r ∈ Zass(A), by Proposition 2.3.2.

2.4.10. Corollary. In the situation of Proposition 2.4.4, if the ideal E is radical, then all of

the prime ideals associated with E lie in the set of minimal prime ideals that contain E.

For an A-module M , let ass(M) denote the set of all prime ideals of A of the form ann(m) with

m ∈M . Notice that, if such an ideal Π = ann(m) is p-prime, then p = zann(m) and, by Proposition

2.3.8, the image of ass(M) under the canonical map Fspec(A)→ Zspec(A) lies in Zass(M).

2.4.11. Proposition. Let A be a noetherian F1-algebra, and M a noetherian A-module.

Then

(i) M is decomposable;

(ii) the set ass(M) is finite, and the map ass(M)→ Zass(M) is surjective;

(iii) there is a chain of Zariski A-submodules N0 = 0 ⊂ N1 ⊂ . . . ⊂ Nk = M such that each

quotient Ni/Ni−1 is isomorphic to an A-module of the form A/Π, where Π is a prime ideal of A.

The proof of (i) uses only the assumption that M is noetherian. In §2.7, the conclusions (i)-(iii)
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are extended to a more general case.

Proof. (i) An A-submodule E ⊂ M ×M is said to be irreducible if it possesses the property

that, if E = E′ ∩E′′, then either E = E′ or E = E′′. To prove (i), it suffices to verify the following

two facts:

(1) every A-submodule is the intersection of a finite number of irreducible A-submodules;

(2) every irreducible A-submodule is primary.

(1) is verified in the same way as the corresponding fact from the proof of Proposition 2.3.8(i).

(2) If E is an irreducible A-submodule, then replacing M by M/E, we may assume that

E = ∆(M). Assume that fm = fn and m 6= n. For k ≥ 1, let Ek be an A-submodule of M

consisting of the pairs (p, q) with fkp = fkq. One has (m,n) ∈ E1 ⊂ E2 ⊂ . . . and, therefore,

there exists k ≥ 1 with Ek = Ei for all i ≥ k. We claim that ∆(M) = Ek ∩ F , where F is the

A-submodule ∆(M) ∪ (fkM × fkM). Indeed, let (p, q) be an element from the intersection with

p 6= q. Then p = fkp′ and q = fnq′ for some p′, q′ ∈ M . Since fkp = fkq, we get f2kp′ = f2kq′

and, therefore, (p′q′) ∈ E2k = Ek, i.e., p = fkp′ = fnq′ = q, which is a contradiction. By the

assumption, one has either Ek = ∆(M), or F = ∆(M). The former case is impossible since m 6= n,

and in the latter case we have fkp = 0 for all p ∈M , i.e., f ∈ zn(M).

(ii) First of all, we claim that every ideal maximal among nontrivial ideals of the form ann(m)

with m ∈ M is prime. Indeed, let ann(m) be such an ideal, and suppose that (fh, gh) ∈ ann(m)

and h 6∈ ann(m), i.e., fhm = ghm and hm 6= 0. Then (f, g) ∈ ann(hm) and, therefore, the ideal

generated by (f, g) and ann(m) is contained in ann(hm). The maximality of ann(m) implies that

(f, g) ∈ ann(m), and the claim follows.

Let p ∈ Zass(M), and suppose first that p is the maximal Zariski ideal of A, i.e., A\p = A∗.

By Proposition 2.3.2, one has p = zr(zann(m)) for some m ∈ M . Then there is k ≥ 1 with

pk ⊂ zann(m) and, therefore, the ideal E = ∆(A) ∪ (pk × pk) associated to pk is contained in

ann(m). Since A is noetherian, the above claim implies that there exists a prime ideal Π of the

form ann(n) with n ∈M that contains E. The maximality of p implies that Π is an p-ideal. In the

general case, we apply Lemma 2.3.7 to the localizations Ap and Mp. It follows that there exists an

pAp-prime ideal Π′ ⊂ Ap×Ap of the form annAp(m) with m ∈M . We claim that the p-prime ideal

Π ⊂ A×A, which is the preimage of Π′, has the form ann(tm) for some t ∈ A\p. Indeed, since A

is noetherian, Π is generated by a finite set of pairs (f1, g1), . . . , (fk, gk). For every 1 ≤ i ≤ k, the

inclusion ( fi1 ,
gi
1 ) ∈ annAp(m) implies that there is ti ∈ A\p with fitim = gitim. If t is the product

of all ti’s, then t ∈ A\p and, in particular, tm 6= 0, and fitm = gitm for all 1 ≤ i ≤ k. The required
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claim follows.

For p ∈ ann(M), let M (p) denote the subset of M consisting of zero and elements m with

ann(m) = p. Since the quotient of A by a prime ideal is an integral domain, it follows that

M (p) is a Zariski A-submodule of M . It follows also that, for distinct p, q ∈ ass(M), one has

M (p) ∩M (q) = 0. Since M is Zariski noetherian, this implies that the set ass(M) is finite.

(iii) If M is nonzero, we can find a prime ideal Π ∈ ass(M), i.e., Π = ann(m) for some

m ∈ M . Then A/Π
∼→ N1, where N1 is the Zariski A-submodule of M which is the image of the

homomorphism A→M that takes 1 to m. If N1 6= M , we can apply the same construction to the

quotient A-module M/N1 and so on. Since M is Zariski noetherian, this procedure stabilizes, and

we get the required fact.

2.5. Artinian F1-algebras.

2.5.1. Definition. (i) An F1-algebra A is said to be Zariski artinian if it satisfies the

descending chain condition for Zariski ideals.

(ii) A Zariski artinian F1-algebra A is said to be local if m = mA is its only Zariski prime ideal

(and, in particular, m = zn(A)).

Notice that, in comparison with rings, a Zariski artinian F1-algebra is not necessarily Zariski

noetherian or satisfies the descending chain condition for ideals. Indeed, let I be the idempotent

F1-algebra {0, 1, e1, e2, . . .} with ei ·ej = emin{i,j} for all i, j ≥ 1. If a is a Zariski ideal that does not

contain an element en, then a lies in the Zariski ideal an−1 = {0, e1, . . . , en−1} and, therefore, A is

Zariski artinian. On the other hand, the ascending chain of Zariski ideals a1 ⊂ a2 ⊂ . . . does not

stabilize, i.e., I is not Zariski noetherian. Furthermore, for every n ≥ 1 the union of ∆(I) and the

set of pairs (ei, ej) with i, j ≥ n is an ideal En, and the descending chain of ideals E1 ⊃ E2 ⊃ . . .

does not stabilize. Notice also that if an idempotent F1-algebra I is Zariski artinian, it is almost

finite. Indeed, an ascending chain of nonzero idempotents e1 ≤ e2 ≤ . . . gives rise to the descending

chain of Zariski prime ideals pe1 ⊃ pe2 ⊃ . . . and, therefore, it stabilizes.

2.5.2. Proposition. Let A be a Zariski artinian F1-algebra, and IA the idempotent F1-

subalgebra of A.. Then

(i) the Zariski nilradical zn(A) is nilpotent;

(ii) IA is Zariski artinian and, in particular, it is almost finite;

(iii) the canonical map Zspec(A)→ Zspec(IA) is a bijection.

Proof. (i) Let n = zn(A). By the assumption, the descending chain n ⊃ n2 ⊃ . . . stabilizes,
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i.e., there is m ≥ 1 with nm = nm+1 = . . .. We claim that the ideal a = nm is zero. Indeed, assume

a 66= 0, and let S be the set of nonzero Zariski ideals b with a · b 6= 0. Since A is an element in

S and it is Zariski artinian, there exists minimal b with the above property. Let f ∈ b be such

that fa 6= 0. Since fA ⊂ b and b is minimal, it follows that b = fA. Furthermore, one has

(fa)a = fa2 = fa 6= 0. Since fa ⊂ b, it follows that fa = b = fA and, in particular, f = fg for

some g ∈ a. It follows that f = fg = fg2 = . . .. Since g is nilpotent, we get f = 0, which is a

contradiction.

(ii) Corolary 1.6.2(iii) implies that, for every Zariski ideal a ⊂ IA, one has b ∩ I = a, where

b = aA. It follows that a descending chain a1 ⊃ a2 ⊃ . . . of Zariski ideals of IA gives rise to a

descending chain b1 ⊃ b2 ⊃ . . . of Zariski ideals of A and, therefore, it stabilizes.

(iii) That the map considered is a surjection follows from Corollary 1.6.2. Let p be a Zariski

prime ideal of A.

Step 1. There exists an element h 6∈ p with Ap = Ah. Indeed, for every pair (f, g) ∈ Ker(A→

Ap), there is an element h = h(f,g) 6∈ p with fh = gh. For a finite subset J ⊂ Ker(A → Ap), let

aJ be the Zariski ideal generated by the element hJ =
∏
h(f,g), where the product is taken over

elements of J . Since A is Zariski artinian, the family of Zariski ideals {aJ}J has a minimal element.

Let h be the element hJ that corresponds to such a minimal ideal aJ , and let (f, g) ∈ Ker(A→ Ap).

If (f, g) ∈ J , then of course fh = gh. Assume therefore that (f, g) 6∈ J . Since aJ = aJ∪{(f,g)}, it

follows that h = hh(f,g)u with u ∈ A, and, therefore, fh = gh. It follows that Ap = Ah.

Step 2. One can find an idempotent ep among the elements h with the property of Step 1.

Indeed, since A is Zariski artinian, the descending chain of Zariski ideals hA ⊃ h2 ⊃ h3A ⊃ . . .

stabilizes. It follows that hn = h2nv for some n ≥ 1 and v ∈ A\p and, therefore, the element

ep = hnv, which also possesses the property of Step 1, is an idempotent.

Step 3. The element e = ep is a unique maximal idempotent that does not lie in p, and one

has p = qe. Indeed, let e′ be an idempotent outside p. Then the images of e and f = e′e in Ap are

equal to 1 and, therefore, f = fe = e. In particular, e′ ≤ e. Let now p′ be a Zariski prime ideal that

contains p. Then ep′ ≤ e. If e 6∈ p′, then e ≤ ep′ and, therefore, ep′ = e. It follows that Ap′
∼→ Ap,

and this implies that p′ = p, i.e., p = qe. In particular, the map Zspec(A) → ǏA : p 7→ ep is

injective.

Since ǏA
∼→ Zspec(IA), it follows that Zspec(A)

∼→ Zspec(IA).

2.5.3. Corollary. A Zariski artinian F1-algebra A is local if and only if IA = {0, 1}. Fur-

thermore, in this case A has finite dimension over the F1-field K = A∗ ∪ {0}, and, in particular, it
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is Zariski noetherian.

Proof. The first statement follows Proposition 2.5.2(iv). Suppose that A is local. By (i),

mn = 0 for some n ≥ 1, and so to prove the second statement it is enough to show that, for every

1 ≤ i ≤ n, mi/mi+1 is a finitely dimensional K-vector space. But this is clear because every Zariski

K-submodule of the latter corresponds to a Zariski ideal of A.

2.5.4. Proposition. The following properties of a Zariski artinian F1-algebra A are equiva-

lent:

(a) A is Zariski noetherian;

(b) the Zariski spectrum Zspec(A) is finite;

(c) the idempotent algebra IA is finite.

2.5.5. Definition. An F1-algebra A is said to be artinian if it is Zariski artinian and possesses

the equivalent properties of Proposition 2.5.4.

Notice that every quotient of an artinian F1-algebra is artinian, and every local Zariski artinian

F1-algebra is artinian.

Proof of Proposition 2.5.4. The equivalence (b)⇔(c) follows from Proposition 2.5.2.

(a)=⇒(c). Suppose that IA is not finite. We claim that IA is not Zariski noetherian. Indeed,

suppose that IA is Zariski noetherian, and let e1, e2, . . . be a sequence of pairwise distinct nonzero

idempotents. If an denotes the Zariski ideal generated by e1, . . . , en, then the ascending chain

a1 ⊂ a2 ⊂ . . . stabilizes, i.e., an = an+1 = . . . for some n ≥ 1. This implies that en < en+1 < . . .. If

we apply the same reasoning to the sequence en+1, en, en+3, en+2, . . ., we get a contradiction, and

the claim follows. Let a1 ⊂ a2 ⊂ . . . be a sequence of Zariski ideals of IA that does not stabilize.

If bi is the Zariski ideal of A generated by ai then, by Corollary 1.6.2(ii), ai = bi ∩ IA, and so the

sequence of Zariski ideals b1 ⊂ b2 ⊂ . . . does not stabilize, which contradicts the assumption (a).

(b)=⇒(a). Let n be the number of Zariski prime ideals of A. If n = 1, A is local and the

property (a) follows from Proposition 2.5.2(ii). Suppose n ≥ 2, and the property (a) holds for

Zariski artinian F1-algebras with strictly smaller number of Zariski prime ideals. Let a1 ⊂ an ⊂ . . .

be an increasing sequence of Zariski ideals, and let p be a minimal Zariski prime ideal of A. The

sequence of Zariski ideals a1 ∩ p ⊂ a2 ∩ p ⊂ . . . stabilizes because this is true for the local Zariski

artinian algebra Ap. We may therefore assume that ai∩p = aj ∩p for all i, j ≥ 1. By the induction

hypothesis applied for the quotient A/p, the sequence a1∪p ⊂ a2∪p ⊂ . . . stabilizes and, therefore,

the previous fact implies that the same is true for the sequence a1 ⊂ a2 ⊂ . . ..
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2.5.6. Proposition. Every ideal of an artinian F1-algebra A is decomposable.

Proof. It suffices to verify the statements for the minimal ideal ∆(A). For e ∈ ǏA, let Fe be

the ideal of A generated by Πe (see §1.6). One has A/Fe
∼→ Ae/peAe. It follows that the only

idempotents in A/Fe are 0 and 1. Corollary 2.5.3 then implies that A/Fe is a local artinian F1-

algebra and, in particular, it is quasi-integral. It follows that Fe is a primary ideal. By Corollary

1.6.2(i), one has ∆(A) =
⋂
e∈ǏA Fe and, therefore, A is decomposable.

2.5.7. Corollary. The following properties of an artinian F1-algebra A are equivalent:

(a) A is reduced;

(b) for any e ∈ ǏA, peAe is the maximal Zariski ideal of Ae.

Proof. The implication (b)=⇒(a) follows from fact that A is embedded in the direct product∏
e∈ǏA A/Fe and, by (b), all of the multipliers A/Fe = Ae/peAe are F1-fields. Suppose now that

A is reduced, and let a be an element of A whose image in Ae lies in mAe\peAe for some e ∈ ǏA.

Since Ae is also reduced, we can replace A by Ae and assume that e = 1. We have a 6∈ p1A and

an ∈ p1A for some n ≥ 2. the latter means that an = bf for some idempotent f 6= 1. It follows

that ai = (af)i for all i ≥ n. Since A is reduced, we get a = af which contradicts the assumption

a 6∈ p1A.

2.6. Integral extensions of F1-algebras. Let A be an F1-subalgebra of an F1-algebra B.

2.6.1. Definition. An element f ∈ B is said to be integral over A if fm = afn for some

element a ∈ A and integers m > n ≥ 0.

For elements f1, . . . , fn ∈ B, let A[f1, . . . , fn] denote the A-subalgebra B generated by those

elements.

2.6.2. Proposition. The following properties of an element f ∈ B are equivalent:

(a) f is integral over A;

(b) the F1-algebra A[f ] is a finite A-module;

(c) the element f is contained in an F1-subalgebra C ⊂ B which is a finite A-module.

Proof. The only non-evident implication is (c)=⇒(a). To prove it, we need the following

simple fact.

2.6.3. Lemma. Let M be a finite A-module, x1, . . . , xd generators of M , and a a Zariski

ideal of A. Then for any endomorphism ϕ : M → M with ϕ(M) ⊂ aM there exist elements

a1, . . . , ad ∈ a and integers m > n ≥ 0 such that ϕm(xi) = aiϕ
n(xi) for all 1 ≤ i ≤ d.

34



Proof. There exist elements a1, . . . , ad ∈ a and a map σ : {1, . . . , d} → {1, . . . , d} such that

ϕ(xi) = aixσ(i) for all 1 ≤ i ≤ d. For some k ≥ 1 the images of the maps σk and σk+1 coincide.

Replacing therefore ϕ by ϕk, we may assume that for the image I of σ one has I = σ(I), i.e., there

is a permutation τ of the set I such that σ(i) = τ(i) for all i ∈ I. It follows that σk(i) = τk(i)

for all k ≥ 1 and i ∈ I. Furthermore, we can find k ≥ 1 such that τk is the identity map on I.

Thus, replacing ϕ by ϕk, we may assume that σ induces the identity map on the set I. We get

ϕ2(xi) = ϕ(aixσ(i)) = a2
ixσ(i) = aiϕ(xi) for all 1 ≤ i ≤ d.

Let x1 = 1, x2, . . . , xd be generators of the finitely generated A-module C. We apply Lemma

2.6.3 to the multiplication by the element f on C and the trivial ideal a = A. It follows that there

exist elements a1, . . . , ad ∈ A and integers m > n ≥ 0 such that fmxi = aif
nxi for all 1 ≤ i ≤ d.

Since x1 = 1, we get fm = a1f
n.

2.6.4. Corollary. (i) The set C of elements of B integral over A is an A-subalgebra of B;

(ii) if f1, . . . , fn ∈ C, the A-subalgebra A[f1, . . . , fn] is a finite A-module.

Proof. (i) If f, g ∈ A, the A-subalgebras A[f ] and A[g] are finite A-modules. It follows that

the F1-subalgebra A[f ] ·A[g] is a finite A-module. Since the element fg is contained in the latter,

it follows that it is integral over A.

(ii) The statement is obtained by induction using the simple fact that, given F1-algebras

A ⊂ A′ ⊂ A′′ such that A′ is a finite A-module and A′′ is a finite A′-module, then A′′ is a finite

A-module.

The A-subalgebra C from Corollary 2.6.4 is called the integral closure of A in B. If C = B,

B is said to be integral over A (or that A ⊂ B is an integral extension of F1-algebras). If C = A,

A is said to be integrally closed in B. An integral F1-algebra is said to be normal if it is integrally

closed in its fraction F1-field.

2.6.5. Proposition. Let A ⊂ B be an integral extension of F1-algebras. Then

(i) the canonical map Zspec(B)→ Zspec(A) is surjective, and it takes mB to mA;

(ii) the canonical map Fspec(B)→ Fspec(A) is surjective;

(iii) (Lifting Theorem) given chains of Zariski prime ideals p1 ⊂ . . . ⊂ pn in A and q1 ⊂ . . . ⊂ qm

in B with m < n and qi ∩ A = pi for all 1 ≤ i ≤ m, the second chain can be extended to a chain

q1 ⊂ . . . ⊂ qn such that qi ∩A = pi for all 1 ≤ i ≤ n.

2.6.6. Lemma. In the situation of Proposition 2.6.5, if B is an integral F1-algebra, then A

is an F1-field if and only if B is an F1-field.
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Proof. Since B is an integral F1-algebra, it follows that, for every element g ∈ B, there exists

n ≥ 1 with gn ∈ A, and the required fact follows from Lemma 1.4.4.

Proof of Proposition 2.6.5. (i) Let p be a Zariski prime ideal of A. Then the localization

Bp of B with respect to A\p is integral over Ap. We can therefore replace A and B by Ap and

Bp, respectively, and we have only to verify the last statement. The intersection p = mB ∩ A is a

Zariski prime ideal of A, and B/mB is integral over A/p. By Lemma 2.6.6, A/p is an F1-field, i.e.,

p = mA.

(ii) follows from (i) and Corollary 1.2.6.

(iii) The situation is easily reduced to the case when n = 2 and m = 1. Replacing A and B

by A/p1 and B/q1, we may assume that p1 = 0 and q1 = 0. In this case, the required fact follows

from (i).

Let K be an F1-field. Lemma 2.6.6 implies that any integral domain L, which contains K and

is integral over it, is also an F1-field. Such an F1-field L is said to be an algebraic extension of K.

An element x ∈ L integral over K satisfies an equation xn = a with n ≥ 1 and a ∈ K and, if n is

minimal with this property, this equation is said to be minimal. (If xm = b for m ≥ 1 and b ∈ K,

then m = qn and b = aq for some q ≥ 1.) An F1-field L is said to be a finite extension of K if it

contains K and is a finitely generated free K-module. Of course, it is then an algebraic extension

of K.

Furthermore, let A be an an integral domain, and K the fraction F1-field of A. Then the

integral closure of A in an F1-field L that contains K corresponds to the saturation of Ǎ = A\{0}

in L∗ (i.e., the set of elements x ∈ K∗ with xn ∈ Ǎ for some n ≥ 1).

2.6.7. Lemma. Let K be an F1-field, and let A be an integral finitely generated K-algebra

which is an integral domain. Then the integral closure of A in any finite extension of its fraction

F1-field is a finite A-algebra.

Proof. If L is the fraction F1-field of A, then L/K∗ is the fraction F1-field of the integral

domain A/K∗. Thus, replacing A by A/K∗, the situation is reduced to the case when A is a

finitely generated F1-algebra. Furthermore, by Corollary 2.6.4(ii), it suffices to verify that the

integral closure considered is finitely generated over F1. The required statement therefore follows

from the well known fact that the saturation of a finitely generated submonoid in a finitely generated

group is a finitely generated monoid.

An F1-field K is said to be algebraically closed if the group K∗ is divisible (i.e., any equation

Tn = a with n ≥ 1 and a ∈ K has a solution in K). This is equivalent to the property that, for
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any algebraic extension L of K, there exists a K-homomorphism L → K. Every F1-field K has

an algebraic closure, i.e., an algebraically closed F1-field Ka that contains K and possesses the

property that any injective homomorphism K to an algebraically closed field L can be extended to

an injective homomorphism Ka → L. The latter is equivalent to the property that it is a unique

(up to a canonical isomorphism) algebraic extension of K such that, for every algebraic extension

L of K there exists a K-homomorphism L→ Ka. The multiplicative group of Ka is what is called

the “divisible hull” of the group K∗ (see [Lam, §3]).

2.6.8. Remark. The analog of the descent theorem from the theory of integral extensions of

rings holds in the much stronger form of Lemma 1.4.6.

2.7. Valuation F1-algebras. An ordered F1-field is an F1-field Γ provided with a total

ordering ≤ which has the following two properties: (1) 0 < f , and (2) if f < g, then fh < gh for all

f, g, h ∈ Γ∗. For example, R+ is an ordered F1-field. Notice the structure of an ordered F1-field on

Γ extends in a unique way to a similar structure on the algebraic closure Γa of Γ. (For f, g ∈ (Γa)∗,

one has f < g if a < b, where a, b ∈ Γ∗ are such that fn = a and gn = b for some n ≥ 1.)

A valuation on an F1-field K is a homomorphism K → Γ : f 7→ |f | to an ordered F1-field

Γ. Notice that, for such a valuation | | on K, the image |K| is an ordered F1-subfield of Γ. Two

valuations | | : K → Γ and | | : K → Γ′ are said to be equivalent if there is an isomorphism of

ordered F1-fields λ : |K| ∼→ |K|′ such that λ(|f |) = |f |′ for all f ∈ K. A valuation F1-field is

an F1-field K provided with an equivalence class of valuations. An embedding of valuation F1-

fields (K, | |) ↪→ (K ′, | |) consists of compatible embeddings of F1-fields K ↪→ K ′ and of ordered

F1-groups |K| ↪→ |K ′|. In this situation we also say that we are given an extension of valuation

F1-fields K ′/K.

A valuation | | : K → Γ is said to be of rank zero, or trivial, if |K| = {0, 1}. A valuation

| | : K → Γ is said to be of rank one if it is nontrivial and there is an embedding of the ordered

F1-fields |K| ↪→ R+. If, in addition, the image of |K∗| is discrete in R∗+ (i.e., either the valuation

is trivial, or the group |K∗| is infinite cyclic), the valuation is said to be discrete.

Furthermore, an F1-subalgebra A of an F1-field K is said to be a valuation F1-subalgebra if,

for any element f ∈ K∗, one has either f ∈ A or f−1 ∈ A. Of course, in this case K is the fraction

F1-field of A, and A is integrally closed in K. A valuation F1-subalgebra A in K is said to be

trivial if A = K. An abstract F1-algebra A is said to be a valuation F1-algebra if it is integral

and is a valuation F1-subalgebra in its fraction F1-field. Notice that the quotient A/p of such an

F1-algebra by any Zariski prime ideal p is also a valuation F1-algebra.
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2.7.1. Lemma. (i) If | | : K → Γ is a valuation on K, then A = {f ∈ K
∣∣|f | ≤ 1} is a

valuation F1-subalgebra in K;

(ii) the correspondence | | 7→ A gives rise to a bijection between the set of equivalence classes

of valuations on K and the set of valuation F1-subalgebras in K.

Proof. Given a valuation F1-algebra A in K, the set Γ = {0} ∪K∗/A∗ has the structure of

an ordered valuation F1-field: if |f | denotes the image of an element f ∈ K∗ in Γ, then |f | ≤ |g| if

fg−1 ∈ A. Thus, the map | | : K → Γ is a valuation whose valuation F1-algebra is A.

2.7.2. Proposition. Let A be an F1-subalgebra of an F1-field K. Then for any Zariski

prime ideal p ⊂ A there exists a valuation F1-subalgebra B in K that contains A and such that

mB ∩A = p.

Proof. First of all, replacing A by Ap, we may assume that p = mA. Let S be the set of all

F1-subalgebras A ⊂ B ⊂ K with mB ∩ A = mA. The set S is nonempty since A ∈ S, and it is

provided with the partial ordering for which B ≤ C if B ⊂ C and mC ∩ B = mB . This partial

ordering satisfies the condition of Zorn’s lemma; therefore, there exists a maximal element B in

S. We claim that B is a valuation F1-algebra in K. Indeed, let f ∈ K\B. Then the F1-algebra

B[f ] generated by B and f does not belong to S and, therefore, mBB[f ] = B[f ]. It follows that

bcfn = 1 for some b ∈ mB , c ∈ B and n ≥ 0. Since b is not invertible in B, then n ≥ 1 and,

therefore, (f−1)n ∈ B, i.e., the element f−1 is algebraic over B. From Lemma 1.4.4 it follows that

for the F1-algebra C = A[f−1] one has mC ∩B = m. Since B is maximal, we get f−1 ∈ B.

2.7.3. Corollary. Given an extension of F1-fields L/K, every valuation on K extends to a

valuation on L. If the extension is algebraic, such an extension is unique.

Proof. Let A be a valuation F1-subalgebra in K. That there exists a valuation F1-subalgebra

B in L that contains A and such that mB ∩K = mA follows from Proposition 2.7.2. Notice that in

this case one has B∩K = A. Assume that L is algebraic over K. We claim that B = {f ∈ L
∣∣fn ∈ A

for some n ≥ 1}. Indeed, since L is algebraic over K, for every f ∈ L there exists n ≥ 1 with

fn ∈ K. If f ∈ B, we have fn ∈ B ∩K = A. Conversely, if fn ∈ A, then fn ∈ B and, therefore,

f ∈ B because B is integrally closed in L.

2.7.4. Corollary. Let A be a F1-subalgebra of an F1-field K. Then the integral closure of A

in K coincides with the intersection of all valuation F1-subalgebras in K that contain A.

Proof. That the integral closure is contained in the intersection follows from the fact that

valuation F1-algebras are integrally closed. Let f be an element of K which is not integral over A.

We claim that the Zariski ideal b of C = A[f−1] generated by mA and f−1 is nontrivial. Indeed,
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if this is not true, then either abf−m = 1 for some a ∈ mA, b ∈ A and m ≥ 0, or cf−n = 1 for

some c ∈ A and n ≥ 1. Since a is not invertible in A, then m ≥ 1. It follows that in both cases the

element f is integral over A which is a contradiction. Thus, b ⊂ mC . By Proposition 2.7.2, there

exists a valuation F1-algebra B in K that contains C and such that mB ∩C = mC . It follows that

f−1 ∈mB and, therefore, f 6∈ B.

Let K be an F1-field and A an F1-subalgebra of K. If a nontrivial valuation ring B in

K contains A, one says that B has center in A, and the Zariski prime ideal mB ∩ A is said

to be the center of B in A. The set of all nontrivial valuation F1-subalgebras in K over A is

said to be the Zariski-Riemann space of K over A, and it is denoted by Zar(K,A). The space

Zar(K,A) is provided with a topology whose basis of open subsets is formed by sets of the form

U(f1, . . . , fn) = Zar(K,A[f1, . . . , fn]) with f1, . . . , fn ∈ K.

2.7.5. Proposition. The space Zar(K,A) is quasicompact.

Proof. We have to show that, given a family S of closed subsets of Zar(K,A) with the

property that any finite subfamily of sets from S has a nonempty intersection, the intersection

of all elements of S is nonempty. By Zorn’s lemma, we may assume that S is maximal with that

property. This immediately implies that (1) if a closed set X contains an element of S, then X ∈ S,

(2) if X1, . . . , Xn ∈ S, then X1∩. . .∩Xn ∈ S, and (3) if X1, . . . , Xn are closed and X1∪. . .∪Xn ∈ S,

then Xi ∈ S for some 1 ≤ i ≤ n. For f ∈ K∗, we set V (f) = {B ∈ Zar(K,A)
∣∣f ∈ mB}. It is a

closed subset of Zar(K,A) since its complement is U(f−1). We claim that any set X ∈ S different

from Zar(K,A) is contained in some V (f) ∈ S. Indeed, the nonempty complement of X contains

an open set of the form U(f1, . . . , fn) with f1, . . . , fn ∈ K∗. By (1), the complement of the latter

lies in S and, since it coincides with V (f−1
1 )∪ . . .∪V (f−1

n ), one has V (f−1
i ) ∈ S for some 1 ≤ i ≤ n,

by (3). The claim implies that
⋂
X∈S X =

⋂
f∈F V (f), where F = {f ∈ K∗

∣∣V (f) ∈ S}. Let C

be the A-subalgebra of K generated by all elements of F . Since V (f) ∩ V (f−1) = ∅, it follows

that none of the elements f ∈ F is invertible in C, i.e., F ⊂ mC . By Proposition 2.7.2, there

exists a valuation F1-subalgebra B ⊂ K that contains C and such that mB ∩C = mC , and we get

B ∈
⋂
X∈S X.

Let A be a valuation F1-algebra.

2.7.6. Proposition. Let A′ be an A-algebra which is integral as an A-module and such that

mA′ ∩A = mA. Then for every A-module M the following is true:

(i) the homomorphism of A-modules M → M ′ = M ⊗A A′ : m 7→ m ⊗ 1 is injective (and so

M can be identified with its image in M ′);
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(ii) for an A-submodule E of M , the A′-submodule E′ of M ′ generated by E consists of the

pairs (a′m, b′n) with m,n ∈ NE and (a′m, a′n) with (m,n) ∈ E, where a′, b′ ∈ A′;

(iii) one has NE′ = A′NE ;

(iv) the map E 7→ E′ commutes with finite intersections.

Proof. (i) and (ii). Consider first the case when the A-module M is free. Then the A′-module

M ′ is also free, the statement (i) holds for trivial reason, and the property (1) implies that, if

a′1m1 = a′2m2 for nonzero elements a′1, a
′
2 ∈ A′ and m1,m2 ∈ M , then there exists a ∈ A with

either m1 = am2 and aa′1 = a′2, or am1 = m2 and a′1 = aa′2. To prove (ii), it suffices to verify

that the set of pairs considered forms an ideal, and the only non-evident property to check is

transitivity. It suffices to consider the following pairs (of pairs) (a) (a′1m1, a
′
1n1) and (a′2m2, a

′
2n2)

of the second type with a′n1 = a′2m2, and (b) (a′m1, a
′n1) and (b′m2, c

′n2) of the second and first

type, respectively, with a′n1 = c′m2. We may assume that all of the considered elements of A′ and

M are nonzero.

(a) By the property (1), we may assume that there exists an element a ∈ A with a′1 = aa′2 and

an1 = m2. Since (m1, n1) ∈ E, one has (am1,m2) = (am1, an1) ∈ E and, since (m2, n2) ∈ E, it

follows that (am1, n2) ∈ E. We get (a′1m1, a
′
2n2) = (a′2(am1), a′2n2) ∈ E.

(b) We may assume that m1, n1 6∈ NE . By the property (1) again, there exists an element

a ∈ A with either a′ = ab′ and an1 = m2, or aa′ = c and n1 = am2. By the assumption, the latter

case is impossible. One therefore has (am1,m2) = (am1, an1) ∈ E and, in particular, am1 ∈ NE
and (am1, n2) ∈ E. It follows that (a′m1, b

′n2) = (b′(am1), b′n2) ∈ E.

Notice that the property (2) was not used so far.

In the general case, we take a surjective homomorphism ϕ : P → M from a free A-module

P , and notice that the A′-submodule E′ = Ker(P ′ → M ′) is generated by the image of the A-

submodule E = Ker(P → M). Suppose first that m ⊗ 1 = n ⊗ 1 (in M ′) for some elements

m,n ∈M , and take elements p, q ∈ P with ϕ(p) = m and ϕ(q) = n. It follows that (p, q) ∈ E′ and,

by the previous case, one has either (p, q) = (a′p1, b
′q1) with p1, q1 ∈ NE (call it the case (α)), or

(p, q) = (a′p1, a
′q1) with (p1, q1) ∈ E (the case (β)), where a′, b′ ∈ A′. If p = a′p1, the property

(1) implies that there exists a ∈ A with either a′ = a, or aa′ = 1. In the latter case, the property

(2) implies that a ∈ A∗ and a′ = a−1. All this easily implies that m = n = 0 in the case (α) and

m = n in the case (β), i.e., the statement (i) is true, and we may identify M with its image in M ′.

If now E is an arbitrary ideal of M , then its preimage F in P generates the preimage of E′ in P ′.

Applying the description of F ′ in terms of F , we get the required description of the ideal E′ in

terms of E.
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(iii) Suppose first that the A-module M is free. If m′ ∈ NE′ , the statement (ii) implies that

the pair (m′, 0) is of the first type and, therefore, m = a′m for some a′ ∈ A′ and m ∈ NE . If

M is arbitrary, we take a surjective homomorphism ϕ : P → M from a free A-module P . Then

NE′ = ϕ(NF ′), where F is the ideal of P which is the preimage of E, and since NF ′ = A′NF , it

follows that NE′ = A′NF .

(iv) First of all, we claim that, if aa′ = ba′ for a, b ∈ A and a′ ∈ A′\{0}, then a = b. Indeed,

we may assume that there exists c ∈ A with a = cb and a′ = ca′. By the property (3), the latter

equality implies that c = 1 and, therefore, a = b.

As above, the situation is easily reduced to the case when the A-module M is free. It suffices

to verify that, given A-submodules E1 and E2 of M , the A′-submodule E′1 ∩ E′2 is generated by

E1 ∩ E2. Let (m′, n′) ∈ E′1 ∩ E′2, and consider the following three cases.

Case 1: the pair (m′, n′) is of the first type with respect to both E′1 and E′2. In this case

it suffices to show that the Zariski A′-submodle NE′1 ∩ NE′2 is generated by NE1
∩ NE2

. Let

m′ ∈ NE′1 ∩ NE′2 , i.e., m′ = a′1m1 = a′2m2 with a′1, a
′
2 ∈ A′, m1 ∈ NE1

and m2 ∈ NE2
. We may

then assume that there exists a ∈ A with a′1 = aa′2 and am1 = m2. It follows that m2 ∈ NE1 ∩NE2

and, therefore, m′ = a′2m2 ∈ A′(NE1
∩NE2

).

Case 2: the pair (m′, n′) is of the second type with respect to both E′1 and E′2, i.e., (m′, n′) =

(a′1m1, a
′
1n1) = (a′2m2, a

′
2n2) with (m1, n1) ∈ E1, (m2, n2) ∈ E2 and a′1, a

′
2 ∈ A′. We may assume

that there exists a ∈ A with a′1 = aa′2 and m2 = am1. Furthermore, there exists b ∈ A with either

a′1 = ba′2 and m2 = bm1, or a′2 = ba′1 and m1 = bm2. In the former case, the property (3) implies

that a = b and, therefore, (m2, n2) = (am1, an1) ∈ E1 ∩ E2. In the latter case, one has a′1 = aba′1

and again, by the property (3), ab = 1. The property (2) implies that b = a−1 ∈ A and, therefore,

(m2, n2) = (am1, an1) ∈ E1 ∩E2. In both cases, (m′, n′) = (a′1m1, a
′
1n1) lies in the ideal generated

by E1 ∩ E2.

Case 3: the pair (m′, n′) is of the first (resp. second) type with respect to E′1 (resp. E′2), i.e.,

(m′, n′) = (a′m1, b
′n1) = (c′m2, c

′n2) with m1, n1 ∈ NE1
, (m2, n2) ∈ E′2 and a′, b′, c′ ∈ A. We

may assume that there exists a ∈ A with a′ = ac′ and m2 = am1 and, in particular, m2 ∈ NE1 .

Furthermore, there exists b ∈ A with either b′ = bc′ and n2 = bn1, or c′ = ba′ and n1 = bn2. In

the former case, one has n2 ∈ NE1
. In the latter case, one has a′ = aba′ and, by the property (3),

ab = 1. The property (2) implies that b = a−1 ∈ A and, therefore, n2 = an1 ∈ NE1
. In both cases,

(m′, n′) = (c′m2, c
′n2) lies in the ideal generated by E1 ∩ E2.

2.7.7. Corollary. In the situation of Proposition 2.7.6, the following is true:
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(i) there is a canonical isomorphism M/E ⊗A A′
∼→M ′/E′;

(ii) if the A-module M is integral, then the equality a′m = b′n with a′, b′ ∈ A′ and m,n ∈M

implies that there exists an element a ∈ A such that either a′ = ab′ and am = n, or aa′ = b′ and

m = an.

Proof. The statement (i) directly follows from Proposition 2.7.6(ii). Suppose that the A-

module M is integral, and we are given an equality a′m = b′n with a′, b′ ∈ A′ and m,n ∈ M . Let

ϕ : P →M be an epimorphism from a free A-module P that take the standard generators of P to

nonzero elements of M . Then its Zariski kernel is zero, i.e., NE = 0, where E = Ker(ϕ). If p and q

are elements of P with ϕ(p) = m and ϕ(q) = n, then (a′p, b′q) ∈ E′, where E′ is the kernel of the

induced epimorphism P ′ = P ⊗A A′ →M ′. Proposition 2.7.6 implies that NE′ = 0 and, therefore,

a′p = c′p1 and b′q = c′q1, where c′ ∈ A′ and (p1, q1) ∈ E. The first equality implies that there

exists an element a ∈ A with either (l) aa′ = c′ and p = ap1, or (r) a′ = ac′ and ap = p1, and the

second equality implies that there exists an element b ∈ A with either (l) bb′ = c′ and q = bq1, or

(r) b′ = bc′ and bq = q1. If both equalities are of type (l), we may assume that a
b ∈ A, and we get

a
b a
′ = b′ and m = a

b bm1 = a
bm, where m1 = ϕ(p1) = ϕ(q1). Furthermore, if the firs equality is of

type (l) and the second one is of type (r), we get (ab)a′ = bc′ = b′ and m = am1 = (ab)n. Finally,

if both equalities are of type (r), we may assume that a
b ∈ A, and we get a′ = a

b (bc′) = a
b b
′ and

b(abm) = bn. Since M is an integral A-algebra, the latter implies that a
bm = n.

For a field K with a fixed valuation | |, we denote by K◦ the corresponding valuation F1-

algebra {f ∈ K
∣∣|f | ≤ 1}, by K◦◦ its Zariski maximal ideal {f ∈ K◦

∣∣|f | < 1}, and by K̃ its residue

field K◦/K◦◦. Notice that there is a canonical isomorphism of F1-field K/(K◦)∗
∼→ |K| and that

the canonical embedding K̃ ↪→ K◦ induces an isomorphism K̃∗
∼→ (K◦)∗.

Let L/K be an extension of valuation F1-fields. Then there is an exact sequence of groups

1 −→ L̃∗/K̃∗ −→ L∗/K∗ −→ |L∗|/|K∗| −→ 1

We say that an extension of valuation F1-fields L/K is unramified if |L| = |K|, i.e., L̃∗/K̃∗
∼→

L∗/K∗. It is easy to see that this is equivalent to the property that the Zariski ideal L◦◦ of

L◦ is generated by K◦◦. An extension of valuation F1-fields L/K is said to be purely ramified

if K̃
∼→ L̃, i.e., L∗/K∗

∼→ |L∗|/|K∗|. Every extension of valuation F1-fields L/K has a unique

maximal unramified subextension K ⊂ M ⊂ L such that L is purely unramified over M . Namely,

M is generated by L̃ over K (i.e., M = K · L̃).

Let L be a finite extension ofK. By Corollary 2.7.3, the valuation on K extends in a unique way

to a valuation on L. The ramification index e(L/K) is the order of the quotient group |L∗|/|K∗|.
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The ramification degree f(L/K) is the degree [L̃ : K̃].

2.7.8. Proposition. In the above situation, one has [L : K] = f(L/K)e(L/K) and, in

particular, f(L/K) = [M : K] and e(L/K) = [L : M ], where M is the maximal unramified

subextension.

Proof. It suffices to consider the case when L is generated by an element β ∈ L∗ with

βp = α ∈ K∗ for some prime p ≥ 2. Suppose first that |α| ∈ |K∗|p. Then α = γpα′ with α′, γ ∈ K∗

and |α′| = 1. Replacing β by β
γp , we may assume that α ∈ (K◦)∗. In this case, β ∈ (L◦)∗, the

elements 1, β, . . . , βp−1 form a basis of L̃ over K̃ and, therefore, f(L/K) = p. If g ∈ L◦◦, then

g = γβi with 0 ≤ i ≤ p − 1 and γ ∈ K◦◦, i.e., e(L/K) = 1. Suppose now that |α| 6∈ |K∗|p. Then

|L∗| is generated by |K∗| and |β| and, therefore, e(L/K) = p. Furthermore, if g ∈  L∗ and |g| = 1,

then g = γβi with 0 ≤ i ≤ p− 1 and γ ∈ K∗ such that |α|i = |γ−1|p. Since |α| 6∈ |K∗|p, it follows

that i = 0, i.e., g ∈ K∗. Thus, L̃ = K̃, i.e., f(L/K) = 1.

2.7.9. Remark. If the valuation on K is discrete, then L◦ is a finite K◦-algebra and e(L/K)

is equal to the dimension of the L̃-vector space L◦/(K◦◦), where (K◦◦) is the Zariski ideal of L◦

generated by K◦◦. If the valuation on K is not discrete, then L◦ is not necessarily finitely generated

as a K◦-algebra. Indeed, let K an F1-field with nondiscrete valuation of rank one and such that,

for some prime number p, the group |K∗| is not p-divisible. Let α be a nonzero element from K◦◦

with |α| 6∈ |K∗|p, and let A be the finitely generated integral K◦-algebra K◦( p
√
α). The fraction

F1-field of A is L = K( p
√
α), and the integral closure of A in L is the K◦-algebra L◦ which is not

finitely generated over K◦. Indeed, suppose that L◦ is generated by nonzero elements β1, . . . , βm

over K◦. We may assume that all of these elements do not lie in K and, since (L◦)∗ = (K◦)∗, one

has ε = max
1≤i≤m

|βi| < 1. Then |β| ≤ ε for each element β ∈ L◦\K◦. The latter is impossible because

there exists an element a ∈ K∗ with ε|β1| < |a| < |β1|, i.e., ε <
∣∣∣ aβ1

∣∣∣ < 1. By the way, the maximal

Zariski ideal L◦◦ of L◦ is generated by K◦◦.

2.8. Finitely presented K-algebras and modules. Let K be an F1-field.

2.8.1. Definition. A K-algebra A is said to be finitely presented if it is isomorphic to a

quotient of K[T1, . . . , Tn] by a finitely generated ideal.

2.8.2. Proposition. The following properties of a K-algebra A are equivalent:

(a) A is finitely presented;

(b) there exist an F1-subfield K ′ ⊂ K with finitely generated group K ′∗ and a finitely generated

K ′-subalgebra A′ ⊂ A such that A′ ⊗K′ K
∼→ A;
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(c) A is finitely generated and the family of the stabilizers in K∗ of its nonzero elements is a

finite set of finitely generated subgroups.

Proof. (a)=⇒(b) Assume that A is the quotient of B = K[T1, . . . , Tn] by a finitely generated

ideal E, and let K ′ be the F1-subfield of K which is generated by coefficients of all term components

from a finite set of generators of E. Let also E′ be the ideal of B′ = K ′[T1, . . . , Tn] generated by

the same system of generators, and set A′ = B′/E′. Then the ideal of B generated by E′ coincides

with E and, by Corollary 2.8.2, B′/E′ ⊗K′ K
∼→ B/E. It follows that A′ is a finitely generated

K ′-subalgebra of A and A′ ⊗K′ K
∼→ A.

(b)=⇒(c) Since the family of stabilizers of nonzero elements does not change after tensoring

with a bigger F1-field, we may assume that the group K∗ is finitely generated. This gives, by the

way, the fact that the stabilizers are finitely generated groups, and we have to show that there are

at most finitely many distinct among them. For this we take a finite system of generators g1, . . . , gn

of A over K, and consider the map

Zn+ → A : µ = (µ1, . . . , µn) 7→ gµ = gµ1

1 · . . . · gµnn .

We provide Zn+ with the partial ordering with respect to which µ ≤ ν if and only if µi ≤ νi for all

1 ≤ i ≤ n, and notice that, if µ ≤ ν and gµ 6= 0, then gµ divides gν and, therefore, the stabilizer

G(gµ) of gµ is contained in G(gν).

2.8.3. Lemma. For every sequence µ(1), µ(2), . . . of elements of Zn+, there is a strictly increas-

ing sequence of positive integers k1 < k2 < . . . such that µ(k1) ≤ µ(k2) ≤ . . ..

An equivalent way to formulate Lemma 2.8.3 is to say that any subset of Zn+ has at most a

finite number of minimal elements.

Proof. If n = 1, the statement is trivial. Suppose that n ≥ 2 and that the statement is true

for n − 1. By the case n = 1, we can replace our sequence by a subsequence and assume that

their first coordinates do not decrease: µ
(1)
1 ≤ µ

(2)
2 ≤ . . .. Consider now the following sequence in

Zn−1
+ : ν(i) = (µ

(i)
2 , . . . , µ

(i)
n ). By the induction hypothesis, there is a strictly increasing sequence of

positive integers k1 < k2 < . . . such that ν(k1) ≤ ν(k2) ≤ . . ., and we get µ(k1) ≤ µ(k2) ≤ . . ..

Suppose now that there is an infinite sequence of nonzero elements f1, f2, . . . such that their

stabilizers G(f1), G(f2), . . . are pairwise distinct subgroups of K∗. Choose a representation of

each fi in the form gµ
(i)

with µ(i) ∈ Zn+. By Lemma 2.8.3, we can replace our sequence by a

subsequence and assume that µ(1) ≤ µ(2) ≤ . . .. We get an increasing sequence of abelian subgroups
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G(f1) ⊂ G(f2) ⊂ . . . of the finitely generated abelian group K∗. But any such sequence stabilizes,

and this contradicts the assumption that all of the subgroups G(f1), G(f2), . . . are pairwise distinct.

(c)=⇒(a) Consider a surjective homomorphism of K-algebras B = K[T1, . . . ,Kn]→ A : Ti 7→

gi, and denote by E its kernel. Furthermore, choose a Gröbner basis of E and denote by E′

the ideal of B generated by it. Lemma 1.3.1 implies that the canonical surjective homomorphism

B/E′ → A = B/E induces a bijection between the sets of cyclic Zariski K-submodules of both

K-algebras. Furthermore, let {Gi}i∈I be the finite set of finitely generated stabilizers of nonzero

elements of A, and, for every i ∈ I, fix a finite system {λij}j∈Ji of generators of Gi. As in the proof

of the previous implication, we consider the map Zn+ → A : µ 7→ gµ and Zn+ → B : µ 7→ Tµ. For

i ∈ I, let Σi be the set of all µ ∈ Zn+ such that the element gµ is nonzero and its stabilizer G(gµ)

coincides with Gi, and let {µ(il)}l∈Li be the finite set of minimal elements of Σi (see the remark after

the formulation of Lemma 2.8.3). We claim that the ideal E is generated by E′ and the set of pairs

{(Tµ(il)

, λijT
µ(il)

)}i∈I,j∈Ji,l∈Li . Indeed, let E′′ denote the latter ideal of B. Since the canonical

surjective homomorphism B/E′′ → A = B/E induces a bijection between the sets of cyclic K-

vector subspaces of both K-algebras, to establish the equality E′′ = E, it suffices to verify that

(Tµ, λTµ) ∈ E′′ for all i ∈ I, λ ∈ Gi and µ ∈ Σi. Let µ(il) be a minimal element of Σi with µ(il) ≤ µ.

Since (Tµ
(il)

, λTµ
(il)

) ∈ E′′, it follows that (Tµ, λTµ) = (Tµ
(il) · Tµ−µ(il)

, λTµ
(il) · Tµ−µ(il)

) ∈ E′′.

2.8.4. Corollary. (i) The kernel of any epimorphism B → A from a finitely generated

K-algebra B to a finitely presented K-algebra A is a finitely generated ideal of B;

(ii) the quotient A/E of any finitely presented K-algebra A by a finitely generated ideal E is

a finitely presented K-algebra;

(iii) given homomorphisms from a finitely generated K-algebra A to finitely presented K-

algebras B and C, the K-algebra B ⊗A C is finitely presented;

(iv) given a finitely presented algebra A and a K-field K ′, A ⊗K K ′ is a finitely presented

K ′-algebra, and Zspec(A)
∼→ Zspec(A⊗K K ′);

(v) given a homomorphism of finitely presented K-algebras ϕ : A → B, there exist an F1-

subfield K ′ ⊂ K and finitely generated K ′-subalgebras A′ ⊂ A and B′ ⊂ B with the properties of

Proposition 2.8.2(b) and such that ϕ is induced by a homomorphism of K ′-algebras A′ → B′.

Proof. The statements (ii), (iv) and (v) are trivial.

(i) Consider first the case when B = K[T1, . . . , Tn]. Let K ′ be an F1-subfield of K with finitely

generated group K ′∗ and A′ be a finitely generated K ′-subalgebra of A with A′ ⊗K′ K. We can

increase the F1-subfield K ′ and assume that the induced homomorphism B′ = K ′[T1, . . . , Tn]→ A′
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is surjective. Its kernel E′ is finitely generated, and we claim that E is generated by E′. Indeed, let

E′′ be the ideal of B generated by E′. Then there is a canonical isomorphism B′/E′⊗K′K
∼→ B/E′′.

But the left hand side of the latter is A′ ⊗K′ K which is A. This implies that the canonical

epimorphism B/E′′ → B/E = A is bijective and, therefore, E′′ = E, i.e., the claim is true. In the

general case, we take an arbitrary surjective homomorphism of K-algebras C = K[T1, . . . , Tn]→ B.

By the above case, the kernel of the induced epimorphism C → A is finitely generated. Since it is

the preimage of the kernel E of the epimorphism B → A, it follows that E is finitely generated.

(iii) First of all, if A = K, the statement follows from the property (b) (or (c)) of Proposition

2.8.2. If A is arbitrary, B ⊗A C is a quotient of B ⊗K C by the ideal generated by elements of the

form (ab ⊗ c, b ⊗ ac) for a ∈ A, b ∈ B and c ∈ C. It remains to notice that it suffices to take the

elements a, b and c from finite systems of generators of A, B and C, respectively.

2.8.5. Corollary. Let A be a finitely presented K-algebra. Then for any Zariski prime ideal

p ⊂ A, the following is true:

(i) the localization Ap is a finitely presented K-algebra;

(ii) for any Zariski ideal a ⊂ p, the ideal E = Ker(A → Ap/aAp) is finitely generated; in

particular, the ideal Πp is finitely generated;

(iii) the kernel and cokernel of the canonical homomorphism K∗ → κ(p)∗ are finitely generated.

Proof. (i) Let f1, . . . , fn be generators of A over K, and assume that fi 6∈ p for 1 ≤ i ≤ m,

and fi ∈ p for m+ 1 ≤ i ≤ n. Then Ap is generated over A by the elements 1
f1
, . . . , 1

fm
, i.e., it is a

finitely generated K-algebra. That it is finitely presented follows from Proposition 2.8.2.

(ii) We may assume that we are in the situation of Proposition 2.8.2(b) and that the Zariski

ideal a is generated by a′ = a ∩ A′. Since the F1-algebra A′ is finitely generated, it is noetherian,

and so it suffices to verify that the ideal E is generated by the ideal E′ = Ker(A′ → A′p′/a
′A′p′) of

A′, where p′ = p ∩ A′. Let (f, g) ∈ E\(a × a). Then there exists an element h 6∈ p with fh = gh.

One has f = af ′, g = bg′ and h = ch′ for some a, b, c ∈ K∗ and f ′, g′, h′ ∈ A′\a′. It follows that

af ′h′ = bg′h′. By Proposition 2.8.2, this implies that b = λa for λ ∈ K ′∗. Replacing g′ by λg′, we

get f ′h′ = g′h′, i.e., (f ′, g′) ∈ E′, and (f, g) = (af ′, ag′).

(iii) Since κ(p)∗ = (Ap)∗, (i) allows us to replace A by Ap, and so it suffices to show that

the kernel and cokernel of the homomorphism A → A∗ are finitely generated. The kernel is the

stabilizer of 1 ∈ A and, therefore, it is finitely generated. Furthermore, let f1, . . . , fn be generators

of A over K, and assume that fi ∈ A∗ for 1 ≤ i ≤ m, and fi 6∈ A∗ for m + 1 ≤ i ≤ n. Then the

group A∗ is generated by the elements f1, . . . , fm and the image of the group K∗. It follows that
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the cokernel of the homomorphism K∗ → A∗ is finitely generated.

Let A be an F1-algebra.

2.8.6. Definition. An A-module M is said to be finitely presented if it is isomorphism to a

quotient of a free A-module of finite rank A(n) by a finitely generated A-submodule.

The proof of the following is a natural extension of the proof of Proposition 2.8.2.

2.8.7. Proposition. Let A be a finitely presented K-algebra. Then the following properties

of a finite A-module M are equivalent:

(a) M is finitely presented;

(b) there exist K ′ and A′, as in Proposition 2.8.2(b), and a finite Zariski A′-submodule M ′ ⊂M

such that M ′ ⊗K′ K
∼→M ;

(c) the set of stabilizers of nonzero elements of M in K∗ is a finite set of finitely generated

subgroups.

Proof. (a)=⇒(b). We represent M as a quotient of A(m) by a finitely generated A-submodule,

and A as a quotient of B = K[T1, . . . , Tn] by a finitely generated ideal. Then M can be considered

as an B-module, which is a quotient of B(m) by a finitely generated B-submodule E. Let K ′ be the

K ′-subfield of K generated by the coefficients of all term components from a finite set of generators

of E, B′ = K ′[T1, . . . , Tn], E′ the B′-submodule of B′(m) generated by the same set of generators,

and M ′ = B′(m)/E′. Then M ′ ⊗K′ K
∼→M .

(b)=⇒(c). As in the proof of the corresponding implication of Proposition 2.8.2, we may

assume that the group K∗ is finitely generated. Fix finite systems of generators g1, . . . , gn of A

over K and e1, . . . , el of M over A. Suppose there is an infinite sequence m1,m2, . . . of elements of

M such that their stabilizers G(m1), G(m2), . . . are pairwise distinct. Replacing this sequence by a

subsequence, we may assume that, for some 1 ≤ j ≤ l, each mi is of the form gµ
(i)

ej with µ(i) ∈ Zn+.

By Lemma 2.8.3, we can again replace this sequence by a subsequence so that µ(1) ≤ µ(2) ≤ . . .

and, in particular, G(m1) ⊂ G(m2) ⊂ . . .. Any such sequence of subgroups of K∗ stabilizes, and

this contradicts the assumption that all of the groups G(mi) are pairwise distinct.

(c)=⇒(a). Fix a surjective homomorphism of K-algebras B = K[T1, . . . , Tn] → A : Ti 7→ gi

and a finite system e1, . . . , ep of generators of M over A, and denote by E the kernel of the

induced homomorphism of B-modules B(m) →M . Furthermore, choose a Gröbner basis of E and

denote by E′ the B-submodule of B(m) generated by it. By Lemma 1.3.1, the canonical surjective

homomorphism B(m)/E′ → M = B(m)/E induces a bijection between the sets of cyclic Zariski

K-submodules. Furthermore, let {Gi}i∈I be the finite set of finitely generated stabilizers of nonzero
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elements of M and, for every i ∈ I, fix a finite system {λij}j∈Jj of generators of Gi. For i ∈ I

and 1 ≤ k ≤ l, let Σik be the set of all µ ∈ Zn+ such that the element gµek is nonzero and its

stabilizer G(gµek) coincides with Gi, and let {µ(ikl)}l∈Lik be the set of minimal elements of Σik.

Then the reasoning from the proof of the corresponding implication of Proposition 2.8.2 shows that

the B-submodule E is generated by E′ and the set of pairs (Tµ
(ikl)

ek, λijT
µ(ikl)

ek)i∈I,j∈Ji,l∈Lik .

2.8.8. Corollary. Let A → B be a homomorphism of K-algebras, and assume that A is a

finitely presented K-algebra. Then the following are equivalent:

(a) B is a finitely presented K-algebra and a finite A-module;

(b) B is a finitely presented A-module.

The following property corresponds to the commutative algebra property of a coherent ring.

2.8.9. Corollary. Let A be a finitely presented K-algebra. Then any finitely generated

Zariski ideal of A is a finitely presented A-module.

Let A be a finitely presented K-algebra, and M a finitely presented A-module.

2.8.10. Proposition. (i) The A-module M is decomposable, and it admits a minimal primary

decomposition ∆(M) =
⋂n
i=1Ei with finitely generated A-submodules Ei;

(ii) the set ass(M) is finite, and the map ass(M)→ Zass(M) is surjective;

(iii) there is a chain of Zariski A-submodules N0 = 0 ⊂ N1 ⊂ . . . ⊂ Nk = M such that each

quotient Ni/Ni−1 is isomorphic to an A-module of the form A/Π, where Π is a prime ideal of A;

(iv) the radical r(E) of any finitely generated A-submodule E of M is a finitely generated ideal

and, in particular, the nilradical n(M) of M is a finitely generated ideal.

Proof. By Proposition 2.8.7, there exist an F1-subfield K ′ ⊂ K with finitely generated group

K ′∗, a finitely generated K ′-subalgebra A′ ⊂ A and a finitely generated Zariski A′-submodule

M ′ ⊂M such that A′⊗K′K
∼→ A and M ′⊗K′K

∼→M . Then A′ is a finitely generated F1-algebra.

This implies A′ and M ′ are noetherian and, by Proposition 2.4.11, the properties (i)-(iii) hold for

A′ and M ′.

We claim that for any primary A′-submodule E′ of M ′ the A-submodule E of M generated

by E′ is also primary. Indeed, we have to show that, if (fm, fn) is a nonzero pair in E with

f ∈ A and m,n ∈ M , then either (m,n) ∈ E, or f ∈ zn(M/E). We may assume that f ∈ A′,

and let m = αm′ and n = βn′ for α, β ∈ K∗ and m′, n′ ∈ M ′. By Proposition 2.7.6(ii), the pair

(fm, fn) = (αfm′, βfn′) is of one of two types. If (αfm′, βfn′) = (am′′, bn′′) with m′′, n′′ ∈ NE′

and a, b ∈ K, we get fm′ = a
αm
′′ and fn′ = b

βn
′′. It follows that a

α ,
b
β ∈ K

′∗ and, since the Zariski
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A-submodule NE′ of M ′ is primary, it follows that either m′, n′ ∈ NE′ , or f ∈ zn(M ′/NE′) ⊂

zn(M ′/E′) ⊂ zn(M/E). If (αfm′, βfn′) = (am′′, an′′) with (m′′, n′′) ∈ E′ and a ∈ K, we get

(fm′, fn′) = ( aαm
′′, aβn

′′). It follows that a
α ,

b
β ∈ K ′∗ and, therefore, α

β ∈ K ′∗. One also has

(f(αβm
′), fn′) = ( aαm

′′, aαn
′′) ∈ E′ and, therefore, either (αβm

′, fn′) ∈ E′, or f ∈ zn(M ′/E′) ⊂

zn(M/E). If the former inclusion holds, it implies the inclusion (m,n) ∈ E, and the claim follows.

The claim and Propositions 2.7.6(iv) imply that, any minimal primary decomposition ∆(M ′) =⋂n
i=1E

′
i (which exists, by Proposition 2.4.11(i)) gives rise to a minimal primary decomposition

∆(M) =
⋂n
i=1Ei, where Ei is the ideal of A generated by E′i, i.e., we get the statement (i).

It follows also that the canonical surjective map Fspec(A′) → Fspec(A) gives rise to a bijection

ass(M)
∼→ ass(M ′). Since the canonical bijective map Zspec(A)

∼→ Zspec(A′) gives rise to a

bijection Zass(M)
∼→ Zass(M ′), Proposition 2.4.11(ii) implies the statement (ii). The statement

(iii) follows from Proposition 2.4.11(iii). Finally, increasing the above F1-subfield K ′ of K, we may

assume that the A-submodule E is generated by an A′-submodule E′ of M ′. Then it is easy to see

that the radical r(E) of E is generated by the radical r(E′) of E′, and (iv) follows.

For an integer n ≥ 1, let An denote the K-subalgebra of A generated by elements of the form

fn for f ∈ A.

2.8.11. Lemma. (i) An is a finitely presented K-algebra;

(ii) A is a finitely presented An-module;

(iii) there exists d ≥ 1 such that, for every n ≥ 1 divisible by d, the K-algebra An is reduced.

Proof. (i) and (ii). Let elements f1, . . . , fm generate the K-algebra A. Then the K-algebra

An is generated by the elements fn1 , . . . , f
n
m, i.e., it is finitely generated. It is finitely presented since

the condition (c) of Proposition 2.8.2 is satisfied. Furthermore, the An-module A is generated by

elements of the form f i11 · . . . · f imm with 0 ≤ i1, . . . , im ≤ m− 1. It is therefore a finitely presented

An-module, by Corollary 2.8.8.

(iii) Consider first the case when K = F1. Then the F1-algebra is noetherian and, in particular,

the ideal E = {(f, g) ∈ A× A
∣∣fn = gn for some n ≥ 1} is finitely generated. It follows that there

exists d ≥ 1 such that for any (f, g) ∈ E one has fd = gd. We claim that for any n ≥ 1 divisible

by d the F1-algebra An is reduced. Indeed, let (fn, gn) ∈ n(An). Then (f, g) ∈ E and, therefore,

fd = gd. Since n is divisible by d, it follows that fn = gn.

Consider now the case when the group K∗ is finitely generated. Then A can be viewed as a

finitely generated F1-algebra, and let B denote the latter. Then An = KBn, and the validity of

the required fact for B implies its validity for A.
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Finally, consider the general case. Let K ′ be an F1-subfield of K, and A′ a finitely generated

K ′-subalgebra of A with A = A′⊗K′K. Then An = A′
n⊗K′K, and the required fact for A follows

from the previous case.

2.8.12. Corollary. Let A → B be a homomorphism of finitely presented K-algebras, and

assume that B/n(B) is a finitely presented A-module. Then B is a finitely presented A-module.

Proof. The situation is easily reduced to the case when K = F1. Let n be a positive integer

such that the F1-algebras An and Bn are reduced. In particular, the map f 7→ fn gives rise to an

isomorphism B/n(B)
∼→ Bn. The assumption implies that Bn is a finitely presented An-module.

Since B is a finitely presented Bn-module, it follows that B is a finitely presented An-module and,

therefore, B is a finitely presented A-module.

2.8.13. Remarks. The statement of Proposition 2.8.10(i) is not true if the K-algebra A is

only finitely generated but not finitely presented. For example, assume that there is a sequence of

subgroups G0 = {1} ⊂ G1 ⊂ G2 ⊂ . . . ⊂ K∗ with Gi 6= Gi+1 for all i ≥ 0, and let A be the quotient

of K[T ] by the ideal E consisting of the zero pair (0, 0) and all pairs of the form (λT i, µT i) with

λ, µ ∈ K∗ and λµ−1 ∈ Gi. If t is the image of T in A, each nonzero element of A is equal either

to tn, or to λtn with n ≥ 0 and λ 6∈ Gn. There are two Zariski prime ideals p = 0 and m = At.

The only p-primary ideal is Πp, which is generated by the pairs (λ, 1) with λ ∈ G =
⋃∞
i=0Gi, and

each m-primary ideal contains the m-primary ideal En = Ker(A → A/mn) for some n ≥ 1. The

intersection Πp ∩ En contains the elements (λtn, tn) with λ ∈ G\Gn, and so it is strictly bigger

than ∆(A).

§3. Topology on the spectrum of an F1-algebra

3.1. Definition and basic properties. Both spectra Zspec(A) and Fspec(A) of an F1-

algebra A are provided with topology as follows.

A base of topology on Zspec(A) is formed by sets of the form D(f) = {p ∈ Zspec(A)
∣∣f 6∈ p}.

The family of closed subsets consists of sets of the form V (a) = {p ∈ Zspec(A)
∣∣a ⊂ p}, where a is

a Zariski ideal of A. (One has V (a) ∪ V (b) = V (a ∩ b) and D(f) ∩D(g) = D(fg).) The Zariski

spectrum Zspec(A) is in fact not interesting as a topological space. For example, the maximal

Zariski ideal mA is a unique closed point of Zspec(A), and any open neighborhood of mA coincides

with the whole space. We will mostly consider Zspec(A) as a partially ordered set with respect to

the partially ordering introduced in §1.2 (it is opposite to the inclusion relation). For example, if

A is a valuation F1-algebra, Zspec(A) is a totally ordered set.
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Furthermore, Fspec(A) is provided with the weakest topology in which sets of the form

D(f, g) = {Π ∈ Fspec(A)
∣∣(f, g) 6∈ Π}, where f, g ∈ A, are open. A base of this topology is forms

by finite intersections
⋂n
i=1D(fi, gi) with fi, gi ∈ A. The canonical map Fspec(A) → Zspec(A) :

Π 7→ pΠ = {f ∈ A
∣∣(f, 0) ∈ Π} is evidently continuous. The restriction of the topology of Fspec(A)

to the fiber of the above map at a Zariski prime ideal p is such that its base of open sets consists

of collections of subgroups of κ(p)∗ that do not intersect with a fixed finite set of elements (see

Lemma 1.2.5). In particular, Πp is the generic point of the fiber, and Π(p) is a unique closed point

of the fiber.

Notice that sets of the form V (E) = {Π ∈ Fspec(A)
∣∣E ⊂ Π}, where E is an ideal of A, are

closed in Fspec(A) and, in fact, the topology on Fspec(A) is the weakest one with respect such

sets are closed. We will say a subset of Fspec(A) is strongly closed if it is a finite union of sets of

the form V (E). The family of strongly closed subsets is preserved under finite (but not arbitrary)

intersections. It follows that every closed subset of Fspec(A) is the intersection of a filtered family of

strongly closed subsets. Indeed, if Σ is a closed subset, every point x 6∈ Σ has an open neighborhood

U =
⋂n
i=1D(fi, gi) that does not intersect with Σ. Since the complement of U is the strongly closed

set
⋃n
i=1 V (Ei), where Ei is the ideal generated by the pair (fi, gi), the claim follows.

Every homomorphism ϕ : A → B gives rise to continuous maps Fspec(B) → Fspec(A) : Π 7→

ϕ−1(Π) and Zspec(B)→ Zspec(A) : p 7→ zϕ−1(p). If ϕ is surjective, these maps induce homeomor-

phisms of Zspec(B) and Fspec(B) with their images in Zspec(A) and Fspec(A), respectively, and

the image of Fspec(B) is closed whereas the image of Zspec(B) is not necessarily closed.

If B is a commutative ring with unity, then every homomorphism of F1-algebras A → B·

gives rise to a continuous map Spec(B) → X = Fspec(A). Namely, it takes a prime ideal q

of B to the prime ideal Ker(A → (B/q)·) of A. For example, there is a canonical continuous

map Spec(B) → Fspec(B·) whose composition with the canonical map Fspec(B·) → Zspec(B·) is

injective.

We will denote points of X by letters x, y and so on. For a point x ∈ X , we denote by Πx

and px the corresponding prime and Zariski prime ideals, and by κ(x) the fraction F1-field of the

integral domain A/Πx. The image of an element f ∈ A in κ(x) will be denoted by f(x). For

example, for f, g ∈ A, one has D(f, g) = {x ∈ X
∣∣f(x) 6= g(x)}.

3.1.1. Theorem. The spectrum Fspec(A) is a quasi-compact sober topological space.

Recall that a topological space is called sober if every irreducible closed subset has a unique

generic point. Notice that the similar statement for the Zariski spectrum Zspec(A) is trivial.
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Proof. Step 1. For a (usual) field k, let k[A] denote the set of finite sums
∑n
i=1 λifi with

λi ∈ k and fi ∈ A. The set k[A] provided with the evident addition and multiplication is a

commutative k-algebra. The canonical homomorphism of F1-algebras A → k[A]· gives rise to a

continuous map τ : Spec(k[A]) → Fspec(A). Then the image of τ contains all prime ideals of

the form Π(p) for Zariski prime ideals p ⊂ A. Indeed, the kernel of the homomorphism of F1-

algebras A → k[A/Π(p)]
· = k coincides with Π(p). Thus, if q is the kernel of the homomorphism

k[A]→ k[A/Π(p)] = k, then its image in Fspec(A) is the ideal Π(p).

Step 2. Given points x, y ∈ Fspec(A), one has x ∈ {y} if and only if Πy ⊂ Πx. Indeed, one

has x ∈ {y} if and only if every open neighborhood of the point x contains the point y. Suppose

first that x ∈ {y}, and let (f, g) ∈ Πy. If (f, g) 6∈ Πx, then x ∈ D(f, g) and, therefore, y ∈ D(f, g),

i.e., (f, g) 6∈ Πx which contradicts the assumption. Conversely, suppose that Πy ⊂ Πx, and let U be

an open neighborhood of the point x of the form
⋂n
i=1D(fi, gi). Then (fi, gi) 6∈ Πx and, therefore,

(fi, gi) 6∈ Πy for all 1 ≤ i ≤ n, i.e., y ∈ U . The claim implies that, given a Zariski prime ideal

p ⊂ A, any open set that contains the p-prime ideal Π(p) contains all p-prime ideals.

Step 3. The space Fspec(A) is quasi-compact. Indeed, let {Ui}i∈I be an open covering of

Fspec(A). Then for any field k, {τ−1(Ui)}i∈I is an open covering of the quasi-compact space

Spec(k[A]) and, therefore, there is a finite subset J ⊂ I such that Spec(k[A]) =
⋃
i∈J τ

−1(Ui). We

claim that Fspec(A) =
⋃
i∈J Ui. Indeed, let Π is a prime ideal of A over a Zariski prime ideal p ⊂ A.

By Step 1, there exists i ∈ J with Π(p) ∈ Ui and, by Step 2, one has Π ∈ Ui.

Step 4. The space Fspec(A) is sober. Indeed, let V be a nonempty closed irreducible subset

of X . We claim that the ideal E of A consisting of the pairs (f, g) with f(x) = g(x) for all x ∈ V

is prime. Indeed, suppose that (fh, gh) ∈ E, i.e., f(x)h(x) = g(x)h(x) for all x ∈ V . The equality

implies that the set V lies in the union of the closed sets X\D(f, g) and X\D(h, 0). Since V

is irreducible, one has either V ⊂ X\D(f, g), or V ⊂ X\D(h, 0). In the former case, we get

(f, g) ∈ E and, in the latter case, we get (h, 0) ∈ E, i.e., E is a prime ideal. We now claim that

V = {x0}, where x0 is the point of X with Πx0
= E. Indeed, (i) implies that V ⊂ {x0}, and so

it suffices to verify that x0 ∈ V . Suppose that x0 6∈ V . Then there exists an open neighborhood

U =
⋂n
i=1D(fi, gi) of x0 with U ∩ V = ∅. It follows that V ⊂

⋃n
i=1 X\D(fi, gi). Irreducibility of V

implies that V ⊂ X\D(fi, gi) for some 1 ≤ i ≤ n, i.e., fi(x) = gi(x) for all x ∈ V . This means that

fi(x) = gi(x) for all x ∈ V , i.e., (fi, gi) ∈ Πx0
, which contradicts the inclusion x0 ∈ D(fi, gi).

The following is a consequence of the proof of Theorem 3.1.1.

3.1.2. Corollary. (i) The map x 7→ {x} gives rise to a bijection between Fspec(A) and the
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set of closed irreducible subsets of Fspec(A), and one has Fspec(A/Πx)
∼→ {x};

(ii) the map p 7→ Π(p) gives rise to a bijection between Zspec(A) and the set of closed points

of Fspec(A).

3.1.3. Proposition. The following properties of a Zariski prime ideal p ⊂ A are equivalent:

(a) the set Fspec(Ap) is open in Fspec(A);

(b) Fspec(Ap) is a neighborhood of the prime ideal Π(p) in Fspec(A);

(c) Ap = Af for some element f ∈ A\p.

Proof. The implications (c)=⇒(a)=⇒(b) are trivial. Suppose that (b) is true. Then there

exist elements a1, b1, . . . , an, bn ∈ A such that Π(p) ∈ D(a1, b1) ∩ . . . ∩D(an, bn) ⊂ Fspec(Ap). It

follows that, for every 1 ≤ i ≤ n, either ai 6∈ p and bi ∈ p, or ai ∈ p and bi 6∈ p. We may assume

that ai 6∈ p and bi ∈ p for all 1 ≤ i ≤ n. We claim that Ap = Af for f = a1 · . . . · an. Indeed,

since f 6∈ p, then Af ⊂ Ap. Let q be the maximal Zariski ideal of A that does not contain any

powers of f . Then q is a Zariski prime ideal that contains p, and one has Af = Aq. Since ai 6∈ q

and bi ∈ p ⊂ q, it follows that Π(q) ∈ D(a1, b1) ∩ . . . ∩D(an, bn) ⊂ Fspec(Ap). This implies that

q = p, i.e. Ap = Af

We now consider an example. Let I be an idempotent F1-algebra. Then a base of topology on

Fspec(A) is formed by sets of the form D(f) ∩D(g1, 1) ∪ . . . D(gn, 1) (which are also, by the way,

closed subsets). Indeed, this follows from the equalities D(f, g) = (D(f)∩D(g, 1))∪(D(g)∩D(f, 1))

and D(f)∩D(g) = D(fg). Since the canonical map Fspec(I)→ Zspec(I) is a bijection, we consider

the spectrum Fspec(I) with the induced partial ordering, i.e., Πp ≤ Πq if p ≤ q (i.e., q ⊂ p). Notice

the set of pairs (Πp,Πq) with Πp ≤ Πq is closed in Fspec(I)× Fspec(I).

3.1.4. Proposition. (i) Fspec(I) is a profinite space, and the image of Ǐ in it (under the

map e 7→ Πe) is dense;

(ii) the image of Ǐ in Zspec(I) (under the map e 7→ pe) consists of the Zariski prime ideals

p ⊂ I such that Fspec(Ip) is open in Fspec(I);

(iii) the correspondence E 7→ SE = {Πp ∈ Fspec(I)
∣∣E ⊂ Πp} gives rise to a bijection between

the set of ideals of I and the set of closed subsets S ⊂ Fspec(I) such that the infimum of any family

of elements of S belongs to S;

(iv) the subsets S ⊂ Fspec(I) that correspond to Zariski ideals are characterized by the stronger

property: if Πp ≤ Πq ∈ S, then Πp ∈ S;

(v) the subsets S ⊂ Fspec(I) that correspond to finitely generated ideals are characterized by

the property that they are also open sets.
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3.1.5. Lemma. The canonical bijections in Lemma 1.4.4 are homeomorphisms.

Proof. The statement follows from the fact that, for the open subsets D(f) ⊂ Fspec(A) and⋂n
k=1D(fk, gk), we can find i ∈ I such that the elements f and fk, gk for all 1 ≤ k ≤ n) come

from Ai and, therefore, they are the preimages of the corresponding open subsets of Zspec(Ai) and

Fspec(Ai), respectively.

Proof of Proposition 3.1.4. (i) The idempotent F1-algebra I is the union of its finite F1-

subalgebras. It remains to notice that, if I is finite, the map Ǎ→ Fspec(A) : e 7→ Πe from §1.3 is

a bijection, and one has {Πe} = D(e) ∩D(f1, 1) ∩ . . . , D(fn, 1) with pe = {f1, . . . , fn}.

(ii) First of all, if e ∈ Ǐ, then Ipe = Ie and, therefore, Fspec(Ipe) is open in Fspec(I). Con-

versely, suppose that, for a Zariski prime ideal p ⊂ I, Fspec(Ip) is open in Fspec(I). By Proposition

3.1.3, there exists an element e ∈ I\p with Ip = Ie. This implies that e is the maximal element in

I\p and, therefore, p = pe.

(iii) Since SE = Zspec(I/E), the set SE evidently possesses the required properties, and

Corollary 1.6.2(ii) implies that ESE = E. Furthermore, for a subset S ⊂ Zspec(I), the inclusion

S ⊂ SES is trivial. Assume now that S possesses the above properties, and consider first the case

when I is finite. We have to verify that, if Πp 6∈ S, then ES 6⊂ Πp. Suppose first that Πp 6≤ Πq for

all Πq ∈ S. For every Πq ∈ S, take an idempotent eq ∈ q\p. Then the idempotent e =
∏

Πq∈S
eq

lies in the intersection of all such q, but not in p. It follows that (e, 0) ∈ ES\Πp. Suppose now that

Πp ≤ Πq for some Πq ∈ S. We may assume that Πq is the unique minimal with that property.

Let e and f be the maximal idempotents in A\p and A\q, respectively. Since q ⊂ p, then f ∈ p

and, therefore, the pair (e, f) does not lie in Πp. We claim that (e, f) lies in ES. Indeed, let r be

an element of S. If Πq ≤ Πr, then Πp ≤ Πr. It follows that e, f 6∈ r and, therefore, (e, f) ∈ Πr. If

Πq 6≤ Πr, then Πp 6≤ Πr since Πq is minimal with Πp ≤ Πq. It follows that e, f ∈ r and, therefore,

(e, f) ∈ Πr.

Consider now the general case. We have to verify that every prime ideal Πp that contains ES

belongs to S. Let {Ik}k∈K be the filtered family of finite F1-subalgebras of I and, for k ∈ K, let

Sk be the image of S under the canonical map Fspec(I)→ Fspec(Ik), and set Ek = ES ∩ (Ik× Ik).

By the previous case, one has Sk = SEk and, therefore, Πp ∩ (Ik × Ik) ∈ Sk. The assumption on

closeness of S implies that S
∼→ lim
←−

Sk. It follows that Πp ∈ S.

(iv) That the sets SE corresponding to Zariski ideals possesses the required property is trivial.

Suppose that S is a subset with that property, and let E be the corresponding ideal of I, i.e., such

that S = SE . We set a =
⋂

Πp∈S
p and E′ = Ea = ∆(I)∪ (a× a). We claim that E = E′. Indeed,
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by (iii), it suffices to verify that SE = SE′ . By the construction, one has a = {f ∈ I
∣∣(f, 0) ∈ E

and, in particular, E′ ⊂ E, i.e., SE ⊂ SE′ . Suppose that Πp ∈ SE′\SE , i.e., a ⊂ p and E 6⊂ Πp. It

follows that there exists a pair (e, f) ∈ E\Πp. We may assume that e ∈ p and f 6∈ p. If Πq ∈ S,

then Πp∪q ≤ Πp and, by the property of S, we get Πp∪q ∈ S and, therefore, (e, f) ∈ E ⊂ Πp∪q.

Since e ∈ p, it follows that f ∈ q for all Πq ∈ S. This implies that f ∈ a ⊂ p, which is a

contradiction.

(v) That the sets that correspond to finitely generated ideals are open is trivial. Suppose that

the set SE of an ideal E ⊂ I× I is open. Since it is closed, it is compact and, therefore, it is a finite

union of open sets of the form
⋂
i=1D(fi, gi) with fi, gi ∈ I. Let I ′ be a finite F1-subalgebra of A

that contains all of the elements fi, gi, and let S′ be the image of S with respect to the canonical

morphism X → X ′ = Fspec(I ′). Then S′ is preserved by the infimum operation and, by (iii), one

has S′ = SE′ for an ideal E′ of I ′. Since S is the preimage of S′, it follows easily that the ideal E

is generated by E′, i.e., E is finitely generated.

In §1.6 we constructed an injective homomorphism I → Hominf(Zspec(I), {0, 1}) that takes

e ∈ I to the map ϕe : Zspec(I) → {0, 1} defined by ϕe(p) = 1, if e 6∈ p, and ϕe(p) = 0, if e ∈ p.

Since Fspec(I)
∼→ Zspec(I), we may consider any element of Hominf(Zspec(I), {0, 1}) as a map

Fspec(I)→ {0, 1}.

3.1.6. Proposition. The image of Ǐ in Hominf(Zspec(I), {0, 1}) consists of the elements ϕ

for which the induced map Fspec(I)→ {0, 1} is continuous.

Proof. First of all, let ϕ ∈ Hominf(Zspec(I), {0, 1}). Then there is a unique minimal element

p ∈ Zspec(I) with ϕ(p) = 1. If ϕ(q) = 0, then q 6⊂ p and, therefore, given an element e ∈ q\p

one has ϕ(q) = 0 for any q ∈ D(e, 1). This means that the set ϕ−1(1) is always closed. If e ∈ Ǐ,

then ϕ−1
e (1) = D(e) and, therefore, the map ϕe is continuous. Conversely, suppose that an ϕ is

continuous, i.e., the set ϕ−1(1) is open. It follows that a nonempty open set U = D(e)∩D(f1, 1)∩

. . . ∩ D(fn, 1) contains the prime ideal Πp for the above Zariski ideal p and lies in ϕ−1(1). We

claim that ϕ = ϕe. Indeed, since p ∈ D(e), it follows that e 6∈ p and, therefore, p ⊂ pe. It follows

also that Πe ∈ U and, therefore, ϕ(pe) = 1. Since p is the minimal element of Zspec(I) with the

latter property, we get p = pe.

3.2. Irreducible components of the spectrum. Let A be an F1-algebra and X =

Fspec(A). For a Zariski prime ideal p ⊂ A, we set Xp = {x ∈ X
∣∣f(x) = 0 for all x ∈ p},

X̌p = {x ∈ Xp
∣∣f(x) 6= for f 6∈ p}, and X (p) = X̌p. We also set A(p) = A/Πp. By Corollary

3.1.2, one has X (p) = Fspec(A(p)) = {Πp}. In particular, each set X (p) lies in only one connected
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component of X . Furthermore, the map Πp 7→ X (p) gives rise to a bijection between the set

of minimal prime ideals of A and the set of irreducible components of Fspec(A). If the set of

irreducible components of X is finite, X is a locally connected space and, in particular, all its

quasi-components are connected components.

3.2.1. Lemma. The set of irreducible components of X is finite if and only if the F1-algebra

A is weakly decomposable. Furthermore, in this case the idempotent F1-algebra IA is finite.

Proof. If X (p1), . . . ,X (pn) are all of the irreducible components of X then, for every prime

ideal Π, the irreducible closed subset Fspec(A/Π) lies in some X (pi) and, therefore, Π contains

the ideal Πpi . Proposition 2.2.4 implies that n(A) =
⋂n
i=1 Πpi , i.e., A is weakly decomposable.

Conversely, suppose that A is weakly decomposable, i.e., n(A) =
⋂n
i=1 Πpi . Then every prime ideal

Π contains the above intersection, and Lemma 1.2.7(ii) implies that there exists a nonempty subset

J ⊂ {1, . . . , n} such that Π ⊃ Πq, where q =
⋃
i∈J pi. It follows that Π ∈ X (q) and, therefore, the

set of irreducible components of X is finite. By Proposition 2.5.5, to verify the last statement we

may assume that A is reduced. In this case it is embedded in the finite direct product of integral

F1-algebras
∏n
i=1A

(pi) whose idempotent F1-subalgebra is finite.

3.2.2. Theorem. Let A→ B be a homomorphism of F1-algebras that induces a map ϕ : Y =

Fspec(B)→ X = Fspec(A). Then

(i) if the homomorphism A → B is injective, then for every irreducible component X (p) of X

there exists an irreducible component Y(q) of Y such that ϕ(Y̌q) = X̌p;

(ii) if the map ϕ has dense image and A is reduced, the homomorphism A→ B is injective.

Proof. (i) The homomorphism from Ap to the localization of B with respect to A\p is

injective. We may therefore replace A by Ap and B by that localization and assume that p = mA.

Step 1. One has mB ∩A = mA.

Case 1: A and B are finitely generated over F1. We may assume that A and B are reduced. By

Propositions 2.4.11(i) and 2.4.9(iii), there is a minimal primary decomposition ∆(A) =
⋂n
i=1 Πpi

with Πpi ’s lying in the set of minimal prime ideals of A. Lemma 1.2.7(ii) implies that every

minimal prime ideal of A coincides with Πp for some p = pi1 ∪ . . .∪ pik . Since ∆(B) =
⋂

Πq, then

∆(A) =
⋂

(Πq ∩ (A × A)), where the intersections are taken over the finite set of Zariski prime

ideals of B. It follows that, for every 1 ≤ i ≤ n, pi lies in the image of Zspec(B). This implies that

each Zariski prime ideal p of the form pi1 ∪ . . .∪pik also lies in the image of Zspec(B). By Corollary

1.2.6, mA is of such form, and so there exists a Zariski prime ideal q ⊂ B with mA = q ∩ A. This

implies that mB ∩A = mA.
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Case 2: A is finitely generated over F1. Let {Bi}i∈I be the filtered family of finite generated

A-subalgebras of B. By the previous case, one has mBi ∩A = mA. Since mB =
⋃
i∈I mBi , we get

the required fact.

Case 3: A and B are arbitrary. Let {Ai}i∈I be the filtered family of finite generated F1-

subalgebras of A. By the previous case, one has mB ∩ Ai = mAi . Since mA =
⋃
i∈I mAi , we get

the required fact.

Step 2. The statement (i) is true. By Step 1, we have mB ∩ A = mA. It follows that

ΠmB
∩ (A × A) = ΠmA

. Let Πq be a minimal prime ideal of B which lies in ΠmB
. By the

assumption, ΠmA
is a minimal prime ideal of A and, therefore, Πq∩ (A×A) = ΠmA

. In particular,

Y(q) is an irreducible component of Y and ϕ(Y̌(q)) ⊂ X (m). Since Πq ⊂ ΠmB
, it follows that the

homomorphism A∗ → κ(q)∗ is injective, and we get the required equality ϕ(Y̌(q)) = X (m).

(ii) It suffices to consider the case when A is a finitely generated F1-algebra. In this case, take

a minimal primary decomposition ∆(A) =
⋂n
i=1 Πpi with Πpi lying in the set of minimal prime

ideals of A. Then A embeds in the direct product
∏n
i=1A/Πpi . Let Fi be the ideal of B generated

by Πpi . Since the set of all points in X (pi) that do not lie in other irreducible components of X is

nonempty and open, it follows that the image of the map Fspec(B/Fi)→ Fspec(A/Πpi) is dense.

Thus, replacing A by A/Πpi and B by B/Fi, we may assume that A is integral. Let E be the kernel

of the homomorphism A → B. Then the image of Y in X lies in the closed subset Fspec(A/E).

Since it is dense, we get Fspec(A/E) = Fspec(A). This immediately implies that E = ∆(A), i.e.,

the homomorphism A→ B is injective.

3.3. Connected components of the spectrum. Recall that the connected component of

a point x of a topological space X is the maximal connected subset that contain the point x. The

connected components of points define a partition of X by closed subsets. The set of connected

components is denoted by π0(X) and provided with the quotient topology induced by that of X.

Recall also that the quasi-component of x is the intersection of all open-closed subsets that contain

x. The quasi-component of x is a closed subset that contains the connected component of x but

does not coincide with it in general. If X is locally connected (i.e., every point has a fundamental

system of open connected neighborhoods), all quasi-components of X are connected open subsets.

3.3.1. Theorem. (i) The canonical map X = Fspec(A) → Fspec(IA) is surjective, its fibers

are connected, and it induces a homeomorphism π0(X )
∼→ Fspec(IA);

(ii) given p, q ∈ Zspec(A), the connected component of X (p∪q) depends only on the connected

components of X (p) and X (q);
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(iii) the bijection π0(X )
∼→ Zspec(IA), induced by the homeomorphism from (i), is an isomor-

phism of posets.

The partial ordering on the set π0(X ) is defined as follows: U ≤ V if p ≤ q for some p and q

with X (p) ⊂ U and X (q) ⊂ V. (By the statement (iii), it is a well defined partial ordering.) Notice

that the statement (i) implies that all quasi-components of X are in fact connected components.

3.3.2. Lemma. (i) For any pair of Zariski prime ideals p, q ⊂ A, one has X (p)∩X (q) ⊂ X (p∪q);

(ii) if p ⊂ q, then X (p) ∩ X (q) = Fspec(A(p)/apq), where apq is the image of q in A(p).

Proof. (i) It suffices to show that the ideal of A generated by Πp and q contains the ideal

Πp∪q. The latter consists of pairs (f, g) with either f, g ∈ p ∪ q, or fh = gh for some element

h 6∈ p ∪ q. In the former case, the pair (f, g) lies in the ideal generated by Πp and Πq and, in the

latter case, (f, g) lies in the intersection Πp ∩Πq.

(ii) Notice that, if a pair (f, g) ∈ Πq is such that fh = gh for an element h 6∈ q, then (f, g) ∈ Πp.

This implies that a prime ideal Π lies in X (p) ∩ X (q) if and only if it contains the ideal generated

by Πp and q. The required fact follows.

3.3.3. Corollary. Given Zariski prime ideals p ⊂ q ⊂ A with X (p) ∩ X (q) 6= ∅, one has

X (p∪r) ∩ X (q∪r) 6= ∅ for any Zariski prime ideal r ⊂ A.

Proof. By Lemma 3.3.2(ii), the assumption implies that the Zariski ideal apq ⊂ A(p), gen-

erated by the image of q, is nontrivial, i.e., (f, 1) 6∈ Πp for all elements f ∈ q. Suppose that

(f, 1) ∈ Πp∪r for some element f ∈ q ∪ r. Since f 6∈ r, it follows that f ∈ q. The inclusion

(f, 1) ∈ Πp∪r means that there exists an element g 6∈ p ∪ r with fg = g. This implies that

(f, 1) ∈ Πp, which is a contradiction.

The strong connected component of a point x ∈ X is the set of all points y ∈ X for which there

exist irreducible components Y1, . . . ,Yn, n ≥ 0, of X such that x ∈ Y1, y ∈ Yn and Yi ∩ Yi+1 6= ∅

for all 1 ≤ i ≤ n − 1. Such a strong connected component is connected and, therefore, it lies in a

connected component of X and, if a set X (p) has nonempty intersection with a strong connected

component, it is entirely contained in that component. Notice that, if the set of irreducible com-

ponents of X is finite (i.e., A is weakly decomposable), then every strong connected component is

open and, in particular, it is a quasi-component. (The latter is not true in general, see Remark

3.2.10.)

We say that a Zariski prime ideal p of A is marked if it is of the form q1 ∪ . . .∪ qn, where every

qi is a Zariski prime ideal for which Πqi is a minimal prime ideal of A.
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3.3.4. Corollary. Let p and q be Zariski prime (resp. and marked) ideals of A. If the sets

X (p) and X (q) lie in one strong connected component, then there exist chains of Zariski prime

(resp. and marked) ideals p0 = p ⊂ p1 ⊂ . . . ⊂ pm and q0 = q ⊂ q1 ⊂ . . . ⊂ qm with pm = qm and

such that X (pi) ∩ X (pi+1) 6= ∅ and X (qi) ∩ X (qi+1) 6= ∅ for all 0 ≤ i ≤ m− 1.

Proof. By the assumption, there exist irreducible components X (r1), . . . ,X (rn) such that

X (ri) ∩ X (ri+1) 6= ∅ for all 0 ≤ i ≤ n, where r0 = p and rn+1 = q. We claim that the following

chains of Zariski prime ideals possess the required property: r0 = p ⊂ r0 ∪ r1 ⊂ . . . ⊂ r0 ∪ . . . ∪

rn+1 and rn+1 = q ⊂ rn ∪ rn+1 ⊂ . . . ⊂ r0 ∪ . . . ∪ rn+1. Indeed, by Lemma 3.3.2(ii), one has

X (ri) ∩ X (ri+1) ⊂ X (ri∪ri+1) and, therefore, Corollary 3.3.3 implies that X (ri) ∩ X (ri∪ri+1) 6= ∅ and

X (ri+1)∩X (ri∪ri+1) 6= ∅. Applying Corollary 3.3.3 and the latter properties to the shorter sequence

r0 ∪ r1, . . . , rn ∪ rn+1, we get the claim.

3.3.5. Corollary. For any pair p, q ∈ Zspec(A), the strong connected component of X (p∪q)

depends only on the strong connected components of X (p) and X (q).

Proof. Suppose that p and p′ lie in one strong component. By Corollary 3.3.4, there exist

chains p0 = p ⊂ p1 ⊂ . . . ⊂ pm and p′0 = p′ ⊂ p′1 ⊂ . . . ⊂ p′m with pm = p′m and such that

X (pi) ∩X (pi+1) 6= ∅ and X (p′i) ∩X (p′i+1) 6= ∅ for all 0 ≤ i ≤ m− 1. Corollary 3.3.3implies that there

are similar chains p0 ∪ q = p∪ q ⊂ p1 ∪ q ⊂ . . . ⊂ pm ∪ q and p′0 ∪ q = p′ ∪ q ⊂ p′1 ∪ q ⊂ . . . ⊂ p′m ∪ q

and, therefore, X (p∪q) and X (p′∪q) lie in one strong connected component.

Proof of Theorem 3.3.1. If B = A/n(A), then Fspec(B)
∼→ Fspec(A) and, by Proposition

2.2.5, IA
∼→ IB . We may therefore always replace A by A/n(A) and assume that A is reduced.

Particular case: A is finitely generated over F1. In this case A is decomposable. As was already

noticed, in this case all quasi-components of X are open connected subsets and, in particular, (i)

is true, and π0(X ) is a finite discrete space. The validity of (iii) follows from Corollary 3.3.5 and,

therefore, π0(X ) is a finite poset with the infimum operation. Furthermore, Corollary 1.6.2(ii)

implies that, for a nonzero idempotent e ∈ IA, the ideal Fe generated by the prime ideal Πe is

nontrivial and, in particular, the map in (ii) is surjective. Notice that the preimage of Πe with

respect to the canonical map Fspec(A)→ Fspec(IA) coincides with Fspec(A/Fe).

We claim that the idempotent F1-algebra of A/Fe coincides with {0, 1}. Indeed, suppose that

the image of an element f ∈ A in A/Fe is an idempotent. This means that (f, f2) ∈ Fe. By Lemma

1.6.1(i), one has either fe = f2e, or fe ∈ peA. The later inclusion means that the image of f in

A/Fe is zero. Assume therefore that fe 6∈ peA and fe = f2e. Then (fe)2 = fe, i.e., fe ∈ IA. Since

(fe)e = fe, then e ≤ fe. If fe 6= e, then fe ∈ pe, i.e., the image of f in A/Fe is zero. If fe = e,
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then (f, 1) ∈ Fe, i.e., the image of f in A/Fe is 1, and the claim follows.

By the above claim, replacing A by A/Fe we may assume that IA = {0, 1} (and reduced),

and we have to show that the space Fspec(A) is connected. Suppose this is not true. Let U be

a maximal connected component, and let p be the maximal Zariski prime ideal with the property

X (p) ⊂ U (i.e., the minimal element of Zspec(A) with that property). Since U is a maximal element

of π0(X ), it follows that p 6= mA. Lemma 3.3.2(ii) implies that, for every strictly bigger Zariski

prime ideal q ⊃ p, the Zariski ideal of A(p) = A/Πp generated by the image of q is trivial. This

means that there exists an element fq ∈ q\p whose image in A(p) is 1, i.e., (fq, 1) ∈ Πp. Let f be

the product of these elements fq. Then f 6∈ p and f 6= 1. We claim that f is an idempotent (and

this will contradict the assumption). Indeed, since ∆(A) coincides with the intersection
⋂
q Πq

taken over all Zariski prime ideals of A, it suffices to verify that (f, f2) ∈ Πq for all q ∈ Zspec(A).

First of all, (f, 1) ∈ Πp by the construction, i.e., there exists an element h 6∈ p with fh = h. If

q ⊂ p, the latter equality implies that (f, 1) ∈ Πq and, therefore, (f, f2) ∈ Πq. Furthermore, if

q 6⊂ p, then f ∈ (p ∪ q)\p and, therefore, f ∈ q. It follows that (f, f2) ∈ Πq.

General case. By Lemma 3.1.5, one has X ∼→ lim
←−

Fspec(Ai), where {Ai}i∈I is the filtered

system of F1-subalgebras finitely generated over F1. We set Xi = Fspec(Ai).

3.3.6. Lemma. Every open-closed subset U of X is the preimage of an open-closed subset Ui
of Xi for some i ∈ I.

Proof. Let U be an open-closed subset of X , and set V = X\U . Of course, we may assume

that both U and V are nonempty. Since both sets are open and quasi-compact, they are finite

unions of sets of the form
⋂n
k=1D(ak, bk). We can therefore find i ∈ I such that all such elements

ak and bk lie in Ai. If Ui and Vi are the corresponding subsets of Xi, then U and V are their

preimages in X , respectively. By the construction, Ui and Vi are open subsets. If Ui ∩Vi 6= ∅ then,

by Theorem 3.2.2, there is a point in X whose image in Xi lies in the intersection. But this is

impossible since U ∩ V = ∅. Thus, Ui ∩ Vi = ∅.

Furthermore, we notice that, if a Zariski prime ideal p ⊂ Ai that lies in the image of the

composition map U → Zspec(A)→ Zspec(Ai), then X̌i,p ⊂ Ui. Indeed, suppose that q is a Zariski

prime ideal of A such that X̌p ∩ U 6= ∅ and whose image in Zspec(Ai) is p. Since U is open-closed,

it follows that X (q) ⊂ U and, in particular, Π(q) ∈ U . The latter ideal corresponds to the whole

group κ(q)∗ (see Lemma 1.2.5) and, therefore, its image in Xi corresponds to the whole group

κ(p)∗, i.e., it is the prime ideal Π(p). It follows that Π(p) ∈ Ui. Since Ui is open, we get X̌i,p ⊂ Ui.

For the same reason, if a Zariski prime ideal p ⊂ Ai that lies in the image of the composition map
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V → Zspec(A) → Zspec(Ai), then X̌i,p ⊂ Vi. In particular, the images of Ui and Vi in Zspec(Ai)

do not intersect. Notice that the union of those images coincides with the image of Zspec(A) in

Zspec(Ai).

Finally, since the Zariski spectrum Zspec(Ai) is finite, we can find j ≥ i such that the image of

Zspec(Aj) in Zspec(Ai) coincides with that of Zspec(A). It follows that, for the preimages Uj and

Vj of Ui and Vi in Xj , respectively, one has Ui ∪ Vj = Xj . This means that Uj and Vj are disjoint

open-closed subsets that cover Xj .

Let Σ be the quasi-component of a point x ∈ X . For i ∈ I, let xi be the image of x in Xi, and

let Σi be its connected component (which coincides with its quasi-component). It is clear that, for

i ≤ j, the image of Σj in Xi lies in Σi. We claim that Σ
∼→ lim
←−

Σi. Indeed, both are subsets of X ,

the set on the left hand side lies in that on the right hand side and, to show that they coincide,

it suffices to verify that every open-closed subset U that contains Σ also contains the set on the

right hand side. But this follows from Lemma 3.3.6 because such subset U is the preimage of an

open-closed subset Ui of Xi for some i ∈ I. Since xi ∈ Σi ∩ Ui, we get Σi ⊂ Ui, and the claim

follows.

By the particular case, for every i ∈ I there is a unique nonzero idempotent ei ∈ IAi such that

Σi is the preimage of the prime ideal Πei of IAi with respect to the canonical map Fspec(Ai) →

Fspec(IAi) and, therefore, Σi = Fspec(Ai/Fei), where Fei is the ideal of A generated by Πei .

If j ≥ i, the image of Σj in Xi lies in Σi, and this implies that the image of Πej with respect

to the canonical map Fspec(IAj ) → Fspec(IAi) is the prime ideal Πei . In particular, ei is the

maximal idempotent in ǏAi with ei ≤ ej and Fei ⊂ Fej ∩ (Ai × Ai). If B = lim
−→

Ai/Fei then, by

Lemma 3.1.5 and the previous claim, we get Σ
∼→ Fspec(B). Since the idempotent algebra of each

quotient Ai/Fei consists of 0 and 1, it follows that IB = {0, 1}. Furthermore, since each Ai/Fei is

a noetherian F1-algebra, we can find j ≥ i such that the image of Ai/Fei in Aj/Fej is canonically

isomorpic to its image in B. If Bi denote the latter, then B is the union of all such Bi’s, and one

has Σ = Fspec(B)
∼→ lim
←−

Fspec(Bi). We can now show that the set Σ is connected (which implies

that Σ is a connected component). Namely, let U be a nonempty open-closed subset of Σ. By

Lemma 3.3.6, there exists i ∈ I such that U is the preimage of an open-closed subset of Fspec(Bi).

But since IBi = {0, 1}, the latter space is connected and, therefore, Ui = Fspec(Bi). This implies

that U = Σ, and this gives the statement (i).

To prove the statement (ii), we consider a related description of the F1-algebra B, which

follows from the construction. Namely, we consider the Zariski prime ideal p =
⋃
i∈I pei of IA
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(recall that pei = {f ∈ IAi
∣∣f 6≤ ei}). If Fp is the ideal of A generated by the corresponding prime

ideal Πp of IA (i.e., Πp = {(e, f) ∈ IA × IA
∣∣ either e, f ∈ p, or e, f 6∈ p}), then A/Fp

∼→ B. Since

Fspec(B) = Σ is connected, we get the statement (ii). The statements (iii) and (iv) easily follow

from the particular case.

3.3.7. Remark. Let A be the quotient of F1[T1, T2, . . .] by the ideal generated by the pairs

(TiTi+1, Ti+1) for i ≥ 1, and let fi be the image of Ti in A. The F1-algebra A has no zero divisors,

i.e., (0) is a Zariski prime ideal, and each nonzero Zariski prime ideal is of the form pn =
⋃∞
i=n+1Afi

for n ≥ 0. Then X (p0) ⊂ X (p1), X (pn) ∩X (pn+1) 6= ∅ for n ≥ 1, but all other pairwise distinct pairs

do not intersect. This means that X has two strong components X (p0) ∪ X (p1) ∪ . . . and X (0). On

the other hand, the space X is connected.

3.4. Disconnected sums of F1-algebras.

3.4.1. Definition. A map of F1-algebras ϕ : A → B is said to be a quasi-homomorphism if

it takes 0A and 1A to 0B and 1B , respectively, and possesses the following property: if ab 6= 0 in

A, then ϕ(ab) = ϕ(a)ϕ(b).

3.4.2. Examples. (i) If A has no zero divisors, any such map is a homomorphism.

(ii) Let a ⊂ b be Zariski ideals of A. Then the map A→ A that takes an element a 6∈ b to a

and all elements from b to zero gives rise to a quasi-homomorphism A/b→ A/a.

(iii) Given an F1-subalgebra I ⊂ IA and an idempotent e ∈ Ǐ, we set A(e) = A/Fe, where Fe is

the ideal of A generated by the prime ideal Πe of I. By Lemma 1.6.1, one has A(e) = Ae/peAe (where

Ae is the localization of A with respect to e). Given two nonzero idempotents e ≤ f , the composition

of the quasi-homomorphism Ae/peAe → Ae (from (ii)) with the canonical homomorphism Ae → Af

gives rise to a quasi-homomorphism νe,f : A(e) → A(f).

3.4.3. Definition. A disconnected sum datum (of F1-algebras) is a tuple {Ǐ , Ai, νij} con-

sisting of an inf-poset Ǐ, a system of F1-algebras {Ai}i∈Ǐ and, for every pair i ≤ j in Ǐ, a quasi-

homomorphism νij : Ai → Aj , which possesses the following properties:

(0) νii is the identity map on Ai;

(1) if i ≤ j ≤ k and a ∈ Ai are such that νij(a) 6= 0, then νjk(νij(a)) = νik(a);

(2) if i ≤ j = inf(J) for a subset J ⊂ Ǐ and a ∈ Ai are such that νik(a) 6= 0 for all k ∈ J , then

νij(a) 6= 0.

Given a disconnected sum datum {Ǐ , Ai, νij}, let
∐ν
Ǐ Ai denote the subset of the direct product∏

i∈Ǐ Ai consisting of the tuples (ai)i∈Ǐ with the following properties:
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(a) if i ≤ j and ai 6= 0, then νij(ai) = aj ;

(b) given a subset J ⊂ Ǐ, if ai 6= 0 for all i ∈ J , then ainf(J) 6= 0.

We set A =
∐ν
Ǐ Ai. For i ∈ Ǐ and a ∈ Ai, let νi(a) be the element of

∏
i∈Ǐ Ai with j’s

component νij(ai), if i ≤ j, and 0, otherwise. The property (0) implies the i’th component of νi(a)

is equal a and, in particular, the map νi : Ai → A is injective. We also set ei = νi(1).

3.4.4. Proposition. In the above situation, the following is true:

(i) A is an F1-subalgebra of
∏
i∈Ǐ Ai;

(ii) νi(Ai) ⊂ A, A =
⋃
i∈Ǐ νi(Ai) and νi(Ai) ∩ νj(Aj) = 0 for all i 6= j;

(iii) for i, j ∈ Ǐ, one has eiej = esup(i,j), if sup(i, j) exists, and eiej = 0, otherwise; in particular,

the correspondence i 7→ ei identifies the set I = {0} ∪ Ǐ with an F1-subalgebra of IA;

(iv) for i ∈ Ǐ, the composition of νi with the canonical epimorphism A → A(ei) gives rise to

an isomorphism Ai
∼→ A(ei);

(v) if i ≤ j, the quasi-homomorphism νij is compatible with νei,ej from Example 3.4.2(iii).

(vi) if the poset Ǐ is noetherian, then X =
∐
i∈Ǐ Xi, where X = Fspec(A) and Xi = Fspec(Ai).

The quotient F1-algebra A(ei) of A is defined here as in Example 3.4.2 (i.e., with respect to

the idempotent F1-subalgebra I). The F1-algebra A =
∐ν
Ǐ Ai will be said to be the disconnected

sum of Ai’s with respect to νij’s.

Proof. (i) Since the set A contains 0 and 1 of the direct product, it suffices to verify that, for

(ai)i∈Ǐ , (bi)i∈Ǐ ∈ A, the tuple (aibi)i∈Ǐ possesses the properties (a) and (b).

(a) Suppose that aibi 6= 0. By the definition of a quasi-homomorphism, for every j ≥ i one

has νij(aibi) = νij(ai)νij(aj). Since ai 6= 0 and bi 6= 0, the property (a) for the given tuples implies

that νij(ai) = aj and νij(ai) = aj and, therefore, νij(aibi) = ajbj .

(b) Suppose that, for a subset J ⊂ Ǐ, one has aibi 6= 0 for all i ∈ J , and set j = inf(J). It

follows that ai 6= 0 and bi 6= 0 for all i ∈ J and, therefore, aj 6= 0 and bj 6= 0, i.e., ajbj 6= 0.

Notice that we did not use the properties (0)-(2) so far.

(ii) First of all, we verify the first inclusion, i.e., validity of (a) and (b) for every element νi(a)

with a ∈ Ai.

(a) Suppose that j ≤ k and νi(a)j 6= 0. It follows that i ≤ j and νij(a) = νi(a)j 6= 0. By the

property (1), we get νjk(νij(a)) = νik(a) = νi(a)k.

(b) Suppose that, for a subset J ⊂ Ǐ, one has νi(a)k 6= 0 for all k ∈ J , and set j = inf(J).

Then i ≤ k and νi(a)k = νik(a) 6= 0 for all k ∈ J . It follows that i ≤ j and νi(a)j = νij(a) 6= 0, by

the property (2).
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Furthermore, for a nonzero tuple (ai)i∈Ǐ ∈ A, let J be the subset of all i ∈ Ǐ with ai 6= 0, and

set j = inf(J). The property (b) implies that j ∈ J and, by the properties (0) and (a), we get

(ai)i∈Ǐ = νj(aj), i.e., A =
⋃
i∈Ǐ νi(Ai).

The last statement in (ii) directly follows from the definition of νi’s.

The statement (iii) is trivial.

(iv) If the images of elements a, b ∈ Ai coincide in A(ei), then (νi(a), νi(b)) ∈ Fei , i.e., either

νi(a)ei = νi(b)ei, or νi(a)ei, νi(b)ei ∈ peiA. In the former case, the equality of i’th components of

both sides implies that a = b. As for the latter case, we recall that pei is the Zariski prime ideal of I

whose nonzero elements are ej ’s with j 6≤ i. This implies that, if νi(a)ei ∈ piA, then νi(a)ei = αej

for some α ∈ A and j 6≤ i. The i-th component of the left hand side is a, but that of the right

hand side is 0. Thus, in the second case, one has a = b = 0 and, therefore, the map Ai → A(ei)

is injective. That it is surjective follows from the facts that (α, αei) ∈ Fei and αei ∈ νi(Ai) for all

elements α ∈ A, and that it is a homomorphism follows from the definition of the multiplication.

The statement (v) follows from (iv) and the facts that, for i ≤ j, the multiplication by ej takes

νi(Ai) to νj(Aj) and coincides with νij on Ai
∼→ νi(Ai).

(vi) It suffices to verify that every Zariski prime ideal p ⊂ A is the Zariski preimage of a Zariski

prime ideal of some Ai. Since Ǐ is noetherian, there is a unique maximal element i ∈ Ǐ with ei 6∈ p.

We claim that p is the Zariski preimage of a Zariski prime ideal of Ai. Indeed, it suffices to verify

that, if a ∈ p and (a, b) ∈ Fei , then b ∈ p. Suppose first that aei = bei. Then bei ∈ p and, since

ei 6∈ p, it follows that b ∈ p. Suppose now that aei, bei ∈ peiA. Since pei ⊂ p, it follows that bei ∈ p

and, therefore, b ∈ p.

Suppose we are given disconnected sum data {Ǐ , Ai, νij} and {Ǐ ′, Ai′ , νi′j′}, an inf-map Ǐ →

Ǐ ′ : i 7→ i′ and, for every i ∈ Ǐ, a homomorphism fi : Ai′ → Ai. Then there is an induced

homomorphism of F1-algebras
∏
i′∈Ǐ′ Ai′ →

∏
i∈Ǐ Ai : (ai′)i′∈I′ 7→ (fi(ai′))i∈I .

3.4.5. Lemma. The above homomorphism gives rise to a homomorphism of F1-algebras

f :
∐ν
Ǐ′ Ai′ →

∐ν
Ǐ Ai if and only if the following holds:

(1) if J is a subset of Ǐ and k = inf(J), then Zker(fk) ⊂
⋃
i∈J Zker(fi ◦ νk′i′);

(2) for every i ≤ j in Ǐ, the following diagram is commutative outside Zker(fi):

Ai
νij−→ Ajxfi xfj

Ai′
νi′j′−→ Aj′

Proof. Direct implication. (1) For an element a ∈ Zker(fk), the k-th coordinate of the element
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f(νk′(a)) is zero. The property (b) from the construction of A implies that its i-th coordinate is

zero for some i ∈ J . Since the latter is equal to fi(νk′i′(a)), it follows that a ∈ Zker(fi ◦ νk′i′).

(2) Suppose that fi(a) 6= 0 for an element a ∈ Ai. Then a 6= 0, and so the j′-th coordinate of

the element νi′(a) is equal to νi′j′(a). It follows that the j-th coordinate of the element f(νi′(a))

is equal to fj(νi′j′(a)). But f(νi′(a)) ∈
∐ν
Ǐ Ai, and the property (a) from the construction of A

implies that the same j-th coordinate is equal to νij(fi(a)).

Converse implication. Let a′ = (ai′)i′∈Ǐ′ be an element of A′ =
∐ν
Ǐ′ Ai′ . It suffices to show

that a = (ai)i∈Ǐ , defined by ai = fi(ai′), is an element of A =
∐ν
Ǐ Ai. For this we have to verify

the properties (a) and (b) from the construction of A.

(a) Let i ≤ j, and suppose that ai = fi(ai′) 6= 0. Then ai′ 6= 0 and, by the property (a)

for a′, we have aj′ = νi′j′(ai′). Since ai′ 6∈ Zker(fi), the property (2) implies that aj = fj(aj′) =

νij(fi(ai′) = νij(ai).

(b) Let k = inf(J), and suppose that ai = fi(ai′) 6= 0 for all i ∈ J . Then ai′ 6= 0 for all i ∈ J .

By the property (b) for a′, we have ak′ 6= 0 and, by the property (a), we have ai′ = νk′i′(ak′). The

assumption and the property (1) imply that ak = fk(ak′) 6= 0.

A morphism of disconnected sum data f : {Ǐ ′, Ai′ , νi′j′} → {Ǐ , Ai, νij} consists of an inf-map

Ǐ → Ǐ ′ : i 7→ i′ and, for every i ∈ Ǐ, a homomorphism fi : A′i′ → Ai so that the conditions (1)

and (2) of Lemma 3.4.5 are satisfied. Lemma 3.4.5 implies that disconnected sum data form a

category with respect to the above morphisms (it is denoted by Dsd), and that the correspondence

{Ǐ , Ai, νij} 7→ A =
∐ν
Ǐ Ai defines a functor Dsd→ F1-Alg.

Let now (A, I) be a pair consisting of an F1-algebra A and an idempotent F1-subalgebra I ⊂ A

such that the poset Ǐ is an inf-poset. It is easy to see that the system of quasi-homomorphisms

νe,f : A(e) → A(f) for e ≤ f in Ǐ from Example 3.4.2(iii) possesses the properties (0)-(2) of

Definition 3.4.3, i.e., {Ǐ , A(e), νe,f} is a disconnected sum datum.

3.4.6. Proposition. In the above situation, suppose that the idempotent F1-algebra I

is almost finite. Then the canonical homomorphism A →
∏
e∈Ǐ A

(e) induces an isomorphism of

F1-algebras A
∼→
∐ν
Ǐ A

(e).

Proof. Let µe denote the canonical homomorphism A → A(e). The Zariski kernel of µe

coincides with peA. If a 6∈ peA, then µe(a) = µe(ae) and, therefore, νe,f (µe(a)) = µf (a) for all

e ≤ f in Ǐ. Given a subset of J ⊂ Ǐ, suppose that µe(a) 6= 0 for all e ∈ J . Then a 6∈ peA for all

e ∈ Ǐ. By Lemma 1.6.3, one has pf =
⋃
e∈J pe, where f = inf(J). It follows that, if µf (a) = 0,

then a ∈ pfA and, therefore, a ∈ peA for some e ∈ J , which is impossible. Thus, the image of
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A in the direct product lies in the disconnected sum. Injectivity of the homomorphism considered

follows from Lemma 1.6.2(ii). Finally, let (ae)e∈Ǐ be an element from the disconnected sum. By

the property (2), there exists a unique minimal e ∈ Ǐ with ae 6= 0. Let a be a preimage of ae in A.

It is easy to see that the tuple considered is the image of the element ae.

Let F1-Algafid denote the category of pairs (A, I) consisting of an F1-algebra A and an almost

finite idempotent F1-subalgebra I ⊂ A. Let also Dsdnoet denote the full subcategory of Dsd

consisting of the disconnected sum data {Ǐ , Ai, νij} with noetherian inf-poset Ǐ. Lemma 1.6.5 and

Proposition 3.4.6 imply the following fact.

3.4.7. Corollary. (i) The correspondence {Ǐ , Ai, νij} 7→ (A, I) with A =
∐ν
Ǐ Ai and I =

{0} ∪ Ǐ gives rise to an equivalence of categories Dsdnoet
∼→ F1-Algafid;

(ii) the above functor induces an equivalence between the full subcategory of Dsdnoet consisting

of {Ǐ , Ai, νij} such that all of the spectra Fspec(Ai) are connected and the category of F1-algebras

A with almost finite idempotent F1-subalgebra IA;

(iii) the above functor induces an equivalence between the full subcategory ofDsdnoet consisting

of {Ǐ , Ai, νij} with finite Ǐ and local artinian Ai’s and the category of artinian F1-algebras.

Let {Ǐ , Ai, νij} be a disconnected sum datum, and suppose we are given homomorphisms of

F1-algebras αi : B → Ai with the following properties:

(1) if i ≤ j and b ∈ Bi are such that αi(b) 6= 0, then νij(αi(b)) = αj(b);

(2) given a subset J ⊂ Ǐ and b ∈ B such that αi(b) 6= 0 for all i ∈ J , then αmin(J)(b) 6= 0.

3.4.8. Proposition. In the above situation, the following is true:

(i) there is a unique structure of a B-algebra on A =
∐ν
Ǐ Ai, which is compatible with those

on Ai’s;

(ii) if the set Ǐ is finite and all Ai are finite (resp. finitely generated) B-algebras, then so is A.

Proof. (i) The properties (1)-(2) imply that, for every element b ∈ B, the tuple (αi(b)) belongs

to A, and it is easy to see that the map B → A : b 7→ (αi(b)) is a homomorphism which defines the

required structure of a B-algebra on A.

(ii) It is enough to notice that the images of elements of Ai’s that generate them as a B-module

(resp. B-algebra) generate A also as a B-module (resp. B-algebra).

3.4.9. Remark. It is not true in general that, for a disconnected sum datum {Ǐ , Ai, νij}

with Zariski artinian idempotent F1-algebra I = {0} ∪ Ǐ and local artinian F1-algebras Ai, the

disconnected sum A =
∐ν
Ǐ Ai is Zariski artinian. Indeed, let Ǐ be the poset {−∞, . . . ,−2,−1}.
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The corresponding idempotent F1-algebra I = {0, e−∞ = 1, . . . , e−2, e−1} with e−ie−j = e−min(i,j)

is Zariski artinian. For n ≥ 1, let A−n be the quotient of F1[T ] by the Zariski ideal generated by

Tn (which is a local artinian F1-algebra) and, for m ≥ n, let ν−m,−n be the canonical surjective

homomorphism A−m → A−n. We also set A−∞ = F1 and, for n ≥ 1, denote by ν−∞,−n the canon-

ical homomorphism A−∞ → A−n. Then {Ǐ , Ai, νij} is a disconnected sum datum. Furthermore,

for n ≥ 1, let an be the Zariski ideal of A =
∐ν
Ǐ with elements of the form ν−m(tk) with m ≥ k ≥ n

(t is the image of T in A−m). Then the descending chain of Zariski ideals a1 ⊃ a2 ⊃ . . . does not

stabilize.

3.5. Disconnected sums of A-modules. Let A be an F1-algebra.

3.5.1. Definition. A map of A-modules ϕ : M → N is said to be a quasi-homomorphism if

it takes 0M to 0N and possesses the following property: if am 6= 0 for a ∈ A and m ∈ M , then

ϕ(am) = aϕ(m).

For example, let P ⊂ Q be Zariski A-submodules of M . Then the map M → M that takes

an element m 6∈ Q to m and all elements from Q to zero gives rise to a quasi-homomorphism

M/Q→M/P .

3.5.2. Definition. A disconnected sum datum (of A-modules) is a tuple {Ǐ ,Mi, νij} con-

sisting of an inf-poset Ǐ, a system of A-modules {Mi}i∈Ǐ and, for every pair i ≤ j in Ǐ, a quasi-

homomorphism νij : Mi →Mj , which possesses the properties (0)-(2) of Definition 3.4.3.

Given a disconnected sum datum of A-modules {Ǐ ,Mi, νij}, let
∐ν
Ǐ Mi denote the subset of∏

i∈ǏMi consisting of the tuples (mi)i∈Ǐ possessing the properties (a) and (b) from the construction

of the disconnected sum of F1-algebras. For i ∈ Ǐ and m ∈ Mi, let also νi(m) be the element of∏
i∈ǏMi with j’s component νij(m), if i ≤ j, and 0, otherwise. It is easy to see that M =

∐ν
Ǐ Mi is

an A-submodule of
∏
i∈ǏMi, and one has νi(Mi) ⊂M , M =

⋃
i∈Ǐ νi(Mi), and νi(Mi)∩νj(Mj) = 0

for all i 6= j.

3.5.3. Examples. (i) Suppose that A =
∐ν
Ǐ Ai for a disconnected sum datum of F1-algebras

{Ǐ , Ai, νij}. If i ≤ j in Ǐ, the quasi-homomorphisms νij induces a quasi-homomorphism νij :

Mi = M ⊗A Ai → Mj = M ⊗A Aj . Then the tuple {Ǐ ,Mi, νij} is a disconnected sum datum

of A-modules, and there is a canonical isomorphism M
∼→
∐ν
Ǐ Mi. Indeed, verification of the

property (1) of Definition 3.4.3 is trivial. Furthermore, by Proposition 3.4.4, one can identify

the set I = Ǐ ∪ {0} with an idempotent F1-subalgebra of A and, by Lemma 1.6.1(i), if i ∈ Ǐ

corresponds to an idempotent e, one has Mi = M (e) = Me/peMe, where Me is the localization of
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M with respect to e. Suppose that e ≤ f = inf{gj}j∈J for a subset J ⊂ Ǐ and that the image of

an element m ∈ Me in M (f) is zero, i.e., m ∈ pfMf . Since pf =
⋃
j∈J pgj , it follows that there

exists j ∈ J with m ∈ pgjMgj . This implies the property (2) of Definition 3.4.3, i.e., {Ǐ ,Mi, νij}

is a disconnected sum datum. That the image of the map M →
∏
i∈ǏMi coincides with

∐ν
Ǐ Mi is

trivial. That this map is injective follows from Lemma 1.6.1(ii).

(ii) Suppose that an A-module M is a direct sum of a family of Zariski A-submodules {Mi}i∈Ǐ .

We provide Ǐ with the structure of an inf-poset (e.g., by providing it with the structure of a well

ordered set). For i ≤ j in Ǐ, let νij be the zero homomorphism Mi → Mj . Then {Ǐ ,Mi, νij} is a

disconnected sum datum of A-modules, and one has M
∼→
∐ν
Ǐ Mi.

§4. Affine schemes over F1

4.1. Affine schemes and weak open affine subschemes. The category of affine schemes

over F1 is, by definition, the category AschF1 anti-equivalent to the category of F1-algebras. We

refer to an affine scheme X = Fspec(A) by the letter X . We also set IX = IA. We call X decom-

posable, weakly decomposable, reduced, integral, quasi-integral, irreducible, idempotent, noetherian,

Zariski noetherian, artinian, or finitely presented over an F1-field K if the F1-algebra A possesses

the corresponding property.

4.1.1. Definition. An open subset U of an affine scheme X = Fspec(A) is said to be a weak

open affine subscheme if there is a homomorphism of F1-algebras A→ AU such that

(1) the image of Fspec(AU ) in X lies in U ;

(2) any homomorphism of F1-algebras A→ B such that the image of Fspec(B) in X lies in U

goes through a unique homomorphism AU → B.

For a subset U ⊂ X , we set I(I) = {p ∈ Zspec(A)
∣∣X̌p ∩ U 6= ∅}.

4.1.2. Lemma. Let U be a weak open affine subscheme of X . Then

(i) the homomorphism A→ AU is unique up to a unique isomorphism;

(ii) the map Fspec(AU ) → U is bijective, and κ(x)
∼→ κ(y) for every point x ∈ U , where y is

its preimage in Fspec(AU );

(iii) the map Zspec(AU )→ Zspec(A) is injective, and its image coincides with I(U);

(iv) X̌p ⊂ U for every p ∈ I(U), and inf(J) ∈ I(U) for every subset J ⊂ I(U);

(v) for any weak open affine subscheme V ⊂ X , the intersection U ∩ V is a weak open affine

subscheme with respect to the homomorphism A→ AU ⊗A AV ;
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(vi) if the map Fspec(AU )→ U is a homeomorphism, then for any weak open affine subscheme

V of Fspec(AU ) its image in X is a weak open affine subscheme;

(vii) for any morphism of affine schemes ϕ : Y = M(B) → X , ϕ−1(U) is a weak open affine

subscheme of Y with respect to the homomorphism B → B ⊗A AU .

Proof. The statements (i) and (v)-(vii) are trivial.

(ii) By the property (2), the homomorphism A→ κ(x) goes through a unique homomorphism

AU → κ(x), and so x is the image of a unique point y ∈ Fspec(AU ), and κ(x)
∼→ κ(y).

(iii) and (iv). That the image of Zspec(AU ) coincides with I(U) follows from (ii). We claim

that X̌p ⊂ U for every p ∈ I(U). Indeed, from (vii) it follows that X̌p ∩ U is a weak open affine

subscheme of X̌p = Fspec(κ(p)). We may therefore assume that A is an F1-field. Let G be the

kernel of the homomorphism A∗ → A∗U . Then the set U consists of the points that correspond

to the subgroups of A∗ which contain G. It follows that the set U is closed. Since Fspec(A) is

irreducible, this implies that G = {1}, and the claim follows. The remaining statements easily

follow.

4.1.3. Lemma. (i) For an element f ∈ A, the set D(f) = {x ∈ X
∣∣f(x) 6= 0} is a weak

open affine subscheme (called a principal open subset), and it corresponds to the homomorphism

A→ Af ;

(ii) there is a bijection between the set of nonempty principal open subsets of X and the set

of Zariski prime ideals p ⊂ A with the property that Ap = Af for some f ∈ A.

4.1.4. Remark. (i) For a principal open subset the map from Lemma 4.1.2(ii) is a homeo-

morphism.

(ii) The map in the statement (ii) takes an element f ∈ A to the maximal Zariski ideal that

does not contain any positive powers of f .

(iii) If the Zariski spectrum Zspec(A) is finite (e.g., A is finitely generated over an F1-field),

then image of the map in (ii) coincides with Zspec(A).

Proof. The statement (i) is trivial.

(ii) Let p be the maximal Zariski ideal of A that does not contain any positive powers of an

element f ∈ A. (It is a Zariski prime ideal of A.) For any element g ∈ A\p, the Zariski ideal

generated by p and g contains a power of f , i.e., gh = fn for some h ∈ A and n ≥ 1. It follows

that 1
g = h

fn , i.e., Ap = Af . Since Fspec(Ap) = D(f), the map considered is bijective.

4.1.5. Lemma. Suppose that A is an idempotent F1-algebra. Then

69



(i) for any finitely generated ideal E of A, the set U = {x ∈ X
∣∣e(x) = f(x) for all (e, f) ∈ E}

is a weak open affine subscheme, and it corresponds to the homomorphism A→ A/E;

(ii) every weak open affine subscheme of X is of the form (i).

Proof. (i) By the assumption, the set U is a finite intersection of sets of the form X (e, f) =

{x ∈ X
∣∣e(x) = f(x)}. Since X (e, f) = (D(e, 0) ∩D(f, 0)) ∪ (D(e, 1) ∩D(f, 1)) is an open set, U is

open in X . Furthermore, suppose we are given a homomorphism ϕ : A → B to an F1-algebra B

such that the image of Y = Fspec(B) in X lies in U . Then, given a pair of idempotents (e, f) ∈ E,

one has ϕ(e)(y) = ϕ(f)(y) for all y ∈ Y. It follows that ϕ(e) = ϕ(f). Thus, the homomorphism ϕ

goes through a unique homomorphism A/E → B.

(ii) The set U is open and, by Lemma 4.1.2(ii), it is compact and, therefore, it is also closed.

Since U is preserved by the infimum operation, Proposition 3.1.4(iii) implies that it is of the form

Fspec(A/E) for some ideal E of A. The statement (v) of the same proposition then implies that

the ideal E is finitely generated, i.e., U is of the form (i).

Lemma 4.1.5 implies that, for an arbitrary F1-algebra A and a finitely generated ideal E

of the idempotent subalgebra IA of A the set X (E) = {x ∈ X
∣∣e(x) = f(x) for all (e, f) ∈ E}

is a weak open affine subscheme (called an idempotent open subset), and it corresponds to the

homomorphism A→ A(E) = A/F , where F is the ideal of A generated by E. Notice that the map

Fspec(A(E))→ X (E) is a homeomorphism.

4.2. Elementary open subsets and elementary families.

4.2.1. Definition. An open subset of X = Fspec(A), which is an idempotent open subset of

a principal open subset D(f) associated to a finitely generated Zariski ideal a ⊂ IAf , is said to be

elementary.

Lemma 4.1.2(v) implies that every elementary open subset of X is a weak open affine sub-

scheme, and Theorem 3.3.1 implies that, if X is connected, then any elementary open subset that

has a nonempty intersection with Xm coincides with X . If X is idempotent, elementary open

subsets are also closed subsets, and they form a basis of topology of X . Notice also that, given a

morphism of affine schemes ϕ : Y =M(B)→ X , the preimage of an elementary open subset of X

is an elementary open subset of Y.

4.2.2. Proposition. Let U be a nonempty elementary open subset of X , and let D(f) and

a be the corresponding principal open subset of X and Zariski ideal of Af from Definition 4.2.1.

Then
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(i) D(f) is a unique minimal principal open subset that contains U , a = {e ∈ IAf
∣∣e ∈ pAf for

all p ∈ I(U)}, and I(U) = {p ∈ Zspec(A)
∣∣f 6∈ p and p ⊃ a} (we set DU = D(f), p(U) = p(DU ), and

aU = a);

(ii) if U ∩ V 6= ∅ for an elementary open subset V of X , then U ∩ V is an elementary open

subset, p(U∩V) = sup(p(U), p(V)) and aU∩V = aUIDU∩V ∩ aVIDU∩V ;

(iii) if V is an elementary open subset of U , then it is an elementary open subset of X ;

(iv) if U is closed in X , then it is the preimage of an elementary open subset of Fspec(IA).

Proof. (i) We claim that Um = D(f)m. Indeed, if the sets considered do not coincide, they

are disjoint. This implies that some idempotent from a does not vanish at D(f)m and, therefore,

it does not vanish at all points of D(f), which contradicts nonemptyness of U . It follows that the

preimage of mAf in A (i.e., p(D(f))) coincides with the preimage of mAU in A, and the minimality

property of D(f) follows. Furthermore, let e ∈ IAf . If e ∈ a, it is clear that e ∈ p for all

p ∈ I(U). Conversely, if e ∈ p for all p ∈ I(U), then e
∣∣
U = 0, i.e., e lies in the Zariski kernel of

the homomorphism Af → AU , which coincides with the Zariski ideal of Af generated by a. The

inclusion e ∈ a then follows from Corollary 1.6.2(iii). Finally, suppose a Zariski prime ideal p ⊂ Af
contains a. Then e

∣∣
X̌p

= 0 for all e ∈ a, i.e., p ∈ I(U).

(ii) Suppose that V is an idempotent open subset of a principal open subset D(g) associated

to a finitely generated Zariski ideal b ⊂ IAg , and let c be the Zariski ideal of IAfg generated by

the images of a and b. Then U ∩ V = {x ∈ X
∣∣(fg)(x) 6= 0 and e(x) = 0 for all e ∈ c} and, in

particular, U ∩ V is an elementary open subset. Since the latter set is nonempty, it follows that

it contains the set D(fg)m. This implies the required equalities. It remains to notice that, since

U ∩ V is a weak open affine subscheme, it is quasicompact, and this easily implies that the Zariski

ideal aU∩V of IDU∩V is finitely generated.

The statement (iii) follows from (i).

(iv) That U is the preimage of an open-closed subset U ′ of Fspec(IA) follows from Theorem

3.3.1(i). It is also clear that U ′ is the image of U in Fspec(IA). Let r be the maximal Zariski ideal

of IA that does not contain any powers of f , i.e., r = p(U) ∩ IA, and let q be the maximal Zariski

ideal q of A with q∩ IA = r. Then p(U) and q are the maximal Zariski prime ideals p of A for which

X̌p has a nonempty intersection with U and the preimage of U ′, respectively. Since both coincide,

it follows that p(U) = q. Furthermore, since Π(r) = Πr ∈ U ′, Proposition 3.1.3 implies that r = pe

for some element e ∈ IA\r. It follows that the principal open subset D(e) of X coincides with D(f).

Finally, the canonical homomorphism of idempotent F1-algebras IA → IAf = IAe is surjective and

its kernel is the ideal generated by the pair (e, 1). Let e1, . . . , en be elements of IA whose images in

71



IAf generate the Zariski ideal a. Then U ′ = {x ∈ Fspec(IA)
∣∣e(x) = 1 and e1(x) = . . . = en(x) = 0}

and, therefore, U ′ is an elementary open subset of Fspec(IA). The required statement follows.

We will denote the principal open subset D(f) and the Zariski ideal a of an elementary open

subset U by DU and aU , respectively. Given elementary open subsets U and V, we write U ≤ V if

DU ⊃ DV .

4.2.3. Definition. An elementary family is a finite family S of pairwise disjoint open subsets

of X such that the above partial ordering makes S an inf-poset with the following property: if

W = inf(U ,V) in S, then for every idempotent e ∈ aW one has either e
∣∣
U = 0, or e

∣∣
V = 0.

4.2.4. Example. Let I be a finite F1-subalgebra of IX = IA. Then the family of fibers of the

canonical map X → Fspec(I) is an elementary family with S isomorphic to the poset Ǐ. Indeed, the

preimage of the prime ideal Πe for e ∈ Ǐ is the elementary set V(e) defined by the equalities e(x) = 1

and f(x) = 0 for f ∈ pe = {f ∈ I
∣∣f 6≤ e}, i.e., DV(e) = D(e) and aV(e) = peAe = mAe . One has

V (e) ≤ V(f) if and only if D(e) ⊃ D(f), i.e., e ≤ f . If g = inf(e, f), then V(g) = inf(V(e),V(f))

and, since pg = pe ∪ pf , for every e ∈ aV(g) one has either e
∣∣
V(e) = 0, or e

∣∣
V(f) = 0. We say that

the elementary family S is associated to I. Notice that, if the whole idempotent F1-subalgebra IX

is finite, the elementary family associated to it is the family of connected components of X .

4.2.5. Proposition. Let S be an elementary family of open subsets of X , and let W =

inf(U ,V) in S. Then

(i) for every pair p ∈ I(U) and q ∈ I(V), one has inf(p, q) ∈ I(W);

(ii) if U 6≤ V, then DU ∩ V = ∅;

(iii) for any elementary family T on X , the family of nonempty intersections U ∩V with U ∈ S

and V ∈ T is an elementary family;

(iv) for any morphism ϕ : Y = M(B) → X , the family of nonempty open subsets U ′ ⊂ Y of

the form ϕ−1(U) with U ∈ S is an elementary family of open subsets of Y;

(v) if sets from S cover the whole space X , then S is associated to a finite idempotent F1-

subalgebra of A.

Proof. (i) If e ∈ aW , then either e
∣∣
DU
∈ aU , or e

∣∣
DV
∈ aV and, therefore, either e

∣∣
DU
∈ pADU ,

or e
∣∣
DV
∈ qADV . It follows that e ∈ (p∪ q)ADW , and Proposition 4.2.2(i) implies the required fact.

(ii) Assume that the statement is not true. If DU = D(f) and DV = D(g) for some f, g ∈ A,

then DU ∩ V ⊂ D(fg) 6= ∅. Since every idempotent from aV equals to zero at DU ∩ V, it follows

that it equals to zero at D(fg)m, i.e., D(fg)m ⊂ V. Recall that for every e ∈ aW one has either
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e
∣∣
U = 0, or e

∣∣
V = 0. In the latter case it follows that e equals to zero at D(fg)m and, therefore, it

equals to zero at D(f)m ⊂ U . This implies that D(f)m ⊂ U ∩W, which is impossible.

(iii) Let R denote the family considered. Suppose that U1 ∩ V1 6= ∅ and U2 ∩ V2 6= ∅ for some

U1,U2 ∈ S and V1,V2 ∈ T , and set W1 = inf(U1,U2) and W2 = inf(V1,V2). Since p(Ui∩Vi) ∈

I(Ui) ∩ I(Vi) for i = 1, 2, the statement (i) implies that inf(p(U1∩V1), p(U2∩V2)) ∈ I(W1) ∩ I(W2).

It follows that the intersection W1 ∩ W2 is nonempty and coincides with inf(U1 ∩ V1,U2 ∩ V2) in

R. Furthermore, Proposition 4.2.2(ii) implies that, for every e ∈ aW1∩W2 , one has e = e1f1 = e2f2,

where ei ∈ IDWi and fi ∈ IDW1∩W2
. By Definition 4.2.3, one has either e1

∣∣
U1

= 0 or e1

∣∣
U2

= 0, and

either e2

∣∣
V1

= 0 or e2

∣∣
V2

= 0. This implies that either e
∣∣
U1∩V1

= 0, or e
∣∣
U2∩V2

= 0 and, therefore,

R is an elementary family.

(iv) Let U ′ and V ′ be sets from the from the family T considered. It is easy to see that U ′ ≤ V ′

if and only if U ≤ V, and so the partial ordering on T is induced by that on S. To show that it

admits the infimum operation, we have to verify that the preimage W ′ of W = inf(U ,V) in Y is

nonempty. For this we notice that, if p′ ∈ I(U ′) and q′ ∈ I(V ′), then for their images in Zspec(A)

one has p ∈ I(U) and q ∈ I(V), and (i) implies that r = inf(p, q) = p ∪ q ∈ I(W). Since r is

the image of the Zariski prime ideal r′ = inf(p′, q′), it follows that r′ ∈ I(W ′) and, in particular,

W ′ 6= ∅. The required property of aW′ from Definition 4.2.3 easily follows.

(v) Notice that every set U ∈ S is closed. Proposition 4.2.2(iv) implies that U is the preimage

of an elementary open subset of Fspec(IA), i.e., U = {x ∈ X
∣∣e(x) = 1 and f(x) = 0 for all f ∈ a},

where e = eU ∈ IA and a is a finitely generated Zariski ideal of IA. We claim that I = {0}∪{eU
∣∣U ∈

S} is an F1-subalgebra of IA. Indeed, let U ,V ∈ S. Then D(eU )∩D(eV) = D(eUeV). The latter is

nonempty if and only if f = eUeV 6= 0. To show that f ∈ I, we may assume that f 6= 0, eU , eV and,

in particular, U 6≤ V and V 6≤ U . Since DU∩V = ∅ and DV∩U = ∅, it follows that Πf 6∈ U∪V and, in

particular, f
∣∣
U = 0 and f

∣∣
V = 0. Let W ∈ S contain Πf . Assume that U 6≤ W. Since DU ∩W 6= ∅,

it follows that W < U and, therefore, f
∣∣
W = 0, which contradicts the inclusion Πf ∈ W. Thus,

U ≤ W. For the same reason, one has V ≤ W and, therefore, W ⊂ D(eU ) ∩ D(eV) = D(f). It

follows that eW = f and, in particular, f ∈ I. It remains to notice that every U ∈ S coincides with

the open set {x ∈ DU
∣∣eV(x) = 0 for all V < U in S}, i.e., with the fiber of the map X → Fspec(I)

over ΠeU .

4.2.6. Proposition. Every open covering of X by elementary open subsets admits a refine-

ment which is an elementary family associated to a finite idempotent F1-subalgebra of A.

Proof. Let U = {Ui}i∈I be such a covering. The covering U has a refinement which is the
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preimage of an elementary family of open subsets of Fspec(IA). Indeed, since X is quasicompact,

we may assume that U is finite, i.e., I = {1, . . . , n}, and we may assume that Xm ⊂ U1. Then U1

is defined by equalities e1(x) = . . . = ek(x) = 0 with e1, . . . , ek ∈ IA. The claim is trivial if n = 1

or k = 0. Suppose that n ≥ 1 and k ≥ 1 and that the claim is true for all coverings in which

one of these numbers is strictly smaller. Then X = X ′
∐
X ′′, where X ′ = {x ∈ X

∣∣e1(x) = 0} and

X ′′ = {x ∈ X
∣∣e1(x) = 1}. For the covering U ∩X ′ = {Ui∩X ′}1≤i≤n of X ′, the set U1∩X ′ is defined

by the equalities e2(x) = . . . = en(x) = 0, and one has X ′′ ⊂
⋃n
i=2 Ui. Since the homomorphism

IA → IX ′ = IA/eIA and IA → IX ′′ = (IA)e are surjective, the claim follows from the induction

hypothesis applies to X ′ and X ′′.

The previous claim reduces the situation to the case when A is an idempotent F1-algebra. In

this case, we notice that each of the elementary open subset Ui is defined by a finite number of

elements from A. Let A′ be the F1-subalgebra of A generated by all such idempotents. Then A′

is finite, and the covering U is the preimage of a family U ′ of X ′ = Fspec(A′) by elementary open

subsets of X ′. Since the map X → X ′ is surjective, it follows that U ′ is a covering of X ′. The

covering of X ′ by its points is an elementary family which is a refinement of U ′. This implies the

required fact.

4.3. Open affine subschemes. Let X = Fspec(A) be an affine schemes over F1.

4.3.1. Definition. An open affine subscheme of X is an open subset which admits a covering

by an elementary family of open subsets.

The following statement easily follow from the properties of elementary families established in

the previous subsection.

4.3.2. Proposition. Let U be an open affine subscheme of X . Then

(i) for any open affine subscheme V, the intersection U ∩ V is an open affine subscheme;

(ii) for any morphism ϕ : Y → X , the preimage ϕ−1(U) is an open affine subscheme of Y;

(iii) there exists a finitely generated F1-subalgebra A′ of A such that U is the preimage of an

open affine subscheme of Fspec(A′);

(iv) if U is closed in X , it is the preimage of an open affine subscheme of Fspec(IA).

4.3.3. Example. Every idempotent open subset U of X is an open affine subscheme. Indeed,

by Lemma 4.1.5 one has U = Fspec(A/E), where E is a finitely generated ideal of the idempotent

F1-subalgebra IA. This reduces the situation to the case when A is an idempotent F1-algebra.

Furthermore, we can find a finite F1-subalgebra A′ of A such that E is a generated by an ideal E′
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of A′. This reduces the situation to the case when A is a finite idempotent F1-algebra. In this case

the claim follows from Proposition 3.1.4(iii).

4.3.4. Theorem. Every open affine subscheme U of X is a weak open affine subscheme.

Proof. (i) Let S be an elementary family of open subsets that cover U . If V ≤ W in S, then

the map ADV → ADW , that takes all elements from aVADV to zero and every element a 6∈ aVADV to

a
∣∣
DW

gives rise to a quasi-homomorphism νVW : AV → AW . We claim that the triple {S,AV , νVW}

is a disconnected sum datum. Indeed, validity of the properties (0) and (1) of Definition 3.4.3 is

trivial. Suppose we are given elementary open subsets Y < Z = inf(V,W) in S and an element

a ∈ AY with νYV(a) 6= 0 and νYW(a) 6= 0. We have to verify that νYZ(a) 6= 0. For this we may

assume that a is an element in ADY\aYADY . The assumption mean that a
∣∣
V 6= ∅ and a

∣∣
W 6= ∅. If

νYZ(a) = 0, then a
∣∣
DZ

= eb for some e ∈ aZ and b ∈ ADZ . By Definition 4.2.3, this implies that

either e
∣∣
V = 0, or e

∣∣
W = 0, which contradicts the assumption.

As above, one verifies that the image of the canonical homomorphism A →
∏
V∈S AV lies

in
∐ν
S AV . We claim that U is an open affine subscheme with AU =

∐ν
S AV . Indeed, it is clear

that the canonical homomorphism A → AU induces a homeomorphism Fspec(AU )
∼→ U . Let

ϕ : X ′ = Fspec(A′) → X be a morphism of affine schemes whose image lies in U . It follows from

Proposition 4.2.3(iii) and (iv) that the family S′ of non-empty open subsets V ′ of the form ϕ−1(V)

with V ∈ S is an elementary family which is associated to a finite idempotent F1-subalgebra I ′.

In particular, there is an isomorphism of F1-algebras A′
∼→
∐ν
S′ A

′
V′ . By the construction, the

morphism ϕ gives rise to a morphism of disconnected sum data {S,AV , νVW} → {S′, A′V′ , νV′W′}

which induces the required homomorphism AU → A′.

The statement (ii) easily follows from Proposition 4.2.2(iii) and Definition 4.2.3.

4.3.5. Corollary. In the situation of Theorem 4.3.4, if V is an open affine subscheme of U ,

then it is an open affine subscheme of X .

4.3.6. Theorem. Suppose that X is weakly decomposable. Then the following properties of

an open subset U ⊂ X are equivalent:

(a) U is an open affine subscheme;

(b) U is a weak open affine subscheme;

(c) for every pair p, q ∈ I(U), one has inf(p, q) ∈ I(U) and X̌p ⊂ U .

Proof. The implications (a)=⇒(b) and (b)=⇒(c) follow from Theorem 4.3.4 and Lemma

4.1.2(iv), respectively, and so it remains to verify the implication (c)=⇒(a). Notice that there is a

unique maximal Zariski prime ideal p with X̌p ⊂ U , and Proposition 3.1.3 implies that Ap = Af
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for some f 6∈ p.

Step 1. If X is irreducible, U is a principal open subset. Indeed, by the above remark it suffices

to verify that U = Fspec(Ap), i.e., if q is a Zariski prime ideal with p ≤ q (i.e., q ⊂ p), then X̌q ⊂ U .

Irreducibility of X implies that, for every Zariski prime ideal q ⊂ A, one has X (q) = Xq. Thus, if

q ⊂ p, then Xp ⊂ Xq and, therefore, X (p) ⊂ X (q). Since X̌p ⊂ U and the set U is open, it follows

that the intersection X̌q ∩ U is nonempty and, therefore, X̌q ⊂ U .

Step 2. U contains the minimal connected component of D(f). Indeed, replacing X by D(f),

we may assume that Xm ⊂ U . Let V be the minimal connected component of X . By Corollary

3.3.4, for any q ∈ I(V) there exists a chain of Zariski prime ideals p0 = m ≤ p1 ≤ . . . ≤ pn = q

such that X (pi) ∩ X (pi+1) 6= ∅ for all 0 ≤ i ≤ n− 1. We have X (p0) ⊂ V. Suppose that X (pi) ⊂ U

for some 0 ≤ i ≤ n− 1. By Lemma 3.3.2(ii), one has X (pi) ∩ X (pi+1) = Fspec(A(pi+1)/a), where a

is the image of pi in A(pi+1). Since the Zariski ideal a is nontrivial, it is contained in the maximal

Zariski ideal of A(pi+1) and, therefore, the above intersection contains (X (pi+1))m. It follows that

the latter lies in U and, therefore, X (pi+1) ⊂ U .

Step 3. U is an open affine subscheme. By Step 2, the claim is true if U is connected. Suppose

that U is not connected and that the claim is true for open subsets with the property (c) and the

number of connected components strictly less than that of U . By Step 3, we may replace X by

D(f) and assume that the minimal connected component V of X lies in U . Let W be a connected

component of U different from V. Then there exists a nontrivial idempotent e ∈ IA which equals

to one at W, and X is a disjoint union of the idempotent open subsets X ′ = {x ∈ X
∣∣e(x) = 0}

and X ′′ = {x ∈ X
∣∣e(x) = 1}. The intersections U ′ = U ∩ X ′ and U ′′ = U ∩ X ′′ are unions of

connected components of U and, by induction, they are open affine subschemes of X . In particular,

the connected components of U are elementary open subsets of X , and there is a partial ordering

of the set π0(U) of all of them. Finally, let W1 and W2 be connected components of U different

from V. If there exists a nontrivial idempotent e ∈ IA which is equal to zero at both W1 and W2,

then applying the induction hypothesis to the idempotent open subset {x ∈ X
∣∣e(x) = 0}, we get

the required property of Definition 4.2.3 for the infimum of W1 and W2. Assume therefore that

each nontrivial idempotent from IA equals to one at least at one of them. We then claim that

V = inf(W1,W2). Indeed, ifW ≤W1 andW2 ≤ W2 for someW different from V, then there exists

a nontrivial idempotent equal to zero atW and, therefore, at nothW1 andW2 which contradicts the

assumption. Thus, V = inf(W1,W2). It remains to notice that V is the only connected component

of X at which all nontrivial idempotents equal to one. Together with the above assumption this

implies that each of those idempotents equal to zero at W1 or at W2.
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4.3.7. Proposition. Let Σ be a subset of an open scheme X , and suppose that there exists

a covering {Ui}i∈I by open affine subschemes such that, for every i ∈ I, Σ∩ Ui is a strongly closed

subset of Ui. Then Σ is a strongly closed subset of X .

Proof. By Proposition 4.2.6, we may replace the covering by a refinement and assume that

the covering is finite and all Ui’s are pairwise disjoint elementary open subsets. In this case they

are idempotent open subsets, and so every strongly closed subset of each Ui is a strongly closed

subset of X . This implies the required fact.

4.4. Properties of open affine subschemes. Let X = Fspec(A) be an affine scheme over

F1, and let U be an open affine subscheme of X .

4.4.1. Proposition. If A is an integral domain (resp. reduced), then so is AU .

Proof. If A is integral, then U is a principal open subset and, therefore, AU is also integral.

Suppose that A is reduced. Since AU is a disconnected sum coproduct taken over elementary open

subsets from an elementary family that covers U , in order to show that AU is reduced, we may

assume that U is an elementary open subset. Replacing X by a principal open subset, we may

assume that AU is the quotient of A by a finitely generated Zariski ideal of IA. It suffices to show

that, if an F1-algebra A is reduced, then for any idempotent e ∈ A, the quotient A/Ae has no

nilpotent elements. Suppose that the image of an element f ∈ A in A/Ae is nilpotent, i.e., fn = ea

for f, a ∈ A and n ≥ 1. Then fn+i = eaf i = (fe)n+i for all i ≥ 0. This means that (f, fe) ∈ zn(A).

Since A is reduced, it follows that f = fe, i.e., the image of f in A/Ae is zero.

4.4.2. Proposition. Let ϕ : Y = Fspec(B)→ X be a morphism which is a homeomorphism

between the underlying topological spaces. Then the correspondence U 7→ ϕ−1(U) gives rise to a

bijection between the families of open affine subschemes of X and of Y.

Proof. Corollary 3.1.2(ii) the map Zspec(B) → Zspec(A) induced by the morphism ϕ is an

isomorphism of posets. This implies that the correspondence considered gives rise to an injective of

the family of principal open subsets of X to that of Y. If q is a Zariski prime ideal of B such that

Bq = Bg for some g ∈ B\q, then the set Fspec(Bq) is open in Y. It follows that, if p is the image of

q in Zspec(A) then Fspec(Ap) which is the image of Fspec(Bq) is open in X , and Proposition 3.1.3

implies that Ap = Af for some f ∈ A\p, i.e., the above injective map is a bijection. Furthermore,

the morphism ϕ induces a homemorphism π0(Y)
∼→ π0(X ) and, by Theorem 3.3.1, it induces a

homeomorphism Fspec(IB)
∼→ Fspec(IA). Proposition 3.1.4 then implies that ϕ induces a bijection

between finitely generated Zariski ideals of IA and IB . This implies that the same is true for the
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principal open subsets of both affine schemes. Thus, ϕ induces a bijection between elementary open

subsets of both affine schemes. This easily implies the required fact.

4.4.3. Proposition. The following properties of an open affine subscheme U ⊂ X are

equivalent:

(a) the homomorphism A→ AU is surjective;

(b) U is an idempotent open subset of X .

Proof. The implication (b)=⇒(a) is trivial. Suppose (a) is true. Then the open affine

subscheme U is a closed subset and, by Proposition 4.3.2(iv) it is the preimage of an open affine

subscheme of Fspec(IA). This implies that U is an idempotent open subset.

For an open affine subscheme U ⊂ X = Fspec(A), let A(U) denote the localization of A with

respect to the monoid of elements of A that do not vanish at any point of U . It is clear that the

canonical homomorphism A→ AU goes through a homomorphism A(U) → AU .

4.4.4. Corollary. The following properties of an open affine subscheme U ⊂ X are equivalent:

(a) the homomorphism A(U) → AU is surjective;

(b) U is an idempotent open subset of a principal open subset of X .

Proof. The implication (b)=⇒(a) is trivial. Suppose (a) is true, and let D(f) be the minimal

principal open subset of X that contains U . Replacing X by D(f), we may assume that U contains

the minimal connected component of X and, in particular, Xm ⊂ U . The latter implies that an

element of A that does not vanish at any point of U is invertible, i.e., A
∼→ A(U). Corollary 4.4.3

now implies that U is an idempotent open subset of X .

Notice that, if X is irreducible, every open affine subscheme is a principal open subset. There

is a broader class of affine schemes which possess the latter property.

4.4.5. Definition. An affine scheme X = Spec(A) (or the F1-algebra A) is said to be

quasi-irreducible if, for every Zariski prime ideal p ⊂ A such that Fspec(A/Πp) is an irreducible

component of X , A/p is an integral domain (and, in particular, A/p = A/Πp).

For example, if A is the quotient of an integral F1-algebra by a Zariski ideal, then X is quasi-

irreducible. Notice that, if X is quasi-irreducible, then the quotient A/p is an integral domain for

all Zariski prime ideals p ⊂ A.

4.4.6. Proposition. Suppose that X is quasi-irreducible. Then

(i) every open affine subscheme of X is a connected principal open subset;
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(ii) if B is a finitely generated A-algebra such that the homomorphism A → B is injective,

then Ap = Af for p = mB ∩A and some f ∈ A\p and the image of Zspec(B) in Zspec(A) coincides

with Zspec(Ap);

(iii) if, in addition to (ii), Y = Fspec(B) is also quasi-irreducible, then the image of Y in X

coincides with D(f).

Proof. (i) It suffices to show that every nonempty principal open subset D(f) is connected.

Let p be the maximal Zariski prime ideal that does not contain any powers of f . Then D(f)∩X (p)

is nonempty and connected. Let x be a point from D(f) over a Zariski prime ideal q. Then q

does not contain any powers of f and, therefore, q ⊂ p. Since A/q is an integral domain, then

X (p) ⊂ X (q) and D(f) ∩ X (q) is connected and, therefore, the point x lies in the same connected

component as D(f) ∩ X (p). Thus, D(f) is connected.

(ii) If p = mB ∩A, all elements from A\p are invertible in B. Since A/p is an integral domain

and the homomorphism A→ B is injective, the induced homomorphisms of groups A∗ → κ(p)∗ →

B∗ are injective. It follows that the quotient group κ(p)∗/A∗ is finitely generated. If f1, . . . , fn are

elements from A/\p whose images generate the group κ(p)∗/A∗, then Ap = Af for f = f1 · . . . · fn
and, in particular, D(f) = Fspec(Ap). We claim that, for every Zariski prime ideal of A that lies

in p, there exists a Zariski prime q ⊂ B with q ∩ A = p. Indeed, we can replace A by A/p and B

by B/pB and assume that A is an integral domain and p = 0. If K is the fraction F1-field of A,

B embeds in the finitely generated K-algebra B ⊗AK. The latter has finitely many Zariski prime

ideals. If q1, . . . , qn are their preimages in B, the intersection
⋂n
i=1 qi is the Zariski nilradical of B.

It follows that
⋂n
i=1(q ∩A) = 0 and, therefore, qi ∩A = 0 for some 1 ≤ i ≤ n.

(iii) By (ii), it suffices to verify that, if q ∩ A = p for Zariski prime ideals p ⊂ A and q ⊂ B,

then the image of Y̌q = Fspec(κ(q)∗) in X = Fspec(κ(p)∗) coincides with X̌p. Since the quotients

A/p and B/q are integral domains and the homomorphism A/p → B/q is injective, the induced

homomorphism of groups κ(p)∗ → κ(q)∗ is injective. This implies the required fact.

Let M be an A-module. For an open affine subscheme U ⊂ X , we set MU = M ⊗A AU and,

for a covering of X by open affine subschemes U = {Ui}i∈I , we set

MU = Ker(
∏
i∈I

MUi
→→
∏
i,j∈I

MUi∩Uj ) .

Finally, let 〈M〉 denote the filtered inductive limit lim
−→

MU taken over all coverings U of X by open

affine subschemes.

4.4.7. Proposition. For any A-module M and any open covering U of X by open affine
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subschemes, the canonical homomorphism M → MU is injective and, therefore, the canonical

homomorphism M → 〈M〉 is injective.

Proof. By Proposition 4.2.6, we may assume that U is an elementary family associated to a

finite idempotent F1-subalgebra I of A. In this case, the sets from U are pairwise disjoint, and they

correspond to elements of Ǐ. For e ∈ Ǐ, one has M (e) = M/Fe, where Fe is the I-submodule of M

generated by the prime ideal Πe. The required injectivity of the homomorphism M →
∏
e∈ǏM

(e)

follows from Lemma 1.6.1.

4.4.8. Proposition. Let B be a commutative ring with unity. Given a homomorphism of

F1-algebras A→ B·, the following is true:

(i) the preimage of any open affine subscheme U of X = Fspec(A) with respect to the induced

map ϕ : Y = Spec(B)→ X is an open affine subscheme of Y;

(ii) if ϕ(Y) ⊂ U , then the homomorphism A → B· goes through a unique homomorphism

AU → B·; in particular, the image of the map Fspec(B·)→ X also lies in U .

Proof. Both statements are trivial if U is a principal or idempotent open subset, and so they

are true for elementary open subsets. In the general case, let S be an elementary family of open

subsets that cover U . Then for each V ∈ S its preimage is an open affine subscheme of Y. Let T

denote the subset of V ∈ S with ϕ−1(V) 6= ∅. Then the disjoint unionW =
∐
V∈T ϕ

−1(V), which is

the preimage of U , is an open affine subscheme of Y, i.e., (i) is true. Suppose that ϕ(Y ) ⊂ U . Then

W = Y and, therefore, B
∼→
∏
V∈T Bϕ−1(V). Every homomorphism A → B → (Bϕ−1(V))

· goes

through a unique homomorphism AV → (Bϕ−1(V))
·. They induce a homomorphism

∏
V∈S AV →

B· =
∏
V∈T (Bϕ−1(V))

·. The required homomorphism AU → B· is the composition of the latter

with the canonical embedding AU =
∐ν
S AV ↪→

∏
V∈S AV .

4.4.9. Corollary. In the situation of Proposition 4.4.8, the homomorphism A→ B· extends

in a canonical way to a homomorphism 〈A〉 → B·.

Proof. Let U = {Ui}i∈I be a covering of X by open affine subschemes. By Proposition 4.4.8, it

gives rise to a covering of Y by open affine subschemes V = {Vi}i∈I with Vi = ϕ−1(Ui). It follows

also that the homomorphism A → B· extends in a canonical way to compatible homomorphisms

AUi → B·Vi and AUi∩Uj → B·Vi∩Vj . Since B
∼→ Ker(

∏
i∈I BVi

→→
∏
i,j∈I B

·
Vi∩Vj ), it follows that the

homomorphism A→ B· extends in a canonical way to a homomorphism AU → B·.

4.5. Open and closed immersions and finite morphisms. Let ϕ : Y = Fspec(B) →

X = Fspec(A) be a morphism of affine schemes over F1.
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4.5.1. Definition. ϕ is said to be an open immersion if it induces an isomorphism between

Y and an open affine subscheme of X .

4.5.2. Proposition. The following properties of ϕ are equivalent:

(a) ϕ is an open immersion;

(b) there is a covering of X by open affine subschemes {Xi} such that all of the induced

morphisms ϕ−1(Xi)→ Xi are open immersions;

(c) ϕ is injective (as a map), and there is a covering of Y by open affine subschemes {Yi} such

that all of the induced morphisms Yi → X are open immersions.

Proof. The implication (a)=⇒(b)=⇒(c) are trivial.

(c)=⇒(a). Let Ui be the open affine subscheme of X which is the image of Yi. It is covered

by elementary open subsets of X . It follows that we can replace the covering {Yi} by a refinement

that consists of elementary open subsets and assume that all Ui’s are elementary open subsets of

X . Furthermore, by Proposition 4.2.6, we may assume that {Yi} is an elementary family of open

subsets of Y. We then claim that {Ui} is an elementary family of open subsets of X . Indeed, the

assumptions on ϕ imply that the map Zspec(B) → Zspec(A). It follows that p(Ui) ≤ p(Uj) if and

only if p(Yi) ≤ p(Yj) and, therefore, the partial orderings on the families {Ui} and {Yi} coincide.

Suppose that Ui = inf(Uj ,Uk) and e ∈ aUi . Then e vanishes at Yi and, therefore, it vanishes either

at Yj , or at Yk. It follows that e vanishes at Uj , or at Uk, and we get the claim. The claim implies

that U =
⋃
i Ui is an open affine subscheme of X and Y ∼→ U .

We will denote by AschoiF1
the category in which the family of objects coincide with that of

AschF1
and morphisms are open immersions.

4.5.3. Definition. ϕ is said to be a closed (resp. Zariski closed) immersion if the homomor-

phism A→ B is surjective (resp. and its kernel coincides with Zariski kernel).

For example, Proposition 4.4.3 implies that, for an open affine subscheme U ⊂ X , the canonical

morphism U → X is a closed (resp. Zariski closed) immersion if and only if U is an idempotent

open subset (resp. which is defined by the equations e1 = . . . = en = 0 for e1, . . . , en ∈ IA).

4.5.4. Proposition. Given a covering of X by open affine subschemes {Xi}, the following

properties of ϕ are equivalent:

(a) ϕ is a closed immersion;

(b) all of the induced morphisms ϕ−1(Xi)→ Xi are closed immersions.

Proof. The implication (a)=⇒(b) is trivial. Suppose that (b) is true. By Proposition 4.2.6,
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we may assume that {Xi} is an elementary family associated to a finite idempotent F1-subalgebra

I of A and, in particular, the set of indices is Ǐ. Let I ′ be the image of I in B. The surjection

I → I ′ induces a map of posets Ǐ ′ → Ǐ : i′ 7→ i (see §3.4). By the assumption, for every i′ ∈ Ǐ ′ the

homomorphism Ai → Bi′ is surjective, where Ai = AXi and Bi′ = Bϕ−1(Xi). Since A =
∐ν
Ǐ Ai and

B =
∐ν
Ǐ′ Bi′ , it follows that the homomorphism A→ B is surjective.

Notice that the implication (b)=⇒(a) in Proposition 4.5.4 does not hold in general for Zariski

closed immersions.

4.5.5. Definition. (i) ϕ is said to be finite if B is a finite A-module;

(ii) ϕ is said to be of finite type if B is a finitely generated A-algebra.

For example, any closed immersion is a finite morphism, and any finite morphism is of finite

type.

4.5.6. Proposition. Given a covering of X by open affine subschemes {Xi}, the following

properties of ϕ are equivalent:

(a) ϕ is a finite morphism (resp. of finite type);

(b) all of the induced morphisms ϕ−1(Xi)→ Xi are finite morphisms (resp. of finite type).

Proof. The implication (a)=⇒(b) is trivial. Suppose that (b) is true. As above, we may

assume that {Xi} is an elementary family associated to a finite idempotent F1-subalgebra I of IA.

In the notation from the proof of Proposition 4.5.4, the assumption implies that, for every i′ ∈ Ǐ ′,

Bi′ is a finite Ai-module (resp. a finitely generated A-algebra). Since the images of generators of

all Bi′ ’s in B generate the A-module (resp. the A-algebra) B, the required fact follows.

4.6. Piecewise affine schemes. Let X = Fspec(A) and Y = Fspec(B) be affine schemes.

For a covering V = {Vi}i∈I of Y by open affine subschemes, we set

HomV(Y,X ) = Ker(
∏
i∈I

Hom(Vi,X )
→→
∏
i,j∈I

Hom(Vi ∩ Vj ,X )) .

One has HomV(Y,X ) = Hom(A,BV). Furthermore, we set

Homp(Y,X ) = lim
−→

HomV(Y,X ) ,

where the inductive limit is taken over coverings V of Y by open affine subschemes. (By Proposition

4.4.7, all transition maps in this inductive limit are injective.) Recall that every covering has a

finite refinement consisting of pairwise disjoint open affine subschemes. For such V = {Vi}i∈I , an
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element of HomV(Y,X ) is just a a system of morphisms of affine schemes Vi → X . Of course, if Y

is connected, then Hom(Y,X )
∼→ Homp(Y,X ).

Elements of Homp(Y,X ) are said to be p-morphisms from Y to X . A p-morphism from Y

to X represented by a system of compatible morphisms ϕi : Vi → X defines a continuous map

ϕ : Y → X and, for every point y ∈ Y, there is a well defined embedding of F1-fields κ(x)→ κ(y),

where x = ϕ(y). Furthermore, given a second p-morphism ψ : Z = Fspec(C) → Y represented by

a system of compatible morphisms ψj : Wj → Y, there is a well defined composition p-morphism

which is represented by the system of compatible morphisms ϕ−1(Vi) ∩ Wj
ψj→ Vi

ϕi→ X . This

means that there is a well defined category AschpF1
whose family of objects coincides with that of

AschF1
, and in which the set of morphisms from Y to X is the set of p-morphisms of affine schemes

Homp(Y,X ). The canonical functor AschF1 → Asch
p
F1

is faithful and even fully faithful on the

full subcategory of connected affine schemes, but not fully faithful on the whole category. For

example, if I and J are finite idempotent F1-algebras with the same number of elements, then the

affine schemes Fspec(I) and Fspec(J) are isomorphic in AschpF1
although they are not necessarily

isomorphic in AschF1 .

4.6.1. Proposition. The category AschpF1
admits finite coproducts and fiber products.

Proof. Let {Xi = Fspec(Ai)} be a finite family of affine schemes over F1. Take an arbitrary

idempotent F1-algebra I whose poset of nonzero elements Ǐ can be identified with the set of indices

of that family. For i ≤ j in Ǐ, let νij be the homomorphism Ai → Aj defined by νij(a) = 1, if

a ∈ A∗i , and νij(a) = 0, otherwise. Then the tuple {Ǐ , Ai, νij} is a disconnected sum datum and,

for A =
∐ν
Ǐ Ai, the affine scheme X = Fspec(A) is the coproduct of the family {Xi} in AschpF1

.

Furthermore, suppose we are given p-morphisms Y → X and X ′ → X . By Proposition 4.2.6,

we may assume that these p-morphisms are defined by systems of morphisms Vi → X and U ′j → X

for coverings {Vi} of Y and {U ′j} of X ′ by pairwise disjoint elementary open subsets. They define

systems of morphisms from V ′ij = Vi ×X U ′j to Y and X ′. We claim that the coproduct Y ′ of the

affine schemes V ′ij is a fiber product of the p-morphisms we started from. Indeed, let f : T → Y and

g : T → X ′ be p-morphisms that induce the same p-morphism T → X . Suppose first that f and g

are morphisms. Then Wij = f−1(Vj) ∩ g−1(U ′i) are pairwise disjoint open affine subschemes of T

that form its covering. Since the morphisms Wij → Vi and Wij → U ′j induce the same morphism

Wij → X , they give rise a canonical morphism Wij → V ′ij ⊂ Y ′. All these morphisms define a

p-morphism T → Y ′. In the general case, we can find a covering {Tk} of T by pairwise disjoint

open affine subschemes such that the restrictions of f and g to every Tk are morphisms. By the
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previous case, there are p-morphisms Tk → Y which induce the required p-morphism T → Y ′.

For an affine scheme X = Fspec(A), the category of p-morphisms Y → X in which morphisms

are p-morphisms commuting with those to X will be denoted by AschpA.

Let now X = Fspec(A) be an affine scheme. For A-modules M and N , we set

Homp
A(M,N) = lim

−→
HomA(M,NU) ,

where the limit is taken over coverings U by open affine subschemes. If M is a finite A-module,

then the latter limit coincides with HomA(M, 〈N〉). If X is connected, then Homp
A(M,N) =

HomA(M,N). Elements of Homp
A(M,N) are said to be p-homomorphisms. Notice that a p-

homomorphism from M to N is just a family of homomorphisms of AUi-modules MUi → NUi for

a finite covering of X by pairwise disjoint open affine subschemes {Ui}i∈I . It follows that one can

compose p-homomorphisms and, therefore, there is a well defined category A-Modp whose family

of objects coincides with that of A-Mod and in which the set of morphisms from M to N is the set

of p-homomorphisms Homp(M,N).

If all of the A-modules in the above definitions are in fact A-algebras and all homomorphisms

between them commute with multiplication, we get a category A-Algp. The correspondence B 7→

Fspec(B) gives rise to a contravariant fully faithful functor A-Algp → AschpA.

4.6.2. Definition. A p-morphism ϕ : Y → X is said to be a p-open immersion if it is injective

(as a map) and there is a covering of Y by open affine subschemes {Yi} such that ϕ induces open

immersions of affine schemes Yi → X .

It follows easily from the definition that, given a p-open immersion ϕ : Y → X , any p-morphism

ψ : Z → X with ψ(Z) ⊂ ϕ(Y) goes through a unique p-morphism Z → Y. In particular, the set

ϕ(Y ) defines the morphism ϕ uniquely up to a unique isomorphism in AschpF1
. Such a subset of

X is said to be an open p-affine subscheme.

4.6.3. Lemma. Let X = Fspec(A) be an affine scheme over F1. Then

(i) a subset of X is an open p-affine subscheme if and only if it is a disjoint union of elementary

open subsets;

(ii) the class of open p-affine subschemes of X is preserved under finite intersection;

(iii) given a p-morphism ϕ : Y → X , the preimage of an open p-affine subscheme of X is a

open p-affine subscheme of Y.

Proof. (i) Suppose that a p-open immersion ϕ : Y → X is represented by a compatible system

of morphisms Vi → X for elementary open subsets Vi ⊂ X . By Proposition 4.2.6, we may assume
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that {Vi} is a finite system of pairwise disjoint elementary open subsets of Y. This implies that

ϕ(Y) is a disjoint union of elementary open subsets of X . The converse implication follows from

Proposition 4.6.1.

The statements (ii) and (iii) follow from (i).

Notice that, by Proposition 4.5.2, any morphism of affine schemes which is a p-open immersion

is an open immersion and, in particular, the functor AschF1
→ AschpF1

is conservative (i.e., any

morphism in the first category, which becomes an isomorphism in the second one, is an isomor-

phism). Furthermore, two affine schemes X and Y are isomorphic in AschpF1
if and only if there

exist finite coverings {Ui}1≤i≤n of X and {Vi}1≤i≤n by pairwise disjoint open affine subschemes

such that each Ui is isomorphic to Vi in AschF1
. It is also easy to see that the class of p-open

immersions is preserved by compositions, and so there is a category AschpoiF1
the category whose

objects are affine schemes and morphisms are p-open immersions.

4.6.4. Definition. A p-morphism of affine schemes ϕ : Y → X is said to be a p-closed (resp.

Zariski p-closed) immersion if it is an injective map and there exists a covering {Ui}i∈I of X by

open affine subschemes such that, for every i ∈ I, ϕ−1(Ui) is a finite disjoint union of its open affine

subschemes {Vij}j∈Ji and, for every j ∈ Ji, Vij → Ui is a closed (resp. Zariski closed) immersion

of affine schemes.

Notice that, since the intersection of nonempty subsets of the form V (a) in X is nonempty,

it follows that, for a Zariski closed immersion as in Definition 4.6.4, all ϕ−1(Ui) → Ui are Zariski

closed immersions of affine schemes.

4.6.5. Lemma. A morphism of affine schemes ϕ : Y → X is a p-closed immersion if and only

if it is a closed immersion.

Proof. The converse implication is trivial. Suppose that ϕ is a p-closed immersion. By

Proposition 4.5.4, we may assume that Y = Fspec(B) is a disjoint union of open affine subschemes

{Vi}i∈I such that each Vi → X = Fspec(A) is a closed immersion of affine schemes. Furthermore,

by Proposition 4.2.6, we may assume that the above covering of Y is an elementary family associated

to a finite idempotent F1-subalgebra of B. Then B is a disconnected sum
∐ν
I BVi . Since all of the

homomorphisms A→ BVi are surjective, it follows that the homomorphism A→ B is surjective.

4.6.6. Definition. A p-morphism of affine schemes ϕ : Y → X is said to be p-finite (resp. of

p-finite type) if there exists a covering {Ui}i∈I of X by open affine subschemes such that, for every

i ∈ I, ϕ−1(Ui) is a (finite) disjoint union of its open affine subschemes {Vij}j∈Ji and, for every
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j ∈ Ji, Vij → Ui is a morphism of affine schemes which is finite (resp. of finite type).

4.6.7. Lemma. A morphism of affine schemes ϕ : Y → X is p-finite (resp. of p-finite type) if

and only if it is a finite morphism (resp. of finite type).

Proof. The converse implication is trivial. Suppose that the morphism ϕ is p-finite (resp. of

p-finite type). By Proposition 4.5.6, we may assume that Y = Fspec(B) is a finite disjoint union

of open affine subschemes {Vi} such that all of the morphism Vi → X are finite (resp. of finite

type). Furthermore, by Proposition 4.2.6, we can find a refinement {Wj} of the above covering

which is an elementary family associated to a finite idempotent F1-subalgebra of A. Since every

Wj lies in some Vi and is an open-closed subset of Vi, it follows that the canonical homomorphism

AVi → AWj is surjective. This reduces the situation to the case that {Vi} is an elementary family

associated to a finite idempotent F1-subalgebra of A. In this case, the required property of the

homomorphism A→ B follows from Proposition 3.4.8.

4.6.8. Lemma. Given a covering of Y by open p-affine subschemes {Vi}i∈I , the following

sequence of maps of sets is exact

Homp(Y,X )→
∏
i∈I

Homp(Yi,X )
→→
∏
i,j∈I

Homp(Yi ∩ Yj ,X ) .

§5. Schemes over F1

5.1. The category of schemes SchF1
. Let X be a topological space, and let τ be a

collection of subsets. (All subsets are provided with the induced topology.) Recall (see [Ber1, §1.1])

that τ is said to be a quasinet on X if, for each point x ∈ X, there exist V1, . . . , Vn ∈ τ such that

x ∈ V1 ∩ . . . ∩ Vn and the set V1 ∪ . . . ∪ Vn is a neighborhood of x. If τ is a quasinet, then a subset

U is open in X if and only if for each V ∈ τ the intersection U ∩V is open in V (see [Ber1, Lemma

1.1.1(i)]). The collection τ is said to be a net if it is quasinet and, for every pair U, V ∈ τ , τ
∣∣
U∩V

is a quasinet on U ∩ V . Notice that, if all sets from τ are open, then the property to be a quasinet

means that τ is an open covering, and the property to be a net means that τ is a base of a topology

(which is weaker than or coincides with the topology on X). In what follows we consider a quasinet

(or net) τ as a category (its objects are sets from τ and morphisms are inclusion maps), and we

denote by T the canonical functor τ → T op to the category of topological spaces T op.

Let T a denote the forgetful functor AschpoiF1
→ T op that takes an affine scheme to the under-

lying topological space.
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5.1.1. Definition. A scheme over F1 is a triple (X , A, τ), where X is a topological space, τ

is a net of open subsets of X , and A is a p-affine atlas on X with the net τ , i.e., a pair consisting

of a functor A : τ → AschpoiF1
and an isomorphism of functors T a ◦A ∼→ T .

Let (X , A, τ) be a K-analytic space. The functor A takes each U ∈ τ to an affine scheme

Fspec(AU ), and the isomorphism of functors provides a homeomorphism Fspec(AU )
∼→ U . We

consider such U as an object of the category AschpF1
.

5.1.2. Definition. A strong morphism ϕ : (X , A, τ) → (X ′, A′, τ ′) is a pair consisting of a

continuous map ϕ : X → X ′ such that for every U ∈ τ there exists U ′ ∈ τ ′ with ϕ(U) ⊂ U ′, and a

compatible system of p-morphisms of affines schemes ϕU/U ′ : U → U ′ with ϕU/U ′ = ϕ
∣∣
U (as maps)

for all pairs U ∈ τ and U ′ ∈ τ ′ with ϕ(U) ⊂ U ′.

5.1.3. Lemma. For any pair of strong morphisms ϕ : (X , A, τ) → (X ′, A′, τ ′) and ψ :

(X ′, A′, τ ′) → (X ′′, A′′, τ ′′), there is a unique morphism χ : (X , A, τ) → (X ′′, A′′, τ ′′) such that,

for every triple U ∈ τ , U ′ ∈ τ ′ and U ′′ ∈ τ ′′ with ϕ(U) ⊂ U ′ and ψ(U ′) ⊂ U ′′, one has χU/U ′′ =

ψU ′/U ′′ ◦ ϕU/U ′′ .

Proof. Let χ be the composition map ψϕ : X → X ′′. We have to construct, for every pair

U ∈ τ and U ′′ ∈ τ ′′ with χ(U) ⊂ U ′′, a p-morphism of affine schemes χU/U ′′ : U → U ′′. For this we

take U ′ ∈ τ ′ and V ′′ ∈ τ ′′ with ϕ(U) ⊂ U ′ and ψ(U ′) ⊂ V ′′. Then χ(U) ⊂ U ′′∩V ′′. Since τ ′′ is a net

and U is quasi-compact, one has χ(U) ⊂ W1 ∪ . . . ∪Wn for some W1, . . . ,Wn ∈ τ ′′
∣∣
U ′′∩V′′ . Then

U ′i = ψ−1
U ′/V′′(Wi) and Ui = ϕ−1

U/U ′(U
′
i) are open p-affine subschemes of U ′ and U , respectively. The

morphisms ϕU/U ′ and ψU ′/V′′ induce p-morphisms of affine schemes Ui → U ′i and U ′i → Wi and,

therefore, the composition p-morphisms Ui →Wi → U ′′. Since they are compatible on intersections,

they give rise to the required p-morphism χU/U ′′ .

Lemma 5.1.3 implies that the family of schemes with strong morphisms between them forms

a category which is denoted by S̃chF1 .

Definition 5.1.4. (i) A strong morphism ϕ : (X , A, τ) → (X ′, A′, τ ′) is said to be a quasi-

isomorphism ϕ induces a homeomorphism of topological spaces X ∼→ X ′ and, for every pair U ∈ τ

and U ′ ∈ τ ′ with ϕ(U) ⊂ U ′, ϕU/U ′ is a p-open immersion of affine schemes.

(ii) The category SchF1
of schemes over F1 is the category of fractions of S̃chF1

with respect

to the system of quasi-isomorphisms.

We are going to describe morphisms in the category SchF1 .

5.1.5. Lemma. Let (X , A, τ) be a scheme over F1. then
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(i) if W is an open p-affine subscheme in some U ∈ τ , it is an open p-affine subscheme in any

V ∈ τ that contains W;

(ii) the family τ consisting of all W as above is a net on X , and there exists a unique (up to a

canonical isomorphism) p-affine atlas A on X with the net τ which extends A.

Proof. (i) Since τ is a net and W is quasi-compact, one has W ⊂ U1 ∪ . . . ∪ Un for some

U1, . . . ,Un ∈ τ
∣∣
U∩V . Furthermore, since W and Ui are open p-affine subschemes of U , then Wi =

W ∩ Ui is an open p-affine subscheme of W and Ui. It follows that each Wi is an open p-affine

subscheme of V and, therefore, the p-open immersions Wi → V give rise to a p-open immersion

W → V.

(ii) For U ,V ∈ τ , take U ′,V ′ ∈ τ with U ⊂ U ′ and V ⊂ V ′. Every point x ∈ U ∩ V lies in some

W ∈ τ
∣∣
U ′∩V′ . Since U ∩W and V ∩W are open p-affine subschemes ofW, it follows that U ∩V ∩W

is an open p-affine subscheme of W and, therefore, τ is a net. Furthermore, for each U ∈ τ we

fix U ′ ∈ τ and provide U is the structure of an affine scheme for which the canonical embedding

U → U ′ is a p-open immersion. The reasoning from the proof of Lemma 5.1.3 that, for any pair

U ⊂ V in τ , there is a canonical p-open immersion of affine schemes U → V, and the required fact

follows.

Notice that the canonical strong morphism (X , A, τ)→ (X , A, τ) is a quasi-isomorphism, and

that any strong morphism (X , A, τ) → (X ′, A′, τ ′) extends in a unique way to a strong morphism

(X , A, τ) → (X ′, A′, τ ′). Lemma 5.1.5 easily implies that the system of quasi-isomorphisms in

S̃chF1 admits calculus of right fractions.

Let now (X , A, τ) be a scheme over F1. If σ is a net on X , we write σ ≺ τ if σ ⊂ τ . The the

affine atlas A defines an affine atlas Aσ with the net σ, and there is a canonical quasi-isomorphism

(X , Aσ, σ) → (X , A, τ). The system of nets σ ≺ τ is filtered and, for any scheme (X ′, A′, τ ′) over

F1, one has

Hom((X , A, τ), (X ′, A′, τ ′)) = lim
−→
σ≺τ

HomS̃ch((X , Aσ, σ), (X ′, A′, τ ′)) .

For example, let X = Fspec(A) be an affine scheme over F1. Then {X} is a net on X and the

identity correspondence X 7→ X is an affine atlas. In this way we get a scheme over F1 denoted

by X and a functor AschF1 → SchF1 . The following statement follows straightforwardly from the

above description of morphisms in the category of schemes.

5.1.6. Lemma. In the above situation, for any scheme (Y, B, σ) morphisms (Y, B, σ) → X

can be identified with compatible families of p-morphisms of affine schemes V → X with V ∈ σ. In

particular, the above functor gives rise to a fully faithful functor AschpF1
→ SchF1

.
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The set of morphisms from (Y, B, σ) to X to Fspec(F1[T ]) (the affine line over F1) is de-

noted by O(Y). It is an F1-algebra, and Lemma 5.1.6 means that there is a canonical bijection

Hom((Y, B, σ),X )
∼→ Hom(A,O(Y)).

5.1.7. Lemma. A strong morphism ϕ : (X , A, τ) → (X ′, A′, τ ′) becomes an isomorphism in

the category SchF1 if and only if it is a quasi-isomorphism.

Proof. The converse implication is trivial. Suppose that ϕ is an isomorphism in SchF1
. It

is clear that ϕ is a homeomorphism. The assumption implies that one can find nets σ ≺ τ and

σ′ ≺ τ ′ and strong morphisms ψ : (X ′, A′σ′ , σ′)→ (X , A, τ) and ϕ′ : (X , Aσ, σ)→ (X ′, A′σ′ , σ′) such

that the following diagram is commutative

(X , A, τ)
ϕ−→ (X ′, A′, τ ′)x ↖ ψ

x
(X , Aσ, σ)

ϕ′−→ (X ′, A′σ′ , σ′)

where the vertical arrows are the canonical quasi-isomorphisms. Let U ∈ σ. We can find U ′ ∈ σ′,

V ∈ τ and V ′ ∈ τ ′ with ϕ′(U) ⊂ U ′, ψ(U ′) ⊂ V and ϕ(V) ⊂ V ′. Since U is an open p-affine subscheme

of V, its preimage U ′′ = ψ−1
U ′/V(U) is an open p-affine subscheme of U ′. The commutativity of the

lower triangle implies that the composition of the p-morphisms ϕ′U/U ′ : U → U ′′ and ψU ′′/U : U ′′ →

U is the identity p-morphism on U . The commutativity of the higher triangle implies that the

composition of the morphisms ψU ′′/U : U ′′ → U and ϕU/U ′ : U → U ′′ is the identity p-morphism on

U ′′. Thus, U ∼→ U ′′. The required fact follows.

In what follows, we do not make difference between a scheme (X,A, τ) and the schemes iso-

morphic to it, and denote it simply by X. We call any net τ that defines the scheme structure on

X a net of definition.

5.2. Open subschemes and the schematic and Zariski topologies. Let X be a scheme

over F1. We fix a triple (X , A, τ) that represents it.

5.2.1. Definition. An open subset Y ⊂ X is said to be an open subscheme if, for every point

x ∈ Y, there exists U ∈ τ with x ∈ U ⊂ Y. (Notice that this property does not depend on the

choice of τ .)

If Y is an open subscheme, then the restriction of the affine atlas A to the net τ
∣∣
Y

defines a

scheme (Y, A, τ
∣∣
Y). (If σ ≺ τ , then σ

∣∣
Y ≺ τ

∣∣
Y .) The scheme (Y, A, τ

∣∣
Y), which will be denoted by

Y, possesses the following property: any morphism of schemes ϕ : X ′ → X with ϕ(X ′) ⊂ Y goes

through a unique morphism X ′ → Y. Notice that the intersection of two open subschemes is an
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open subscheme, and the preimage of an open subscheme with respect to a morphism of schemes

is an open subscheme.

5.2.2. Definition. An open p-affine subscheme of X is an open subscheme U isomorphic to

an affine scheme over F1. If U is connected, it will be called an open affine subscheme.

5.2.3. Proposition. (i) A subset is an open p-affine subscheme if and only if it is a finite

disjoint union of sets from τ ;

(ii) the family τ̂ of open p-affine subschemes is a net on X , and there is a unique (up to a

canonical isomorphism) p-affine atlas Â on X with the net τ̂ that extends A;

(iii) the strong morphism ϕ : (X , A, τ)→ (X , Â, τ̂) is a quasi-isomorphism.

Proof. (i) The direct implication follows from Proposition 4.2.6, and the converse one follows

from the fact that the category Aschp admits finite coproducts.

(ii) That τ̂ is a net is trivial. We fix an affine scheme structure on every W ∈ τ̂ , and our

purpose is to construct, for every pair W ⊂ W ′ in τ̂ a canonical p-open immersion W → W ′. Let

{Ui} and {U ′k} be finite coverings of W and W ′ by sets from τ . Since each Ui is quasi-compact, it

is covered by a finite number of sets from some τUi∩U ′k . Replacing all Ui’s by them, we may assume

that each Ui lies in some U ′k and, in particular, every Ui is an open p-affine subscheme of some

U ′k. It follows that there are canonical p-open immersions of affine schemes Ui →W ′. It is easy to

see that they are compatible on intersections and, therefore, they give rise to a p-open immersion

W →W ′.

The statement (iii) is trivial.

5.2.4. Proposition. Let ϕ : Y → X be a morphism of schemes over F1. Then for every

connected open affine subscheme V ⊂ Y there exists an open p-affine subscheme U ⊂ X with

ϕ(V) ⊂ U . If every point of X lies in a connected open affine subscheme, then such U can be found

to be connected.

Proof. Take a point y ∈ Vm and an open p-affine subscheme U of X that contains the point

ϕ(y). We claim that ϕ(V) ⊂ U . Indeed, the intersection V ∩ ϕ−1(U) is covered by open affine

subschemes of V. Since V is connected, every open affine subscheme of V that contains a point

from Vm coincides with V. This implies that V ∩ ϕ−1(U) = V, i.e., ϕ(V) ⊂ U .

We say that X is locally connected if, for each point x ∈ X , every open subscheme of X which is

a neighborhood of x contains a connected open affine subscheme which is also a neighborhood of x.

For example, if every point of X has an open p-affine neighborhood with finitely many irreducible

components, then X is locally connected. If X is locally connected, then the family τc of connected
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open affine subschemes is a net on X and the p-affine atlas on X induces an affine atlas with the

net τc, i.e., a functor τc → AschoiF1
.

The schematic topology on a scheme X is the topology in which open sets are open subschemes.

This topology is weaker than the canonical topology on X , and it is denoted by XSch.

5.2.5. Lemma. Any representable presheaf is a sheaf on XSch.

Proof. Let {Xi}i∈I be a covering of X by open subschemes. We have to verify that, for every

scheme Y, the following sequence of maps is exact

Hom(X ,Y)→
∏
i

Hom(Xi,Y)
→→
∏
i,j

Hom(Xi ∩ Xj ,Y) .

Let ϕi : Xi → Y be a family of morphisms such that, for every pair i, j ∈ I, ϕi
∣∣
Xi∩Xj

= ϕj
∣∣
Xi∩Xj

. It

obviously defines a continuous map ϕ : X → Y. Every point x ∈ X lies in some Xi and, therefore,

we can find an open p-affine subscheme U ⊂ Xi which contains x and whose image in Y lies in an

open p-affine subscheme U ′ of Y. The morphism ϕ defines a p-morphism of affine schemes U → V

which does not depend on the choice of i, by the assumption. The statement follows.

If we apply Lemma 5.2.1 to the presheaf representable by Fspec(F1[T ]), we get the structural

sheaf OX on XSch, which is a sheaf of F1-algebras. Its value on X is the F1-algebraO(X ) introduced

in the previous subsection. If X = Fspec(A) is an affine scheme, then O(X ) = 〈A〉. Notice that

every morphism of schemes ϕ : Y → X gives rise to a homomorphism of sheaves of F1-algebras

OX → ϕ∗OY in the schematic topology of X .

5.2.6. Corollary. If X = Fspec(A) is affine, then Hom(Y,X ) = Hom(A,O(Y)).

For a triple (X , A, τ) that represents X , let Qcoh(X , A, τ) (resp. Qcoha(X , A, τ)) denote

the following category. Its objects M are pairs consisting of a map that takes each U ∈ τ to

an AU -module (resp. AU -algebra) MU and a system of p-isomorphisms of AV -modules in AV -

Modp (resp. AV -algebras in AV -Algp) γU/V : MU ⊗AU AV
∼→ MV for all pairs U ⊃ V in τ such

that, for every triple U ⊃ V ⊃ W in τ , one has γV/W ◦ (γU/V ⊗AU AV) = γU/W . Morphisms

between such objects are defined in the evident way. If σ ≺ τ , there is an evident faithful functor

Qcoh(X , A, τ)→ Qcoh(X , Aσ, σ) (resp. Qcoha(X , A, τ)→ Qcoha(X , Aσ, σ)). Of course, if all sets

from τ are connected (which is possible, for example, if X is locally connected), the latter is an

equivalence of categories.

5.2.7. Definition. The category of quasi-coherent OX -modules Qcoh(X ) (resp. OX -algebras
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Qcoha(X )) is the inductive limit of categories

lim
−→
σ≺τ

Qcoh(X , Aσ, σ) (resp. lim
−→
σ≺τ

Qcoha(X , Aσ, σ)) .

The object of Qcoh(X ) (resp. Qcoha(X )) that corresponds to the above object M will be

denoted by M̃ . It can be viewed as a sheaf of OX -modules (resp. OX -algebras), i.e., there is a

faithful functor from Qcoh(X ) (resp. Qcoha(X )) to that of sheaves of OX -modules (resp. OX -

algebras). This functor is fully faithful only if every point of X admits a connected open affine

neighborhood. Of course, any quasi-coherent OX -algebra can be viewed as a quasi-coherent OX -

module, i.e., there is a faithful functor Qcoha(X ) → Qcoh(X ). Notice that both categories admit

direct sums and tensor product (defined in the evident way) which commute with the latter functor.

For example, suppose that X = Fspec(A) is affine. Then Qcoh(X , {X}, A) is just the category

of A-modules A-Mod. For an A-module, one has Γ(X , M̃) = 〈M〉. An arbitrary object of Qcoh(X )

can be represented as a system of AUi-modules Mi for a finite covering of X by pairwise disjoint

open affine subschemes {Ui}i∈I , and there is a fully faithful functor A-Modp → Qcoh(X ). The

similar description holds for the category Qcoha(X ). Of course, if X is connected, then there are

equivalences of categories A-Mod
∼→ Qcoh(X ) and A-Alg

∼→ Qcoha(X ).

A quasi-coherent OX -module is said to be of finite type (resp. coherent; resp. locally free) if it

comes from M as above such that, for every U ∈ τ , the AU -module MU is finitely generated (resp.

finitely presented; resp. free). (Notice that, if X is affine, any locally free OX -module of constant

rank is free.) Locally free OX -modules of rank one are said to be invertible. The isomorphism

classes of invertible OX -modules form an abelian group with respect to tensor product. This

group is canonically isomorphic to the first Čech cohomology group (in the schematic topology)

Ȟ1(X ,O∗X ).

Recall that, for an ideal E of an F1-algebra A, we set V (E) = {x ∈ Fspec(A)
∣∣f(x) = g(x)

for all (f, g) ∈ E}. It is a closed subset of Fspec(A), and it coincides with Fspec(A/E). If E is

associated to a Zariski ideal a ⊂ A, the set V (E) is denoted by V (a). Notice that the intersection

of any family of nonempty Zariski closed subsets is nonempty (since it contains V (mA)).

5.2.8. Definition. (i) A subset Σ ⊂ X is said to be strongly closed if every point of X has

an p-affine neighborhood U such that the intersection Σ∩U is of the form V (E1)∪ . . .∪ V (En) for

ideals E1, . . . , En of AU .

(ii) A strongly closed subset Σ ⊂ X is said to be schematically closed if U can be found in such

a way that the sets V (Ei) from (i) are in addition pairwise disjoint.
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(iii) A subset Σ ⊂ X is said to be Zariski closed if every point of X has an p-affine neighborhood

U such that the intersection Σ∩U is of the form V (a) for a Zariski ideal a ⊂ AU . The complement

of a Zariski closed subset is said to be Zariski open.

Foe example, the closure {x} of any point x ∈ X is a schematically closed subset (see Corollary

3.1.2(i)). In particular, all irreducible components of X are schematically closed. Notice that the

intersection of a finite family of strongly (resp. schematically) closed subsets is strongly (resp.

schematically) closed. We also notice that a schematically closed subset is not necessarily closed in

the schematic topology.

5.2.9. Proposition. (i) If Σ is strongly (resp. schematically) closed, then the intersection

Σ∩U with every open p-affine subset of X is of the form V (E1)∪ . . .∪ V (En) as in (i) (resp. (ii));

(ii) every Zariski open set is an open subscheme.

Proof. We may assume that X = Fspec(A) is affine.

(i) The assumption implies that there exists a covering {Ui}i∈I by open affine subschemes such

that, for every i ∈ I, Σ ∩ Ui is strongly (resp. schematically) closed subset of Ui. By Proposition

4.2.6, we may replace the covering by a refinement and assume that the covering is finite and all

Ui’s are pairwise disjoint elementary open subsets. In this case they are idempotent open subsets,

and so every strongly closed subset of each Ui is a strongly closed subset of X . This easily implies

the required fact.

(ii) We may in addition assume that a Zariski open subset U is the complement of the set V (a)

for some Zariski ideal a ⊂ A. If x ∈ U , then there exists an element f ∈ a with f(x) 6= 0 and,

therefore, D(f) ⊂ U . It follows that U is a union of principal open subsets of X and, therefore, it

is an open subscheme.

In general the union of an infinite number of Zariski open subsets is not necessarily a Zariski

open subset (see Remark 5.2.12(i)). This means that the family of Zariski open subsets does not

form a usual topology. It forms a Grothendieck topology denoted by XZar. By the above remark,

there is a morphism of sites XSch → XZar. If every point of X has a connected affine neighborhood

(e.g., if X is locally connected), then the family of Zariski open subsets forms a usual topology.

Indeed, if U is an open affine neighborhood of a point x ∈ X , then U is the minimal (connected)

affine neighborhood of any point y ∈ Um. It follows that every Zariski closed subset of U is of the

form V (a) and, therefore, the intersection of any families of them is of the same form. In general

the Zariski topology is weaker than the schematic topology (see Remark 5.2.12(ii)).

We now consider a process of gluing schemes over F1.
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5.2.10. Definition. A morphism of schemes ϕ : Y → X is said to be an open (resp. Zariski

open) immersion if it induces an isomorphism of Y with an open (resp. Zariski open) subscheme

of X .

Let {Xi}i∈I be a family of schemes over F1, and suppose that, for each pair i, j ∈ I, we are

given an open subscheme Xij ⊂ Xi and an isomorphism of schemes νij : Xij
∼→ Xji so that Xii = Xi,

νij(Xij ∩Xik) = Xji ∩Xjk, and νik = νjk ◦ νij on Xij ∩Xik. We are looking for a scheme X with a

family of morphisms µi : Xi → X such that:

(1) µi is an open immersion;

(2) {µi(Xi)}i∈I is a covering of X ;

(3) µi(Xij) = µi(Xi) ∩ µj(Xj);

(4) µi = µj ◦ νij on Xij .

If such X exists we say that it is obtained by gluing Xi’s along Xij’s.

5.2.11. Lemma. A scheme X obtained by gluing of Xi along Xij exists and is unique (up to

a canonical isomorphism).

Proof. Let X be the disjoint union
∐
i Xi. The system {νij} defines an equivalence relation

R on X. We denote by X the quotient space X/R and by µi the induced maps Xi → X . Then the

equivalence relation R is open (see [Bou], Ch. I, §9, n◦ 6), and therefore all µi(Xi) are open in X ,

and each µi induces a homeomorphism Xi
∼→ µi(Xi). Furthermore, let τ denote the collection of

all open subsets U ⊂ X for which there exists i ∈ I such that U ⊂ µi(Xi) and µ−1
i (U) is an open

p-affine subscheme of Xi. It is easy to see that τ is a net on X , and there is an evident p-affine

atlas A with the net τ . In this way we get a scheme (X , A, τ) that possesses the properties (1)-(4).

That X is unique up to a canonical isomorphism is trivial.

5.2.12. Remark. (i) Let A be the idempotent F1-algebra from Remark 3.4.8, i.e., A =

{0, e−∞, . . . , e−2, e−1} with e−ie−j = e−min(i,j). Every Zariski ideal of A is prime, and it is either

pn = enA = {0, e−n, . . . , e−1} for 1 ≤ n < ∞, or m = A\{1}. Every open neighborhood of the

point Πm contains almost all points Πpn , and the topology on the open subset Fspec(A)\{Πm} is

discrete. For n ≥ 1, the set Un = {Πpi

∣∣i ≤ n and i is even} is Zariski open, but the union
⋃∞
n=1 Un

consists of the points Πpi with even i and, therefore, it is not Zariski open.

(ii) Let A = F1[T1, T2, T3]/E, where E is the ideal generated by the pair (T1T2, T
2
2 ), and let ti

be the image of Ti in A. The affine scheme X = Fspec(A) is a union of two irreducible components

X1 and X2 defined by the equations t2 = 0 and t1 = t2, respectively, whose intersection is the “line”

defined by the equations t1 = t2 = 0. Let U1 = DX1
(t1) and U2 = DX2

(t1t3). Then U = U1

∐
U2
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is an open affine subscheme of X . The complement Σ = X\U is a union of two “lines” defined by

the equations t1 = t2 and t3 = 0 (L1) and t1 = t2 = 0 (L2), which intersect at the point x with

ti(x) = t2(x) = t3(x) = 0. We claim the Σ is not Zariski closed in X . Indeed, assume that Σ is

Zariski closed, and let B = A/b, where b is the Zariski ideal of A generated by the element t3.

Then B is isomorphic to the quotient of F1[T1, T2] by the ideal generated by the pair (T1T2, T
2
2 ).

The affine scheme Y = Fspec(B) is a union of the above line L1 and the line L3 defined by the

equation t2 = 0. The assumption on Σ implies that the line L1 = Σ∩Y is Zariski closed in Y. This

is impossible because any element of B, which vanishes at a point from L1\{x}, is zero.

5.3. Fiber products and classes of morphisms of schemes.

5.3.1. Proposition. The category SchF1 admits coproducts and finite fiber products.

Proof. Given a family of schemes {(Xi, Ai, τi)}i∈I , let X be the disjoint union
∐
i∈I Xi, τ is

the net on X with τ
∣∣
Xi

= τi for all i ∈ I, and A be the p-affine atlas with the net τ whose restriction

on each τi is Ai. Then the triple (X , A, τ) is a scheme over F1, and it is the coproduct of the above

family.

Let now ϕ : Y → X and f : X ′ → X be morphisms of schemes over F1. Suppose first that the

scheme X is affine. If the other two schemes are also affine and ϕ and f are morphisms in AschF1 ,

Corollary 5.2.6 implies that their fiber product in AschF1
is also a fiber product in SchF1

. If ϕ and

f are p-morphisms of affine schemes, the reasoning from the proof of Proposition 4.6.1 shows that

the fiber product in AschpF1
is also a fiber product in SchF1

. Moreover, in this case, if Z ⊂ Y and

X ′′ ⊂ X ′ are open subschemes, then the preimage of Z × X ′′ with respect to the canonical map

Y ×X X ′ → Y × X ′ is a fiber product Z ×X X ′′. Furthermore, if Y and X ′ are arbitrary, we take

coverings {Yi} of Y and {X ′k} of X ′ by open p-affine subschemes. Then a fiber product Y ×X X ′

is the scheme Y ′ obtained by gluing all Yi ×X X ′k along (Yi ∩ Yj) ×X (X ′k ∩ X ′l ). Finally, suppose

that X is an arbitrary scheme over F1. If the morphisms ϕ and f go through a morphisms to an

open p-affine subscheme U , then Y ×X X ′ = Y ×U X ′. In the general case, we take a covering {Ui}

of X by open p-affine subschemes. Then the scheme Y ′ obtained by gluing all ϕ−1(Ui)×X f−1(Ui)

along ϕ−1(Ui ∩ Uj)×X f−1(Ui ∩ Uj) is a fiber product of Y and X ′ over X .

5.3.2. Definition. A morphism of schemes over F1, ϕ : Y → X , is said to be a finite

morphism (resp. a closed immersion; resp. a Zariski closed immersion) if there exists a covering

of X by open p-affine subschemes {Ui}i∈I such that, for every i ∈ I, ϕ−1(Ui) → Ui is a p-finite

morphism (resp. p-closed immersion; resp. a Zariski p-closed immersion) of affine schemes.
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Notice that, if both schemes X and Y are affine, this definition is consistent with those in §4.6.

5.3.3. Proposition. Let ϕ : Y → X be a finite morphism (resp. a closed immersion)

of schemes over F1. Then for any open p-affine subscheme U ⊂ X , ϕ−1(U) is an open p-affine

subscheme of Y and, in particular, ϕ−1(U)→ U is a p-finite morphism (resp. a p-closed immersion)

of affine schemes.

Proof. Suppose that the morphism ϕ is p-finite. It follows from Definition 5.3.2 that we

can find a covering {Ui} of U by open affine subschemes such that, for every i ∈ I, ϕ−1(Ui) is

an open p-affine subscheme and there is a covering {Vij}j∈Ji of it by pairwise disjoint open affine

subschemes such that all of the induced morphisms Vij → Ui are finite morphisms of affine schemes.

By Proposition 4.2.6, we may assume that all of Ui’s are pairwise disjoint. In this case all Vij are

pairwise disjoint open p-affine subschemes of X and, therefore, there union, which coincides with

ϕ−1(U), is an open p-affine subscheme.

5.3.4. Corollary. The classes of finite morphisms and of closed and Zariski closed immersions

are preserved by composition and any base change.

Notice that the image of a close (resp. Zariski closed) immersion ϕ : Y → X is a schematically

(resp. Zariski) closed subset of X .

5.3.5. Proposition. Given a schematically (resp. Zariski) closed subset Y ⊂ X , there exists a

closed (resp. Zariski closed) immersion ϕ : Y ′ → X such that Y ′ is reduced (resp. Zariski reduced),

ϕ induces a homeomorphism Y ′ ∼→ Y, and any morphism ψ : Z → X from a reduced (resp. Zariski

reduced) scheme Z with ψ(Z) ⊂ Y goes through a unique morphism Z → Y ′.

Proof. By the definition, the family τ of open affine subschemes U ⊂ X such that Y∩U is of the

form V (E1)
∐
. . .
∐
V (En) for ideals E1, . . . En (resp. V (a) for a Zariski ideal a) of AU is a net on

X . Then the family of intersections V = U∩Y with U ∈ τ is a net on Y. Given V with U as above, let

V ′ be the reduced (resp. Zariski reduced) affine scheme Fspec(AU/r(E1))
∐
. . .
∐

Fspec(AU/r(En))

(resp. Fspec(A/zr(a))). Then the canonical morphism V ′ → U is a closed (resp. Zariski closed)

immersion which possesses the property from the formulation with U and V instead of X and Y,

respectively. It follows easily the family of V’s defines the structure of a reduced (resp. Zariski

reduced) scheme on Y with the required property.

Proposition 5.3.5 implies that we can associate with each scheme X over F1 its reduction X r

(resp. Zariski reduction X zr). Of course, there is a canonical closed immersion X r → X rd. In what

follows, if we mention a schematically closed subset Y of X , we consider it by default as a reduced
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scheme.

A scheme X is said to be integral if the F1-algebra AU of every open p-affine subscheme U

is an integral domain or, equivalently, if X is irreducible and reduced. A scheme X is said to

be normal if it is integral and the F1-algebra AU of every open affine subscheme U is integrally

closed in its fraction F1-field. For every integral scheme X one can construct in the evident way

its normalization X nor, i.e., a morphism ϕ : X nor → X from a normal scheme such that, for every

open affine subscheme U ⊂ X , ϕ−1(U) is an affine scheme which is the spectrum of the integral

closure of AU in its fraction F1-field.

The F1-field of rational functions on an irreducible scheme X is the F1-field κ(x) of the generic

point x of X . It is denoted by κ(X ) and, if X is defined over an F1-field K, it is also denoted by

K(X ). If X is integral, then κ(X ) is the fraction F1-field of the F1-algebra AU of any nonempty

open affine subscheme U of X .

A scheme X is said to be Zariski integral if each open p-affine subscheme U is connected and

its the F1-algebra AU has no zero divisors.

5.3.6. Proposition. Every Zariski closed immersion ϕ : Y → X from a Zariski integral

scheme Y to a scheme X has a canonical section ψ : X → Y (i.e., ψ ◦ ϕ = 1Y).

Proof. For every open p-affine subscheme U = Fspec(A), one has ϕ−1(U) = Fspec(A/p),

where p is a Zariski prime ideal of A. The canonical homomorphism A/p → A defines a section

U → ϕ−1(U) of ϕ restricted to ϕ−1(U). All these sections are compatible on intersections and

induce the required morphism.

5.3.7. Definition. (i) A morphism of schemes over F1, ϕ : Y → X , is said to be an immersion

if it is a composition of a closed immersion i : Y → X ′ with an open immersion j : X ′ → X .

(ii) A subscheme of X is the isomorphism class of an immersion Y → X .

Notice that an immersion ϕ : Y → X is a closed immersion if and only if its image ϕ(X ) is a

closed subset of X , and that immersions are preserved by composition and any base change.

An example of an immersion is the diagonal morphism ∆ϕ : Y → Y ×X Y for an arbitrary

morphism ϕ : Y → X . Indeed, each point from the image of ∆ϕ has an open p-affine neighborhood

of the form V ×U V for open p-affine subschemes U ⊂ X and V ⊂ Y with ϕ(V) ⊂ U , and the base

change of ∆ϕ with respect to the canonical open immersion V ×U V → Y ×X Y is the diagonal

morphism V → V ×U V, which is a p-closed immersion of affine schemes. Thus, if W is the union

of such subschemes V ×U V, then the morphism ∆ϕ goes through a closed immersion Y → W.

5.3.8. Definition. Let ϕ : Y → X be a morphism of schemes over F1.
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(i) ϕ is said to be quasi-compact if, for any open quasi-compact subscheme U ⊂ X , the open

subscheme ϕ−1(U) is quasi-compact.

(ii) ϕ is said to be of finite type if there exist a covering of X by open p-affine subschemes

{Ui}i∈I and, for every i ∈ I, a finite covering of ϕ−1(Ui) by open p-affine subschemes {Vij}j∈Ji
such that all of the induced p-morphisms Vij → Ui are morphisms of affine schemes of finite type.

For example, the diagonal morphism ∆ϕ : Y → Y ×X Y as above is quasi-compact if and only

if, for any pair V ′,V ′′ of open p-affine subschemes of Y with ϕ(V ′) and ϕ(V ′′) lying in an open

p-affine subscheme of X , the intersection V ′ ∩ V ′′ is quasi-compact.

It is clear that any morphism of finite type is quasi-compact. By Lemma 4.6.7, Definition

5.3.8(ii) is consistent with that for morphisms of affine schemes. It is easy to see that the classes of

quasi-compact morphisms and of morphisms of finite type are preserved by composition and any

base change.

5.3.9. Definition. Let ϕ : Y → X be a morphism of schemes over F1.

(i) ϕ is said to be quasi-separated (resp. separated) if the diagonal morphism ∆ϕ : Y → Y×X Y

is quasi-compact (resp. a closed immersion).

(ii) ϕ is said to be closed if it takes closed sets to closed sets. It is said to be universally closed

if any base change of ϕ is closed.

(iii) ϕ is said to be proper if it is of finite type, separated and universally closed.

It is also easy to see that the above classes of morphisms are preserved by composition and

any base change. By the remark above, a morphism ϕ : Y → X is separated if and only if the

image ∆ϕ(Y) of the diagonal morphism is closed in Y ×X Y.

5.3.10. Proposition. Let X be a quasi-separated scheme over F1. Then for any strongly

closed subset Σ of a quasi-compact open subscheme U , the set Σ ∪ (X\U) is strongly closed in X .

Proof. It suffices to verify that the intersection V ∩ (Σ∪ (X\U)) = (Σ∩V)∪ (V\U) with every

open p-affine subscheme V of X is strongly closed in V. The quasi-separatedness assumption implies

that the open subscheme U ∩V of V is quasi-compact. We can therefore replace X by V and assume

that X = Fspec(A) is affine. In this case, U is a finite union
⋃n
i=1 Ui of elementary open subsets of

X . Since Σ ∪ (X\U) =
⋂n
i=1(Σi ∪ (X\Ui)), where Σi = Σ ∩ Ui, the situation is reduced to the case

when U is an elementary open subset, i.e., U = {x ∈ X
∣∣f(x) 6= 0, e1(x) = . . . = en(x) = 0} for

some f ∈ A and e1, . . . , en ∈ IAf and AU is the quotient of Af by the Zariski ideal of Af generated

by the idempotents e1, . . . , en. We may also assume that Σ = V (E) for an ideal E of AU . One

has ei = gi
fm for some g1, . . . , gn ∈ A and m ≥ 0, and we have U = {x ∈ X

∣∣f(x) 6= 0, g1(x) 6=
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fm(x), . . . , gn(x) 6= fm(x)}. If E0 and Ei for 1 ≤ i ≤ n are the ideals of A generated by the pairs

(f, 0) and (gi, f
m), respectively, then X\U =

⋃n
i=0 V (Ei). Finally, each element of E is of the form

( a
fk
, b
fk

) for some a, b ∈ A and k ≥ 0. Let F be the ideal of A generated by the pairs (a, b). Then

Σ = V (F ) ∩ U and, therefore, Σ ∪ (X\U) = V (F ) ∪ (X\U). The required fact follows.

5.3.11. Corollary. Every closed subset of a quasi-separated scheme over F1 is the intersection

of a filtered family of strongly closed subsets.

5.4. Valuative criterions of separateness and properness.

5.4.1. Theorem. A morphism of schemes over F1, ϕ : Y → X , is separated if and only if

it is quasi-separated and, for any morphism ψ : Fspec(K◦)→ X from the spectrum of a valuation

F1-algebra K◦, the following map is injective

HomX (Fspec(K◦),Y)→ HomX (Fspec(K),Y) .

We introduce a partial ordering on points of a scheme X over F1 as follows. Given x, y ∈ X ,

we write y � x or x � y, and say that y is a specialization of x or that x is a generization

of y if y ∈ {x} and the following condition is satisfied. Let U = Fspec(A) be an open p-affine

neighborhood of y. Then x ∈ U and {x} ∩ U = Fspec(A(x)), where A(x) = A/Πx. Let q be the

Zariski prime ideal of A(x) that corresponds to the point y. The condition is that y is the image of

the point x under the morphism Fspec(A(x)) → Fspec(A(x)/q) induced by the canonical injective

homomorphism A(x)/q ↪→ A(x). This means that the prime ideal of A(x) that corresponds to the

point y coincides with the prime ideal Πq of A(x) that corresponds to q. In particular, if x � y,

there is a canonical injective embedding of F1-fields κ(y) ↪→ κ(x). For example, if X = Fspec(K◦)

is the spectrum of a valuation F1-algebra K◦, then x � y, where x and y are the generic points of

Fspec(K) and Fspec(K̃), respectively. We also notice that the above partial ordering is compatible

with morphisms of schemes. Furthermore, suppose X = Fspec(A) is affine, and let p be a Zariski

prime ideal of A. Then for every point y ∈ X (p), there exists a point x ∈ X̌p with x � y. Indeed,

let Y = X (p) and q the Zariski prime ideal of A(p) = A/Πp with y ∈ Y̌q. Then the induced

homomorphism of F1-fields κ(q) → κ(p) is injective. The point y corresponds to a subgroup

H ⊂ κ(q)∗. If G is an arbitrary subgroup of κ(p)∗ whose intersection with κ(q)∗ coincides with H

(e.g., H itself), then for the corresponding point x ∈ X̌p one has x � y.

5.4.2. Lemma. Given points x, y ∈ X with x � y and an F1-field, for any any morphism

Fspec(K)→ X that takes the generic point of Fspec(K) to x there exist a valuation F1-subalgebra

K◦ of K and a morphism Fspec(K◦)→ X that takes the generic point of Fspec(K̃) to y.
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Proof. First of all, we may assume that X = Fspec(A) is affine. Furthermore, replacing A by

A/Πx, we may assume that A is an integral domain and x is the generic point of X . By Proposition

2.7.2, there exists a valuation F1-subalgebra K◦ of K with K◦◦ ∩ A = py. The homomorphism

A→ K◦ induces a morphism Fspec(K◦)→ X that possesses the required property.

5.4.3. Lemma. The following properties of a quasi-compact morphism ϕ : Y → X are

equivalent:

(a) ϕ takes strongly closed sets to strongly closed sets;

(b) for every point y ∈ Y, one has ϕ({y}) = {ϕ(y)};

(c) for every point y ∈ Y and a specialization x′ of the point x = ϕ(y), there exists a special-

ization y′ of y such that ϕ(y′) = y.

Proof. The implication (a)=⇒(b) is trivial.

(b)=⇒(c). Replacing X by by an open p-affine neighborhood of the point x′ and Y by the

preimage of that neighborhood in Y, we may assume that X = Fspec(A) is affine. We can also

replace X by Fspec(A/Πx) and Y by the preimage of the later in Y, and so we may assume that

X is integral and x is its generic point. One has Πx′ = Πp, where p = px′ . Furthermore, let y′′

be a point from {y} with ϕ(y′′) = x′. Replacing Y by an open p-affine neighborhood of y′′, we

may assume that ϕ is a morphism of affine schemes Y = Fspec(B)→ X = Fspec(A). We can also

replace Y by Fspec(B/Πy), and so we may assume that Y is integral and y is its generic point.

Since the canonical homomorphism κ(x) → κ(y) is injective, the homomorphism A → B is also

injective. If q = py′′ , then q ∩ A = p, and so the point y′ of Y that corresponds to the prime ideal

Πq is a specialization of the point y and one has ϕ(y′) = x′.

(c)=⇒(a). Let Σ be a strongly closed subset of Y. We may assume that X = Fspec(A) is

affine and reduced. Since ϕ is quasi-compact, Y is a finite union of open p-affine subschemes Yi =

Fspec(Bi), 1 ≤ i ≤ m, such that each of the morphisms Yi → X is induced by a homomorphism of

F1-algebras A→ Bi and Σ∩Yi =
⋃ni
j=1 Yij , where Yij = Fspec(Bi/Fij) for ideals Fij of Bi. Let Eij

denote the kernel of the induced homomorphism A→ Bi/Fij . Then ϕ(Yij) ⊂ Xij = Fspec(A/Eij).

We claim that ϕ(Σ) =
⋃
i,j Xij (and, in particular, ϕ(Σ) is strongly closed in X ). Indeed, let x′ be

a point from the set on the right hand side, i.e., x′ ∈ Xij for some 1 ≤ i ≤ m and 1 ≤ j ≤ ni. Let

p be a Zariski ideal of A/Eij such that X (p)
ij is an irreducible component of Xij that contains the

point x′. Then there exists a generization x of x′ in X̌ (p)
ij . By Theorem 3.2.2(i), we can find an

irreducible component Y(q)
ij of Yij with ϕ(Y̌ij,q) = X̌ij,p. Let y be a point in Y̌ij,q with ϕ(y) = x.

By the assumption (c), there exists a specialization y′ of y in Y with ϕ(y′) = x′. Since y ∈ Σ, then
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y′ ∈ {y} ⊂ Σ and, therefore, x′ ∈ ϕ(Σ).

Proof of Theorem 5.4.1. Suppose first that ϕ is separated. Then it is evidently quasi-

separated. Any pair of morphisms χ1, χ2 : Fspec(K◦) → Y over X gives rise to a morphism

χ : Fspec(K◦)→ Y×XY. If x and y are the images of the generic points of Fspec(K) and Fspec(K̃),

then x � y. Assume that the restrictions of χ1, χ2 to Fspec(K) coincide, then χ(x) ∈ ∆ϕ(Y). Since

the latter set is closed, it follows that y ∈ ∆ϕ(Y) and, therefore, χ1 = χ2. Conversely, suppose

that the morphism ϕ is quasi-separated and the map considered is injective. To show that ∆ϕ(Y)

is closed in Y ×X Y, we apply the criterion of Lemma 5.4.3. It suffices to verify that, for every

point y ∈ Y, each specialization z′ of z = ∆ϕ(y) in Y ×X Y lies in ∆ϕ(Y). By Lemma 5.4.2, there

exists a morphism χ : Fspec(K◦)→ Y ×X Y from the spectrum of a valuation F1-algebra K◦ such

that the images of the generic points of Fspec(K) and Fspec(K̃) are z and z′, respectively. We get

two morphisms χ1, χ2 : Fspec(K◦) → Y which are compositions of the above morphism with the

canonical projections Y ×X Y → Y. Since z ∈ ∆ϕ(Y), the restrictions of χ1 and χ2 to Fspec(K)

coincide, the assumption implies that χ1 = χ2 and, in particular, z′ ∈ ∆ϕ(Y).

5.4.4. Theorem. A separated morphism of finite type ϕ : Y → X is proper if and only if, for

any morphism ψ : Fspec(K◦)→ X from the spectrum of a valuation F1-algebra K◦, the following

map is bijective

HomX (Fspec(K◦),Y)→ HomX (Fspec(K),Y) .

5.4.5. Lemma. Let ϕ : Y → X be a quasi-compact morphism, and assume that the scheme

Y is quasi-separated. Then ϕ is closed if and only if it possesses the equivalent properties of Lemma

5.4.3.

Proof. If ϕ is closed, it possesses the property (b) of Lemma 5.4.3. Conversely, suppose ϕ

possesses the property (a), i.e., it takes strongly closed sets to strongly closed sets. To prove the

required fact, we may assume that X is affine. In this case Y is quasi-compact, i.e., Y is a finite

union of open p-affine subschemes Yi = Fspec(Bi), 1 ≤ i ≤ m, such that each of the morphisms

ϕi : Yi → X is induced by a homomorphism of F1-algebras A → Bi. Let Σ be a closed subset

of Y. We have to show that every point x ∈ X\ϕ(Σ) has an open neighborhood that does not

intersect ϕ(Σ). Every point y ∈ ϕ−1
i (x) has an open neighborhood Vy of the form

⋂k
j=1D(aj , bj)

for some aj , bj ∈ Bi and k ≥ 1. The set Σ′y = Yi\Vy is strongly closed in Yi and contains the set

Σ∩Yi. Since the set ϕ−1
i (x)Fspec(Bi⊗A κ(x) is quasi-compact, we can cover it by a finite number

of sets of the above form Vy. If Σ′i is the finite intersection of the corresponding strongly closed

sets Σy then, by Proposition 5.3.10, the set Σi = Σ′i ∪ (Y\Yi) is strongly closed in Y. Thus, we get
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a strongly closed set Σ′ =
⋂m
i=1 Σi that contains Σ and has empty intersection with ϕ−1(x). The

assumption on ϕ implies that ϕ(Σ′) is a strongly closed subset of X . Since it contains ϕ(Σ) and

does not contain the point x, the required fact follows.

5.4.6. Corollary. Finite morphisms are proper.

Proof. By Definitions 5.3.2 and 4.6.6, it suffices to consider the case of a finite morphism of

affine schemes ϕ : Y = Fspec(B) → X = Fspec(A) and, by Lemma 5.4.5, it suffices to show that

the image ϕ(Y) is strongly closed in X . We can replace A by A/E, where E is the kernel of the

homomorphism A→ B, and so we may assume that the latter homomorphism is injective. In this

case Proposition 2.6.5(ii) implies that ϕ(Y) = X .

Proof of Theorem 5.4.4. Suppose fist that ϕ is proper. Then the map considered is injective,

by Theorem 5.4.1. To establish its bijectivity, we can replace X by Fspec(K◦) and Y by the base

change Y ×X Fspec(K◦) with respect to the morphism ψ, and we have to show that any morphism

σ : Fspec(K) → Y over X = Fspec(K◦) extends to a morphism X → Y. Let x and x′ be the

generic points of Fspec(K) and Fspec(K̃), respectively, and set y = σ(x). By Lemma 5.4.3, there

exists a specialization y′ of y with ϕ(y′) = x′. Let V = Fspec(B) be an open p-affine neighborhood

of the point y′. Then {y} ∩ U = Fspec(B(y)), where B(y) = B/Πy. The morphism ϕ induces

a homomorphism K◦ → B. Since ϕ(y) = x, the composition of the latter with the canonical

surjection B → B(y) is an injective homomorphism α : K◦ → B(y). The latter identifies K with

the fraction F1-field of B(y) because the morphism σ is a section of the restriction of ϕ to Fspec(K).

Let q be the Zariski prime ideal B(y) that corresponds to the point y′. Since ϕ(y′) = x′, it follows

that α−1(q) = K◦◦ and, since K◦ is valuation F1-algebra, it follows that α is an isomorphism. The

inverse isomorphism B(x) ∼→ K◦ provides the required extension of the morphism σ.

Conversely, suppose that the map considered is bijective. Since both of these properties are

preserved under any base change, it suffices to verify that ϕ is closed. Let y be a point from Y,

and let x′ be a specialization of the point x = ϕ(y). The morphism ϕ defines an embedding of

F1-fields κ(x) ↪→ κ(y). By Lemma 5.4.2, there exists a valuation F1-subalgebra κ(y)◦ of κ(y) such

that the morphism Fspec(κ(y)) → X extends to a morphism Fspec(κ(y)◦) → X which takes the

generic point of Fspec(κ̃(y)) to x′. By the bijectivity, the latter morphism comes from a morphism

Fspec(κ(y)◦) → Y which extends the canonical morphism Fspec(κ(y)) → Y. The image y′ of the

generic point of Fspec(κ̃(y)) in Y is a specialization of the point y and, by the construction, one

has ϕ(y′) = x′. Lemma 5.4.5 implies that the morphism ϕ is closed.

5.5. The projective spectrum Proj(A).
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5.5.1. Definition. (i) A graded F1-algebra is an F1-algebra A provided with a Z+-gradation,

i.e., a direct sum representation by Zariski F1-submodules A = ⊕i≥0Ai such that Ai · Aj ⊂ Ai+j

for all i, j ≤ 0.

(ii) A graded module over a graded F1-algebraA is anA-moduleM provided with a Z-gradation,

i.e., a direct sum representation by Zariski F1-submodules M = ⊕i∈ZMi such that Ai ·Mj ⊂Mi+j

for all i, j ∈ Z.

(iii) For M as above and n ∈ Z, we denote by M(n) the graded A-module with M(n)i = Mi+n

for all i ∈ Z.

For a graded F1-algebra A, any Zariski ideal a is homogeneous in the sense that a = ⊕n≥0an,

where an = a ∩ An and, therefore, the quotient A/a is a graded F1-algebra, and the canonical

homomorphism A→ A/a is a homomorphism of graded F1-algebras. The localization S−1A of A

with respect to any submonoid S is also a graded F1-algebra. In particular, the F1-field κ(p) of any

Zariski prime ideal p is graded, and the canonical homomorphism A→ κ(p) is a homomorphism of

graded F1-algebras.

5.5.2. Definition. A pair (a, b) ∈ A × A is said to be homogeneous if a, b ∈ An for some

n ≥ 0. An ideal E of A is said to be homogeneous if it consists of homogeneous pairs.

For a homogeneous ideal E, the quotient A/E is a graded F1-algebra, and the homomorphism

A→ A/E is a homomorphism of graded F1-algebras.

Let A be a graded F1-algebra, A+ the Zariski ideal ⊕n≥1An, and X the set of all homogeneous

prime ideals Π of A with aΠ 6⊃ A+. We provide X with the topology whose basis consists of sets of

the form
⋂n
i=1D+(ai, bi) where, for a homogeneous pair (a, b) ∈ A×A, D+(a, b) = {Π ∈ X

∣∣(a, b) 6∈
Π}. We notice that X is covered by open sets of the form D+(f) = D+(f, 0) for f ∈ A+. Notice

also that D+(fg) = D+(f) ∩D+(g) for all f, g ∈ A+. For f ∈ A+, the localization Af is provided

with the evident Z-gradation. Let A(f) denote the F1-subalgebra of Af consisting of elements of

degree zero. Notice that, if f ∈ Ad and g ∈ Ae, there are canonical isomorphisms (A(f)) gd
fe

∼→ A(fg)

and (A(g)) fe
gd

∼→ A(fg).

5.5.3. Lemma. There is a system of compatible homeomorphisms D+(f)
∼→ Fspec(A(f)).

Proof. We may assume that f 6= 0, and let k = deg(f). If Π ∈ D+(f), then Π(f) =

{( a
fm ,

b
fn ) ∈ A(f) × A(f)

∣∣(afn, bfm) ∈ Π} is a prime ideal of D+(f). Conversely, if Π is a prime

ideal of A(f), we define a homogeneous prime ideal Π(f) of A as follows. First of all, aΠ(f) = {a ∈

A
∣∣am
fn ∈ aΠ for some m,n ≥ 1} (it is a Zariski prime ideal of A). If (a, b) is a homogeneous pair

with both a and b outside aΠ(f) , then (a, b) ∈ Π(f) if ( a
k

fm ,
ak−1b
fm ) ∈ Π, where m = deg(a) = deg(b).
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(It is a symmetric equivalence relation since the latter inclusion implies that ( b
k

fm ·
ak

fm ,
bk−1a
fm · a

k

fm ) =

(a
k−1b
fm · ab

k−1

fm , a
k

fm ·
abk−1

fm ) ∈ Π and, therefore, ( b
k

fm ,
bk−1a
fm ) ∈ Π, i.e., (b, a) ∈ Π(f).) It is easy to see

that Π(f) is really a homogeneous prime ideal and that the both maps are inverse one to another

and continuous.

The family of open subsets τ = {D+(f)}f∈A+
is a net on X , and Lemma 5.5.3 implies that the

correspondence D+(f) 7→ Fspec(A(f)) defines a functor A : τ → AschoiF1
and an isomorphism of

functors T a ◦A ∼→ T , i.e., an affine atlas A with the net τ . Since τ is preserved by intersection, we

get a scheme which is called the projective spectrum of A and denoted by Proj(A). Notice that this

scheme is separated since, for any pair f, g ∈ A+, the canonical homomorphism A(f)⊗A(g) → A(fg)

is surjective. If the Zariski ideal A+ is generated by elements from A1 (or equivalently A is generated

by A1 as an A0-algebra), then X =
⋃
f∈A1

D+(f).

Furthermore, given a graded A-module M , the localization Mf with respect to an element

f ∈ A is also provided with the evident Z-gradation. Then the set M(f) of elements of degree zero

is an A(f)-module, and so it defines a quasi-coherent sheaf of modules M̃(f) on the affine scheme

D+(f) = Fspec(A(f)). If f ∈ Ad and g ∈ Ae, there are canonical isomorphisms (M(f)) gd
fe

∼→M(fg)

and (M(g)) fe
gd

∼→ M(fg). This means that the restrictions of the sheaves M̃(f) on D+(f) and M̃(g)

on D+(g) are canonically isomorphic on the intersection D+(fg), and there is a well defined quasi-

coherent OX -module M̃ on X whose restriction to each D+(f) coincides with M̃(f). The above

isomorphisms also give rise to a canonical injective map M(f) → Γ(X , M̃) which is a bijection if X

is connected.

For example, one has Ã = OX . For n ∈ Z, the OX -module Ã(n) is denoted by OX (n).

Notice that, if f ∈ Ad, the multiplication by fn gives rise to an isomorphism of A(f)-modules

A(f)
∼→ A(n)(f)and, therefore, it defines an isomorphism OX (n)

∣∣
D+(f)

∼→ OX
∣∣
D+(f)

. In particular,

if the Zariski ideal A+ is generated by A1, the OX -module OX (n) is invertible.

For example, for an F1-algebra S and n ≥ 0, the F1-algebra S[T0, T1, . . . , Tn] is provided with

the evident gradation. The projective spectrum Proj(S[T0, T1, . . . , Tn]) is said to be the projective

space over S and denoted by PnS . If A is a graded S-algebra such that the Zariski ideal A+ is

generated by a finite set of elements of A1 over S, then there is a surjective homomorphism of

graded S-algebras S[T0, T1, . . . , Tn] → A, m ≥ 0, which gives rise to a closed immersion X =

Proj(A) → PnS , and all of the OX -modules OX (m) are invertible. In this case, for all m,n ∈ Z

there are also canonical isomorphisms OX (m)⊗OX OX (n)
∼→ OX (m+n) and M̃(n)

∼→ M̃(n), where

M is a graded A-module and M̃(n) = M̃ ⊗OX OX (n).
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§6. The category of schemes Sch

In this section we introduce a category Sch whose family of objects is a disjoint union of those

of the categories SchZ of schemes over Z (i.e., classical schemes) and SchF1
of schemes over F1.

The category Sch in fact contains SchZ and SchF1 as full subcategories. If X and Y are schemes

over F1 and Z, respectively, then the set Hom(X ,Y) of morphisms in Sch is always empty, but

the set Hom(Y,X ) is not necessarily empty, e.g., Fspec(F1) is the final object of Sch. The main

feature of the category Sch is that it admits fiber products.

6.1. Definition of the category Sch. The family of objects of the category of schemes Sch

is defined as the disjoint union of the families of objects of the category SchZ of schemes over Z

and that of the category SchpF1
of schemes over F1. The sets of morphisms between two objects

of SchZ or of SchpF1
are defined as the corresponding sets in their categories. Furthermore, let X

and Y be schemes over F1 and Z, respectively. We set Hom(X ,Y) = ∅. A morphism from Y to X

is a pair consisting of a continuous map ϕ : Y → X and a homomorphism νϕ : OX → (ϕ∗OY)· of

sheaves of F1-algebras (in the schematic topology of X ) with the following property: for every point

y ∈ Y, there exist an open affine neighborhood V of y and an open p-affine neighborhood U of ϕ(y)

such that ϕ(V) ⊂ U and the map ϕ : V → U coincides with that induced by the homomorphism of

F1-algebras AU → B·V (which is in its turn induced by νϕ).

It follows from the definition that the above property holds for every pair consisting of an open

affine subscheme V ⊂ Y and an open p-affine subscheme U ⊂ X with ϕ(V) ⊂ U . It follows also

that for any pair of morphisms ψ : Y ′ → Y and χ : X → X ′ there is a well defined composition

morphism χϕψ : Y ′ → X ′. Thus, Sch is really a category.

6.1.1. Lemma. The correspondence Y ′ 7→ Hom(Y ′,X ) is a sheaf on Y.

Proof. Let {Yi}i∈I be a covering of Y by open subschemes, and suppose we are given a

compatible system of morphisms ϕi : Yi → X . It is clear that they induce a continuous map

ϕ : Y → X . Let V be an open affine subscheme of Y and U an open p-affine subscheme of X ,

and suppose ϕ(V) ⊂ U . For every i ∈ I, we take a covering {Vij}j∈Ji of V ∩ Yi by open affine

subschemes. Then we get a compatible system of homomorphisms of F1-algebras AU → B·Vij . Since

BV
∼→ Ker(

∏
BVij

→→
∏
BVij∩Vkl), that system is induced by a unique homomorphism AU → B·V .

In this way we get a homomorphism of sheaves of F1-algebras νϕ : OX → (ϕ∗OY)·. That it

satisfies the required property is trivial. It follows that the morphisms ϕi’s are induced by a unique

morphism ϕ : Y → X .
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6.1.2. Lemma. If X = Fspec(A) is affine, then Hom(Y,X ) = Hom(A,O(Y)·).

Proof. Lemma 6.1.1 reduces the situation to the case when Y = Spec(B) is also affine.

By Proposition 4.4.8, any homomorphism of F1-algebras A → B· extends in a unique way to a

compatible system of homomorphisms AU → B·V for all pairs of open affine subschemes U ⊂ X and

V ⊂ Y with ϕ(V) ⊂ U . We have to extend the homomorphisms AU → B·V to similar pairs in which

U is an open p-affine subscheme. For this we take a covering {Ui}i∈I of U by pairwise disjoint open

affine subschemes. By Proposition 4.4.8, each Vi = ϕ−1(Ui) is an open affine subscheme of Y, and

they form a finite covering of V. One therefore has BV
∼→
∏
i∈I BVi . This gives a homomorphism

of F1-algebras AU →
∏
i∈I AUi → B· which induces a continuous map V → U that coincides with

the map ϕ
∣∣
V .

6.1.3. Proposition. The category Sch admits fiber products.

Proof. First of all, it is trivial that the canonical fully faithful functor SchZ → Sch commutes

with fiber products. Furthermore, Lemma 6.1.2 implies that the canonical functor AschF1 → Sch

commutes with fiber products. One deduces from this using the reasoning from the proof of

Proposition 5.3.1 that the canonical fully faithful functor SchF1
→ Sch commutes with fiber

products. Finally, suppose we are given a morphism ϕ : Y → X from a scheme Y over Z and a

morphism f : X ′ → X of schemes over F1. Construction of the fiber product Y ′ = Y ×X X ′ is done

in several steps.

Step 1. Suppose that f is a morphism of affine schemes X ′ = Fspec(A′) → X = Fspec(A)

and ϕ is a morphism Y = Spec(B)→ X . The latter is defined by a homomorphism of F1-algebras

ϕ∗ : A → B· and enables one to view the F1-algebra C · of every B-algebra C as an A-algebra.

It is easy to see that the quotient Bϕ[A′] of the B-algebra of polynomials B[Ta′ ]a′∈A′ by the ideal

generated by the elements Ta′1a′2−Ta′1Ta′2 with a′1, a
′
2 ∈ A′ and Tf∗(a)−ϕ∗(a) with a ∈ A represents

the covariant functor C 7→ HomA(A′, C·). Lemma 6.1.2 implies that Fspec(Bϕ[A′]) is a fiber

product Y ×X X ′ in Sch.

Step 2. Suppose that ϕ is the same as in Step 1, but f is a p-morphism of affine schemes as

in Step 1. It is defined by morphisms fi : U ′i → X for a finite covering {U ′i}i∈I of X ′ by pairwise

disjoint open affine subschemes. We claim that the affine scheme Y ′ which is a finite disjoint union

Y ′ of the affine schemes Yi = Y ×X Ui is a fiber product Y ×X X ′ in Sch. Indeed, given morphisms

g : Z → Y and ψ : Z → X ′ with ϕg = fψ, we set Zi = ψ−1(U ′i). By Step 2, there are canonical

morphisms Zi → Yi which induce a canonical morphism Z → Y ′ whose composition with the

projections to Y and X ′ coincide with g and ψ, respectively. The claim follows.
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Notice that in this case, given open subschemes V ⊂ Y and U ′ ⊂ X , the preimage of V ×U ′ in

Y ×X X ′ is a fiber product V ×X U .

Step 3. A fiber product Y ×X X ′ exists if X is affine. Indeed, take coverings {Vi} of Y and

{U ′k} of X ′ by open affine and p-affine subschemes, respectively. Lemma 6.1.1 easily implies that

the scheme Y ′ obtained by gluing all Vi ×X U ′k along (Vi ∩ Vj) ×X (U ′k ∩ U ′l ) is a fiber product

Y ×X X ′.

Step 4. A fiber product Y ×X X ′ exists in the general case. Indeed, if the morphisms ϕ and f

go through a morphisms to an open p-affine subscheme U , then Y ×X X ′ = Y ×U X ′. In the general

case, we take a covering {Ui} of X by open p-affine subschemes. Then the scheme Y ′ obtained by

gluing all ϕ−1(Ui)×X f−1(Ui) along ϕ−1(Ui ∩ Uj)×X f−1(Ui ∩ Uj) is a fiber product of Y and X ′

over X .

Given morphisms f : X ′ → X of schemes over F1 and ϕ : Y → X from a scheme Y over Z, if

X = Fspec(A) and Y = Spec(B) are affine, the fiber product X ′×X Y will be denoted by X ′⊗AB.

For example, given a scheme X over F1, any morphism Y → X from a scheme over Z goes through

a unique morphism Y → X ⊗F1 Z.

6.2. Lifting of quasi-coherent OX -modules. Let ϕ : Y → X be a morphism from a

scheme over Z to a scheme over F1. For an OY -module G, the direct image ϕ∗G considered as a

sheaf of OX -modules (in the schematic topology of X ) will be denoted by (ϕ∗G)·. Given a sheaf of

OX -module F , consider the covariant functor on the category of OY -modules that takes G to the

set of homomorphisms of sheaves of OX -modules F → (ϕ∗G)·.

6.2.1. Proposition. Suppose that F is a quasi-coherent OX -module. Then

(i) the above functor is representable by a quasi-coherent OY -module denoted by ϕ∗F ;

(ii) if F is of finite type or coherent, then so is ϕ∗F ;

(iii) the correspondence F 7→ ϕ∗F is a functor which commutes with direct sums and tensor

products;

(iv) if F is a quasi-coherent OX -algebra, then ϕ∗F is a quasi-coherent OY -algebra, and it

represents the covariant functor that takes an OY -algebra G to the set of homomorphism of OX -

algebras F → (ϕ∗G)·.

6.2.2. Lemma. If X = Fspec(A) is affine and F = OX (M) for an A-module M , then

HomOX (F , (ϕ∗G)·)
∼→ HomA(M,G(Y)·).

Proof. That the map considered is injective is easy. Suppose we are given a homomorphism
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of A-modules M → G(Y)·. It induces a system of compatible homomorphisms of AU -modules

M ⊗A AU → G(ϕ−1(U))· for open affine subschemes U ⊂ X . Given a covering of U by open

affine subschemes U = {Ui}i∈I , one has G(ϕ−1(U))
∼→ Ker(

∏
i∈I G(Ui)

→→
∏
i,j∈I G(ϕ−1(Ui ∩ Uj)))

and, therefore, a homomorphism MU → G(ϕ−1(U))·. In their turn the latter induce a system

of compatible homomorphisms F(U) = 〈MU 〉 → G(ϕ−1(U))· and, therefore, a homomorphism of

sheaves of OX -modules F → (ϕ∗G)· which gives rise to the homomorphism we started from.

Notice that if, in the situation of Lemma 6.2.2, M is in fact an A-algebra, the same is true for

the sets of homomorphisms of F1-algebras instead of homomorphisms of modules.

6.2.3. Lemma. Suppose that both X = Fspec(A) and Y = Spec(B) are affine. Then

(i) for any A-module M , the covariant functor N → HomA(M,N ·) on the category of B-

modules is representable by a B-module denoted by B ⊗AM ;

(ii) the correspondence M 7→ B⊗AM is a functor that commutes with direct sums and tensor

products;

(iii) if M is an A-algebra, then B ⊗AM is a B-algebra that represents the covariant functor

that takes a B-algebra N to the set of homomorphisms of A-algebras M → N ·.

Proof. Let f denote the homomorphism A → B· that induces ϕ. The functor considered is

representable by the quotient of the free B-module ⊕m∈MBTm by the B-submodule generated by

the elements Tam − f(a)Tm with m ∈ M and a ∈ A, i.e., the statement (i) is true. Notice that, if

M is a quotient of a free A-module A(I) by an A-submodule E ⊂M ×M , then B⊗AM is also the

quotient of the free B-module ⊕i∈IBTi by the B-submodule generated by the elements a′Ti−a′′Tj
with (a′ti, a

′′tj) ∈ E, where ti is the image of the canonical i-th generator of A(I). In particular,

if M is finite or finitely presented, then so is B ⊗A M . The statements (ii) and (iii) easily follow

from (i).

Proof of Proposition 6.2.1. The situation is easily reduced to the case when both X =

Fspec(A) and Y = Spec(B) are affine.

Step 1. For any open affine subscheme U ⊂ X , one has (B ⊗AM)ϕ−1(U)
∼→ Bϕ−1(U) ⊗AU MU .

Indeed, this is trivial if U is a principal open subset or defined by vanishing a finite number of

idempotents and, therefore, this is true if U is an elementary open subset. If U is arbitrary, we

take an elementary family {Ui}i∈Ǐ that covers U . Then Bϕ−1(U)
∼→
∏
i∈Ǐ Bϕ−1(Ui) and, therefore,

(B ⊗A M)ϕ−1(U)
∼→
∏
i∈Ǐ Bϕ−1(Ui) ⊗AUi MUi . For the same reason, the right hand side coincides

with Bϕ−1(U) ⊗AU MU , and the claim follows.

Step 2. The functor M 7→ OY(B ⊗A M) is extended to a functor Qcoh(X ) → Qcoh(Y)
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that takes F to a quasi-coherent OY -module ϕ∗F . Recall that, for A-modules M and P , one

has HomOX (OX (M),OX (P )) = lim
−→

HomA(M,PU), where the inductive limit is taken over finite

coverings U of X by open affine subschemes. Step 1 and acyclicity of quasi-coherent modules

on affine schemes over Z imply that the canonical homomorphism P → (B ⊗A P )· extends in a

canonical way to a homomorphism PU → (B ⊗A P )·. This gives the required extension of the

functor considered to the essential image of the category of A-modules in Qcoh(X ). Suppose now

that OX (M) is an arbitrary object of the category Qcoh(X ). We may assume that there is a finite

covering of X by pairwise disjoint open affine subschemes {Ui}i∈I such that OX (M) is associated

with a system of AUi-modules MUi . By the previous case, each MUi gives rise to a quasi-coherent

Oϕ−1(Ui)-module on ϕ−1(Ui), and all of them define the required quasi-coherent OY -module.

Step 3. The coherent OY -module ϕ∗F possesses all of the required properties. Indeed, it suffices

to verify the claim in the case F = OX (M) for an A-module M . In this case HomOX (F , (ϕ∗G)·)
∼→

HomA(M,G(Y)·), by Lemma 6.2.2. By Lemma 6.2.3, the latter coincides with HomB(B⊗AM,G(Y))

and, by quasi-coherence, with HomOY (OY(B ⊗A M),G), i.e., the property (i) holds. The other

properties follow from Lemma 6.2.3.

6.3. The image of the map Y → X . Recall that an abelian group is said to be locally

cyclic if every subgroup of it generated by a finite number of elements is cyclic. For example, the

torsion subgroup of the multiplicative group k∗ of any field k is locally cyclic. It follows that, given

a morphism ϕ : Y → X from a scheme over Z to a scheme over F1, the torsion subgroup of κ(x)∗

of every point x from the image of ϕ is locally cyclic.

6.3.1. Proposition. Let X be a scheme over F1, and let k be a field of characteristic zero

(resp. p > 0). Then the image of the map X ⊗F1 k → X is the set of points x ∈ X with the

property that the torsion subgroup of κ(x)∗ is locally cyclic (resp. and has no elements of order p).

Proof. Let x be a point of X with that property, and set K = κ(x). We notice that it

suffices to show that there exists an embedding K∗ ↪→ k′∗ for an extension k′ of k. Indeed, such

an embedding gives rise to a morphism Spec(k′) → X whose image is the point x and which goes

through a morphism Spec(k′) → X ⊗F1
k. If x′ is the image of the latter morphism, then the

induced homomorphism K∗ → κ(x′)∗ is injective. The required fact is a version of a result of Cohn

[Cohn], and here is an easy proof of it.

We may assume that K is infinite, and we can increase the field k and assume that it is

algebraically closed and its cardinality is greater than that of K. Then there is an emdedding

K∗tors ↪→ k∗. Let S be the set of pairs (G,α), where G of a subgroup of K∗ that contains K∗tors
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and α is an embedding G ↪→ k∗. We provide S with a partial ordering as follows: (G,α) ≤ (G′, α′)

if G ⊂ G′ and α′
∣∣
G

= α. The poset S satisfies the condition of Zorn’s Lemma and, therefore, it

contains a maximal element (G,α). It suffices to show that G = K∗. Suppose this is not true. We

then can find an element λ ∈ K∗\G. If λn 6∈ G for all n ≥ 1, then we take an arbitrary element

x ∈ k∗ transcendental over the subfield of k generated by α(G). (It exists since the cardinality

of k is greater than that of K.) If G′ is the subgroup of K∗ generated by G and λ and α′ is the

homomorphism G′ → k∗ that coincides with α on G and takes λ to x, then the pair (G′, α′) is an

element of S strictly bigger that (G,α), which is a contradiction. Suppose now that λn ∈ G for

some n > 1. We may assume that n is minimal with this property and, therefore, each element

of the subgroup G′ of K∗ generated by G and λ has a unique representation in the form λig with

0 ≤ i ≤ n − 1 and g ∈ G. Let x be an element of k with xn = α(λn). If α′ is the homomorphism

of G′ → k∗ that coincides with α on G and takes λ to x, then the pair (G′, α′) is an element of S

strictly bigger that (G,α), which is a contradiction.

Suppose now we are given an F1-field K, a commutative ring with unity k, and a ho-

momorphism of F1-algebras K → k·, i.e., a morphism Spec(k) → Fspec(K). Then for any

K-algebra A there are an induced morphism Spec(k ⊗K A) → Fspec(A) and an induced map

Spec(k ⊗K A)→ Zspec(A).

6.3.2. Lemma. The following properties of a Zariski ideal p ⊂ A are equivalent:

(a) p lies in the image of the map Spec(k ⊗K A)→ Zspec(A);

(b) k ⊗K κ(p) 6= 0;

(c) the stabilizer of every element f ∈ A\p in K∗ lies in Ker(K∗ → k∗).

Proof. We set B = k ⊗K A. A Zariski ideal p ⊂ A lies in the image of Spec(B) if and only

if there exists an ideal q ⊂ B with p = Zker(A→ (B/q)·), The latter is equivalent to the property

B ⊗A κ(p) 6= 0. Since B ⊗A κ(p) = k ⊗K κ(p), the equivalence (a)⇐⇒(b) follows. The equivalence

(b)⇐⇒(c) is trivial.

6.3.3. Corollary. The following properties of a K-algebra A are equivalent:

(a) the map Spec(k ⊗K A)→ Zspec(A) is surjective;

(b) the stabilizer of every non-nilpotent element f ∈ A in K∗ is contained in Ker(K∗ → k∗).

6.4. Schemes over k with a topologized prelogarithmic K-structure. Suppose now we

are given an F1-algebra K, a commutative ring with unity k, and a homomorphism of F1-algebras

α : K → k·, i.e., a morphism Spec(k)→ Fspec(K). For a scheme X over K, we set X (α) = X ⊗K k,
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and denote by π the morphism X (α) → X .

6.4.1. Definition. (i) A scheme X over K is said to be α-nontrivial if every point of X has

an open p-affine neighborhood U for which the map U (α) → Zspec(AU ) is surjective.

(ii) The full subcategory of SchK of schemes over K consisting of locally connected α-nontrivial

schemes is denoted by Sch[α]
K .

For example, if K is an F1-field, Corollary 6.3.3 implies that an affine scheme X = Fspec(A)

over K is k/K-nontrivial if and only if the stabilizer of every non-nilpotent element f ∈ A in K∗

is contained in Ker(K∗ → k∗).

6.4.2. Lemma. Suppose that X is α-nontrivial. If π−1(U) ⊂ π−1(V) for open subschemes of

X , then U ⊂ V. In particular, if π−1(U) = π−1(V), then U = V.

Proof. The situation is easily reduced to the case when X = Fspec(A) is affine. Since the map

X ⊗K k → Zspec(A) is surjective, it follows that the images of the sets π−1(U) and π−1(V) coincide

with the sets of Zariski prime ideals p ⊂ A with U ∩ X (p) 6= ∅ and V ∩ X (p) 6= ∅, respectively. It

remains to notice that, if V ∩ X (p) 6= ∅, then X (p) ⊂ V.

6.4.3. Definition. (i) A scheme over k with a topologized prelogarithmic K-structure is

a quadruple (Y, σ,A, ν) consisting of a scheme Y over k, a topology σ on Y formed by open

subschemes, a σ-sheaf of K-algebras A, and a homomorphism of σ-sheaves of K-algebras ν : A →

O·Y
∣∣
σ

which is compatible with the homomorphism α.

(ii) A morphism (Y, σ,A, ν) → (Y ′, σ′,A′, ν′) is a pair consisting of a morphism of schemes

over k, ϕ : Y → Y ′, which is σ-continuous (i.e., ϕ−1(V ′) is σ-open for all σ′-open subschemes

V ′ ⊂ Y ′) and a homomorphism of σ-sheaves of K-algebras A′ → ϕ∗A which is compatible with the

homomorphism OY′ → ϕ∗OY .

(iii) The category of schemes over k with a topologized prelogarithmic K-structure is denoted

by Sch[α]
k .

If (Y, σ,A, ν) is an object of Sch[α]
k , every σ-open subscheme V ⊂ Y gives rise to an object of

Sch[α]
k , namely, (V, σ

∣∣
V ,A

∣∣
V , ν

∣∣
V). (In the formulation of Theorem 6.4.4(ii), V denotes the latter

tuple.) A morphism (Y ′, σ′,A′, ν′) → (Y, σ,A, ν) in Sch[α]
k is said to be an open immersion if

it gives rise to an isomorphism of the first tuple with the object of Sch[α]
k induced by a σ-open

subscheme of Y.

6.4.4. Theorem (i) The correspondence X 7→ X (α) gives rise to a fully faithful functor

Sch[α]
K → Sch

[α]
k ;

111



(ii) an object (Y, σ,A, ν) of Sch[α]
k lies in the essential image of the above functor if and only

if the σ-topology admits a base bσ with the following properties:

(1) for every V ∈ bσ, A(V) is a K-algebra with connected and locally connected spectrum,

and the canonical morphism V → Spec(A(V)]⊗K k) is an isomorphism in Sch[α]
k ;

(2) for every pair V ⊂ W in bσ, the canonical homomorphism A(W) → A(V) induces an

open immersion of affine schemes Fspec(A(V))→ Fspec(A(W)) which is compatible with the open

immersion V → W.

Proof. (i) Let X be locally connected α-nontrivial scheme over K. The scheme X (α) is

provided with the topology σ whose open sets are the preimages of open subschemes of X with

respect to the map π : X (α) → X . If πσ denotes the map from X (α), provided with the σ-

topology, to X , provided with the schematic topology, the homomorphism OX → π∗O·X (α) induces

a homomorphism ν : π∗σOX → O·X (α)

∣∣
σ
. The tuple (X (α), σ, π∗σOX , ν) is an object of the category

Sch[α]
k . That the correspondence X 7→ (X (α), σ, π∗σOX , ν) is a faithful functor is easy. To show that

it is fully faithful (and to prove (ii)), we need the following simple fact.

6.4.5. Lemma. One has OX
∼→ πσ∗π

∗
σOX .

Proof. Since X is locally connected, it suffices to verify that, for a connected open affine

subscheme U of X , one has (π∗σOX )(U (α)) = AU . The σ-open affine subscheme U (α) = π−1(U)

contains a point x with π(x) ∈ Um. Since U is the minimal open subscheme of X that contains

a point from Um, Lemma 6.4.2 implies that U (α) is the minimal σ-open subscheme of X (α) that

contains the point x and, therefore, any σ-open covering {Vi}i∈I of U (α) one has U (α) ⊂ Vi for

some i ∈ I. The required fact follows.

Let ϕ : (X (α), σ, π∗OX , ν) → (X ′(α), σ′, π′αOX ′ , ν′) be a morphism in Sch[α]
k . Given a con-

nected open affine subscheme U ⊂ X , take a point x ∈ U (α) with p(x) ∈ Um and a connected open

affine subscheme U ′ ⊂ X ′ with ϕ(x) ∈ U ′(α). We claim that ϕ(U (α)) ⊂ U ′(α). Indeed, since the

map ϕ is σ-continuous, ϕ−1(U ′(φ)) = π−1(V) for some open subscheme V ⊂ X and, since U is the

minimal open subscheme of X that contains the point π(x), it follows that U ⊂ V and, therefore,

U (α) ⊂ ϕ−1(U ′(α)).

Furthermore, suppose we are given connected open affine subschemes U ⊂ X and U ′ ⊂ X ′

with ϕ(U (α)) ⊂ U ′(α). By Lemma 6.4.5, one has (π∗σOX )(U (α)) = AU and (π′∗σ′OX ′) = A′U ′ and,

therefore, the homomorphism π′∗σ′OX ′ → ϕ∗(π
∗
σOX ) induces a homomorphism AU ′ → AU which is

compatible with the homomorphism A′U ′⊗Kk → AU⊗Kk. In this way we get a system of compatible

homomorphisms of K-algebras AU ′ → AU for all pairs of connected open affine subschemes U ⊂ X
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and U ′ ⊂ X ′ with ϕ(U (α)) ⊂ U ′(α). This system defines a morphism X → X ′ of schemes over K

which gives rise to the morphism ϕ.

(ii) If X is a locally connected α-nontrivial scheme over K, the corresponding object of Sch[α]
k

is the quadruple (X (α), σ, π∗σOX , ν), described in the proof of (i). The preimages of the connected

open affine subschemes of X form a base bσ of the topology σ. That bσ possesses the properties

(1) and (2) follows from Lemma 6.4.5.

Suppose now that (Y, σ,A, ν) is an object of Sch[α]
k with a base bσ of σ that possesses those

properties. For V ∈ bσ, let XV be the affine scheme Fspec(A(V)). The property (1) implies that

there is a canonical isomorphism V ∼→ X (α)
V . The property (2) implies that, for every pair V ⊂ W,

the canonical morphism XV → XW is an open immersion that induces the open immersion V → W.

For a pair V,W ∈ bσ, let XV,W denote the open subscheme of XV which is the union of the images

of XU , where U runs through all sets from bσ for which X (α)
U ⊂ V ∩ W. Notice that, since bσ is

a base of the topology σ, such sets X (α)
U cover the intersection V ∩ W, and that there is a well

defined isomorphism νV,W : XV,W
∼→ XW,V . The system {νV,W} satisfies the conditions of Lemma

5.2.10 and, therefore, we can glue all XV ’s along XV,W ’s. In this way we get a locally connected

α-nontrivial scheme X over K with Y ∼→ X (α).

6.5. Schemes over k with a prelogarithmic K-structure. In this subsection α : K → k·

is a homomorphism as in §6.4.

6.5.1. Definition. (i) An α-nontrivial separated scheme X over K is said to be α-special if it

admits a net of connected open affine subschemes σ such that every U ∈ σ possesses the following

properties:

(1) U is reduced and the set of its irreducible components is finite;

(2) the intersection UM of the sets Wm, where W runs through all irreducible components

of U , is nonempty;

(3) for each Zariski prime ideal p ⊂ AU , the k-algebra k ⊗K κ(p) is integral.

(ii) The full subcategory of SchK consisting of α-special schemes is denoted by Sch(α)
K .

The properties (1) and (2) do not depend on the homomorphism α. Notice that, since the

canonical homomorphism AU/Πp → κ(p) is injective, the property (3) implies that the k-algebra

k⊗K AU/Πp is integral and, in particular, there is a one-to-one correspondence between the set of

irreducible components of U and that of U (α). Here is a simple sufficient condition for validity of

the property (3).
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6.5.2. Lemma. Suppose that K is an F1-field and k is an integral domain. If a φ-nontrivial

K-algebra A is such that, for every Zariski prime ideal p ⊂ A, the group Coker(K∗ → κ(p)∗) has

no torsion, then the affine scheme X = Fspec(A) possesses the property (3).

Notice that if the condition of Lemma 6.5.2 is satisfied by those p for which X (p) is an irreducible

component of X , then it is satisfied by all p’s.

Proof. Since A is α-nontrivial, we may replace A by A/Ker(K∗ → A∗) and assume that the

homomorphism K → A∗ is injective. Furthermore, to verify the required property for a Zariski

prime ideal p ⊂ A, we may replace A by A/Πp and assume that A is an integral domain and

p = 0. If F is the fraction F1-field of A, the homomorphism k ⊗K A → k ⊗K F is injective and,

therefore, it suffices to verify the required fact for F instead of A. Finally, if F = lim
−→

Fi, then

k ⊗K F = lim
−→

k ⊗K Fi. We may therefore assume that the group F ∗/K∗ is finitely generated. If

f1, . . . , fn are elements of F ∗ whose images form a basis of the free group F ∗/K∗, then k ⊗K F =

k[f1, . . . , fn,
1
f1
, . . . , 1

fn
]. The latter is an integral domain because k is an integral domain.

6.5.3. Definition. (i) A scheme over k with a prelogarithmic K-structure is a triple (Y,A, ν)

consisting of a scheme Y over k, a sheaf of K-algebras A, and a homomorphism of K-algebras

ν : A → O·Y which is compatible with the homomorphism α.

(ii) A morphism (Y,A, ν)→ (Y ′,A′, ν′) is a pair consisting of a morphism of schemes over k,

ϕ : Y → Y ′, and a homomorphism of sheaves of K-algebras A′ → ϕ∗A which is compatible with

the homomorphism OY′ → ϕ∗OY .

(iii) The category of schemes over k with a prelogarithmic K-structure is denoted by Sch(α)
k .

If (Y,A, ν) is an object of Sch(α)
k , every open subscheme V ⊂ Y gives rise to an object

of Sch(α)
k , namely, (V,A

∣∣
V , ν

∣∣
V). (In the formulation of Theorem 6.5.4(ii), V denotes the latter

triple.) A morphism (Y ′,A′, ν′) → (Y,A, ν) in Sch(α)
k is said to be an open immersion if it gives

rise to an isomorphism of the first triple with the object of Sch(α)
k induced by an open subscheme

of Y.

6.5.4. Theorem. (i) The correspondence X 7→ X (α) gives rise to a fully faithful functor

Sch(α)
K → Sch(α)

k ;

(ii) an object (Y,A, ν) of Sch(α)
k lies in the essential image of the above functor if and only if

the following holds:

(1) the family of open sets V, for which the K-algebra A(V) is α-special and the canonical

morphism V → Spec(k ⊗K A(V)) is an isomorphism in Sch(α)
k , forms a net;
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(2) for every pair V ⊂ W of sets from (1), the canonical homomorphism A(W) → A(V)

induces an open immersion of affine schemes Fspec(A(V)) → Fspec(A(W)) which is compatible

with the open immersion V → W.

6.5.5. Lemma. Let X = Fspec(A) be a connected α-special affine scheme over K. Then for

any open subscheme V ⊂ X (α) that contains a point from π−1(XM ), one has A
∼→ (π∗OX )(V).

Proof. The sheaf π∗OX is associated with the separated presheaf P = π−1OX whose value

at an open subset V ⊂ X (α) is the inductive limit lim
−→
O(U) taken over all open subschemes U of

X that contain the image p(V). Thus, we have to verify that, given a finite covering of V with

V ∩ π−1(XM ) 6= ∅ by open subsets {Vµ}, one has A
∼→ L = Ker(

∏
µ P (Vµ)

→→
∏
µ,ρ P (Vµ ∩ Vρ)).

Let {Xi}i∈I be the set of irreducible components of X . For an open subscheme U ⊂ X , we set

I(U) = {i ∈ I
∣∣Ui 6= ∅}, where Ui = U ∩ Xi. Since every open affine subscheme of Xi is a principal

open subset, it follows that if, for open subschemes U ′ ⊂ U ′′ ⊂ X one has I(U ′) = I(U ′′), then

the canonical homomorphism O(U ′′) → O(U ′) is injective. This also implies that for every open

subscheme U ⊂ X there is a canonical injective homomorphism O(U) ↪→
∏
i∈I(U) Fi, where Fi is

the fraction F1-field of Ai (with Xi = Fspec(Ai)).

Furthermore, for an open subset V ⊂ X (α), we set I(V) =
⋂
I(U), where the intersection

is taken over open subschemes of U that contain the set π(V). If such U is sufficiently small,

then I(V) = I(U). It follows from the previous paragraph that, for any V, there is a canonical

injective homomorphism P (V) ↪→
∏
i∈I(V) Fi. Notice that, if V contains a point from π−1(XM ),

then I(V) = I and A
∼→ P (V).

We now turn back to the covering of V with V ∩π−1(XM ) 6= ∅ by open subsets {Vµ}. Let (fµ)µ

be an element in the above kernel L. For every µ, there is a canonical injective homomorphism

P (Vµ) ↪→
∏
i∈I(Vµ) Fi. If i ∈ I(Vµ)I(Vnu), then the images of the elements fµ and gν under the

canonical homomorphisms P (Vµ) → Fi and P (Vµ) → Fi are equal. This means that there is an

injective homomorphism L ↪→
∏
i∈I Fi. But by the assumption, there exists Vρ which contains

a point from π−1(XM ) and, therefore, I(Vρ) = I and P (Vρ) = A, i.e., there exists f ∈ A with

f
∣∣
Vρ

= fρ. The above remark implies that f
∣∣
Vµ

= fµ for all µ.

Proof of Theorem 6.5.4. (i) The functor considered takes an α-special scheme X to the

triple (X (α), π∗OX , ν), where π is the morphism X (α) → X and ν is the canonical homomorphism

π∗OX → OX (α) . Let ϕ : (X (α), π∗OX , ν) → (X ′(α), π′∗OX ′ , ν′) be a morphism in Sch(α)
k . For

an α-special open connected affine subscheme U ⊂ X , we take a point x ∈ U (α) whose image

in U lies in UM , and an α-special open connected affine subscheme U ′ of X ′. We claim that
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ϕ
∣∣
U(α) = ψ(α) for a morphism ψ : U → U ′ ⊂ X ′. Indeed, let V = U (α) ∩ ϕ−1(U ′(α)). By Lemma

6.5.5, one has AU
∼→ (π∗OX )(V) and A′U ′

∼→ (π′∗OX ′)(U ′(α)), and so the homomorphism of sheaves

π′∗OX ′ → ϕ∗(π
∗OX ) gives rise to a homomorphism of K-algebras A′U ′ = (π′∗OX ′)(U ′(α))→ AU =

(π∗OX )(V). The latter gives rise to a morphism of schemes ψ : U → U ′ ⊂ X ′ such that the

restriction of ψ(α) : U (α) → U ′(α) ⊂ X ′(α) to the dense open subscheme V coincides with the

morphism V → U ′(α) ⊂ X ′(α) induced by ϕ. Since the scheme X ′(α) is separated and U (α) is

reduced, we get ϕ
∣∣
U(α) = ψ(α).

In this way we get a system of compatible morphisms ψU : U → X ′ for all α-special open affine

subschemes U of X . This system defines a morphism ψ : X → X ′ of schemes over K which induces

the morphism ϕ.

(ii) That the image of an α-special scheme X in Sch(α) possesses the required properties

follows from Definition 6.5.1 and Lemma 6.5.5.Given an object of the category Sch(α) with those

properties, a construction of the required α-special scheme over K is done in the same way as in

the proof of Theorem 6.4.4(ii).

6.6. Classes of morphisms between schemes over SchF1
. The existence of fiber products

in the category Sch enables one to extend various classes of morphisms from the category SchZ
to the whole category Sch. Namely, let P be a property of morphisms of schemes over Z which is

local with respect to the target.

6.6.1. Definition. A morphism ϕ : X ′ → X of schemes over F1 is said to have the property

P if, for any morphism ϕ : Y → X from a scheme over Z, the induced morphism Y ×X X ′ → Y of

schemes over Z has the property P.

§6. The category of schemes Sch

In this section we introduce a category Sch whose family of objects is a disjoint union of those

of the categories SchZ of schemes over Z (i.e., classical schemes) and SchF1
of schemes over F1.

The category Sch in fact contains SchZ and SchF1 as full subcategories. If X and Y are schemes

over F1 and Z, respectively, then the set Hom(X ,Y) of morphisms in Sch is always empty, but

the set Hom(Y,X ) is not necessarily empty, e.g., Fspec(F1) is the final object of Sch. The main

feature of the category Sch is that it admits fiber products.

6.1. Definition of the category Sch. The family of objects of the category of schemes Sch

is defined as the disjoint union of the families of objects of the category SchZ of schemes over Z
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and that of the category SchpF1
of schemes over F1. The sets of morphisms between two objects

of SchZ or of SchpF1
are defined as the corresponding sets in their categories. Furthermore, let X

and Y be schemes over F1 and Z, respectively. We set Hom(X ,Y) = ∅. A morphism from Y to X

is a pair consisting of a continuous map ϕ : Y → X and a homomorphism νϕ : OX → (ϕ∗OY)· of

sheaves of F1-algebras (in the schematic topology of X ) with the following property: for every point

y ∈ Y, there exist an open affine neighborhood V of y and an open p-affine neighborhood U of ϕ(y)

such that ϕ(V) ⊂ U and the map ϕ : V → U coincides with that induced by the homomorphism of

F1-algebras AU → B·V (which is in its turn induced by νϕ).

It follows from the definition that the above property holds for every pair consisting of an open

affine subscheme V ⊂ Y and an open p-affine subscheme U ⊂ X with ϕ(V) ⊂ U . It follows also

that for any pair of morphisms ψ : Y ′ → Y and χ : X → X ′ there is a well defined composition

morphism χϕψ : Y ′ → X ′. Thus, Sch is really a category.

6.1.1. Lemma. The correspondence Y ′ 7→ Hom(Y ′,X ) is a sheaf on Y.

Proof. Let {Yi}i∈I be a covering of Y by open subschemes, and suppose we are given a

compatible system of morphisms ϕi : Yi → X . It is clear that they induce a continuous map

ϕ : Y → X . Let V be an open affine subscheme of Y and U an open p-affine subscheme of X ,

and suppose ϕ(V) ⊂ U . For every i ∈ I, we take a covering {Vij}j∈Ji of V ∩ Yi by open affine

subschemes. Then we get a compatible system of homomorphisms of F1-algebras AU → B·Vij . Since

BV
∼→ Ker(

∏
BVij

→→
∏
BVij∩Vkl), that system is induced by a unique homomorphism AU → B·V .

In this way we get a homomorphism of sheaves of F1-algebras νϕ : OX → (ϕ∗OY)·. That it

satisfies the required property is trivial. It follows that the morphisms ϕi’s are induced by a unique

morphism ϕ : Y → X .

6.1.2. Lemma. If X = Fspec(A) is affine, then Hom(Y,X ) = Hom(A,O(Y)·).

Proof. Lemma 6.1.1 reduces the situation to the case when Y = Spec(B) is also affine.

By Proposition 4.4.8, any homomorphism of F1-algebras A → B· extends in a unique way to a

compatible system of homomorphisms AU → B·V for all pairs of open affine subschemes U ⊂ X and

V ⊂ Y with ϕ(V) ⊂ U . We have to extend the homomorphisms AU → B·V to similar pairs in which

U is an open p-affine subscheme. For this we take a covering {Ui}i∈I of U by pairwise disjoint open

affine subschemes. By Proposition 4.4.8, each Vi = ϕ−1(Ui) is an open affine subscheme of Y, and

they form a finite covering of V. One therefore has BV
∼→
∏
i∈I BVi . This gives a homomorphism

of F1-algebras AU →
∏
i∈I AUi → B· which induces a continuous map V → U that coincides with

the map ϕ
∣∣
V .
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6.1.3. Proposition. The category Sch admits fiber products.

Proof. First of all, it is trivial that the canonical fully faithful functor SchZ → Sch commutes

with fiber products. Furthermore, Lemma 6.1.2 implies that the canonical functor AschF1
→ Sch

commutes with fiber products. One deduces from this using the reasoning from the proof of

Proposition 5.3.1 that the canonical fully faithful functor SchF1 → Sch commutes with fiber

products. Finally, suppose we are given a morphism ϕ : Y → X from a scheme Y over Z and a

morphism f : X ′ → X of schemes over F1. Construction of the fiber product Y ′ = Y ×X X ′ is done

in several steps.

Step 1. Suppose that f is a morphism of affine schemes X ′ = Fspec(A′) → X = Fspec(A)

and ϕ is a morphism Y = Spec(B)→ X . The latter is defined by a homomorphism of F1-algebras

ϕ∗ : A → B· and enables one to view the F1-algebra C · of every B-algebra C as an A-algebra.

It is easy to see that the quotient Bϕ[A′] of the B-algebra of polynomials B[Ta′ ]a′∈A′ by the ideal

generated by the elements Ta′1a′2−Ta′1Ta′2 with a′1, a
′
2 ∈ A′ and Tf∗(a)−ϕ∗(a) with a ∈ A represents

the covariant functor C 7→ HomA(A′, C·). Lemma 6.1.2 implies that Fspec(Bϕ[A′]) is a fiber

product Y ×X X ′ in Sch.

Step 2. Suppose that ϕ is the same as in Step 1, but f is a p-morphism of affine schemes as

in Step 1. It is defined by morphisms fi : U ′i → X for a finite covering {U ′i}i∈I of X ′ by pairwise

disjoint open affine subschemes. We claim that the affine scheme Y ′ which is a finite disjoint union

Y ′ of the affine schemes Yi = Y ×X Ui is a fiber product Y ×X X ′ in Sch. Indeed, given morphisms

g : Z → Y and ψ : Z → X ′ with ϕg = fψ, we set Zi = ψ−1(U ′i). By Step 2, there are canonical

morphisms Zi → Yi which induce a canonical morphism Z → Y ′ whose composition with the

projections to Y and X ′ coincide with g and ψ, respectively. The claim follows.

Notice that in this case, given open subschemes V ⊂ Y and U ′ ⊂ X , the preimage of V ×U ′ in

Y ×X X ′ is a fiber product V ×X U .

Step 3. A fiber product Y ×X X ′ exists if X is affine. Indeed, take coverings {Vi} of Y and

{U ′k} of X ′ by open affine and p-affine subschemes, respectively. Lemma 6.1.1 easily implies that

the scheme Y ′ obtained by gluing all Vi ×X U ′k along (Vi ∩ Vj) ×X (U ′k ∩ U ′l ) is a fiber product

Y ×X X ′.

Step 4. A fiber product Y ×X X ′ exists in the general case. Indeed, if the morphisms ϕ and f

go through a morphisms to an open p-affine subscheme U , then Y ×X X ′ = Y ×U X ′. In the general

case, we take a covering {Ui} of X by open p-affine subschemes. Then the scheme Y ′ obtained by

gluing all ϕ−1(Ui)×X f−1(Ui) along ϕ−1(Ui ∩ Uj)×X f−1(Ui ∩ Uj) is a fiber product of Y and X ′

over X .
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Given morphisms f : X ′ → X of schemes over F1 and ϕ : Y → X from a scheme Y over Z, if

X = Fspec(A) and Y = Spec(B) are affine, the fiber product X ′×X Y will be denoted by X ′⊗AB.

For example, given a scheme X over F1, any morphism Y → X from a scheme over Z goes through

a unique morphism Y → X ⊗F1 Z.

6.2. Lifting of quasi-coherent OX -modules. Let ϕ : Y → X be a morphism from a

scheme over Z to a scheme over F1. For an OY -module G, the direct image ϕ∗G considered as a

sheaf of OX -modules (in the schematic topology of X ) will be denoted by (ϕ∗G)·. Given a sheaf of

OX -module F , consider the covariant functor on the category of OY -modules that takes G to the

set of homomorphisms of sheaves of OX -modules F → (ϕ∗G)·.

6.2.1. Proposition. Suppose that F is a quasi-coherent OX -module. Then

(i) the above functor is representable by a quasi-coherent OY -module denoted by ϕ∗F ;

(ii) if F is of finite type or coherent, then so is ϕ∗F ;

(iii) the correspondence F 7→ ϕ∗F is a functor which commutes with direct sums and tensor

products;

(iv) if F is a quasi-coherent OX -algebra, then ϕ∗F is a quasi-coherent OY -algebra, and it

represents the covariant functor that takes an OY -algebra G to the set of homomorphism of OX -

algebras F → (ϕ∗G)·.

6.2.2. Lemma. If X = Fspec(A) is affine and F = OX (M) for an A-module M , then

HomOX (F , (ϕ∗G)·)
∼→ HomA(M,G(Y)·).

Proof. That the map considered is injective is easy. Suppose we are given a homomorphism

of A-modules M → G(Y)·. It induces a system of compatible homomorphisms of AU -modules

M ⊗A AU → G(ϕ−1(U))· for open affine subschemes U ⊂ X . Given a covering of U by open

affine subschemes U = {Ui}i∈I , one has G(ϕ−1(U))
∼→ Ker(

∏
i∈I G(Ui)

→→
∏
i,j∈I G(ϕ−1(Ui ∩ Uj)))

and, therefore, a homomorphism MU → G(ϕ−1(U))·. In their turn the latter induce a system

of compatible homomorphisms F(U) = 〈MU 〉 → G(ϕ−1(U))· and, therefore, a homomorphism of

sheaves of OX -modules F → (ϕ∗G)· which gives rise to the homomorphism we started from.

Notice that if, in the situation of Lemma 6.2.2, M is in fact an A-algebra, the same is true for

the sets of homomorphisms of F1-algebras instead of homomorphisms of modules.

6.2.3. Lemma. Suppose that both X = Fspec(A) and Y = Spec(B) are affine. Then

(i) for any A-module M , the covariant functor N → HomA(M,N ·) on the category of B-

modules is representable by a B-module denoted by B ⊗AM ;
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(ii) the correspondence M 7→ B⊗AM is a functor that commutes with direct sums and tensor

products;

(iii) if M is an A-algebra, then B ⊗AM is a B-algebra that represents the covariant functor

that takes a B-algebra N to the set of homomorphisms of A-algebras M → N ·.

Proof. Let f denote the homomorphism A → B· that induces ϕ. The functor considered is

representable by the quotient of the free B-module ⊕m∈MBTm by the B-submodule generated by

the elements Tam − f(a)Tm with m ∈ M and a ∈ A, i.e., the statement (i) is true. Notice that, if

M is a quotient of a free A-module A(I) by an A-submodule E ⊂M ×M , then B⊗AM is also the

quotient of the free B-module ⊕i∈IBTi by the B-submodule generated by the elements a′Ti−a′′Tj
with (a′ti, a

′′tj) ∈ E, where ti is the image of the canonical i-th generator of A(I). In particular,

if M is finite or finitely presented, then so is B ⊗A M . The statements (ii) and (iii) easily follow

from (i).

Proof of Proposition 6.2.1. The situation is easily reduced to the case when both X =

Fspec(A) and Y = Spec(B) are affine.

Step 1. For any open affine subscheme U ⊂ X , one has (B ⊗AM)ϕ−1(U)
∼→ Bϕ−1(U) ⊗AU MU .

Indeed, this is trivial if U is a principal open subset or defined by vanishing a finite number of

idempotents and, therefore, this is true if U is an elementary open subset. If U is arbitrary, we

take an elementary family {Ui}i∈Ǐ that covers U . Then Bϕ−1(U)
∼→
∏
i∈Ǐ Bϕ−1(Ui) and, therefore,

(B ⊗A M)ϕ−1(U)
∼→
∏
i∈Ǐ Bϕ−1(Ui) ⊗AUi MUi . For the same reason, the right hand side coincides

with Bϕ−1(U) ⊗AU MU , and the claim follows.

Step 2. The functor M 7→ OY(B ⊗A M) is extended to a functor Qcoh(X ) → Qcoh(Y)

that takes F to a quasi-coherent OY -module ϕ∗F . Recall that, for A-modules M and P , one

has HomOX (OX (M),OX (P )) = lim
−→

HomA(M,PU), where the inductive limit is taken over finite

coverings U of X by open affine subschemes. Step 1 and acyclicity of quasi-coherent modules

on affine schemes over Z imply that the canonical homomorphism P → (B ⊗A P )· extends in a

canonical way to a homomorphism PU → (B ⊗A P )·. This gives the required extension of the

functor considered to the essential image of the category of A-modules in Qcoh(X ). Suppose now

that OX (M) is an arbitrary object of the category Qcoh(X ). We may assume that there is a finite

covering of X by pairwise disjoint open affine subschemes {Ui}i∈I such that OX (M) is associated

with a system of AUi-modules MUi . By the previous case, each MUi gives rise to a quasi-coherent

Oϕ−1(Ui)-module on ϕ−1(Ui), and all of them define the required quasi-coherent OY -module.

Step 3. The coherent OY -module ϕ∗F possesses all of the required properties. Indeed, it suffices
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to verify the claim in the case F = OX (M) for an A-module M . In this case HomOX (F , (ϕ∗G)·)
∼→

HomA(M,G(Y)·), by Lemma 6.2.2. By Lemma 6.2.3, the latter coincides with HomB(B⊗AM,G(Y))

and, by quasi-coherence, with HomOY (OY(B ⊗A M),G), i.e., the property (i) holds. The other

properties follow from Lemma 6.2.3.

6.3. The image of the map Y → X . Recall that an abelian group is said to be locally

cyclic if every subgroup of it generated by a finite number of elements is cyclic. For example, the

torsion subgroup of the multiplicative group k∗ of any field k is locally cyclic. It follows that, given

a morphism ϕ : Y → X from a scheme over Z to a scheme over F1, the torsion subgroup of κ(x)∗

of every point x from the image of ϕ is locally cyclic.

6.3.1. Proposition. Let X be a scheme over F1, and let k be a field of characteristic zero

(resp. p > 0). Then the image of the map X ⊗F1
k → X is the set of points x ∈ X with the

property that the torsion subgroup of κ(x)∗ is locally cyclic (resp. and has no elements of order p).

Proof. Let x be a point of X with that property, and set K = κ(x). We notice that it

suffices to show that there exists an embedding K∗ ↪→ k′∗ for an extension k′ of k. Indeed, such

an embedding gives rise to a morphism Spec(k′) → X whose image is the point x and which goes

through a morphism Spec(k′) → X ⊗F1
k. If x′ is the image of the latter morphism, then the

induced homomorphism K∗ → κ(x′)∗ is injective. The required fact is a version of a result of Cohn

[Cohn], and here is an easy proof of it.

We may assume that K is infinite, and we can increase the field k and assume that it is

algebraically closed and its cardinality is greater than that of K. Then there is an emdedding

K∗tors ↪→ k∗. Let S be the set of pairs (G,α), where G of a subgroup of K∗ that contains K∗tors

and α is an embedding G ↪→ k∗. We provide S with a partial ordering as follows: (G,α) ≤ (G′, α′)

if G ⊂ G′ and α′
∣∣
G

= α. The poset S satisfies the condition of Zorn’s Lemma and, therefore, it

contains a maximal element (G,α). It suffices to show that G = K∗. Suppose this is not true. We

then can find an element λ ∈ K∗\G. If λn 6∈ G for all n ≥ 1, then we take an arbitrary element

x ∈ k∗ transcendental over the subfield of k generated by α(G). (It exists since the cardinality

of k is greater than that of K.) If G′ is the subgroup of K∗ generated by G and λ and α′ is the

homomorphism G′ → k∗ that coincides with α on G and takes λ to x, then the pair (G′, α′) is an

element of S strictly bigger that (G,α), which is a contradiction. Suppose now that λn ∈ G for

some n > 1. We may assume that n is minimal with this property and, therefore, each element

of the subgroup G′ of K∗ generated by G and λ has a unique representation in the form λig with

0 ≤ i ≤ n − 1 and g ∈ G. Let x be an element of k with xn = α(λn). If α′ is the homomorphism
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of G′ → k∗ that coincides with α on G and takes λ to x, then the pair (G′, α′) is an element of S

strictly bigger that (G,α), which is a contradiction.

Suppose now we are given an F1-field K, a commutative ring with unity k, and a ho-

momorphism of F1-algebras K → k·, i.e., a morphism Spec(k) → Fspec(K). Then for any

K-algebra A there are an induced morphism Spec(k ⊗K A) → Fspec(A) and an induced map

Spec(k ⊗K A)→ Zspec(A).

6.3.2. Lemma. The following properties of a Zariski ideal p ⊂ A are equivalent:

(a) p lies in the image of the map Spec(k ⊗K A)→ Zspec(A);

(b) k ⊗K κ(p) 6= 0;

(c) the stabilizer of every element f ∈ A\p in K∗ lies in Ker(K∗ → k∗).

Proof. We set B = k ⊗K A. A Zariski ideal p ⊂ A lies in the image of Spec(B) if and only

if there exists an ideal q ⊂ B with p = Zker(A→ (B/q)·), The latter is equivalent to the property

B ⊗A κ(p) 6= 0. Since B ⊗A κ(p) = k ⊗K κ(p), the equivalence (a)⇐⇒(b) follows. The equivalence

(b)⇐⇒(c) is trivial.

6.3.3. Corollary. The following properties of a K-algebra A are equivalent:

(a) the map Spec(k ⊗K A)→ Zspec(A) is surjective;

(b) the stabilizer of every non-nilpotent element f ∈ A in K∗ is contained in Ker(K∗ → k∗).

6.4. Schemes over k with a topologized prelogarithmic K-structure. Suppose now we

are given an F1-algebra K, a commutative ring with unity k, and a homomorphism of F1-algebras

α : K → k·, i.e., a morphism Spec(k)→ Fspec(K). For a scheme X over K, we set X (α) = X ⊗K k,

and denote by π the morphism X (α) → X .

6.4.1. Definition. (i) A scheme X over K is said to be α-nontrivial if every point of X has

an open p-affine neighborhood U for which the map U (α) → Zspec(AU ) is surjective.

(ii) The full subcategory of SchK of schemes over K consisting of locally connected α-nontrivial

schemes is denoted by Sch[α]
K .

For example, if K is an F1-field, Corollary 6.3.3 implies that an affine scheme X = Fspec(A)

over K is k/K-nontrivial if and only if the stabilizer of every non-nilpotent element f ∈ A in K∗

is contained in Ker(K∗ → k∗).

6.4.2. Lemma. Suppose that X is α-nontrivial. If π−1(U) ⊂ π−1(V) for open subschemes of

X , then U ⊂ V. In particular, if π−1(U) = π−1(V), then U = V.
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Proof. The situation is easily reduced to the case when X = Fspec(A) is affine. Since the map

X ⊗K k → Zspec(A) is surjective, it follows that the images of the sets π−1(U) and π−1(V) coincide

with the sets of Zariski prime ideals p ⊂ A with U ∩ X (p) 6= ∅ and V ∩ X (p) 6= ∅, respectively. It

remains to notice that, if V ∩ X (p) 6= ∅, then X (p) ⊂ V.

6.4.3. Definition. (i) A scheme over k with a topologized prelogarithmic K-structure is

a quadruple (Y, σ,A, ν) consisting of a scheme Y over k, a topology σ on Y formed by open

subschemes, a σ-sheaf of K-algebras A, and a homomorphism of σ-sheaves of K-algebras ν : A →

O·Y
∣∣
σ

which is compatible with the homomorphism α.

(ii) A morphism (Y, σ,A, ν) → (Y ′, σ′,A′, ν′) is a pair consisting of a morphism of schemes

over k, ϕ : Y → Y ′, which is σ-continuous (i.e., ϕ−1(V ′) is σ-open for all σ′-open subschemes

V ′ ⊂ Y ′) and a homomorphism of σ-sheaves of K-algebras A′ → ϕ∗A which is compatible with the

homomorphism OY′ → ϕ∗OY .

(iii) The category of schemes over k with a topologized prelogarithmic K-structure is denoted

by Sch[α]
k .

If (Y, σ,A, ν) is an object of Sch[α]
k , every σ-open subscheme V ⊂ Y gives rise to an object of

Sch[α]
k , namely, (V, σ

∣∣
V ,A

∣∣
V , ν

∣∣
V). (In the formulation of Theorem 6.4.4(ii), V denotes the latter

tuple.) A morphism (Y ′, σ′,A′, ν′) → (Y, σ,A, ν) in Sch[α]
k is said to be an open immersion if

it gives rise to an isomorphism of the first tuple with the object of Sch[α]
k induced by a σ-open

subscheme of Y.

6.4.4. Theorem (i) The correspondence X 7→ X (α) gives rise to a fully faithful functor

Sch[α]
K → Sch

[α]
k ;

(ii) an object (Y, σ,A, ν) of Sch[α]
k lies in the essential image of the above functor if and only

if the σ-topology admits a base bσ with the following properties:

(1) for every V ∈ bσ, A(V) is a K-algebra with connected and locally connected spectrum,

and the canonical morphism V → Spec(A(V)]⊗K k) is an isomorphism in Sch[α]
k ;

(2) for every pair V ⊂ W in bσ, the canonical homomorphism A(W) → A(V) induces an

open immersion of affine schemes Fspec(A(V))→ Fspec(A(W)) which is compatible with the open

immersion V → W.

Proof. (i) Let X be locally connected α-nontrivial scheme over K. The scheme X (α) is

provided with the topology σ whose open sets are the preimages of open subschemes of X with
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respect to the map π : X (α) → X . If πσ denotes the map from X (α), provided with the σ-

topology, to X , provided with the schematic topology, the homomorphism OX → π∗O·X (α) induces

a homomorphism ν : π∗σOX → O·X (α)

∣∣
σ
. The tuple (X (α), σ, π∗σOX , ν) is an object of the category

Sch[α]
k . That the correspondence X 7→ (X (α), σ, π∗σOX , ν) is a faithful functor is easy. To show that

it is fully faithful (and to prove (ii)), we need the following simple fact.

6.4.5. Lemma. One has OX
∼→ πσ∗π

∗
σOX .

Proof. Since X is locally connected, it suffices to verify that, for a connected open affine

subscheme U of X , one has (π∗σOX )(U (α)) = AU . The σ-open affine subscheme U (α) = π−1(U)

contains a point x with π(x) ∈ Um. Since U is the minimal open subscheme of X that contains

a point from Um, Lemma 6.4.2 implies that U (α) is the minimal σ-open subscheme of X (α) that

contains the point x and, therefore, any σ-open covering {Vi}i∈I of U (α) one has U (α) ⊂ Vi for

some i ∈ I. The required fact follows.

Let ϕ : (X (α), σ, π∗OX , ν) → (X ′(α), σ′, π′αOX ′ , ν′) be a morphism in Sch[α]
k . Given a con-

nected open affine subscheme U ⊂ X , take a point x ∈ U (α) with p(x) ∈ Um and a connected open

affine subscheme U ′ ⊂ X ′ with ϕ(x) ∈ U ′(α). We claim that ϕ(U (α)) ⊂ U ′(α). Indeed, since the

map ϕ is σ-continuous, ϕ−1(U ′(φ)) = π−1(V) for some open subscheme V ⊂ X and, since U is the

minimal open subscheme of X that contains the point π(x), it follows that U ⊂ V and, therefore,

U (α) ⊂ ϕ−1(U ′(α)).

Furthermore, suppose we are given connected open affine subschemes U ⊂ X and U ′ ⊂ X ′

with ϕ(U (α)) ⊂ U ′(α). By Lemma 6.4.5, one has (π∗σOX )(U (α)) = AU and (π′∗σ′OX ′) = A′U ′ and,

therefore, the homomorphism π′∗σ′OX ′ → ϕ∗(π
∗
σOX ) induces a homomorphism AU ′ → AU which is

compatible with the homomorphism A′U ′⊗Kk → AU⊗Kk. In this way we get a system of compatible

homomorphisms of K-algebras AU ′ → AU for all pairs of connected open affine subschemes U ⊂ X

and U ′ ⊂ X ′ with ϕ(U (α)) ⊂ U ′(α). This system defines a morphism X → X ′ of schemes over K

which gives rise to the morphism ϕ.

(ii) If X is a locally connected α-nontrivial scheme over K, the corresponding object of Sch[α]
k

is the quadruple (X (α), σ, π∗σOX , ν), described in the proof of (i). The preimages of the connected

open affine subschemes of X form a base bσ of the topology σ. That bσ possesses the properties

(1) and (2) follows from Lemma 6.4.5.

Suppose now that (Y, σ,A, ν) is an object of Sch[α]
k with a base bσ of σ that possesses those

properties. For V ∈ bσ, let XV be the affine scheme Fspec(A(V)). The property (1) implies that

there is a canonical isomorphism V ∼→ X (α)
V . The property (2) implies that, for every pair V ⊂ W,
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the canonical morphism XV → XW is an open immersion that induces the open immersion V → W.

For a pair V,W ∈ bσ, let XV,W denote the open subscheme of XV which is the union of the images

of XU , where U runs through all sets from bσ for which X (α)
U ⊂ V ∩ W. Notice that, since bσ is

a base of the topology σ, such sets X (α)
U cover the intersection V ∩ W, and that there is a well

defined isomorphism νV,W : XV,W
∼→ XW,V . The system {νV,W} satisfies the conditions of Lemma

5.2.10 and, therefore, we can glue all XV ’s along XV,W ’s. In this way we get a locally connected

α-nontrivial scheme X over K with Y ∼→ X (α).

6.5. Schemes over k with a prelogarithmic K-structure. In this subsection α : K → k·

is a homomorphism as in §6.4.

6.5.1. Definition. (i) An α-nontrivial separated scheme X over K is said to be α-special if it

admits a net of connected open affine subschemes σ such that every U ∈ σ possesses the following

properties:

(1) U is reduced and the set of its irreducible components is finite;

(2) the intersection UM of the sets Wm, where W runs through all irreducible components

of U , is nonempty;

(3) for each Zariski prime ideal p ⊂ AU , the k-algebra k ⊗K κ(p) is integral.

(ii) The full subcategory of SchK consisting of α-special schemes is denoted by Sch(α)
K .

The properties (1) and (2) do not depend on the homomorphism α. Notice that, since the

canonical homomorphism AU/Πp → κ(p) is injective, the property (3) implies that the k-algebra

k⊗K AU/Πp is integral and, in particular, there is a one-to-one correspondence between the set of

irreducible components of U and that of U (α). Here is a simple sufficient condition for validity of

the property (3).

6.5.2. Lemma. Suppose that K is an F1-field and k is an integral domain. If a φ-nontrivial

K-algebra A is such that, for every Zariski prime ideal p ⊂ A, the group Coker(K∗ → κ(p)∗) has

no torsion, then the affine scheme X = Fspec(A) possesses the property (3).

Notice that if the condition of Lemma 6.5.2 is satisfied by those p for which X (p) is an irreducible

component of X , then it is satisfied by all p’s.

Proof. Since A is α-nontrivial, we may replace A by A/Ker(K∗ → A∗) and assume that the

homomorphism K → A∗ is injective. Furthermore, to verify the required property for a Zariski

prime ideal p ⊂ A, we may replace A by A/Πp and assume that A is an integral domain and

p = 0. If F is the fraction F1-field of A, the homomorphism k ⊗K A → k ⊗K F is injective and,
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therefore, it suffices to verify the required fact for F instead of A. Finally, if F = lim
−→

Fi, then

k ⊗K F = lim
−→

k ⊗K Fi. We may therefore assume that the group F ∗/K∗ is finitely generated. If

f1, . . . , fn are elements of F ∗ whose images form a basis of the free group F ∗/K∗, then k ⊗K F =

k[f1, . . . , fn,
1
f1
, . . . , 1

fn
]. The latter is an integral domain because k is an integral domain.

6.5.3. Definition. (i) A scheme over k with a prelogarithmic K-structure is a triple (Y,A, ν)

consisting of a scheme Y over k, a sheaf of K-algebras A, and a homomorphism of K-algebras

ν : A → O·Y which is compatible with the homomorphism α.

(ii) A morphism (Y,A, ν)→ (Y ′,A′, ν′) is a pair consisting of a morphism of schemes over k,

ϕ : Y → Y ′, and a homomorphism of sheaves of K-algebras A′ → ϕ∗A which is compatible with

the homomorphism OY′ → ϕ∗OY .

(iii) The category of schemes over k with a prelogarithmic K-structure is denoted by Sch(α)
k .

If (Y,A, ν) is an object of Sch(α)
k , every open subscheme V ⊂ Y gives rise to an object

of Sch(α)
k , namely, (V,A

∣∣
V , ν

∣∣
V). (In the formulation of Theorem 6.5.4(ii), V denotes the latter

triple.) A morphism (Y ′,A′, ν′) → (Y,A, ν) in Sch(α)
k is said to be an open immersion if it gives

rise to an isomorphism of the first triple with the object of Sch(α)
k induced by an open subscheme

of Y.

6.5.4. Theorem. (i) The correspondence X 7→ X (α) gives rise to a fully faithful functor

Sch(α)
K → Sch(α)

k ;

(ii) an object (Y,A, ν) of Sch(α)
k lies in the essential image of the above functor if and only if

the following holds:

(1) the family of open sets V, for which the K-algebra A(V) is α-special and the canonical

morphism V → Spec(k ⊗K A(V)) is an isomorphism in Sch(α)
k , forms a net;

(2) for every pair V ⊂ W of sets from (1), the canonical homomorphism A(W) → A(V)

induces an open immersion of affine schemes Fspec(A(V)) → Fspec(A(W)) which is compatible

with the open immersion V → W.

6.5.5. Lemma. Let X = Fspec(A) be a connected α-special affine scheme over K. Then for

any open subscheme V ⊂ X (α) that contains a point from π−1(XM ), one has A
∼→ (π∗OX )(V).

Proof. The sheaf π∗OX is associated with the separated presheaf P = π−1OX whose value

at an open subset V ⊂ X (α) is the inductive limit lim
−→
O(U) taken over all open subschemes U of

X that contain the image p(V). Thus, we have to verify that, given a finite covering of V with

V ∩ π−1(XM ) 6= ∅ by open subsets {Vµ}, one has A
∼→ L = Ker(

∏
µ P (Vµ)

→→
∏
µ,ρ P (Vµ ∩ Vρ)).
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Let {Xi}i∈I be the set of irreducible components of X . For an open subscheme U ⊂ X , we set

I(U) = {i ∈ I
∣∣Ui 6= ∅}, where Ui = U ∩ Xi. Since every open affine subscheme of Xi is a principal

open subset, it follows that if, for open subschemes U ′ ⊂ U ′′ ⊂ X one has I(U ′) = I(U ′′), then

the canonical homomorphism O(U ′′) → O(U ′) is injective. This also implies that for every open

subscheme U ⊂ X there is a canonical injective homomorphism O(U) ↪→
∏
i∈I(U) Fi, where Fi is

the fraction F1-field of Ai (with Xi = Fspec(Ai)).

Furthermore, for an open subset V ⊂ X (α), we set I(V) =
⋂
I(U), where the intersection

is taken over open subschemes of U that contain the set π(V). If such U is sufficiently small,

then I(V) = I(U). It follows from the previous paragraph that, for any V, there is a canonical

injective homomorphism P (V) ↪→
∏
i∈I(V) Fi. Notice that, if V contains a point from π−1(XM ),

then I(V) = I and A
∼→ P (V).

We now turn back to the covering of V with V ∩π−1(XM ) 6= ∅ by open subsets {Vµ}. Let (fµ)µ

be an element in the above kernel L. For every µ, there is a canonical injective homomorphism

P (Vµ) ↪→
∏
i∈I(Vµ) Fi. If i ∈ I(Vµ)I(Vnu), then the images of the elements fµ and gν under the

canonical homomorphisms P (Vµ) → Fi and P (Vµ) → Fi are equal. This means that there is an

injective homomorphism L ↪→
∏
i∈I Fi. But by the assumption, there exists Vρ which contains

a point from π−1(XM ) and, therefore, I(Vρ) = I and P (Vρ) = A, i.e., there exists f ∈ A with

f
∣∣
Vρ

= fρ. The above remark implies that f
∣∣
Vµ

= fµ for all µ.

Proof of Theorem 6.5.4. (i) The functor considered takes an α-special scheme X to the

triple (X (α), π∗OX , ν), where π is the morphism X (α) → X and ν is the canonical homomorphism

π∗OX → OX (α) . Let ϕ : (X (α), π∗OX , ν) → (X ′(α), π′∗OX ′ , ν′) be a morphism in Sch(α)
k . For

an α-special open connected affine subscheme U ⊂ X , we take a point x ∈ U (α) whose image

in U lies in UM , and an α-special open connected affine subscheme U ′ of X ′. We claim that

ϕ
∣∣
U(α) = ψ(α) for a morphism ψ : U → U ′ ⊂ X ′. Indeed, let V = U (α) ∩ ϕ−1(U ′(α)). By Lemma

6.5.5, one has AU
∼→ (π∗OX )(V) and A′U ′

∼→ (π′∗OX ′)(U ′(α)), and so the homomorphism of sheaves

π′∗OX ′ → ϕ∗(π
∗OX ) gives rise to a homomorphism of K-algebras A′U ′ = (π′∗OX ′)(U ′(α))→ AU =

(π∗OX )(V). The latter gives rise to a morphism of schemes ψ : U → U ′ ⊂ X ′ such that the

restriction of ψ(α) : U (α) → U ′(α) ⊂ X ′(α) to the dense open subscheme V coincides with the

morphism V → U ′(α) ⊂ X ′(α) induced by ϕ. Since the scheme X ′(α) is separated and U (α) is

reduced, we get ϕ
∣∣
U(α) = ψ(α).

In this way we get a system of compatible morphisms ψU : U → X ′ for all α-special open affine

subschemes U of X . This system defines a morphism ψ : X → X ′ of schemes over K which induces
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the morphism ϕ.

(ii) That the image of an α-special scheme X in Sch(α) possesses the required properties

follows from Definition 6.5.1 and Lemma 6.5.5.Given an object of the category Sch(α) with those

properties, a construction of the required α-special scheme over K is done in the same way as in

the proof of Theorem 6.4.4(ii).

6.6. Classes of morphisms between schemes over SchF1
. The existence of fiber products

in the category Sch enables one to extend various classes of morphisms from the category SchZ
to the whole category Sch. Namely, let P be a property of morphisms of schemes over Z which is

local with respect to the target.

6.6.1. Definition. A morphism ϕ : X ′ → X of schemes over F1 is said to have the property

P if, for any morphism ϕ : Y → X from a scheme over Z, the induced morphism Y ×X X ′ → Y of

schemes over Z has the property P.

§7. Schemes of finite type over a valuation F1-algebra

7.1. Flat and strict schemes of finite type over K◦. Let K◦ be a valuation F1-algebra

with fraction F1-field K. For a scheme X over K◦ and a Zariski prime ideal r ⊂ K◦, we set X(r) =

X ⊗K◦ K◦r , X (r) = X ⊗K◦ κ(r) and X (r) = X ⊗K◦ K◦/r. Notice that X (r) = (X(r))
(r) = (X (r))(r).

If r = 0, one has K◦r = K, and the scheme Xη = X ⊗K◦ K over K is said to be the generic fiber of

X . If r = K◦◦, one has K◦/r = K̃, and the scheme Xs = X ⊗K◦ K̃ over K̃ is said to be the closed

(or special) fiber of X . There is a canonical closed immersion Xs → X and, if there exists a nonzero

element α ∈ K◦ with K = K◦α (e.g., the valuation on K is of finite rank), the canonical injective

map Xη → X is an open immersion. Of course, if the valuation on K is trivial, both morphisms

Xs → X and Xη → X are isomorphisms.

7.1.1. Definition. (i) A K◦-module M is said to be flat if it possesses the following properties:

(1) if αm = βm for α, β ∈ K◦ and m ∈M , then either α = β or m = 0;

(2) if αm = αn for α ∈ K◦ and m,n ∈ A, then either α = 0 or m = n.

(ii) A scheme X over K◦ is said to be flat over K◦ if it is covered by a family of open p-affine

subschemes U for which AU is a flat K◦-module.

(iii) A scheme X over K◦ is said to be strict over K◦ if it is flat over K◦ and the U ’s from (i)

possess the following additional properties:
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(3) mAU ∩K◦ = K◦◦;

(4) if V is a principal open subset of U with mAV ∩K◦ = K◦◦, then IAV ∩K◦◦AV = 0.

Of course, if the valuation on K is trivial, every scheme over K◦ = K is strict. If X is flat over

K◦ then, for every Zariski prime ideal r ⊂ K◦, X(r) and X (r) flat over K◦r and K◦/r, respectively.

If X = Fspec(A) is strict over K◦, we say that A is a strict K◦-algebra.

Let M be a flat K◦-module. Then the canonical homomorphism M →M ⊗K◦ K is injective.

The latter is a free K-vector space which is a direct sum of free K-vector spaces of dimension

one. This defines a decomposition of M in a direct sum of Zariski K◦-submodules. Let P be such

a Zariski K◦-submodule. It is a subset of M that contains zero and has the property that, for

every pair of nonzero elements m,n ∈ P , there exist nonzero α, β ∈ K◦ with αm = βn. Since K◦

is a valuation F1-algebra, the latter is equivalent to the property that, for every pair of nonzero

elements m,n ∈ P there exists a nonzero element α ∈ K◦ with either αm = n or m = αn. By

the way, the above decomposition defines a K◦-submodule E on M such that (m,n) ∈ E if either

m,n = 0, or m,n ∈ P\{0} for P as above. The quotient M = M/E is an F1-module, and its

nonzero elements correspond to the above K◦-modules P . If M is a K◦-algebra, then M is an

F1-algebra.

7.1.2. Proposition. Every flat reduced quasi-irreducible finitely generated K◦-algebra A is

a free K◦r -module, where r = mA ∩K◦.

Proof. We can replace K◦ by K◦r and assume that mA ∩K◦ = K◦◦. It suffices to show that

every K◦-module P from the decomposition of A as above is free of rank one. For this it suffices

to show that P 6= K◦◦P . Indeed, if this is so, then the above property implies that every element

from P\K◦◦P is a generator of P .

Consider first the case when the K◦-algebra A is integral, and take a surjective homomorphism

K◦[T1, . . . , Tn]→ A : Ti 7→ fi. Notice that if a nonzero element αfµ = αfµ1

1 · . . . · fµnn with α ∈ K◦

and µ ∈ Zn+ belongs to P , then fµ ∈ P . Thus, the equality P = K◦◦P implies that there exist

sequences µ(1), µ(2), . . . ∈ Zn+ and α1, α2, . . . ∈ K◦◦\{0} such that fµ
(i)

= αif
µ(i+1)

for all i ≥ 1. We

prove by induction on n that existence of such sequences is impossible. This is of course impossible

if n = 0, and so we assume that n ≥ 1 and that this is impossible for strictly smaller values of n. We

may assume that µ
(1)
1 , . . . , µ

(1)
m ≥ 1 and µ

(1)
m+1 = . . . = µ

(1)
n = 0. Since mA∩A = K◦◦, it follows that

m ≥ 1. We may also assume that among sequences with such properties the number
∑m
k=1 µ

(1)
k is

minimal. We then claim that there exists l ≥ 2 such that µ
(t)
1 = 0 for all t ≥ l. Indeed, if there exist

an infinite sequence l1 = 1 < l2 < . . . with µ
(lj)
1 ≥ 1 for all j ≥ 1, then we can replace our sequences
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with the subsequences with numbers l1, l2, . . . and assume that µ
(j)
1 ≥ 1 for all j ≥ 1. Since A is an

integral domain, we can divide all of the elements fµ
(j)

by f1 and get sequences with the smaller

sum
∑m
k=1 µ

(1)
k . The claim follows. Thus, we can replace our sequences with the subsequences

with numbers l, l + 1, . . ., and we get elements fµ
(j)

as above which lie in the K◦-subalgebra of A

generated by f2, . . . , fn. By induction, existence of such sequences is impossible.

In the general case, let p1, . . . , pn denote the intersections with A of the Zariski prime ideals

of the finitely generated K-algebra A ⊗K◦ K. Then pi ∩K◦ = 0 for all 1 ≤ i ≤ n and, since A is

reduced, one has
⋂n
i=1 pi = 0. We claim that P ∩ pi = 0 for some 1 ≤ i ≤ n. Indeed, assume that,

for every 1 ≤ i ≤ n, the intersection P ∩ pi contains a nonzero element fi. Let m be the maximal

number such that some of the elements fi’s lies in the intersection of m of the Zariski prime ideals

pj ’s. One clearly has 1 ≤ m ≤ n− 1. We may assume that f1 ∈
⋂m
i=1 pi. By the property of P , we

can find a nonzero element α ∈ K◦ with either f1 = αfm+1, or fm+1 = αf1. In both cases, either f1

or fm+1 lies in the intersection
⋂m+1
i=1 pi, which contradicts the minimality of m. The claim implies

that the canonical surjective homomorphism A→ A/pi is injective on P . Since the latter quotient

satisfies the same assumption as A and is integral, we get P 6= K◦◦P , by the previous case.

7.1.3. Proposition. Let X be a strict scheme of finite type over K◦. Then

(i) the correspondence U 7→ Us = U ∩ Xs induces a bijection between the set of strict open

subschemes of X and that of open subschemes of Xs;

(ii) the correspondence Y 7→ Y (the closure of Y) induces a bijection between the sets of

irreducible components of Xη and of X ;

(iii) if Y is a Zariski closed subset of Xη, then Y is Zariski closed in X and is a strict scheme

of finite type over K◦;

(iv) π0(Xη)
∼→ π0(X ) and, if X is affine, then π0(Xs)

∼→ π0(X ).

An open subscheme U ⊂ X is said to be strict if it is strict as a scheme over K◦. Notice that

the intersection of two strict open subschemes is not necessarily a strict open subscheme. Indeed,

let X = Fspec(A), where A is the quotient of K◦[T1, T2] by the ideal generated by the pair (T1T2, a)

with a ∈ K◦◦\{0}. If ti is the image of Ti in A, then the principal open subschemes D(t1) and

D(t2) are strict open subschemes of X , but their intersection coincides with D(a) and, therefore,

it is not strict over K◦.

Proof. To prove the statement, it suffices to consider the case when X = Fspec(A) is affine

with a strict finitely generated K◦-algebra A. In this case, one has Xs = Fspec(Ã) with Ã =

A⊗K◦ K̃ = A/(K◦◦) and Xη = Fspec(A) with A = A⊗K◦ K.
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(i) Let first U be a nonempty strict principal open subset of X , i.e., U = D(f) for f ∈ A with

mAf ∩ K◦ = K◦◦. Nonemptyness of U and the latter equality imply that f 6∈ zr((K◦◦)). This

means that the image f̃ of f in Ã is not nilpotent and, in particular, Us = D(f̃) 6= ∅. Suppose that

Us ⊂ Vs for a strict principal open subset V = D(g) with g ∈ A. Then f̃m+n = g̃h̃f̃n for some

h ∈ A and m,n ≥ 0. It follows that fm+n = ghfn and, therefore, U ⊂ V. Thus, the correspondence

considered induces a bijection between the set of strict principal open subsets of X and that of

principal open subsets of Xs.

Furthermore, let U and V be nonempty strict elementary open subsets of X , which are defined

by principal open subsets DU = D(f) and DV = D(g) and finitely generated Zariski ideals aU ⊂ IAf
and aV ⊂ IAg (see §4.2). Suppose that Us ⊂ Vs. Then D(f̃) ⊂ D(g̃) and, by the previous case, one

has DU ⊂ DV . The assumption on strictness of U and V implies that the canonical homomorphisms

Af → Ã
f̃

and Ag → Ã
g̃

induce isomorphisms of the corresponding idempotent F1-algebras. Since

the image of aVs in the idempotent F1-subalgebra of Ã
f̃

lies in aUs , it follows that the image of aV

in IAf lies in aU and, therefore, U ⊂ V. Thus, the correspondence considered induces a bijection

between the set of strict elementary open subsets of X and that of elementary open subsets of Xs.

Finally, let U and V be nonempty open subschemes of X with Us ⊂ Vs, and let {Ui}i∈I and

{Vj}j∈J be coverings of U and V by elementary open subsets. Then for every i ∈ I the elementary

open subset Us,i is covered by the elementary open subsets Us,i ∩ Vs,j = (Ui ∩ Vj)s for j ∈ J . This

implies that Us,i ⊂ Vs,j for some j ∈ J . By the previous case, we get Ui ⊂ Vj . It follows that

U ⊂ V.

(ii) First of all, we notice that the image of Zspec(A) in Zspec(A) is the set of Zariski prime

ideals p ⊂ A with p ∩ K◦ = 0. If p corresponds to a Zariski prime ideal q ⊂ A, then q = pK,

p = q ∩ A, Πq = {(αf, αg)
∣∣α ∈ K and (f, g) ∈ Πp} and Πp = Πq ∩ (A × A). It follows that the

closure of X (q)
η in X coincides with X (p). Let Y be an irreducible component of Xη, i.e., Y = X (q)

η ,

where q is a Zariski prime ideal of A for which Πq is a minimal prime ideal of A. If p = q ∩ A,

the above remark easily implies that Πp is a minimal prime ideal of A and X (p) = Y, i.e., Y is

an irreducible component of X . Furthermore, let q1, . . . , qn be Zariski prime ideals of A such that

Πq1
∩ . . .∩Πqn = n(A). Then Πp1

∩ . . .∩Πpn = n(A) for pi = qi∩A. Lemma 1.2.7(ii) implies that

each prime ideal Π of A contains a prime ideal of the form Πp for p = pi1 ∪ . . . ∪ pik . If q = pK,

the above remark implies that the point of X that corresponds to the prime ideal Π lies in the

closure of X (q)
η (since it coincides with X (p)). Thus, the closure of Xη in X coincides with X , and

the required fact follows.

(iii) We may assume that X is connected. By (iii), Xη is also connected, and so any Zariski
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closed subset Y of Xη is of the form Fspec(A/b) for a Zariski ideal b ⊂ A. We claim that

Y = Fspec(A/a) for the Zariski ideal a = b∩A. Indeed, since b = aK, one has A/a⊗K◦K
∼→ A/a,

and the claim follows from the statement (ii) applied to the strict scheme Fspec(A/a) of finite type

over K◦.

(iv) It suffices to show that the canonical homomorphisms of idempotent F1-algebras IA → I
Ã

and IA → IA are bijections. Bijectivity of the former follows from the property (3) of Definition

7.1.1. Injectivity of the latter is trivial. Let f
α be a nonzero idempotent in A, where f ∈ A and

α ∈ K◦. Then (αf)2 = αf , i.e., αf is an idempotent in A. The same property (3) implies that α

is invertible in K◦ and, therefore, f
α ∈ IA.

7.1.4. Proposition. Let K ′◦/K◦ be an extension of valuation F1-algebras, and let X and Y

be nonempty strict schemes over K◦ and K ′◦, respectively. Then

(i) the fiber product X ×K◦ Y is a nonempty strict scheme over K ′◦;

(ii) every strict open subscheme of X ×K◦Y is covered by open subschemes of the form U×K◦V

for strict open subschemes U ⊂ X and V ⊂ Y.

Proof. (i) It suffices to consider the case when X = Fspec(A) and Y = Fspec(B) are affine

with strict K◦ and K ′◦-algebras A and B, respectively. In this case validity of the properties (1)

and (2) of Definition 7.1.1 for C = A ⊗K◦ B follows from Corollary 2.7.7. To verify the property

(3), it suffices to show that in our situation one has IC ∩K ′◦◦C = 0.

7.1.5. Lemma. In the above situation, one has IA ⊗F1
IB
∼→ IC .

Proof. The homomorphism is injective. Indeed, suppose that f1⊗ g1 = f1⊗ g2 in C for some

nonzero f1, f2 ∈ IA and g1, g2 ∈ IB . By Corollary 2.7.7(ii), we may assume that there exists an

element α ∈ K◦ with f1 = αf2 and αg1 = g2. Since f1 and f2 are nonzero idempotents, we get

α2f2 = αf2. The property (1) implies that α2 = α and, therefore, α = 1.

The homomorphism is surjective. Let e be a nonzero idempotent in C. Then e = f ⊗ g for

some f ∈ A and g ∈ B. By the equality e2 = e and Corollary 2.7.7(ii), we may assume that there

exists an element α ∈ K◦ with f2 = αf and αg2 = g. Then (αg)2 = αg, i.e., the element αg is

a nonzero idempotent in B. If α ∈ K◦◦, then αg ∈ IB ∩ K◦◦B, which is impossible. Thus, α is

invertible in K◦. Replacing f by α−1f and g by αg, we may assume that f and g are idempotents,

i.e., e ∈ IA ⊗F1
IB .

Suppose that e is a nonzero idempotent in IC ∩K ′◦◦C. By Lemma 7.1.5, one has e = f ⊗ g

for f ∈ IA and g ∈ IB . Thus, f ⊗ g = α(f ⊗ g) for some α ∈ K◦◦. Corollary 2.7.7(ii) implies that

there exists an element β ∈ K◦ with either f = αβf and βg = g, or βf = αf and g = βg. The
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property (3) then implies that β and α are invertible in K◦, which is a contradiction.

(ii) It suffices to consider the case when X = Fspec(A) and Y = Fspec(B) are affine with

strict K◦-algebras A and B. Let W be a strict elementary open subset of X ⊗K◦ Y, i.e., W =

{z ∈ D(h)
∣∣ei(z) = 0 for 1 ≤ i ≤ n}, where h ∈ A ⊗K◦ B and e1, . . . , en are idempotents in

(A ⊗K◦ B)h. One has h = f ⊗ g for f ∈ A and g ∈ B. It follows that D(h) = D(f) ×D(g). We

may therefore replace X and Y by D(f) and D(g), respectively, and assume thatW is defined only

by the equalities ei = 0. It suffices to consider the case n = 1. If e is a nonzero idempotent in

A ⊗K◦ B, Lemma 7.1.5 implies that e = f ⊗ g for f ∈ IA and g ∈ IB . We get W = U × V for

U = {x ∈ X
∣∣f(x) = 0} and V = {y ∈ Y

∣∣g(x) = 0}.

7.1.6. Proposition. Let X and Y be strict schemes of finite type over K◦. If both schemes X

and Y are Zariski reduced (resp. reduced; resp. connected; resp. irreducible; resp. quasi-integral;

resp. integral), then so is the direct product X ×K◦ Y.

Proof. We may assume that X = Fspec(A) and Y = Fspec(B) are affine with Zariski reduced

strict finitely generated K◦-algebras A and B. Since the homomorphisms A → A = A ⊗K◦ K,

B → B = B⊗K◦K and A⊗K◦ B → A⊗K B are injective, the situation is reduced to the case when

the valuation on K is trivial, i.e., K◦ = K. In this case, a ⊗ b = c ⊗ d for some nonzero a, c ∈ A

and b, d ∈ B, then c = λa and b = λd for a unique nonzero element λ ∈ K. This immediately

implies that A⊗K B is Zariski reduced, and reduces the case of quasi-integral X and Y to that of

integral ones. Suppose that A and B are integral, and assume that (a⊗ b)(c⊗ d) = (a⊗ b)(c′ ⊗ d′)

for nonzero elements of A⊗K B. Then ac⊗ bd = ac′ ⊗ bd′ and, therefore, ac′ = λac and bd = λbd′

for some λ ∈ K∗. Since A and B are integral, it follows that c′ = λc and d = λd′ and, therefore,

c⊗ d = c′ ⊗ d, i.e., A⊗K B is integral. Suppose now that A and B are reduced, and assume that,

for some nonzero elements a⊗ b, c⊗ d ∈ A⊗K B, there exists n ≥ 1 such that ai ⊗ bi = ci ⊗ di for

all i ≥ n. Then ci = λiai and bi = λid
i for some λi ∈ K∗. We claim that c = λa and b = λd for

λ = λn+1λ
−1
n . Indeed, since A and B are reduced, it suffices to verify that the pairs (λa, c) and

(b, λd) lie in the intersection of all of the prime ideals Πp and Πq, respectively, for Zariski prime

ideals p ⊂ A and q ⊂ B. If a ∈ p, then each of the equalities ci = λiai implies that c ∈ p and,

therefore, (λa, c) ∈ Πp. If a 6∈ p, the same equalities imply that c 6∈ p and, moreover, the equalities

for i = n and n + 1 imply that the images of the elements λa and c in the quotient A/Πp are

equal, i.e., (λa, c) ∈ Πp. It follows that c = λa. The same reasoning shows that (b, λd) ∈ Πq for

all Zariski prime ideals q ⊂ B and, therefore, b = λd. The claim implies that A ⊗K B is reduced.

Furthermore, assume that X and Y are irreducible. Replacing A by A/n(A) and B by B/n(B),
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we may assume that X and Y are reduced and, therefore, integral. Then X ×K Y is also integral

and, in particular, irreducible. Finally, if X and Y are connected, then connectedness of X ×K Y

follows by induction from the cases of irreducible and of nonempty X and Y.

7.1.7. Remarks. (i) The statement of Proposition 7.1.2 is not true in general if A is not

reduced. Indeed, let K be an F1-field with non-discrete valuation of rank one. Take a nonzero

element α ∈ K◦◦, and consider the K◦-algebra A = K◦[T1, T2]/E, where E is the ideal defined

by the pairs (T 2
2 , 0) and (T2, αT1T2). If f and g are the images of T1 and T2, then g2 = 0 and

g = αfg. It follows that A is a quasi-integral K◦-algebra and, for the K◦-module P from the

proof of Proposition 7.1.2 that contains the element g, one has P = K◦◦P , i.e., A is not a free

K◦-module.

(ii) Suppose that X is an irreducible scheme flat over K◦. If U is an open affine subscheme

of X , then the intersection AU ∩ K◦ is a Zariski prime ideal r of K◦, and U is a strict scheme

over K◦r . Suppose in addition that there exists an open affine subscheme U strict over K◦. In this

case, if the valuation on K is of rank at most one, then X is strict over K◦. But if the valuation

is of higher rank, X is not necessarily strict over K◦. Indeed, suppose that there exist nonzero

elements a, b ∈ K◦◦ such that |a| < |bn| for all n ≥ 1. We set U = Fspec(A), where A = K◦[T±1],

and V = Fspec(B), where B is the quotient of K◦[T1, T2, S] by the ideal generated by the pairs

(T1T2, a) and (Sb, 1). Notice that there is a canonical isomorphism Ab
∼→ Bt1 : T 7→ t1, where ti is

the image of Ti in B. Then U is strict over K◦, but the irreducible scheme X obtained by gluing

of U and V along DU (b)
∼→ DV(t1) is not strict over K◦.

7.2. Integral flat schemes of finite type over K◦. Let X be an integral flat scheme of

finite type over K◦. Then the intersection of all nonempty open subschemes of X is a nonempty

connected open affine subscheme of Xη denoted by X̆η, and AX̌η is a finitely generated K-field

denoted by K(X ) and called the field of rational functions on X . The complement Xη\X̆η is a

maximal proper Zariski closed subset of Xη. We say that the generic fiber Xη is geometrically

irreducible (resp. reduced) if, for any homomorphism K → k· to the F1-field of a (usual) field k,

the k-scheme Xη ⊗K k is irreducible (resp. reduced).

7.2.1. Proposition. In the above situation, Xη is geometrically irreducible (resp. reduced) if

and only if K is algebraically closed in K(X ) (i.e., the quotient group K(X )∗/K∗ has no torsion).

Proof. We may assume that the valuation on K is trivial, i.e., K◦ = K and Xη = X . We

set L = K(X ), and suppose first that the group L∗/K∗ has no torsion. To show that X ⊗K k is

integral, we may assume that X = Fspec(A) is affine. Since A is integral, one has k⊗KA ⊂ k⊗KL,
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and so it suffices to show that the k-algebra k⊗K L is integral. But L is isomorphic to the K-field

K ′[T1, . . . , Tn, T
−1
1 , . . . , T−1

n ] and, therefore, k ⊗K L = k[T1, . . . , Tn, T
−1
1 , . . . , T−1

n ]. Conversely,

suppose that the group L∗/K∗ has torsion. To show that X is not geometrically irreducible (resp.

reduced), it suffices to find such a homomorphism K → k that the preimage of X̆ in X ⊗K k is

nonempty and non-connected (resp. not reduced). We may therefore replace X by X̆ and assume

that X = Fspec(L). By the assumption, the quotient group L∗/K∗ has a direct factor isomorphic

to a cyclic group of order n > 1. Let L′ be the K-subfield of L for which the group L′∗/K∗ coincides

with that factor. Furthermore, let k be an arbitrary field of characteristic prime to n that contains

all n-th roots of unity (resp. of characteristic that divides n), and let K → k· be the homomorphism

which is the composition K → F1 → k·. Then k⊗K L′ embeds in k⊗K L and is isomorphic to the

group ring of the cyclic group of order n over k. This group ring is a direct product of n copies of

k (resp. contains nilpotent elements).

We say that X has good reduction if it is strict over K◦ and its closed fiber Xs is an integral

scheme. For example, if Y is an integral scheme over K̃, then the scheme Y ⊗
K̃
K◦ has good

reduction. Integral schemes of this form are said to be constant. We claim that each scheme with

good reduction is constant. Indeed, it suffices to verify that the morphism X → Xs ⊗K̃ K◦ induced

by the morphism X → Xs from Proposition 5.3.6 is an isomorphism. Notice that, if X has good

reduction, then K̃(Xs) ⊗K̃ K
∼→ K(X ). Notice also that the property to have good reduction is

preserved under any extension of valuation F1-algebras K ′◦/K◦.

More generally, suppose that X is strict and Xs is irreducible. Then the reduction X r
s of Xs

(which is by the way coincide with the Zariski reduction X zr
s ) is an integral scheme over K̃ and so,

by Proposition 5.3.6, the canonical closed immersion X r
s → X has a section X → X r

s . The following

statement implies that the induced morphism X → X r
s ⊗K̃ K◦ is finite and surjective.

7.2.2. Proposition. Let A be a strict integral K◦-algebra such that the Zariski radical of

(K◦◦) is a Zariski prime ideal p. Then

(i) the homomorphism A/p⊗
K̃
K◦ → A is injective;

(ii) if B is the image of the homomorphism from (i), then B/K◦◦B
∼→ A/p;

(iii) there exists n ≥ 1 such that fn ∈ K◦◦B for all elements f ∈ A\B and, in particular, A is

a finite B-algebra.

Proof. (i) Suppose that αf = βg for some nonzero α, β ∈ K◦ and f, g ∈ A/p and that

|α| ≤ |β|. Then β(αβ f) = βg. Since A is integral, it follows that α
β f = g. This implies that

α
β ∈ (K◦)∗ and, therefore, f ⊗ α = g ⊗ β. The statement (ii) is trivial.
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(iii) Suppose that A is generated by elements g1, . . . , gn over B. Since A\B ⊂ p, we may

assume that g1, . . . , gn ∈ p\{0}. By the assumption, for every 1 ≤ i ≤ n there exists ki ≥ 1 with

gkii ∈ (K◦◦), i.e., gkii = αifi
∏n
j=1 g

lij
j for some αi ∈ K◦◦, fi ∈ A/p, lij ≥ 0. We prove by induction

on n that the above equalities imply that some powers of each gi belong to K◦◦B. Indeed, since

A is an integral domain, it follows that ki > lii. We can therefore divide both sides of the above

expression by g
lij
j , and so we may assume that lii = 0. Suppose that lin 6= 0 for some 1 ≤ i ≤ n−1.

We then have

gkikni = αkni fkni

n−1∏
j=1

g
lijkn
j ·

αnfn n−1∏
j=1

g
lnj
j

lin

.

The powers of gi on the left and right hand sides are kikn and lnilin, respectively. Since αi ∈ K◦◦,

it follows that the latter number is strictly less than the former one. We can therefore divide both

sides by the smaller power of gi and get an expression for gi’s with 1 ≤ i ≤ n − 1 as above with

lin = 0. By the induction hypothesis, we get inclusions gkii ∈ K◦◦B for 1 ≤ i ≤ n − 1. Since

gknn = αnfn
∏n−1
j=1 g

lnj
j , we also get an inclusion gk1·...·kn

n ∈ K◦◦B.

For every integral flat scheme X over K◦ one can construct in the evident way the integral

closure of X in its generic fiber Xη, i.e., a morphism X ′ → X from an integral scheme such that,

for every open affine subscheme U ⊂ X , ϕ−1(U) is an affine scheme which is the spectrum of the

integral closure of AU in AU ⊗K◦ K. Notice that the integral closure of an integral flat scheme X

of finite type over K◦ is not necessarily a scheme of finite type over K◦ (see Remark 2.7.9).

7.2.3. Corollary. Given an integral strict scheme X of finite type over K◦ with irreducible

closed fiber Xs, there exist elements γ1, . . . , γn ∈ |K∗| and integers l1, . . . , ln ≥ 2 such that, for

any extension of valuation F1-fields K ′/K with γi ∈ |K ′∗|li for all 1 ≤ i ≤ n, the integral closure

of X ⊗K◦ K ′◦ in its generic fiber is an integral strict scheme of finite type over K ′◦ with good

reduction.

Proof. We may assume that X = Fspec(A) is affine, and let p = zr((K◦◦)). Proposition 7.2.2

implies that A is generated by elements g1, . . . , gn ∈ p with glii = αifi for some li ≥ 2, αi ∈ K◦◦

and fi ∈ A/p. We claim that the required property is achieved for the elements γi = |αi| and the

numbers li. Indeed, let K ′◦ be a valuation K◦-algebra with γi ∈ |K ′∗| for all 1 ≤ i ≤ n. The

Zariski radical of the Zariski ideal (K ′◦◦) of A′ = A⊗K◦ K ′◦ is a Zariski prime ideal p′ generated

by the elements g1, . . . , gn. Take elements α′i ∈ K ′◦◦ with |α′i|li = γi. Then βi = αi
α
′li
i

∈ (K ′◦)∗

and
(
gi
α′
i

)li
= βifi ∈ A/p ⊗

K̃
K̃ ′. Thus, the A′-subalgebra A′′ of A ⊗K◦ K ′ generated by the

elements gi
α′
i

lies in the integral closure A′′′ of A′ in A⊗K◦ K ′, and the Zariski ideal (K ′◦◦) of A′′ is
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prime, i.e., X ′′ = Fspec(A′′) has good reduction. It remains to notice that A′′′ is generated by the

integral closure of Ã′′ (embedded in A′′) in its fraction F1-field. The latter is a finite Ã′′-algebra,

by Proposition 2.6.7. It follows A′′′ is finitely generated over K ′◦.

Let again X be an integral flat scheme of finite type over K◦. Since X is quasicompact,

Proposition 4.4.6 implies that the image of the canonical map X → Fspec(K◦) is a principal open

subset D(α) of Fspec(K◦). Given a Zariski prime ideal r ⊂ K◦ with α 6∈ r, X (r) is a nonempty

quasi-irreducible flat scheme of finite type over κ(r). It follows that, for every irreducible component

Y of X (r) the intersection of all of the open affine subschemes of X (r) that contain the generic point

of Y is the spectrum of a local artinian F1-algebra which is a finite dimensional vector space of the

field of rational functions κ(r)(Y) of Y. Its dimension is said to be the multiplicity of Y in X (r).

Furthermore, let X̆/Y denote the intersection of all open subschemes of X that contain the generic

point of Y. Proposition 7.1.3(i) implies that X̆/Y is a connected open affine subscheme of X(r). Its

K◦-algebra AX̆/Y is denoted by K◦(X̆/Y). Notice that K◦(X̆/Y) is a finitely generated K◦r -algebra,

and its fraction field is K(X ). If r = K◦◦ and Y is the only irreducible component of Xs (i.e., Y is

the reduction of Xs), then X̆/Y is denoted by X̆ , and K◦(X̆/Y) is denoted by K◦(X ).

7.2.5. Corollary. In the above situation, the following is true:

(i) K◦(X̆/Y) is a finite free L◦Y -module, where L◦Y is the unramified valuation K◦r -subalgebra

of K◦(X̆/Y) generated by κ(r)(Y);

(ii) the multiplicity of Y in X (r) is equal to the degree of the finite extension K(X )/LY which,

in its turn, is equal to the order of the cokernel of the canonical injective homomorphism of groups

κ(r)(Y)∗/κ(r)∗ → K(X )∗/K∗;

(iii) if X is normal, then K◦(X̆/Y) is a valuation K◦r -subalgebra of K(X ), LY is the maximal

unramified subextension of K(X ) (provided with the induced valuation) over K and if, in addition,

the group |K∗| is divisible then K◦(X̆/Y) = L◦Y ;

(iv) the dimensions of all irreducible components Y of X (r) over K̃ are equal to the dimension

of Xη over K and, if Xη is geometrically irreducible, then so are all Y’s.

Proof. We may assume that X = Fspec(A) is affine and r = K◦◦. Every Zariski prime ideal

of Ã can be identified with a Zariski prime ideal p of A that contains K◦◦. Since A is an integral

domain, it follows that A/p is integral and, therefore, A/Πp = A/p. This remark applied to the

Zariski prime ideal p that corresponds to Y implies that Y is Zariski closed in X , the localization Ap

coincides with K◦(X̆/Y), and the quotient of the latter by the maximal Zariski ideal coincides with

κ(p). Since A/Πp = A/p, it follows that κ(p) = K̃(Y). Finally, since Y is an irreducible component
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of Xs = Fspec(A/(K◦◦)), the Zariski ideal of Ap/(K
◦◦) generated by the image of p is a unique

minimal Zariski prime ideal. This implies that it is Zariski nilpotent, and so the finitely generated

K◦-algebra K◦(X̆/Y) satisfies the assumptions of Corollary 7.2.4, and all of the statements (i)-(iv)

easily follow from that lemma.

Let Φ(Y/X ) denote the cokernel of the injective homomorphism from (ii). It is a finite group

of order equal to the multiplicity of Y in X (r).

7.2.5. Corollary. In the situation of Corollary 7.2.4, suppose that s is a Zariski prime ideal

of K◦ lying in r and Z is an irreducible component of X (s) whose closure Z in X contains Y. Then

there is an exact sequence of finite groups

1→ Φ(Y/Z)→ Φ(Y/X )→ Φ(Z/X )→ 1

In particular, the multiplicity of Z in X (s) divides the multiplicity of Y in X (r).

Proof. We may assume that X = Fspec(A) is affine, and let p and q be the Zariski prime

ideals of A that correspond to Y and Z, respectively. Then q ⊂ p, and there is a commutative

diagram with exact rows

1 → κ(p)(Y)∗/κ(r)∗ → K(X )∗/K∗ → Φ(Y/X ) → 1y y y
1 → κ(q)(Z)∗/κ(q)∗ → K(X )∗/K∗ → Φ(Z/X ) → 1

The cokernel of the first vertical arrow is the group Φ(Y/Z). Since the second vertical arrow is an

isomorphism, the required exact sequence is obtained by the five-lemma.

Recall that the normalization of an integral scheme X of finite type over K◦ is not necessarily

a scheme of finite type over K◦ (see Remark 2.7.9).

7.2.6. Corollary. Given an integral flat scheme X of finite type over K◦, there exist elements

γ1, . . . , γn ∈ |K∗| and integers l1, . . . , ln ≥ 2 such that, for any extension of valuation F1-fieldsK ′/K

with γi ∈ |K ′∗|li for all 1 ≤ i ≤ n, the normalization X ′ of X ⊗K◦ K ′◦ is an integral flat scheme of

finite type over K ′◦ such that the multiplicities of the irreducible components of all of the fibers of

the canonical morphism X ′ → Fspec(K ′◦) are equal to one.

Proof. We may assume that X = Fspec(A) is affine and mA ∩K◦ = K◦◦ and, by Corollary

7.2.5, it suffices to show that one can find the above data for every irreducible component Y of Xs
so that the multiplicity of the preimage Y ′ of Y in X ′s is one. For this we can replace A by the

localization Ap, where p is the Zariski prime ideal of A that corresponds to Y, and so we may assume

that A = K◦(X̆/Y). By Proposition 7.2.1, A is a finite L◦A-module, where L◦A is the unramified
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valuation K◦-subalgebra of A generated by κ(mA) and, in particular, the K-field L = K(X ) is

a finite extension of LA. It follows that L◦A-algebra A is generated by elements g1, . . . , gn ∈ mA

with fi = glii ∈ L◦A for some l1, . . . , ln ≥ 2. We claim that the required property is achieved for the

elements γi = |fi| ∈ |L∗A| = |K∗| and the numbers li. Indeed, let K ′ be a valuation K◦-algebra with

γi ∈ |K ′∗| for all 1 ≤ i ≤ n. The tensor product L◦ ⊗K◦ K ′◦ is a valuation K ′◦-subalgebra of the

K ′-field L′ = L⊗K K ′, and the tensor product L′◦A = LA⊗K◦ K ′◦ is an unramified K ′◦-subalgebra

of the K ′-field L′A = LA ⊗K K ′. Take elements αi ∈ K ′ with |αi|li = |fi|. Then
(
gi
αi

)li
= (L′◦A)∗.

This means that the element gi
αi
∈ L′ is integral over L′◦A . Thus, the L′◦A-subalgebra of L′ generated

by all of the elements gi
αi

is an unramified valuation K ′◦-subalgebra of L′. This implies the claim.

7.3. Algebraic groups over K◦. In this subsection we consider schemes over K◦ and, for

brevity, the fiber product over K◦ of such schemes is denoted as a direct product.

An algebraic group over K◦ is a group object in the category of flat schemes of finite type over

K◦. Such a scheme G is defined by the multiplication morphism m = mG : G × G → G, the unity

morphism e = eG : Fspec(K◦) → G, and the inversion morphism ı = ıG : G → G that satisfy the

well known conditions. It follows that G is a group object in the category of all schemes over K◦

and, in particular, for every scheme X over K◦ the set of morphisms HomK◦(X ,G) is provided

with the structure of a group. It follows also that Gη and Gs are algebraic groups over K and K̃,

respectively.

7.3.1. Examples. (i) Suppose we are given a finite group G and a map r : G→ Zspec(K◦) :

σ 7→ rσ such that r1 = K◦◦, rσ = rσ−1 , rσ ∩ rτ ⊂ rστ and K◦rσ = K◦ασ with ασ ∈ K◦ for

all σ, τ ∈ G. (Such a map will be said to be special.) We associate with these data an algebraic

group G = GrK◦ over K◦ as follows: G is the disjoint union
∐
σ∈G G(σ) with G(σ) = Fspec(K◦rσ ). The

multiplication morphism m : G×G =
∐

(σ,τ)∈G×G G(σ,τ) → G is induced by the canonical morphisms

G(σ,τ) = Fspec(K◦rσ∩rτ ) → G(στ) = Fspec(K◦rστ ). The unity morphism e is the identity morphism

Fspec(K◦)
∼→ G(1), and the inversion morphism ı are the identity morphisms G(σ) ∼→ G(σ−1). An

algebraic group over K◦ isomorphic to a group GrK◦ of the above form is said to be a discrete finite

algebraic group over K◦. As a scheme such GrK◦ is affine (with non uniquely defined K◦-algebra).

(ii) More generally, suppose that the above finite group G acts on the right by automorphisms

on an algebraic groupH over K◦. Then one can construct an algebraic group G called the semidirect

product of GrK◦ and H. Namely, it is the disjoint union
∐
σ∈G G(σ) with G(σ) = H ⊗K◦ K◦rσ . The

multiplication morphism m : G × G =
∐

(σ,τ)∈G×G G(σ,τ) → G with G(σ,τ) = (H ×H) ⊗K◦ K◦rσ∩rτ
is induced by the multiplication morphism on H and the canonical morphisms Fspec(K◦rσ∩rτ ) →
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Fspec(K◦rστ ). The unity morphism eG coincides the morphism eH : Fspec(K◦) → G(1) = H, and

the restriction of the inversion morphism ıG to G(σ) is the morphism G(σ) → G(σ−1) that corresponds

to the composition morphism H σ−1

→ H ıH→ H.

(iii) Any finitely generated F1-field M defines an affine algebraic group DF1(M) = Fspec(M)

over F1 as follows: the multiplication morphism corresponds to the homomorphismM →M⊗F1
M :

f 7→ f ⊗f , the identity morphism corresponds to the homomorphism M → F1 : f 7→ 1 for f ∈M∗,

and the inversion morphism corresponds to the homomorphism M → M : f 7→ f−1 for f ∈ M∗.

Notice thatDF1(M) represents the contravariant functor that takes a scheme X over F1 to the group

Hom(M∗,O(X )∗). The algebraic group DK◦(M) = DF1(M)⊗F1 K
◦ is said to be a diagonalizable

group (of finite type) over K◦. The correspondence M 7→ DK◦(M) gives rise to an anti-equivalence

between the category of finitely generated F1-fields or the equivalent category of finitely generated

abelian groups and the category of diagonalizable groups over K◦ and, therefore, one can view the

latter as an abelian category. For example, a homomorphism DK◦(M) → DK◦(N) is surjective if

the corresponding homomorphism of groups N∗ → M∗ is injective, and its kernel is DK◦(L) with

L∗ = Coker(N∗ → M∗). If M∗ has no torsion, DK◦(M) is said to be a torus over K◦ and, if M∗

is an infinite cyclic group, this torus is denoted by Gm,K◦ . If M∗ is finite, DK◦(M) is said to be a

connected finite algebraic group over K◦.

A left action of an algebraic group G on a scheme X over K is a morphism µ : G × X → X

which possesses the usual properties. For example, G acts on itself. An open subscheme U ⊂ X is

G-invariant if µ(G×U) ⊂ U . We say that X is a left torsor for G if the morphism (µ, p2) : G×X →

X ×X is an isomorphism (where pi denotes the projection to the i-th multiplier). In the same way

one defines right actions and right torsors. By default, the actions and torsors considered are left.

Notice that, if X is a torsor for G, then any G-invariant open subscheme of X coincides with X .

We say that a torsor X is split if the set X (K◦) = HomK◦(Fspec(K◦),X ) is nonempty. It

is easy to see that X is a split torsor for G if and only if there is a G-equivariant isomorphism of

schemes G ∼→ X . Notice also that, if X is a torsor for G, the algebraic group G is unique up to a

unique isomorphism.

7.3.2. Proposition. The following properties of a strict scheme X of finite type over K◦ are

equivalent:

(a) X is a torsor for a diagonalizable group DK◦(M);

(b) X = Fspec(L◦) for an unramified valuation K◦-algebra L◦.

Furthermore, in this case there is a canonical isomorphism M
∼→ L̃/K̃∗ = L/K∗.
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Proof. (b)=⇒(a) and the latter property. Since X is of finite type over K◦, the F1-field L/K∗

is finitely generated over F1. We set M = L/K∗ and denote by A the K◦-algebra K◦ ⊗F1
M of

the diagonalizable group DK◦(M). If f denote the image of an element f ∈ L in M , then the

homomorphism L◦ → L◦ ⊗K◦ A = L◦ ⊗F1 M : f 7→ f ⊗ f defines an action µ : DK◦(M)×X → X

of DK◦(M) on X . We claim that X is a torsor for DK◦(M). Indeed, the morphism (µ, p2) :

DK◦(M)×X → X ×X corresponds to the homomorphism L◦ ⊗K◦ L◦ → L◦ ⊗K◦ A = L◦ ⊗F1
M :

f ⊗ g 7→ fg ⊗ g. That this homomorphism is injective is trivial. Let f ⊗m be a nonzero element

of L◦ ⊗m. Since L̃∗/K̃∗
∼→ L∗/K∗, we can find an element g ∈ (L◦)∗ with g = m. Then f ⊗m is

the image of the element fg−1 ⊗ g ∈ L◦ ⊗K◦ L◦, and the claim follows.

(a)=⇒(b). Proposition 7.1.6 implies that, if the number of irreducible components of X is n,

then the numbers of irreducible components of DK◦(M)×X and of X×X are n and n2, respectively.

Since both schemes are isomorphic, it follows that n = 1, i.e., X is irreducible. Applying this to the

torsor Xs for D
K̃

(M), we get that Xs is also irreducible. Furhermore, Proposition 7.1.4(iii) implies

that DK◦(M)×X̆ is the minimal open subscheme of DK◦(M)×X and, therefore, µ(DK◦(M)×X̆ ) ⊂

X̆ , i.e., X̆ is invariant under the action of DK◦(M). It follows that X = X̆ and, in particular,

X = Fspec(A) is affine. The action morphism µ corresponds to a homomorphism A→ A⊗F1
M :

f 7→ f ⊗ θµ(f) such that θ(f) 6= 0 for any nonzero f . The morphism (µ, p2) corresponds to a

homomorphism A ⊗K◦ A → A ⊗F1
M : f ⊗ g 7→ fg ⊗ θµ(f). Since the former is an isomorphism,

then so is the latter. Suppose that fh = gh for f, g, h ∈ A and h 6= 0. Then the above isomorphism

takes the elements f ⊗ h and g ⊗ h to the same element of A⊗F1
M . This implies that f = g, i.e.,

A and G are integral. Applying this to the torsor Xs for D
K̃

(M), we get that Xs is also integral

and, by Corollary 7.2.4, A is an unramified valuation K◦-algebra.

7.3.3. Corollary. In the situation of Proposition 7.3.2, the torsor X is split if and only if the

canonical surjection L̃∗ →M∗ = L̃∗/K̃∗ is split over the torsion subgroup of M∗. In particular, it

is always split if the group M∗ has no torsion.

Proof. By the definition, X is split if there exists a section L◦ → K◦ of the canonical

embedding of valuation F1-algebras K∗ ↪→ L◦. This is evidently equivalent to existence of a

section of the canonical homomorphism of groups L̃∗ → M∗ = L̃∗/K̃∗. Suppose that the latter

surjection is split over the torsion subgroup M∗tors of M∗. Since M∗/M∗tors is a free abelian group of

finite rank, we can find a splitting M∗ = M∗tors ×G. Since the surjection considered has a section

over the free abelian group G, it follows that it has a section over the whole group M .

7.3.4. Corollary. In the situation of Proposition 7.3.2, the following are equivalent:
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(a) X is split for DK◦(M);

(b) Xs is split for D
K̃

(M);

(c) Xη is split for DK(M).

7.3.5. Theorem. Let G be an algebraic group K◦. Then

(i) the connected component of the unity of G is a diagonalizable group DK◦(M);

(ii) the set of connected components π0(G) has a canonical structure of a finite group G, and

it is provided with a special map r : G→ Zspec(K◦);

(iii) the connected component G(σ) of G that corresponds to an element σ ∈ G is a left and

right torsor for DK◦rσ
(M), and its image in Fspec(K◦) coincides with Fspec(K◦rσ );

(iv) there is a canonical surjective homomorphism of algebraic groups G → GrK◦ .

Proof. Step 1. If G is connected and Gs is irreducible, then G = Ğ. Indeed, Propositions

7.1.3(i) and 7.1.4(ii) imply that Ğ ×Ğ is the minimal open subschemeW of G×G withWs 6= ∅ and,

therefore, m(Ğ × Ğ) ⊂ Ğ. For the similar reason, one has ı(Ğ) ⊂ Ğ. This implies that Ğ is an open

affine subgroup of G. Let now g be a point of G, and let g′ denote its image under the morphism

(1G , ı) : G → G×G. Then the point m(g′) lies in the image of the morphism e : Fspec(K◦)→ G and,

in particular, g′ ∈ m−1(Ğ). By Proposition 7.1.4(ii), the point g′ has an open affine neighborhood

in m−1(Ğ) of the form U ×V, where U and V are open affine subschemes of G. Since both U and V

contain Ğ and, in particular, the image of the morphism e, it follows that m(U × V) ⊃ U ∪ V and,

therefore, U = V = Ğ. Thus, g ∈ Ğ, i.e., G = Ğ.

Step 2. If G is connected and Gs is irreducible, then G is integral. Indeed, since the scheme G

is flat over K◦, it suffices to show that Gη is integral. We may therefore assume that the valuation

on K is trivial. Step 1 implies that G is affine, i.e., G = Fspec(A), and G = Ğ, i.e., G has no

nontrivial open affine subschemes. It follow that all elements of A outside zn(A) are invertible and,

therefore, A is quasi-integral. Consider the homomorphism µ : A → A ⊗K A that corresponds to

the multiplication morphism m : G × G → G, and the homomorphism ε : A→ K that corresponds

to the unity morphism e : Fspec(K)→ G. Let a be an element of zn(A), and let µ(a) = b⊗c. Since

a is nilpotent, at least one of the elements b or c should be nilpotent. Suppose it is b. Then ε(b) = 0.

Since the composition of the homomorphism µ with the homomorphism A⊗KA→ A : x⊗y 7→ xε(y)

is the identity on A, we get a = 0, i.e., zn(A) = 0. The claim follows.

Step 3. If G is connected and Gs is irreducible, then G is isomorphic to a diagonalizable group.

By Step 2, G = Fspec(K◦(Ğ)) and the K◦-algebra K◦(Ğ) is integral. Applying the same fact to

the algebraic group Gs over K̃, we get that Gs is also integral. Corollary 7.2.4 then implies that
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K◦(Ğ) is an unramified valuation K◦-algebra. Let M be the finitely generated F1-field K◦(Ğ)/K∗.

By Proposition 7.3.2, G is a torsor for the diagonalizable group DK◦(M). Since G is also a torsor

for itself, the claim follows.

Step 4. If G is connected, Gs is irreducible. Indeed, by Proposition 7.1.3(iv), Gs is connected.

Since Gs is an algebraic group over K̃, this reduces the situation to the case when the valuation

on K is trivial. Let X be an irreducible component of G that contains the image of the morphism

e : Fspec(K)→ G. Since the scheme X×X is also irreducible. This implies that the image m(X×X )

lies in an irreducible component of G. But that image contains X and, therefore, m(X × X ) = X .

Since X ×X is reduced, it follows that the morphism m gives rise to a morphism m : X ×X → X .

For the same reason, the isomorphism ı gives rise to an isomorphism ı : X ∼→ X . Thus, X is an

irreducible algebraic group. By Step 3, X is a diagonalizable group and, in particular, X is the

spectrum of a K-field. Suppose that G 6= X . Since G is connected, we can find an irreducible

component Y of G which has nonempty intersection with X and does not coincide with X . As

above, the scheme X ×Y is irreducible and its image under the morphism m contains Y. It follows

that m(X × Y) = Y and, therefore, m(X × (X ∩ Y)) ⊂ X ∩ Y. The latter is possible only if

X ∩ Y = X which contradicts the assumption G 6= X .

Thus, if G is connected, it is isomorphic to a diagonalizable group, and (i) is true.

Step 5. Consider now the general case. Let G denote the set π0(G) of connected components of

G. For an element σ ∈ G, let G(σ) denote the corresponding connected component. For every pair

of elements σ, τ ∈ G, the direct product G(σ) × G(τ) is connected and, therefore, its image under

the morphism m lies in some G(ρ). We define a binary operation on G by στ = ρ. It is easy to

see that this operation provides G with the structure of a group, the unity element of which is the

connected component G(1) that contains the image of the morphism e. The morphism m induces

morphisms G(σ) × G(τ) → G(στ) and isomorphisms ı : G(σ) → G(σ−1) for all σ, τ ∈ G. In particular,

G(1) is a connected irreducible algebraic group, and it acts on each G(σ) from the left and the right.

By the previous steps, G(1) is a diagonalizable group DK◦(M). The isomorphisms (m, 1G) and

(1G ,m) : G ×G ∼→ G×G give rise to isomorphisms of connected schemes G(σ)×G(τ) ∼→ G(στ)×G(τ)

and G(σ)×G(τ) ∼→ G(σ)×G(στ) for all σ, τ ∈ G and, in particular, to isomorphisms DK◦(M)×G(σ) ∼→

G(σ) × G(σ) and G(σ) ×DK◦(M)
∼→ G(σ) × G(σ). This means that each connected component G(σ)

is a left and right torsor for DK◦(M). Furthermore, Proposition 4.4.6 implies that the image of

the canonical map G(σ) → Fspec(K◦) is a principal open subset D(ασ) for some ασ ∈ K◦, and this

subset coincides with Fspec(K◦rσ ), where rσ is the maximal Zariski prime ideal of K◦ that does not

contain the element ασ. One evidently has r1 = K◦, and the isomorphisms G(σ)×G(τ) ∼→ G(σ)×G(στ)
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easily imply that rσ = rσ−1 and rσ ∩ rτ ⊂ rστ , i.e., the map r : G→ Zspec(K◦) that takes σ to rσ

is special. Validity of the statements (ii)-(iv) easily follows.

7.4. Separated integral flat schemes of finite type over K◦. For a finitely generated

K-field L that contains K, the quotient L = L/K∗ is a finitely generated F1-field, and so it defines

a diagonalizable group DK◦(L). The correspondence L 7→ DK◦(L) is a contravariant functor. If X

is an integral flat scheme of finite type over K◦, the diagonalizable group DK◦(K(X )) is denoted

by D(X ). By Proposition 7.2.1, D(X ) is a torus if and only if Xη is geometrically irreducible.

In this case D(X ) will be denoted by T (X ). Notice that D(X )η = D(Xη) = DK(K(X )) and

D(X )s = D
K̃

(K(X )).

7.4.1. Definition. A flat scheme X of finite type over K◦ is said to be a generic torsor for

an algebraic group G over K◦ if there is a Gη-invariant dense open subscheme U ⊂ Xη which is a

torsor for Gη.

7.4.2. Theorem. Let X be a separated integral flat scheme of finite type over K. Then

(i) there is a canonical action µ : D(X )×X → X which makes X a generic torsor for D(X );

(ii) any action of a diagonalizable group DK◦(M) on X is induced by a unique homomorphism

DK◦(M)→ D(X ) and the canonical action of D(X ) on X ;

(iii) each irreducible component Y of Xs is D(X )s-invariant, the induced homomorphism

D(X )s → D(Y) is surjective, and its kernel is finite of order equal to the multiplicity of Y.

Suppose a diagonalizable group DK◦(M) acts on a connected flat affine scheme X = Fspec(A)

over K◦. Then the scheme DK◦(M)× X is also connected, and so the action µ of DK◦(M) on X

defines a homomorphism of K◦-algebras µ∗ : A→ A⊗F1 M . It is easy to see that the properties for

the group action are equivalent to the fact that µ∗(a) = a⊗ θµ(a) for all a ∈ A, where θ̃µ : A→M

is a quasi-homomorphism of F1-algebras (see §3.4.1) with the property that θ̃µ(α) = 1 for all

α ∈ K◦\{0}. It follows that θ̃µ induces a quasi-homomorphism θµ : A→M .

7.4.3. Lemma. The correspondence µ 7→ θµ gives rise to a bijection between the set of

actions of DK◦(M) on X and the set of quasi-homomorphisms A→M .

Proof. Given a quasi-homomorphism θ : A → M with the above property, the map A →

A ⊗F1
M : a 7→ a ⊗ θ(a) is a homomorphism of K◦-algebras that corresponds to an action of

DK◦(M) on X .

7.4.4. Lemma. In the above situation, suppose that X is integral. Then
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(i) all open subschemes of X are DK◦(M)-invariant;

(ii) X is a generic torsor for DK◦(M) if and only if θµ is injective;

(iii) X is a torsor for DK◦(M) if and only if θµ is bijective.

Proof. (i) It suffices to verify the statement for open affine subschemes. Recall that any

such nonempty subscheme is a principal open subset D(f) for some f ∈ A\{0}. Let y be a point

of DK◦(M) × D(f) whose projections are points g ∈ DK◦(M) and x ∈ D(f). Then f(µ(y)) =

θµ(f)(y) = f(x)θµ(f)(g). Since x ∈ D(f), one has f(x) 6= 0 and, since M is an F1-field and θµ(f)

is its nonzero element, one has θµ(f)(g) 6= 0. Thus, f(µ(y)) 6= 0, i.e., µ(y) ∈ D(f).

(ii) and (iii). The morphism (µ, p2) : DK◦(M)×X → X×X corresponds to the homomorphism

ψ : A⊗K◦ A→ A⊗F1 M : a⊗ b 7→ ab⊗ θµ(a). By Theorem 3.2.2(ii), the former has dense image

(resp. is an isomorphism) if and only if the latter is injective (resp. bijective). Suppose first that ψ

is injective and that θµ(a) = θµ(b) for a, b ∈ A. If b = 0, then ψ(a⊗ 1) = 0 and, therefore, a = 0. If

a, b 6= 0, then ψ(a⊗ b) = ψ(b⊗ a). The injectivity assumption implies that a⊗ b = b⊗ a. It follows

that there exists α ∈ K◦\{0} with either a = αb, or b = αa. If ψ is also surjective, then for every

element m ∈M there exists an element a⊗ b ∈ A⊗K◦ A with ψ(a⊗ b) = 1⊗m. This implies that

θµ(a) = m. Conversely, suppose that θµ possesses the above property. If ψ(a⊗ b) = ab⊗θµ(a) = 0,

then either θµ(a) = 0 and, therefore, a = 0, or ab = 0 and, therefore, a = 0 or b = 0. If

ψ(a ⊗ b) = ψ(a′ ⊗ b′) for a, b, a′, b′ 6= 0, then θµ(a) = θµ(a′) and ab = a′b′. The property implies

that there exists α ∈ K◦\{0} with either a = αa′, or a′ = αa. In the former (resp. latter) case, we

have αa′b = a′b′ (resp. αab′ = ab) and, therefore, b′ = αb (resp. b = αb′). In both cases, we get

a⊗ b = a′ ⊗ b′. Finally, suppose that θµ is bijective. Given a nonzero element a⊗m ∈ A⊗F1 M ,

take an element b ∈ A∗ with θµ(b) = m. Then ψ(b⊗ ab−1) = a⊗m, i.e., the homomorphism ψ is

surjective.

Proof of Theorem 7.4.2. (i) Given a strict open affine subscheme U ⊂ X , the injective

homomorphism AU → AU ⊗F1
K(X ) : a 7→ a ⊗ a gives rise to an action µ : D(X ) × U → U of

the diagonalizable group D(X ) = DK◦(K(X )) on U . These actions are compatible on intersections

and, therefore, they give rise to a canonical action µ : D(X )×X → X of D(X ) on X . The minimal

open subscheme X̆η is clearly a torsor for D(Xη) = D(X )η and, therefore, X is a generic torsor for

D(X ).

(ii) Suppose we are given an action ν : DK◦(M)×X → X of a diagonalizable group DK◦(M)

on X . We claim that the minimal open subscheme X̆η of Xη is DK(M)-invariant. Indeed, the K-

algebra K(X )⊗F1
M of the affine scheme DK(M)× X̆η is a K-field and, therefore, any nonempty
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open subscheme of DK(M)×X̆η coincides with it. Since the intersection ν−1(X̆η)∩ (DK(M)×X̆η)

is nonempty, it follows that ν(DK(M) × X̆η) ⊂ X̆η, i.e., X̆η is DK(M)-invariant. The action of

DK(M) on X̆ defines (and is defined by) a homomorphism K(X ) = K(X )/K∗ → M , and so it

is induced by that homomorphism and the canonical action of D(X ) on X̆η. Thus, we have two

morphisms µ and ν : DK◦(M)×X → X that coincide on the dense subset DK(M)× X̆η. Since X

is separated, it follows that µ = ν.

(iii) That all irreducible components of Xs are D(X ) is trivial. The homomorphism of diago-

nalizable groups D(X )s → D(Y) corresponds to the homomorphism K̃(Y)∗/K̃∗ → K(X )∗/K∗ and,

by Corollary 7.2.4(ii), the cokernel of the latter homomorphism has order equal to the multiplicity

of Y.

A strict scheme X of finite type over K◦ is said to be a homogeneous (resp. generically

homogeneous) space for G if the morphism (µ, p2) : G × X → X × X is surjective (resp. has dense

image).

7.4.5. Corollary. If X is a generically homogeneous space for a diagonalizable group

DK◦(M), then X̆η is a homogeneous space for DK(M).

Proof. It suffices to consider the case when the valuation on K is trivial. The assumption

implies that the morphism (µ, p2) : DK(M)×X̆ → X̆ ×X̆ has dense image. Since AX̆ is an K-field,

it follows that AX̆ ⊗K AX̆ is also a K-field, and Corollary 1.2.6 implies that the above morphism

is surjective, i.e., X̆ is a homogeneous space for DK(M).

Let ϕ : Y → X be a morphism between separated flat integral schemes of finite type over K◦,

and denote by Z the Zariski closure of the set ϕ(Y) in X . Since Zη is the Zariski closure of ϕ(Yη)

in Xη, Proposition 7.1.3(iv) implies that Z is also a strict separated integral scheme of finite type

over K◦. Then ϕ is a composition of the Zariski dominant morphism ψ : Y → Z and the Zariski

closed immersion χ : Z → X . Since ψ(Y̆η) ⊂ Z̆η, there are induced homomorphisms of K-fields

K(Z)→ K(Y) and of diagonalizable groups ψ : D(Y)→ D(Z). Furthermore, χ identifies Z with

an irreducible Zariski closed subset of X . If U is a nonempty open affine subscheme of X , then

Z ∩ U = U (p) for a Zariski prime ideal p ⊂ AU , and K(Z) is identified with the K-field κ(p). The

canonical homomorphism AU/p ↪→ AU induces an embedding of K-fields K(Z) = κ(p) ↪→ K(X ),

and the latter gives rise to a surjective homomorphism of diagonizable groups ıχ : D(X )→ D(Z).

146



7.4.6. Corollary. In the above situation, the following diagram is commutative

D(X ) × X µ→ Xyıχ xχ xχ
D(Z) × Z µ→ Zxψ xψ xψ
D(Y) × Y µ→ Y

Proof. It suffices to consider two cases: (1) ϕ is Zariski dominant, and (2) ϕ is a Zariski closed

immersion.

(1) If U ⊂ X and V ⊂ Y are strict open affine subschemes with ϕ(V) ⊂ U , then the homo-

morphism AU → BV is compatible with the homomorphism K(X ) → K(Y) and, therefore, the

homomorphisms θµ : AU → K(X ) and θν : BV → K(Y) are compatible. This implies the required

fact.

(2) Let U be a strict open affine subscheme of X . Then V = ϕ−1(U) coincides with U (p) =

Fspec(AU/p) for a Zariski prime ideal p ⊂ AU . The canonical injective homomorphisms AU/p→ AU

and κ(p)→ K(X ) are compatible, and this implies the required fact.

7.5. Connection with toric schemes. Let k be a (usual) valuation field. The ring k◦ =

{a ∈ k
∣∣|a| ≤ 1}, called the ring of integers of k, has a unique maximal ideal k◦◦ = {a ∈ k

∣∣|a| < 1}.

The quotient k̃ = k◦/k◦◦ is called the residue field of k. Notice that k·◦ = k◦· and k·◦◦ = k◦◦·. On

the other hand, k̃· is the F1-field whose group of invertible elements is (k◦)∗, and so the canonical

homomorphism of F1-fields k̃· → k̃
·

gives rise to an isomorphism k̃·/k1 ∼→ k̃
·
, where k1 is the group

{a ∈ k◦
∣∣|a − 1| < 1}. Notice also that the canonical map Spec(k◦) → Fspec(k·◦) : r 7→ r· is a

bijection.

7.5.1. Definition. (i) A toric scheme over k◦ is a separated integral scheme Y flat and of

finite type over k◦ provided with an action of a split k◦-torus T = T (Y) such that

(1) Yη has an open dense orbit which is a torsor for Tη;

(2) Y is covered by T -invariant open affine subschemes.

(ii) A closed toric subscheme is a nonempty irreducible T -invariant closed subset flat over k◦.

If the valuation on k is trivial, the condition (2) is automatically satisfied if Y is normal, by

a theorem of Sumihiro [Sum]. In this case, toric schemes are called toric varieties, and a closed

toric subscheme is just the closure of an orbit of the torus. In the general case, every closed toric

subscheme Z of Y is a toric scheme over k◦ for the torus T (Z) which is the quotient of T by the

stabilizer of all points of Z.
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Let Y = Spec(B) be an affine toric scheme over k◦ for a torus T with the character group M̌ ,

and let M be the corresponding F1-field {0}∪M̌ . (In such a situation we will write T = Dk◦(M).)

The action µ : T × Y → Y of T on Y defines a decomposition B = ⊕χ∈M̌Bχ, where Bχ are

k◦-submodules of B with Bχ′ · Bχ′′ ⊂ Bχ′χ′′ . Namely, one has Bχ = {f ∈ B
∣∣µ∗(f) = f ⊗ χ}. We

set Š = {χ ∈ M̌
∣∣Bχ 6= 0}, S = {0} ∪ Š, and denote by r the set of all elements of k◦ which are

non-invertible in B. Then r is a prime ideal of k◦ and all Bχ’s are k◦r -modules.

7.5.2. Proposition. In the above situation, the following is true:

(i) S is a finitely generated F1-algebra with fraction F1-field M ;

(ii) for every χ ∈ Š, Bχ is a free k◦r -module of rank one;

(iii) A = ∪χ∈ŠBχ is a strict finitely generated (k◦r)·-subalgebra of B·, and A⊗k·◦ k◦
∼→ B;

(iv) if A is integrally closed and Ã = A/(k·◦◦r ) is reduced, then B is integrally closed;

(v) there is a canonical bijection between the set of closed toric subschemes and the Zariski

spectrum Zspec(S);

(vi) all closed toric subschemes of Y are faithfully flat over k◦r .

Proof. Take a surjective homomorphism C = k◦[T1, . . . , Tn]→ B : Ti 7→ gi. If gi =
∑m
l=1 gi,χl ,

we replace the above homomorphism by a similar homomorphism in which instead of the variable Ti

there are variables Til that go to the elements gi,χl . In this way we get a surjective homomorphism

C → B as above with gi ∈ Bχi for all 1 ≤ i ≤ n which induces a surjective homomorphism of k·◦-

algebras C · → A. In particular, A is a finitely generated k·◦-subalgebra of B· and A⊗k·◦ k◦
∼→ B.

It follows also that S is a finitely generated F1-subalgebra of M . Since Yη has a dense orbit which

is a torsor for Tη, the fraction F1-field of S is M , i.e., (i) is true. Furthermore, since mA ∩ k·◦ = r·,

Proposition 7.1.2 implies that, for each χ ∈ Š, Aχ is a free (k◦r)·-module of rank one and, therefore,

Bχ is a free k◦r -module of rank one, i.e., (ii) and (iii) are true. Finally, let Z be a closed toric

subscheme of Y. It is the closure of a unique dense orbit of Tη in the toric variety Yη. It follows

that the set p = {0} ∪ {χ ∈ Š
∣∣f(z) = 0 for all z ∈ Z and f ∈ Bχ} is a Zariski prime ideal of S.

This implies (v). Since Z = Spec(B/q), where q = ⊕χ∈p\{0}Bχ, and there is an isomorphism of

k◦r -modules B/q
∼→ ⊕χ∈S\pBχ, (vi) is true.

It remains to verify the statement (iv). The converse implication is trivial. Suppose that A is

integrally closed. If the valuation on K is trivial, this implies that the semigroup Š is saturated

in the group M̌ , and the statement is well known. In the general case, we apply the previous one

to A′ = A ⊗k·◦ k· and B′ = B ⊗k◦ k. Since B′ = A′ ⊗k· k, it follows that every element of the

fraction field of B integral over B is of the form λ−1f for some λ ∈ k◦r and an element f which is
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a generator of the free k◦r -module Bχ = Aχ for some χ ∈ Š. If Tn + gn−1X
n−1 + . . .+ g0 = 0 is an

equation on integral dependence of λ−1f over B, we may consider only homogeneous summands

gi,χi of gi with χn = χiχ
n−1, and we get an equality fn + λgn−1,χn−1f

n−1 + . . . + λng0,χ0 = 0 in

Bχn . The latter is a free k◦r -module of rank. Since Ã is reduced, it follows that the element fn is a

generator of Bχn . The equality now implies that λ is invertible in k◦r , i.e., the element considered

lies in B.

Let Y be a toric scheme over k◦ for a torus T = Dk◦(M).

7.5.3. Corollary. The correspondence Z 7→ Z (the closure of Z in Y) gives rise to a bijection

between the set of Tη-orbits in Yη and the set of closed toric subschemes of Y.

7.5.4. Corollary. Let Z be a T -invariant irreducible closed subset of Y, and let r be the

prime ideal of k◦ which is the image of the generic point of Z. Then

(i) Z is a toric scheme over the quotient (valuation) ring k◦/r;

(ii) if Y is faithfully flat over k◦, then so is Z over k◦/r.

Proof. We may assume that Y = Spec(B) is affine. By Proposition 7.5.2, one has B =

A ⊗k·◦ k◦, where A is an integral finitely generated k◦-algebra and, therefore, Y = X ⊗k·◦ k◦ for

X = Fspec(A). We set X ′ = X ⊗k·◦ (k◦r)· and Y ′ = Y ⊗k◦ k◦r . Then the generic point of Z lies in

the closed fiber Y ′s of Y ′. Since Y ′ = X ′ ⊗(k◦r)· k
◦
r , it follows that each irreducible component W of

Y ′s is a toric variety over κ(r), the fraction field of k◦/r. More precisely, W is Dκ(r)(M)-invariant

and the canonical homomorphism Dκ(r)(M) → T (W) = Dκ(r)(M
′) is an isogeny. It follows that

the closure W of W in Y ⊗k◦ k◦/r is a toric scheme over k◦/r for the torus T (W) = Dk◦/r(M
′).

Since Zη = Z ⊗k◦ κ(r) is irreducible, it lies in such an irreducible component W and, therefore, it

is the closure of a T (W)-orbit. Corollary 7.5.3 implies that Z, which coincides with the closure of

the latter in W, is a closed toric subscheme in W. Furthermore, suppose Y is faithfully flat over

k◦. By Proposition 7.5.2(vi), to show that Z is faithfully flat over k◦/r, it suffices to verify this

property for W, i.e., we may assume that Zη = W. For this we notice that W is the preimage

of an irreducible component V of X ′s. By Proposition 7.2.1(i), V is Zariski closed in X ′, i.e.,

V = Fspec(A′/p′) for a Zariski prime ideal p′ ⊂ A′. If p is the preimage of p′ in A, then the closure

V of V in X coincides with Fspec(A/p). Since p ∩ k·◦ = r, Corollary 2.8.2 implies that A/p is a

free k·◦/r-module and, therefore, C = A/p ⊗k·◦ k◦ is a free k◦/r-module. Since Z = Spec(C), the

required fact follows.

Let Y and Y ′ be toric schemes over k◦ for tori T and T ′, respectively. Let ϕ : Y ′ → Y be

a morphism of schemes over k◦. We say that ϕ is a toric morphism if the image of Y ′η lies in a
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Tη-orbit in Yη and, if Z is its closure in Y, there is a homomorphism of tori T ′ → T (Z) which

is compatible with the induced morphism Y ′ → Z. It is easy to see that one can compose toric

morphism, and so we get a category of toric schemes over k◦.

7.5.5. Theorem. The correspondence X 7→ X ⊗k·◦ k◦ gives rise to an equivalence between

the category of separated integral schemes of finite type over k·◦ with geometrically irreducible

generic fiber and the category of toric schemes over k◦.

Proof. The functor considered is fully faithful. Let X and X ′ be separated integral schemes

of finite type over k·◦ with geometrically irreducible generic fibers, and let ϕ be a toric morphism

Y ′ = X ′ ⊗k·◦ k◦ → Y = X ⊗k·◦ k◦. Suppose T (X ) = Dk·◦(M) and T (X ′) = Dk·◦(M
′). Then

T (Y) = Dk◦(M) and T (Y ′) = Dk◦(M
′).

Consider first the case when ϕ is Zariski dominant, i.e., ϕη(Y ′η) ⊂ Yη. Since both groups

Hom(T (X ′), T (X )) and Hom(T (Y ′), T (Y)) are canonically isomorphic to the group Hom(M,M ′),

they are canonically isomorphic. In particular, the homomorphism of tori T (Y ′) → T (Y) that

corresponds to the morphism ϕ comes from a homomorphism of tori T (X ′) → T (X ) which is

induced by a homomorphism f : M →M ′.

If X = Fspec(A) and X ′ = Fspec(A) are affine, then Y = Spec(B) and Y ′ = Spec(B′) for

B = A ⊗k·◦ k◦ and B′ = A′ ⊗k·◦ k◦. Compatibility of ϕ with the homomorphism of tori implies

that f(S) ⊂ S′ = {χ′ ∈ M̌ ′
∣∣B′χ′ 6= 0} and ϕ∗(Bχ) ⊂ B′f(χ) for all χ ∈ Š. Thus, the morphism

ϕ is induced by a homomorphism of k·◦-algebras A → A′, i.e., by a Zariski dominant morphism

X ′ → X of schemes over k·◦.

If X and X ′ are arbitrary, the morphism ϕ is defined by a compatible system of morphisms

of affine toric varieties ϕV′/V : V ′ → V for all pairs of invariant open affine subschemes V ⊂ Y

and V ′ ⊂ Y ′ with ϕ(V ′) ⊂ V. By Proposition 7.5.2, one has V = U ⊗k· k and V ′ = U ′ ⊗k· k for

open affine subschemes U ⊂ X and U ′ ⊂ X ′ and, by the previous case, the morphism of affine toric

varieties is induced by a unique morphism of affine schemes ψU ′/U : U ′ → U . It is easy to see that

the morphisms ψU ′/U are compatible, and so they define a morphism ψ : X ′ → X which induces

the morphism ϕ.

To prove the required statement in the general case, we need the following fact.

7.5.6. Lemma. For any separated integral scheme X of finite type over k·◦, the correspon-

dence Z 7→ Z ⊗k·◦ k◦ gives rise to a bijection between the set of irreducible Zariski closed subsets

Z ⊂ Xη and the set of closed toric subschemes of Y = X ⊗k·◦ k◦.

Proof. First of all, Proposition 7.1.3(iii) implies that the closure Z of Z is Zariski closed in Y,
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and so it is an integral closed subscheme of Y. It follows that Z⊗k·◦ k◦ is a closed toric subscheme of

Y. On the other hand, let W be a closed toric subscheme of Y. To verify the required fact, we may

assume that X = Fspec(A) is affine. By Proposition 7.5.2(v) (and in its notation), W corresponds

to a Zariski prime ideal of S. Since A/k∗ ∼→ S, where A = A⊗k·◦ k·, we get Zspec(S)
∼→ Zspec(A),

and the required fact follows.

Consider now the general case. Let W be the closure in Y of the Tη-orbit in Yη that contains

ϕη(Y ′η). By Lemma 7.5.6, we have W = Z ⊗k·◦ k◦, where Z is a Zariski closed subset of X . By

the previous case, the morphism Y ′ → W is induced by a morphism X ′ → Z. It follows that ϕ is

induced by a morphism X ′ → X .

The functor considered is essentially surjective. To prove this, we need the following fact.

7.5.7. Lemma. For any separated integral scheme X of finite type over k·◦ with geometrically

irreducible fiber, the correspondence U 7→ U ⊗k·◦ k◦ gives rise to a bijection between the set of

open (resp. open affine) subschemes of X and the set of T (Y)-invariant open (resp. open affine)

subschemes of Y = X ⊗k·◦ k◦.

Proof. Step 1. We may assume that X = Fspec(A) is affine and strict over k·◦, and set

T = T (Y). It suffices to show that any T -invariant open subscheme V ⊂ Y = Spec(B), where

B = A⊗k·◦ k◦, is of the form U ⊗k·◦ k◦ for an open subscheme U ⊂ X . Indeed, suppose this is true,

and let V be a T -invariant open affine subscheme of Y. By Proposition 7.5.2, one has V = U ′⊗k·◦ k◦

for an affine scheme U ′ of finite type over k◦. The fully faithfulness already established implies that

U is isomorphic to U ′, i.e., U is in fact an open affine subscheme of X .

Step 2. Let r be the prime ideal of k◦ that consists of the elements which are non-invertible

in BV . We claim that k◦r = k◦α for some nonzero element α ∈ k◦. Indeed, since BV is an integral

finitely generated k◦-algebra, it is a free k◦r -module, by Proposition 7.5.2. This implies that the

image of the canonical map V → Spec(k◦) coincides with Spec(k◦r). On the other hand, since B is

a flat finitely generated k◦-algebra, it is finitely presented over k◦, by a result of Raynaud-Gruson

[RG, Corollary 3.4.7]. This implies that the morphism Y → Spec(k◦) is an open map, by [EGAIV,

Theorem 2.4.6]. Thus, Spec(k◦r) is an open subset of Spec(k◦). Since it is quasi-compact, it is a

finite union of principal open subsets D(α1) ∪ . . . ∪D(αn). If max{|α1|, . . . , |αn|} = |αi|, it follows

that Spec(k◦r) = D(αi) and, therefore, k◦r = k◦αi . The claim follows. We can therefore replace Y by

the principal open subset DY(α) and assume that V is also faithfully flat over k◦.

Step 3. The map V 7→ Vs from the set of T -invariant open subschemes of Y, which are

faithfully flat over k◦, to that of Ts-invariant open subschemes of Ys is injective. Indeed, it suffices
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to verify that, if for T -invariant open affine subscheme V ′,V ′′ ⊂ Y one has V ′ ⊂ V ′′ and V ′s = V ′′s ,

then V ′ = V ′′. Suppose that V ′ 6= V ′′, and set Z ′ = V ′′\V ′. Let r be a prime ideal of k◦ from the

image of Z ′. The affine scheme Z ′r = Z ′ ⊗k◦ κ(r) is of finite type over the field κ(r), the torus T ′r
acts on it, and all its irreducible components are invariant under T ′r . Let Z be the closure in Y

of an irreducible component of Z ′r. Then Z is a nonempty T -invariant irreducible closed subset of

Y, and Corollary 7.5.4(ii) implies that Z is faithfully flat over k◦/r. It follows that Zs 6= ∅ which

contradicts the equality V ′ = V ′′.

Step 4. The statement of the lemma is true. Indeed, let V be a T -invariant open affine

subscheme of Y. By Step 2, we may assume that it is faithfully flat over k◦. Each Ts-orbit in Ys
either lies in Vs, or does not intersect Vs. If P and Q are two Ts-orbits in Ys, we write P ≤ Q if

P ⊂ Q. Let P be a minimal Ts-orbit in Ys which lies in Vs. Since P is a Ts-invariant closed subset

of Ys and a toric variety, there exist χ ∈ Š and f ∈ Bχ with f̃ 6= 0 such that P is the principal open

subset DP (f̃). (Here we use notations from the proof of Proposition 7.5.2.) Since Vs is open in Ys,

then for every Ts-orbit Q with P ≤ Q one has Q ⊂ Vs. It follows that DYs(f̃) ⊂ Vs. This implies

that Vs =
⋃n
i=1DYs(f̃i) for some fi ∈ Bχi , χi ∈ Š. Each fi can be considered as an element of

Aχi , and so we can consider the open subscheme U =
⋃n
i=1DX (fi). Since the closed fibers of the

open subschemes Vs and U ⊗k·◦ k◦ coincide, Step 3 implies that they coincide.

7.5.8. Corollary. In the situation of Lemma 7.5.7, the correspondence Z 7→ Z ⊗k·◦ k◦ gives

rise to a bijection between the family of Zariski closed (resp. closed affine) subsets of X and the

family of T (Y)-invariant closed (resp. closed affine) subsets of Y = X ⊗k·◦ k◦.

Proof. Let W be a T (Y)-invariant closed subset of Y. Then V = Y\W is a T (Y)-invariant

open subscheme of Y. By Lemma 7.5.7, one has V = U⊗k·◦ k◦ for an open subscheme U of X . Since

any open subscheme of the integral scheme X is Zariski open, it follows that the set Z = X\U is

Zariski closed, and we getW = Z⊗k·◦ k◦. IfW is affine then, by Proposirion 7.5.2,W = Z ′⊗k·◦ k◦

for an affine scheme of finite type over k◦. The fully faithfulness of the functor from Theorem 7.5.5

implies that Z is isomorphic to Z ′ and, therefore, Z is affine.

Let Y be a toric scheme over k◦. By Proposition 7.1.3, for every T -invariant open affine

subscheme V of Y one has V = U ⊗k·◦ k◦ for an affine scheme U of finite type over k·◦. If for such

subschemes one has V ′ ⊂ V ′′, Lemma 7.5.7 implies that, for the corresponding affine schemes over

k·◦, U ′ is an open affine subscheme of U ′′. Thus, we can glue all such affine scheme U along the

intersections, and we get an integral scheme X of finite type over k·◦ with Y ∼→ X ⊗k·◦ k◦. Finally,

since Y is separated, for any pair of T -invariant open affine subschemes with nonempty intersection
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V ′,V ′′ ⊂ Y, the canonical homomorphism of k◦-algebras BV′⊗k◦ BV′′ → BV′∩V′′ is surjective. This

easily implies that the corresponding homomorphism of k·◦-algebras AU ′ ⊗k·◦ AU ′′ → AU ′∩U ′′ is

surjective and, therefore, X is separated.

7.5.9. Corollary. Let Y be a faithfully flat toric scheme over k◦ for a torus T . Then

every irreducible component Z of the closed fiber Ys is a toric variety over k̃ and the canonical

homomorphism of tori Ts → T (Z) is an isogeny with kernel of order equal to the multiplicity of Z

in Ys.

7.5.10. Corollary. Given a toric scheme Y over k◦, there exists a finite separable extension

k′ of k such that the valuation on k has a unique extension to k′ and the normalization Y ′ of

Y ⊗k◦ k′◦ is a toric scheme over k′◦ such that the multiplicities of the irreducible components of all

of the fibers of the canonical morphism Y ′ → Spec(k′◦) are equal to one.

Proof. By Theorem 7.5.5, one has Y = X ⊗k·◦ k◦ for a separated strict integral scheme

X of finite type over k◦ with geometrically irreducible generic fiber. Let γ1, . . . , γn ∈ |k∗| and

l1, . . . , ln ≥ 2 be as in Corollary 7.2.6 for X . We claim that there exists a finite separable extension

k′ of k such that the integral closure of k◦ in k′ is a valuation ring and γi ∈ |k′∗|li for all 1 ≤ i ≤ n.

Indeed, it suffices to consider the case when n = 1 and l1 = p is a prime number. We may assume

that γ = γ1 < 1 and γ 6∈ |k∗|p. Take an element α ∈ k◦◦ with |α| = γ, and consider an extension k′

of k of degree p that contains a root β of the separable polynomial T p + α2T + α. The valuation

on k admits an extension to k′, and let k′◦ be its ring of integers. Then β ∈ k′◦ and |β| = |α|
1
p . It

follows that the extension of the valuation to k′ is unique and, therefore, k′◦ is the integral closure

of k◦ in k′, i.e., the claim is true. By Corollary 7.2.6, the normalization X ′ of X ⊗k·◦ (k′◦)· is a

scheme of finite type over (k′◦)· with reduced fibers of the canonical morphism X ′ → Fspec((k′◦)·).

Notice that all of the irreducible components of the fibers are toric varieties. It follows that the

toric scheme Y ′ = X ′⊗(k′◦)· k
′◦ over k′◦ has the required property, and Proposition 7.5.2(iv) implies

that Y ′ is normal. Since Y ′ lies in the normalization of Y ⊗k◦ k′◦, it coincides with it.

7.6. The case of trivial valuation on K and normal X . The theory of toric varieties

describes normal toric varieties over a field k in terms of fans, and so Theorem 7.5.5 implies

that separated geometrically irreducible normal schemes of finite type over the F1-field k· can be

described in the same terms. In this subsection we give a direct description of the category of

separated irreducible (not necessarily geometrically irreducible) normal schemes over an arbitrary

F1-field K in terms of fans.
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For an F1-field L, let VL denote the set of all real valuations on L. We denote points of

VL by the letters x, y and so on and, for x ∈ VL, the image of f ∈ L under the corresponding

homomorphism L→ R+ is denoted by f(x). The set VL is provided with the weakest topology with

respect to which all functions VL → R+ of the form x 7→ f(x) with f ∈ L∗ are continuous. Notice

that VL is a vector space over R with respect to the group structure defined by multiplication and

the action R×VL → VL : (r, x) 7→ xr defined as follows: f(xr) = f(x)r for all f ∈ L. Furthermore,

for a subset F ⊂ L, let VL{F} denote the the subset {x ∈ VL

∣∣f(x) ≤ 1 for all f ∈ F} provided

with the induced topology.

Notice that, if M is an F1-field that contains L, then the canonical map VM → VL is

surjective. Indeed, the spaces VL and VM coincide with the sets of homomorphisms of abelian

groups Hom(L∗,R∗+) and Hom(M∗,R∗+), respectively, and the required surjectivity follows from

the fact the abelian group R∗+ is injective. Notice also that, given homomorphisms of F1-fields

L→M and L→ N , there is a canonical homeomorphism VM⊗LN
∼→ VM ×VL

VN .

7.6.1. Proposition. Let L/K be an extension of F1-field. Then for any K-subalgebra

A ⊂ L, the integral closure of of A in L coincides with the set of f ∈ L such that f(x) ≤ 1 for all

x ∈ VL{A}.

7.6.2. Lemma. Given a Zariski prime ideal p ⊂ A, there exists a point x ∈ VL{A} with

p = {f ∈ A
∣∣f(x) < 1}.

Proof. By Proposition 2.7.2, we may assume thatA is a valuation F1-algebra in L and p = mA.

Furthermore, let K ′ is the F1-field K∗A∗ ∪ {0}. Then the homomorphism K → R+ : f 7→ |f |

extends in a unique way to a homomorphism K ′ → R+ : f 7→ |f | that takes all elements of A∗

to 1. Thus, we can replace K by K ′, and we may assume that A∗ = K∗. If now {fi}i∈I is a

system of nonzero elements in mA whose images in L∗/K∗ form a basis of the Q-vector space

L∗/K∗⊗Z Q, then any system of numbers {ri}i∈I with 0 < ri < 1 defines a unique homomorphism

L → R+ : f 7→ f(x) that extends the real valuation K → R+ : f 7→ |f | and takes each fi to ri.

The point x ∈ VL possesses the required properties.

Proof of Proposition 7.6.1. That the integral closure is contained in that set is trivial. Let

f be an element of L which is not integral over A. As in the proof of Corollary 2.7.4, one shows that

the Zariski ideal b of C = A[f−1] generated by mA and f−1 is nontrivial. It follows that b ⊂mC ,

and Lemma 7.6.2 implies that there exists x ∈ VL{C} such that mC = {g ∈ C
∣∣g(x) < 1}. Since

f−1 ∈mC , it follows that f(x) > 1.

For a finitely generated K-field L, we denote by VL/K the R-vector subspace VL{K ′} of VL,
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where K ′ is the image of K in L. Notice that any system of n elements of L∗ whose images form

a basis of the Q-vector space L∗/K ′∗ ⊗Z Q defines a homeomorphism between VL/K and the R-

vector space (R∗+)n. A convex polyhedral cone in VL/K is said to be rational if it is defined by a

finite number of inequalities of the form f(x) ≤ 1 with f ∈ L∗. Thus, the set VL{A} of any finitely

generated K-subalgebra A ⊂ L with a rational convex polyhedral cone in VL/K and, conversely,

any rational convex polyhedral cone in VL/K has such a form. Furthermore, if the fraction F1-field

of A coincides with L, then the VL{A} is strongly convex, i.e., VL{A} ∩VL{A}−1 = {1}. (Notice

that VL{A}−1 = VL{A′}, where A′ = {0} ∪ (Ǎ)−1.) The following facts easily follow from the

properties of rational convex polyhedral cones (see [Ful, section 1.2]).

7.6.3. Proposition. (i) The correspondences

A 7→ σ(A) = VL{A} and σ 7→ A(σ) = {f ∈ L
∣∣f(x) ≤ 1 for all x ∈ σ}

are inverse bijections between the set of integrally closed finitely generated K-subalgebras of L with

the fraction F1-field L and the set of rational strongly convex polyhedral cones in VL/K ;

(ii) σ(B) is a face of σ(A) if and only if B = Af for some f ∈ A;

(iii) if σ ∩ τ is a face of both σ and τ , then A(σ∩τ) = A(σ) ·A(τ).

7.6.4. Proposition. Let A be an integrally closed finitely generated K-algebra with F1-

fraction field L. Then

(i) the correspondences

τ 7→ pτ = {f ∈ A
∣∣f(x) < 1 for some point x ∈ τ} and

p 7→ τp = {x ∈ σ(A)
∣∣f(x) = 1 for all f ∈ A\p}

are inverse bijections between the set of faces of σ(A) and the set of Zariski prime ideals of A;

(ii) given a Zariski prime ideal p ⊂ A, the kernel of the canonical surjection VL/K → Vκ(p)/K

is the vector subspace of VL/K generated by the face τp, and the image of the cone σ(A) coincides

with the cone σ(A/p) in Vκ(p)/K .

Let K be an F1-field.

7.6.5. Definition. (i) A K-fan is a pair (L,∆), consisting of a finitely generated K-field

L and a finite family ∆ of rational strongly convex polyhedral cones in VL/K with the following

properties:

(1) each face of a cone in ∆ is also a cone in ∆;

(2) the intersection of two cones in ∆ is a face of both of them.
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(ii) For a K-fan (L,∆), the union of all of the cones from ∆ in VL/K is denoted by |∆|.

We are going to associate to every separated irreducible normal scheme X of finite type over

K a K-fan ∆(X ) as follows. Let L be the field K(X ) of rational functions on X . For an open

affine subscheme U of X , let σU denote the rational strongly convex polyhedral cone σ(AU ) (i.e.,

σU = {x ∈ VL/K

∣∣f(x) ≤ 1 for all f ∈ AU}). Furthermore, if V is an open affine subscheme of X

lying in U , then V is a principal open subset of U , i.e., AV = (AU )f for some f ∈ AU . This implies

that σV = {x ∈ σU
∣∣f(x) = 1} and, therefore, σV is a face of σU . Proposition 7.6.3 implies that the

correspondence V 7→ σV gives rise to an isomorphism between the poset of open affine subschemes

of U and the poset of faces of σU . Finally, given U and V are open affine subschemes of X , one

has σU∩V = σU ∩ σV . Indeed, let x be a point from the right hand side. Since the homomorphism

AU ⊗K AV → AU∩V is surjective, it follows that every element h ∈ AU∩V is of the form fg with

f ∈ AU and g ∈ AV . We get h(x) = f(x)g(x) ≤ 1, i.e., x ∈ σU∩V . Thus, the set of the rational

strongly convex polyhedral cones ∆(X ) = {σU} is a fan in VL/K .

Let Y be an irreducible Zariski closed subset of X . If U is an open affine subscheme of X that

contains Y̆, then Y ∩U = Fspec(AU/p) for a Zariski prime ideal p ⊂ AU . By Proposition 7.6.4, one

associates to p a face τp of σU , namely, τp = {x ∈ σU
∣∣f(x) = 1 for all f ∈ AU\p}. It is easy to see

that the cone τp does not depend on the choice of U ; it is therefore denoted by τY .

7.6.6. Lemma. In the above situation, the following is true:

(i) the correspondence Y 7→ τY is a bijection between the set of irreducible Zariski closed

subsets of X and the set of cones in ∆;

(ii) ∆(Y) consists of the images of the cones σ ∈ ∆(X ) with τY ⊂ σ under the surjection

VL/K → VK(Y)/K (induced by the canonical embedding K(Y) ↪→ L).

Proof. The statement (i) straightforwardly follows from Proposition 7.6.4(i).

(ii) Suppose σ is a cone in ∆(X ) that contains τY , and let U be an open affine subscheme of X

with σ = σU . Then Y ∩ U = Fspec(AU/p) for a Zariski prime ideal p ⊂ AU . By Proposition 7.6.4,

the cone σY∩U in ∆(Y) is the image of σ under the considered surjection. Furthermore, let σV be

a cone in ∆(Y) that corresponds to an open affine subscheme V ⊂ Y. By Proposition 5.2.4, we can

find an open affine subset U ⊂ X with V ⊂ Y ∩ U . It follows that σV is a face of σY∩U . It remains

to use the simple fact that, for any fan ∆ in a vector space V and any cone τ in ∆, the images of

all cones from ∆ that contain τ under the canonical map V → V/V (τ), where V (τ) is the vector

subspace generated by τ , form a fan in V/V (τ).

For a K-fan (L,∆) and a cone τ ∈ ∆, we denote by K(τ) = KL(τ) the K-subfield of L
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that consists of zero and the elements f ∈ L with f(x) = 1 for all x ∈ τ . (For example, if τ is

the minimal cone in ∆, then K(τ) = L.) Notice that the kernel of the canonical surjective map

VL/K → VK(τ)/K is the vector subspaces generated by τ . We denote by S̃tar(τ) = S̃tar∆(τ) the

set of the cones σ ∈ ∆ that contain τ , and by Star(τ) = Star∆(τ) the set of the images of the

cones from S̃tar(τ) in VK(τ)/K under the latter surjective map. Notice that the canonical map

S̃tar(τ) → Star(τ) is a bijection. We already mentioned (and used in the proof of Lemma 7.6.6)

the fact that the pair (K(τ),Star(τ)) is a K-fan. For example, in the situation of Lemma 7.6.6,

one has (K(τY),Star(τY)) = (K(Y),∆(Y)).

7.6.7. Definition. (i) A dominant morphism of K-fans ϕα : (L′,∆′) → (L,∆) is a homo-

morphism of K-fields α : L→ L′ such that, for every σ′ ∈ ∆′ there exists σ ∈ ∆ with vα(σ′) ⊂ σ,

where vα is the induced surjective map VL′/K → VL/K .

(ii) A morphism of K-fans ϕ : (L′,∆′) → (L,∆) is a pair (τ, ϕα) consisting of a cone τ ∈ ∆

and a dominant morphism ϕα : (L′,∆′)→ (K(τ),Star(τ)).

Dominant morphisms are precisely morphisms in which τ is the minimal cone in ∆ (i.e., the

origin of VL/K). It is clear that one can compose dominant morphisms, and so K-fans with

dominant morphisms as morphisms form a category which is denoted by K-Fansdom. We are now

going to explain how to compose arbitrary morphisms.

Let first ϕα : (L′,∆′) → (L,∆) be a dominant morphism. For τ ′ ∈ ∆′, let τ be the minimal

cone in ∆ with vα(τ ′) ⊂ τ . Then the restriction of α to the K-field K(τ) induces a homomorphism

α(τ ′) : K(τ) → K(τ ′). We claim that the latter gives rise to a dominant morphism ϕα(τ ′) :

(K(τ ′),Star(τ ′)) → (K(τ),Star(τ)). Indeed, let a cone σ′ ∈ Star(τ ′) be the image of a cone

γ′ ∈ ∆′ with τ ′ ⊂ γ′. We can find a cone γ ∈ ∆ with vα(γ′) ⊂ γ. Since τ is the minimal cone

that contains vα(τ ′) and vα(τ ′) ⊂ γ, it follows that τ ⊂ γ. If σ is the image of γ in Star(τ), we get

vα(τ ′)(σ
′) ⊂ σ, i.e., ϕα(τ ′) is really a dominant morphism of K-fans.

Suppose now we are given two morphisms ϕ′ = (τ ′, ϕα′) : (L′′,∆′′) → (L′,∆′) and ϕ =

(τ, ϕα) : (L′,∆′) → (L,∆), i.e., two dominant morphisms ϕα′ : (L′′,∆′′) → (K(τ ′),Star(τ ′))

and ϕα : (L′,∆′) → (K(τ),Star(τ)). By the above claim, if σ is the minimal cone in Star(τ)

with vα(τ ′) ⊂ σ, then the restriction of α to K(σ) gives rise to a dominant morphism ϕα(τ ′) :

(K(τ ′),Star(τ ′)) → (KK(τ)(σ),StarStar(τ)(σ)). If now γ is the cone in S̃tar(τ) whose image in

Star(τ) is σ, then KK(τ)(σ) = K(γ) and StarStar(τ)(σ) = Star(γ). Thus, the latter morphism is in

fact a dominant morphism ϕα(τ ′) : (K(τ ′),Star(τ ′))→ (K(γ),Star(γ)), and so the composition of

dominant morphisms ϕα(τ ′) ◦ ϕα′ = ϕα′◦α(τ ′) is well defined. We define the composition ϕ ◦ ϕ′ as
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the pair (γ, ϕα′◦α(τ ′)). The category of K-fans is denoted by K-Fans.

7.6.8. Theorem. The correspondence X 7→ (K(X ),∆(X )) gives rise to an equivalence

between the category of separated irreducible normal schemes of finite type over K (resp. with

Zariski dominant morphisms as morphisms) and the category K-Fans (resp. K-Fansdom).

Proof. Step 1. The correspondence X 7→ ∆(X ) is a functor. Indeed, let first ϕ : X ′ → X

be a Zariski dominant morphism of between schemes considered. The assumption on ϕ implies

that ϕ(X̆ ′) ⊂ X̆ and, in particular, ϕ induces a homomorphism of K-fields α : K(X ) → K(X ′)′.

Furthermore, by Proposition 5.2.4, for every open affine subscheme U ′ ⊂ X ′ one can find an open

affine subscheme U ⊂ X with ϕ(U ′) ⊂ U and, therefore, vα(σU ′) ⊂ σU . This means that ϕ induces

a dominant morphism of K-fans (K(X ′),∆(X ′))→ (K(X ),∆(X )). Suppose now that ϕ : X ′ → X

is an arbitrary morphism, and let Y be the Zariski closure of ϕ(X ′) in X . By the previous case,

the induced Zariski dominant morphism ϕ : X ′ → Y gives rise to a dominant morphism of K-fans

ϕα : (K(X ),∆(X ))→ (K(Y),∆(Y)). Since (K(Y),∆(Y)) = (K(τY),Star(τY)), the morphism the

morphism ϕ gives rise to a morphism (K(X ′),∆(X ′)) → (K(X ,∆(X )) represented by the pair

(τY , ϕα).

Step 2. The functor X 7→ (K(X ),∆(X )) is fully faithful. Indeed, that the functor is faithful fol-

lows from separatedness of the schemes considered. Let first ϕα : (K(X ′),∆(X ′))→ (K(X ),∆(X ))

be a dominant morphism of K-fans, i.e., a homomorphism of K-fields α : K(X )→ K(X ′) with the

property of Definition 7.5.3(iii). It follows that, for every open affine subscheme U ′ ⊂ X ′, there

exists an open affine subscheme U ⊂ X with vα(σU ′) ⊂ σU . The latter inclusion and Corollary 2.7.7

imply that α(AU ) ⊂ AU ′ , i.e., α induces a homomorphism of K-algebras AU → AU ′ and, therefore,

a Zariski dominant morphism of affine schemes U ′ → U . All theses morphisms are compatible

on intersections and define a Zariski dominant morphism of schemes ϕ : X ′ → X which give rise

to the homomorphism α. Suppose now that ϕ = (τ, ϕα) : (K(X ′),∆(X ′)) → (K(X ),∆(X )) is

an arbitrary morphism of K-fans. By Lemma 7.5.2(i), one has τ = τY for an irreducible Zariski

closed subset Y ⊂ X , and so ϕα is a dominant morphism (K(X ′),∆(X ′))→ (K(Y),∆(Y)). By the

previous case, the latter is induced by a morphism of schemes X ′ → Y which, in its turn, induces

a morphism X ′ → X that gives rise to the morphism of K-fans ϕ.

Step 3. The functor X 7→ ∆(X ) is essentially surjective. Indeed, let (L,∆) be a K-fan. By

Proposition 7.6.3, for every σ ∈ ∆, A(σ) = {f ∈ L
∣∣f(x) ≤ 1 for all x ∈ σ} is a normal finitely

generated K-algebra with the fraction F1-field L. We set X (σ) = Fspec(A(σ)). If τ is a face of σ,

then by the same Proposition 7.6.3(ii) one has A(τ) = (A(σ))g for some g ∈ A(σ) and, therefore,

158



X (τ) is an open affine subscheme of X (σ). Let X be the scheme which is obtained by gluing

X (σ) along X (σ∩τ) for σ, τ ∈ ∆. It is clear that X is an irreducible normal scheme of finite type

over K. Proposition 7.6.3(iii) implies that, for every air σ, τ ∈ ∆, the canonical homomorphism

A(σ) ⊗K A(τ) → A(σ∩τ) is surjective and, therefore, X is separated. We claim that ∆(X ) = ∆.

Indeed, it suffices to verify that every open affine subscheme U ⊂ X is of the form X (σ) for some

σ ∈ ∆. By the separatedness of X , all of the intersections U ∩ X (σ) are open affine subschemes of

X and, since U is covered by them, one has U ⊂ X (σ) for some σ ∈ ∆, i.e., U is an open affine

subscheme of X (σ). It follows that U is a principal open subset of X (σ) and, therefore, U = X (τ)

for some face τ of σ.
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