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Chapter II. Analytic geometry

§1. Banach F;-algebras

1.1. Banach F;-algebras.

1.1.1. Definition. A Banach Fi-algebra is an Fi-algebra A provided with a Banach norm,
i.e., a function || || : A — R4 possessing the following two properties:

(1) [If]l = 0 if and only if f = 0;

@) lfgll < Af1 - [lgl] for all f,g € A.

For example, every Fi-algebra A can be provided with the trivial norm || ||o, i.e., the norm
with ||f|lo = 1 for all nonzero f € A. Banach Fj-algebras form a category with respect to bounded
homomorphisms, i.e., homomorphisms of F-algebras ¢ : A — B for which there exists a constant
C > 0 with ||o(f)|| < C||f]| for all f € A. Notice that, given a second Banach norm || || on a
Banach Fj-algebra A, the identity map (A,]| ||) — (A]| ||') is an isomorphism if an only if the
norms || || and || || are equivalent, i.e., there exist C,C" > 0 with C||f|| < ||f]|' < C'||f|| for all
f € A. Notice that any Banach Fj-algebra A admits an equivalent norm || ||" with ||14]]" = 1.

Namely, it is given by the formula ||f||" = sup I}{ggl ‘|‘, where the supremum is taken over all nonzero

elements g € A.

Notice also that, given a bounded homomorphism of Banach Fi-algebras ¢ : A — B, the
norm on B admits an equivalent norm || || with respect to which the canonical homomorphism
is contracting, i.e., such that ||o(f)||" < ||f|| for all f € A. Indeed, it is defined by ||g||’ =
inf{||f|| - ||h||}, where the infimum is taken over all representations of g € B in the form g = ¢(f)h
with f € A and h € B.

1.1.2. Examples. (i) A Banach Fi-algebra K is said to be a real valuation ¥i-field if it
is an Fy-field and its norm is multiplicative. In this case |K| = {|)\|’)\ € K} is an Fi-subfield of
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R;. One has K/K** — |K|, where K** is the subgroup of K* consisting of the elements A with
|A| = 1. Any algebraic extension L of K is also a real valuation F;-field with respect to the unique
real valuation which extends that of K. (If g € L* and ¢" = f € K*, then |g| = |f w .) Notice that
the subgroup K** lies in the set K° = {f € KHf| < 1}, which is a Banach F;-subalgebra of K

(provided with the induced Banach norm). The set K°° = {f € K||f| < 1} is the unique maximal

Zariski ideal of K°, whose complement is the group K**. The residue F1-field of K is the quotient
K, = K°/K°°. Notice that K** 5 K.

(ii) The multiplicative monoid A" of any commutative Banach ring A with unity can be consid-
ered as a Banach Fi-algebra. If A = k is a (usual) field complete with respect to a real valuation,
then k' is a real valuation Fi-field. If & is non-Archimedean, then (k')° = k°, (k')°° = k°° and
(k})* = (k°)*. If k = C is the field of complex numbers, then (C')° and (k')°° are the closed and

open unit discs, respectively, and (C;)*

is the group of complex numbers of length one.
(iii) For a Banach F;-algebra A and a tuple of positive numbers (r;);cs, the A-algebras A[T;];cr
and A[T;, Ti_l]iel, provided with the norm

Vil Vip
[T v

[ = Al i
are Banach Fj-algebras, denoted by A{r; 'Ti}ic; and A{r; 'T;,r;T; '}ics, respectively. If the
norm on A is multiplicative (i.e., ||fg]| = ||f|| - |lg]|), then so are the norms on A{r; 'T;},c; and
A{r;lTi, rinl}ig. If K is a real valuation Fi-field, then so is K{r;lTi, rinl}ig. For example,
Z = Fiy{p, ' Tn}n>1 for the ring of integers Z provided with the archimedean absolute value | |,

where p,, is the n-th prime number (see Example 1.1.1.3(iii)).

Given an ideal E C A x A on a Banach F;-algebra A, the quotient Fi-algebra A/E is provided
with the following real valued function: ||f|| = inf ||f||. This function possesses the property (2)
ref

(i.e., it is a seminorm), and it possesses the property (1) if and only if the ideal F is closed, i.e., it
satisfies the condition that the infimum of the Banach norm on elements of any equivalence class,
which does not contain zero, is positive. For example, the ideal E, associated with a Zariski ideal
a C A is always closed, and so the quotient A/a is a Banach Fi-algebra. The kernel Ker(y) of a
bounded homomorphism of Banach Fi-algebras ¢ : A — B is also always closed. The closure E of
an ideal E C A x A is the minimal closed ideal that contains E. One has E = EU (ag X ag), where
ag; is the Zariski ideal of all elements f € A with the property that there is a sequence of elements
f1, f2,... equivalent to f and such that f, — 0 as n — oco. For example, if A is Zariski Noetherian

(e.g., finitely generated over a real valuation Fi-field), then the closure of any finitely generated
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ideal is finitely generated. The closed ideal generated by a subset S C A x A is the minimal closed

ideal that contains S or, equivalently, the closure of the ideal generated by S.

1.1.3. Examples (cf. [Berl, Example 1.1.1(v)]). (i) For a Banach F;-algebra A, a number
r > 0 and an element f € A, let E be the ideal of A{r~1T"} generated by the pair (T, f). The ideal
E consists of the pairs (aT™,bT") with af™ = bf™. Indeed, it suffices to verify that the set E’ of
such pairs is an ideal. If (aT™,bT™), (¢T*,dT") € E' and bT™ = ¢T*, then k = n and ¢ = b. We
also have af™ = bf" = cf* = df!' and, therefore, (aT™,dT") € E', i.e., E' = E. It follows that
A S A{r~'T}/E : a v @ and, therefore, ||a|| = inf{||b]|r"}, where the infimum is taken over all

representations a = bf™ with b € A and n > 0. We claim that |[a|| = 0 if and only if there exist

integers 0 < ny < ng < ... and elements by, by, ... with a = by f™ and ||bg||r"™ — 0 as k — oo.
Indeed, the converse implication is clear. Suppose that |[a|| = 0. Then there exist sequences of
elements by, by,... € A and of positive integers ni,na,... with a = by f™ and ||bg||r™ — 0 as
k — oo. If the sequence ny,na,... is bounded, we get ||al| < (||bg||r™*) - w —0ask — oo, ie,

a = 0. If the sequence is unbounded, we can replace it by a strictly increasing subsequence. The
claim implies that the closure of E is the trivial ideal of A{r~!T} if and only if f is invertible and
there is a sequence 0 < ny < ng < ... with ||f~"*||r"™ — 0 as k — oo.

(ii) Let E be the ideal of A{r~'T} generated by the pair (f7,1). Then E coincides with
the set B/ = {(aT™,bT")|af"™? = bf™*? for some p > 0}. Indeed, if (aT™,bT") € E/,
then aT™ ~ qf"TPTHPT™ = pfmTPTmHPT™ ~ HT™ ie., (aT™,0T") € E and E' C E. If
(aT™,bT"), (cT*,dT") € E' and bT" = cT*, then k = n, c = b, af"™? = bf™*P and cf!+? = dfF+a
for some p, g > 0. We also have a f/THP+a = pfmtp flda — cflra fmip — qfkt+a fmip — gfmtntptaq

ie., (aT™,dT") € E' and, therefore, E' = E. It follows that Ay = A{r 'T}/E : Fiw 7w and,
therefore, ||%H = inf{|[b[[r"}, where the infimum is taken over all representations 77 = f% in
Af with b € A and n > 0. In particular, the closure of E is the trivial ideal of A{r~'T} if and

only if there exist exist sequences of positive integers ni,ns, ... and of elements by, bo, ... € A with

b
frk

=1 and ||bg||r"™ — 0 as k — oo.

1.1.4. Examples. (i) Let I be a finite idempotent F;-subalgebra of a Banach F;-algebra A.
Then the ideal F' of A generated by an ideal F of I is always closed. Indeed, since the intersection
of closed ideals is a closed ideal, Lemma 1.4.1(iii) reduces the situation to the case £ = II. and
F = F,. Furthermore, since the Zariski ideal p A is closed, we can replace A by A/p A and

assume that p, = 0. This means that e is a unique maximal idempotent in I, and in this case,

F, = {(a,b)’ae = be}. If now (a,a,) € F, and ||a,|| — 0 as n — oo, then ae =0, i.e., (a,0) € F,.
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(ii) Let p be a Zariski prime ideal of a Banach Fi-algebra A, and assume that, for a Zariski
ideal a C p, the ideal £ = Ker(A — Ap/aAp) is finitely generated (see Corollary 1.6.5(ii)). Then
E is closed. Indeed, let (f1,91),-..,(fn,gn) be a finite system of generators of E, and assume that
fi & ag (resp. f; € ag) for 1 < i < m (resp. m+1 < i < n). For each 1 < i < m, we take
an element h; ¢ p with f;h; = g;h;, and set h = hy -...- hy,. Then h & p and fh = gh for all
(f,9) € E\(ag x ag). Assume now that there is an element f € A\ag which admits a sequence
of elements fi, fo,... with (f, f;) € E and f; — 0 as ¢ — co. Then fh = f;h — 0 as i — oco. It

follows that fh = 0, which is a contradiction. "

1.1.5. Remark. One could define a Banach norm on an Fy-algebra A as a function || || : A —
R with the properties (1) as in Definition 1.1.1 and the following version of the property (2): there
exists a constant C' > 0 such that || fg|| < C||f]| - ||g]| for all f,g € A. For such a function || ||, the

function || ||" : A — R, defined by ||f]|" = 21;18 %, possesses both properties of Definition 1.1.1

and is equivalent to || || (i.e., there are constants C’, C" > 0 such that C’||f|| < ||f]|' < C"||f|| for

all f € A). By the way, for the new norm one has ||1]|" = 1.

1.2. Banach modules over a Banach Fi-algebra. Let A be a Banach F;-algebra.

1.2.1. Definition. A Banach A-module is an A-module M provided with a Banach norm
i.e., a function || || : M — R possessing the following properties:

(1) |Im]|| = 0 if and only m = 0, and

) |Ifm|| < Ifll - [Im]|| for all f € A and m € M.

Banach A-modules form a category with respect to bounded A-homomorphisms. This category
has an inner Hom-functor, i.e., for any pair of Banach A-modules M and N the set Hom 4 (M, N)
of bounded A-homomorphisms f : M — N has the structure of a Banach A-module with respect to
the Banach norm || f|| = 31;% eIl - (1f M = N = A, the isomorphism A = Hom (A, A) provides

[Tml]
A with the Banach norm from the end of the first paragraph in §1.1).

A Banach A-algebra is a Banach F1-algebra B which is also a Banach A-module. In particular,
the map A — B : f — f-1p is a bounded homomorphism of Banach F;-algebras. Conversely,
given a bounded homomorphism of Banach Fi-algebras ¢ : A — B, B can be provided with the
structure of a Banach A-module. Namely, the formula ||g||" = inf{||f|| - |||}, where the infimum
is taken over all representations of g € B in the form g = ¢(f)h with f € A and h € B, provides
B with an equivalent Banach norm with the property ||o(f)gll” < I|fI| - llgll’-

For a real valuation F1-field K, a real valuation K-field is a real valuation F-field K’ which is
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a Banach K-module, i.e., it is provided with an isometric homomorphism K — K’. For example,
|K| is a valuation K-field.

As in §1.1, one introduces the notions of a closed A-submodule E C M x M and of the closure
of an A-submodule. For a closed A-submodule E, the quotient A/FE is again a Banach A-module.
Of course, the A-submodule Fy associated with a Zariski A-submodule N C M is always closed.

Given Banach A-modules M, N and P, an A-bilinear homomorphism ¢ : M x N — P is said
to be bounded if there exists a constant C' > 0 with ¢(m,n) < C||m||-||n|| for all (m,n) € M x N.
The complete tensor product of M and N over A is a Banach A-module M® 4N provided with
a bounded A-bilinear homomorphism M x N — M®& N such that, for any bounded A-bilinear
homomorphism ¢ : M x N — P, there exists a unique bounded homomorphism of A-modules
M® 4N — P which is compatible with ¢. The complete tensor product is unique up to a unique
isomorphism, and it is constructed as follows. The tensor product M ® 4 N is provided with the
following seminorm (i.e., a function that possesses the property (2)): ||z|| = inf{||f|| - ||g]|}, where
the infimum is taken over all representations of z in the form f®g. Then M® 4N is the quotient of
M ®4 N by the Zariski A-submodule consisting of the elements x with ||z|| = 0. If B is a Banach
A-algebra, then M®@4B is a Banach B-module. If B and C are Banach A-algebras, then so is
B&4C. Notice that if K is a real valuation Fi-field and K’ and K" are real valuation K-fields,
then K’ @ x K" is again a real valuation K-field.

A bounded homomorphism of Banach A-modules ¢ : M — N is said to be admissible if the
bijective bounded homomorphism M /Ker(¢) — Im(p) is an isomorphism of Banach A-modules.
Notice that, given admissible epimorphisms of Banach A-modules M — M’ and N — N’, the
induced map M@ N — M’'® 4N’ is an admissible epimorphism. Notice also that for a Banach A-
algebra B the multiplication homomorphism gives rise to an admissible epimorphism B& 4B — B.

Furthermore, given a family Banach A-modules {M;};cs, their direct sum @;c;M; provided
with the evident Banach norm is a Banach A-module. In particular, for every set I, the free
A-module AY) is a Banach A-module. A Banach A-module M is said to be finitely generated
(resp. finite) if there is an admissible epimorphism A — M (resp. such that its kernel is finitely
generated). Notice that the full subcategory of finitely generated Banach A-modules is preserved
under the complete tensor product. A Banach A-algebra B is said to be finite if it is finite as a

Banach A-module.

1.2.2. Proposition. Let A be a Banach Fi-algebra. Then

(i) the forgetful functor from the category of finitely generated Banach A-modules to that of
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finitely generated A-modules is fully faithful;
(ii) every finitely generated A-module M has a unique minimal Zariski A-submodule N such

that the quotient M /N has the structure of a finitely generated Banach A-module.

1.2.3. Lemma. Any A-homomorphism M — N from a finitely generated Banach A-module
M to a Banach A-module N is bounded.

Proof. If A — M is an admissible epimorphism, then it suffices to verify that the compo-
sition map ¢ : A™ = @ Ae; — N is bounded. Let C' = max{||¢(e;)||}. Then for an element
f=ae; € A™, one has ||o(f)]] < llall - [le(ed)]] < ClIf]]- .

Proof of Proposition 1.2.2. The statement (i) follows from Lemma 1.2.3.

(ii) Consider an arbitrary epimorphism of A-modules A — M. If E is its kernel, the closure
E has the form E U (K x K), where K is the Zariski A-submodule of A™. (It consists of all
elements b for which there exists a sequence of elements by, by, ... with (b,b,) € E and ||b,|| — 0
as n — o00.) If N is the image of K in M, then the quotient M /N has the structure of a Banach
A-module. Any other epimorphism A 5 M (with kernel E’ and similar Zariski A-submodules
K’ and N') can be represented as a composition of a homomorphism 1 : A®) — A with the
previous epimorphism. It follows that )(E’) C E. By (i), ¥ is bounded and, therefore, ¥)(K’) C K.
It follows that N’ C N. By symmetry, the converse inclusion also holds, i.e., N = N’. .

The forgetful functor of Lemma 1.2.2(i) is not essentially surjective for the simple reason that
an arbitrary Banach Fi-algebra A may have ideals which are not closed. Here is a case when a

finite A-algebra has a structure of a finite Banach A-algebra.

1.2.4. Lemma. Let A be a Banach Fi-algebra, and let B be an A-algebra which is finitely
generated (resp. finite) as an A-module. Assume that (1) the canonical homomorphism A — B is
injective, (2) B has no zero divisors, and (3) there exists m > 1 such that ¢™ € A for all g € B.
Then B has a structure of a Banach A-algebra which is a finitely generated (resp. finite) Banach
A-module.

Proof. Step 1. The kernel Ker(p) of any surjective A-homomorphism ¢ : A™ — B is
closed. Indeed, we may assume that g; = p(e;) # 0 for all 1 < i < n, and set f; = ¢ € A.
Assume that for a nonzero element ae; € A there exists a sequence of elements brej, € A with
(ae;, brej, ) € Ker(p) and ||bg|| — 0 as k — co. Replacing the sequence by a subsequence, we may
assume that j, = j for all k > 1. We have ag; = brg; for all £ > 1. It follows that a™ f; = b} f;.
Since ||bg|| — 0, we get a™ f; = 0, which is a contradiction. Thus, B has the structure of a finitely

generated Banach A-module induced by the homomorphism . If B is a finite A-module, then
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taking such a homomorphism ¢ whose kernel is a finitely generated A-submodule we provide B
with the structure of a finite Banach A-module.

Step 2. The finitely generated A-module B ® 4 B possesses the properties (1)-(3). Indeed,
the composition of the map A - B®4 B : f — f ® 1 with the multiplication homomorphism
B ®4 B — B coincides with the canonical homomorphism A — B. Since the latter is injective,
(1) follows. Furthermore, since B has no zero divisors, the same is true for the tensor product
B ® B. The tensor product B ®4 B is the quotient of B ® B by the A-submodule generated by
pairs of the form (fg ® h,g ® fh) with f € A and g,h € B. Again, since B has no zero divisors
and the homomorphism A — B is injective, the latter A-submodule does not contain pairs of the
form (g ® h,0) for nonzero g,h € B, and (2) follows. Finally, one has (¢ ® h)™ = ¢™ @ h™ € A,
i.e., (3) is true.

Step 3. Consider the surjective A-homomorphism A" s BR,B: eij — 9i®g;, 1 <1i,j <n.
By Steps 1 and 2, its kernel is closed, and so it induces a structure of a finite Banach A-module
on B®4 B. Notice that ||g ® h|| < ||g|| - ||h|| for all g,h € B. By Lemma 1.2.2, the multiplication
homomorphism B ®4 B — B is bounded, and so there exists C' > 0 such that ||gh|| < Cllg ® h|| <

C|lgl| - ||h]| for all g,h € B. By Remark 1.1.5, || || is equivalent to a Banach norm on B. .

1.2.5. Examples. (i) For a Banach A-module M and a tuple of positive numbers (71, ...,7,)

the A[Th,...,T,]-module M[Ty,...,T,] provided with the norm
Tyt - - Trml|| =]t - oo |ml|

is a Banach A{r{'Ty,...,r; T, }-module. It is denoted by M{r; *T1,...,r 'T,}.

(i) For a Banach A-module M, a number r > 0 and an element f € A, the A{r~1T}-submodule
E of M{r~'T} generated by the pairs (T'm, fm) for m € M coincides with the set of pairs of the
form (T*m, T'n) with f¥m = fn (see Example 1.1.3(i)). It follows that M = M{r~—'T}/E : m
m and, therefore, ||m|| = inf{||n||r*}, where the infimum is taken over all representations m = f*n
with & > 0 and n € M. As in Example 1.1.3(i), one shows that ||7z|| = 0 if and only if there a
sequence of integers 0 < k1 < ky < ... and of elements n1,ns, ... with m = fFin; and ||n;||r* — 0
as ¢ — 00.

(iii) The A{r—'T}-submodule E of M{r~'T} generated by the pairs (fT'm,m) for m € M
coincides with the set of pairs of the form (T%m,T'n) with f**Pm = f*Pn for some p > 0
(see Example 1.1.3(ii)). It follows that My = M{r—'T}/E : i fﬁk and, therefore, Hf—WkH =

inf{||n||r'}, where the infimum is taken over all representations 7% =

gr =y in My with n € M and
[ >0.



1.3. The spectrum of a Banach F;-algebra.

1.3.1. Definition. The spectrum M(A) of a Banach F;-algebra A is the set of all bounded

homomorphisms of Fi-algebras | | : A — Ry.

Notice that for such a homomorphism one has |f| < ||f||. For example, if A is trivial, M(A)
is empty. If K is a real valuation F;-field, then M(K) consists of one point (that corresponds to
the norm of K). If the norm on K is nontrivial, the spectrum M(K°) of the Banach F;-algebra
K° (see Example 1.1.2(i)) coincides with [0, 1]. (A canonical map [0,1] — M(K°) takes ¢t €]0, 1]
to the norm | |#, and 0 to the seminorm which is induced by the trivial norm on K°/K°°.)

There is a canonical map M(A) — Zspec(A) that takes a point z € M(A) to the Zariski
kernel p, = Zker(| |;) of the corresponding bounded homomorphism | |, : A — R4. Such a point
x gives rise to a norm on the field x(p, ), which will be denoted by H(z), i.e., the point x gives rise
to a bounded homomorphism x, : A — H(z) to the real valuation Fi-field H(z). The image of an
element f € A under x, is denoted by f(x). The spectrum M(A) is provided with the weakest
topology with respect to which all real valued functions of the form x — |f(z)| are continuous.

There is also a continuous map M(A) — Spec(A), that takes a point x € M(A) to the kernel
IT, = Ker(| |). It is compatible with the above map M(A) — Zspec(A). The fraction field of
A/T1, is denoted by G(x). It coincides with the quotient of H(z) by the kernel of | |;, and is
embedded in the Fi-field R;.

1.3.2. Proposition. The spectrum M(A) of a nontrivial Banach F1-algebra A is a nonempty
compact space.

Proof. Nonemptyness (cf. the proof of [Berl, Theorem 1.2.1]). Replacing A by the quotient
A/m 4, we may assume that A is an Fi-field. Let S be the set of nonzero bounded seminorm on
A. Tt is nonempty since the norm of A belongs to S, and it is partially ordered with respect to
the ordering for which | |" < | |”if |f|" < |f]” for all f € A. This ordering satisfies the conditions
of Zorn’s Lemma and, therefore, there exist minimal elements in S. We claim that any minimal
element of S (which is a bounded norm | |) is multiplicative.

Suppose that there exists an element f € A with |f| < |f|" for some n > 1. Let r = |f"|=.
We claim that the closure E of the ideal of A{r~1T} generated by the pair (T, f) is nontrivial.
Indeed, by Example 1.1.3(i), it suffices to show that, for any sequence 0 < iy < i < ..., the
sequence |f~%|r% does not tend to zero. If iy, = pn + ¢ with 0 < ¢ < n — 1, then |f%| < |f*[?|f9]

and
q
¢

f"
£

|fo |t > | fo T e >



Hence, |f~%|ri* > ¢ > 0 for all k > 1, where ¢ is the minimum of the n positive numbers on
the right hand side of the above inequality. It follows that the norm on the nontrivial quotient
A{r~'T}/E gives rise to a bounded seminorm on A whose value at f is at most r < |f|. Thus,

|f™"] =|f|" for all f € Aand n > 1.

Now suppose that there exists a nonzero element f € A with |f|~! < [f~!. Let r = |f~1|7%
Then the closure E of the ideal of A{r~1T} generated by the pair (T, f) is nontrivial. (This again
follows from Example 1.1.3(i) since | f~"|r"™ = [ f =™ |f~1|7™ = 1.) It follows that the norm on the
nontrivial quotient A{r~'T}/E gives rise to a bounded seminorm on A whose value at f is at most

r < |f|. Thus, for any two nonzero elements f,g € A, we have |fg|=™' = |(fg)™'| < |f7Y |97 =
|f|7tg|~t and, therefore, |fg| = |f| - |g], i.e., the norm | | is multiplicative.

Compactness. By the Tichonov theorem, the direct product [][0, || f]|], taken over all nonzero
elements of A, is a compact space. The canonical map M(A) — [][0,]||f||] that takes a bounded
multiplicative seminorm | | to (|f]) identifies the former with a closed subset of the latter and,

therefore, M(A) is a compact space. .

1.3.3. Corollary. An element f of a Banach Fy-algebra A is invertible if and only if f(z) # 0
for all z € M(A).

Proof. The direct implication is trivial. Suppose f is not invertible. Then the Zariski ideal
a generated by f does not coincide with A, i.e., A/a is a nontrivial Banach F;-algebra. Since the

spectrum M (A/a) is nonempty, any point of it gives rise to a point z € M(A) with f(z) =0. =
The spectral radius of an element f € A is the number
o(f) = i 3/TF7] = inf /T77]
(The existence of the limit and its equality with the infimum is well known.) Notice that the

function f +— p(f) is a bounded seminorm on A.

1.3.4. Corollary. For any element f € A, one has

f)= e |f(z)] -

Proof. That the right hand side is at most the left hand side is trivial. To verify the reverse
inequality, it suffices to show that if |f(x)| < r for all z € M(A), then p(f) < r.

Consider the Banach Fi-algebra B = A{rT'}. Since ||T|| = r~!, then |T'(z)| < r~! for all
x € M(B) and, therefore, |(fT)(z)| < 1 for all x € M(B). Let E be the ideal of B generated by
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the pair (fT,1). If the closure E of E is nontrivial, then there exists a point z € M(B/E) C M(B)
with |(fT)(x)| = 1, which is impossible. Thus, E is the trivial ideal of B. By Example 1.1.3(ii),
there exist sequences of positive numbers ni,no,... and of elements by,bs,... € A with % =1
and ||bg||r~™ — 0 as k — oo. Let k be a big enough integer such that ||bg||r~"* = a < 1, and let
pr be a positive integer with by, fPx = fPet7% If n = ny, it follows that fPT" = by fP for all p > p;
and, therefore, ||fP*"||r=®*t") < af|fP||r=P for all p > py. If p > pi, then for any integer [ > 1 we
get || fPHin||r= ) < ol|| fP||rP. Tt follows that ||fPT"||r=(P+™) — 0 as I — oo and, therefore,

p(f) <r. .

For a compact topological space X, let C(X) denote the F;-algebra of continuous functions
X — R, provided with the supremum norm. There is an evident continuous embedding X —
M(C(X)) but, if X contains at least two different points x; and xs, this map is not a bijection.
Indeed, the following bounded multiplicative homomorphism x : C(X) — R, does not come from
X: x(f) =0, if f(z1) =0, and x(f) = f(x2), otherwise.

If X is the spectrum M(A) of a Banach Fi-algebra A, then there is a canonical bounded
homomorphism of Banach Fi-algebras " : A — C(X), called the Gelfand transform. In particular,
its kernel, which consists of the pairs (f,g) with |f(z)| = |g(x)| for all x € X, is a closed ideal
of A. Corollary 1.3.4 means that the Gelfand transform is isometric with respect to the spectral
norm, i.e., p(f) = ||ﬂ| for all f € A. The image of the Gelfand transform is denoted by A, and
its coimage, i.e., the quotient of A by the kernel will be denoted by |A|. The canonical bounded
homomorphism |A| — Ais a bijection, but is not an isomorphism in general (see Remark 1.3.11

and Corollary 8.3.3).

1.3.5. Examples. (i) Let A be a finite idempotent F;-algebra. It is a Banach F;-algebra
with respect to the trivial norm which coincides with the spectral norm. (In fact any Banach norm
on A is equivalent to the trivial norm.) Since x(p) = F; for any Zariski prime ideal p C A, the
canonical map M(A) — Zspec(A) : © — Zker(] |;) is a bijection and, therefore, the canonical map
M(A) — Spec(A) is a bijection. Since the latter map is continuous and Spec(A) is discrete, it
follows that M(A) is discrete.

(ii) If A is a commutative Banach ring, there is a canonical continuous map M(A) - M(A")
which identifies M(A) with the closed subset of M(A") consisting of the seminorms possessing the
property [f + g[ < |[f[+[g] for all f,g € A.

(iii) If A = K{r;'T;}, where K is a real valuation field, then M(A) = [[,.;[0,r;]. For
example, M(Z') 5 [1°2,[0, p,] (see Example 1.1.2(iii)).
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1.3.6. Lemma. Let ¢ : A — B be a bounded homomorphism of Banach Fi-algebras, 3 the
image of the induced map M(B) — M(A), and As, the localization of A with respect to the set
of all elements of A that do not vanish at any point of .. Then

(i) if the induced homomorphism Ay — B is surjective, the map M(B) — M(A) is injective;

(ii) if ¢ is an admissible epimorphism, then the image of M(B) coincides with the subset
{w € M(A)||f ()] = lg(@)| for all (f,g) € Ker(p)};

(iii) if ¢ is a bijection and an isometry with respect to the spectral norm, then M(B) = M(A).

Proof. The statements (i) and (iii) are trivial. As for (ii), it is clear that the image of M(B)
is contained in the subset considered. Assume that a point x € M(A) is such that |f(z)| = |g(z)]
for all (f,g) € Ker(p). It is then clear that the bounded homomorphism | |, : A — R4 goes
through a homomorphism | | : B — R4, and we have to verify that the latter is bounded. Since
@ is an admissible epimorphism, there exists its section ¢ : B — A and a constant C' > 0 such
that ||g|| < Cllo(g)]|| for all g € B. We have |g| = |o(g)| < ||o(g9)|| < C||g|| for all g € B, and the

required fact follows. "

1.3.7. Corollary. For a Banach F-algebra A, one has M(A) = M(|A]) = M(A).
Proof. The bijectivity of the second map follows from Lemma 1.3.6(ii), and that of the first

map follows from (iii). .

Let X be the spectrum M(A) of a Banach Fj-algebra, and let p be a Zariski prime ideal
of A. By Lemma 1.4.1(ii), the canonical map M(A/p) — X identifies M(A/p) with the closed
subset Xp = {r € X|Zker(| |) C p}. One can define as follows a retraction map X — Xp:
|[f(rp(@)] = |f(2)], if f & p, and |f(z)| = 0, if f € p. This retraction map is compatible with
the retraction maps Zspec(A) — Zspec(A/p) and Spec(A) — Spec(A/p), introduced in §1.1.2 and

denoted in the same way.

1.3.8. Lemma. For Banach A-algebras B and C, there is a canonical homeomorphism
M(B&4C) — M(B) % pmq(a) M(C) .

Proof. If y € M(B) and z € M(C) are points over a point x € M(A), then the preimage
of the point (y, z) under the map considered is M(H(y)@H(x)H(z)). But as we already noticed in
§1.2, the complete tensor product of two real valuation Fi-fields over a real valuation Fi-field is

again a real valuation F;-field. "

1.3.9. Lemma. Let A — B be a bounded injective homomorphism of Banach F-algebras
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such that it is isometric with respect to the spectral norm and B is integral over A. Then the
canonical map M(B) — M(A) is surjective.

Proof. (Proverit’!!!) Let © € M(A) and p = Zker(] |,). By Proposition 1.2.5.4(i), there
exists a Zariski prime ideal q of B with g N A = p. By the assumption, the Fi-field x(q) is
algebraic over k(p) = H(x) and, therefore, its real valuation extends in a unique way to a real
valuation on x(q). It remains to verify that the induced seminorm | | : B — k(q) — Ry is
bounded, i.e., |g| < p(g) for all g € B. If g € q, this is trivial. Assume that ¢ ¢ q, and take
an equation ¢ = fg" for some m > n > 0 and f € A. For every point y € M(B), we have
g™ = [f ()] - 19(y)[" and, therefore, [f(y)| = |g(y)|™~". It follows that p(f) = p(g)™~". We
get lg| = |17 = |f(@)[7= < p(£)7 = plg). -

1.3.10. Lemma. Let A be a Banach F-field, and let E be an ideal of A that corresponds to
a subgroup G C A*. Then the following are equivalent:

(a) E is closed;

(b) p(g) > 1 for all g € G;

(c) there exists a point x € M(A) with |g(x)| =1 for all g € G.

Moreover, in this case one has M(A/E) = {z € M(A)||g(z)| =1 for all g € G}.

Proof. If (a) is true, then the validity of (c) and of the last statement follows from Lemma
1.2.5(ii). The implication (c)==(b) is trivial. Suppose (b) is true. Then |[g|| > 1 for all g € G.
Given an element f € A*, one has ||g|| < [[fgll - [[f~"|| and, therefore, [|fgl| > |lg]| - [If71]|7" >
[|f7]|7%. The latter means that the quotient seminorm on A/FE is nonzero, i.e., E is closed and

(a) is true. .

1.3.11. Remark. Let A = F4[T] be provided with the following Banach norm: ||T"|| =n+1
for n > 0. Then |A| = A. but, since p(T") =1 for all n > 0, Ais A provided with the trivial norm.

It follows that the canonical map |A| — A is not an isomorphism (there is no a constant C' > 0

with ||T"]| < Cp(T™) for all n > 0).

1.4. K-Banach spaces and Banach K-algebras. Let K be a real valuation Fi-field.
Banach K-modules are said to be K-Banach spaces. If M is a K-Banach space, then |[|[Am|| =
|A| - ||m|| for all A € K and m € M. Indeed, one has ||[Am|| < |A|-||m||. On the other hand, if
A # 0, then [|m|| = [[A71(Am)|| < |A|7Y|Am|| and, therefore, ||[Am|| = || - ||m||. It follows that
M@ N S M®gN for all K-Banach spaces M and N. If K’ is a real valuation K-field then,
for any K-Banach space M, M ®x K’ is a K’-Banach space. For example, the quotient M /K**
of M under the action of the group K** is a |K|-Banach space. A Banach K-algebra is a Banach
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Fi-algebra A which has the structure of a Banach K-module. For a Banach K-algebra A, the
quotient A/K** is a Banach |K|-algebra.

The category of K-Banach space admits direct sums, which coincide with the direct sums of
the underlying K-vector spaces. For example, the canonical decomposition of a K-Banach space
M into a direct sum of cyclic K-vector spaces gives rise to a similar decomposition of M into a
direct sum of cyclic K-Banach spaces. Notice that the stabilizers of nonzero elements of M are
subgroups of K**. A K-Banach subspace of a Banach space M is a K-vector subspace of M which
is closed as a Banach K-submodule.

A K-Banach space is said to be free if it is free as a K-vector space (or, equivalently, the
stabilizers of all nonzero elements are trivial). For example, if the real valuation homomorphism
| | : K — Ry is injective (i.e., K** = {1}), then all K-Banach spaces are free and all their Banach
K-submodules are K-Banach subspaces. Notice that in this case any closed ideal E of a finitely
generated Banach K-algebra A is finitely generated. Indeed, A/F is free as a K-Banach space and,
therefore, E is a K-ideal. By Proposition 1.1.5.4, A is K-Noetherian and, therefore, E is finitely

generated.

1.4.1. Lemma. Let K be a real valuation Fi-field, and let A be a finitely generated Banach
K-algebra. Then

(i) for every Zariski prime ideal p C A and every Zariski ideal a C p, the ideal E = Ker(A —
Ap/aAyp) is closed; in particular, Iy is a closed ideal;

(ii) the radical r(E) of any closed ideal E C A x A is closed and, in particular, the nilradical
n(A) is closed.

Proof. (i) Suppose first that the valuation homomorphism | | : K — R is injective. We
claim that in this case E is a K-ideal. Indeed, assume that (f,\f) € E for some f ¢ ap and
A € K*. Then there exists h & p with fh = Afh. Since A is free as a K-vector space and fh # 0,
we get A = 1, i.e., the claim is true. Since A is K-Noetherian, the K-ideal E is finitely generated,
and the required fact follows from Example 1.1.4(ii). In the general case, consider the isometric
epimorphism A — A = A/K** : f — f, and assume that (f, f,) € E and ||f,|| = 0 as n — oco.
Then (f,f,) € E = Ker(4 — ZE/EZE)’ where p and @ are the images of p and a in A, and
[|f,.]| = 0 as n — oco. By the previous case, f = 0 and, therefore, f = 0.

(ii) Replacing A by A/E, the statement is reduced to the particular case. Since n(A) =
Nz, Iy, for some Zariski prime ideals p;,...,p,, C A (see §1.2.3), the required fact follows. "

Let k be a non-Archimedean field. For an F;-Banach space M, let k{M} denote the k-Banach
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space consisting of infinite sums F = ) Amm with A, € k and such that [|A,|| - ||m|| — 0

meM

with respect to the filter of complements of finite subsets of M = M\{0}, and provided with the

norm ||F|| = max [[An]|| - |[|m||. Notice that the canonical map M — k{M} is isometric. If M is
meM

a Banach A-module, then k{M} is a Banach k{A}-module. Given a family of Banach A-modules

{M;}icr, there is a canonical isometric isomorphism of Banach k{A}-modules
k{@ierM;} = Gierk{ M} ,

where the right hand side is a direct sum in the category of Banach k{A}-modules. It is easy to
see that, if M — N is an admissible homomorphism (resp. monomorphism, resp. epimorphism) of
Banach A-modules, then so is the corresponding homomorphism of Banach k{A}-modules k{M} —
E{N}. Furthermore, for Banach A-modules M and N, there is an isomorphism of Banach k{A}-
modules K{M&sN} 5 k{M}&y1a}k{N}.

1.4.2. Lemma. There is a canonical continuous map 7 : M(k{A}) — M(A), and the
preimage 771 (z) of a point x € M(A) is the space M(k{H(x)}).

Proof. Recall that M(k{A}) is the space of all bounded multiplicative seminorms on k{A}.
The restriction of such a seminorm to A is a bounded homomorphism of Fi-algebras A — R,
and in this way we get the map 7. A point x € M(A) gives rise to a bounded homomorphism of
Banach k-algebras k{A} — k{H(x)}. Since H(x) is a real valuation F;-field, the restriction of any
bounded multiplicative seminorm on k{#H(z)} to H(z) coincides with the canonical norm on it,
and so the image of M(k{H(z)}) is contained in 7~!(z). Furthermore, since the k-subalgebra of
k{H(x)}, generated by the image of the localization of A with respect to the multiplicative system
of all f € k{A} with f(z) # 0, is dense, the induced map M(k{H(z)}) — 7 (x) is injective.
Finally, any point y € 77 !(z) gives rise to a bounded multiplicative seminorm on k{#(z)} and,

therefore, M(k{H(z)}) = 7~ (). .

1.4.3. Lemma. Let K is a real valuation F-field, and k a non-Archimedean field. Then

(i) if the group K* is torsion free, the norm on k{K} is multiplicative;

(ii) if the orders of torsion elements of K* are prime to the characteristic of the residue field
k of k, the norm on k{K} is power multiplicative.

Proof. First of all, we notice that every nonzero element I' = > . - Arf € k{K} can be
represented in the form Fy + F5, where F} is the finite sum of elements Ay f with [Af| - |f| = ||F|],
and the norm of every summand in Fy = F' — F} is strictly less than ||F||. It follows that it suffices
to verify the required facts only for the finite sums F;. We can therefore replace K by the Fi-

subfield whose multiplicative group is generated by the elements that have nonzero entry in such a
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finite sum Fj for a finite number of elements. Thus, we may assume that the group K* is finitely
generated.

(i) Since the finitely generated group K* has not torsion, it is a free abelian group. Let

fis--+, fn be free generators of K*, and set r; = |f;| for 1 < i < n. Then there is an isomet-
ric isomorphism k{K} = k{r{'Ty,....r; ' Tp, Ty ... 7, T7 '}, and the norm of the latter is
multiplicative.

(ii) By (i), it suffices to verify the following fact. Let A be a Banach k-algebra with power
multiplicative norm, and n an integer n > 1 with |n| = 1 (in k). Then the norm of the Banach
algebra B = A[T]/(T™ — 1), defined by ||f||] = 0<1}1<a5<71]|a¢|| at f = Z?:_Ol a;T" € B, is power
multiplicative. To show this, we may increase the field k£ and assume that it contains all n-th roots
of unity. By the assumption, ||a|| = max{|a(x)|} for every a € A, where the maximum is taken

over all points © € M(A). Let 7 denotes the canonical surjective map M(B) — M(A). To verify
the required fact, it suffices to show that, for any any point © € M(A), one has

e (7)) = maxJas(a)]
The latter follows from the following simple fact. Given elements ag, ..., a,_1 of a non-Archimedean

field K which contains a primitive n-th root of unity ¢ and in which |n| = 1, one has

n—1 B
max |Zal{”\ = max |a; .
0<jsn—1 0<is<n—1

Indeed, that the left hand side is at most than the ride hand one is trivial, and the converse
inequality follows from the fact that the determinant of the Vandermonde matrix (¢*/)o<; j<n—1 is
equal to H0<i<j<n_1(§“j — (%), and, by the assumption |n| = 1, the norm of the latter in k is equal

to one. n

1.4.4. Corollary. Let A be a Banach Fi-algebra, and assume that for every Zariski prime
ideal p C A the group k(p)* has no torsion. Then, for any non-Archimedean field k, each fiber
771(x) of the canonical map T : M(k{A}) — M(A) has a unique maximal point (denoted by o(x)),
and the map M(A) — M(k{A}) : x — o(x) is continuous.

Proof. By Lemma 1.4.2, one has 7~!(z) = M(k{H(z)}), and, by the assumption and Lemma

1.4.3(i), the fiber 77!(z) has a unique maximal point. .

1.5. Twisted products of Banach Fi-algebras. Let K be a real valuation F;-field.

1.5.1. Definition. A twisted datum {I, 4;,v;;,a;;} is said to be a twisted datum of Banach

K-algebras if it satisfies the following conditions:
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(1) the set I is finite;
(2) each A; is a Banach K-algebra;
(3) if i < j, the quasi-homomorphism v;; is a bounded K-linear map and induces an admissible

epimorphism A; — A;/a;;.

Let {I, A;,v;j,a;;} be a twisted datum of Banach K-algebras. The twisted product 4 =[]} 4;
is provided with the Banach norm which is induced by the supremum norm via the canonical

embedding v : A — [],c; As.

1.5.2. Lemma. There is a constant C' > 0 such that, for every ¢ € I and every a € A;, there
exist j < i and b € a¥) with v;;(b) = a and ||b|| < C||al.

Proof. Let C' > 0 be a constant with the property that, for every k <[ and every ¢ € A;\ay,
there exists d € Ay with ||d|| < C||c||. Suppose that a ¢ a(). Then there exist j = j, < ... <
Jjo =7iin I and ¢, € Aj for 0 < k < n such that ¢y = a, cx = vj, 5, (¢jryr) € @Ajujp,, and
ll¢jeiall < Dllej ] for 0 <k <n—1, and b =c; € a¥). Then v;;(b) = a and [|b]| < C"|a||. Since

n + 1 does not exceed the number of elements in I, the required fact follows. .

1.5.3. Corollary. For every subset J C I which is preserved under the infumum operation,
the canonical map py : A — A; =[]"; A; of Corollary 1.3.1.3 is an admissible epimorphism.

Proof. It suffices to consider the case when J is a one element subset. Let C' > 0 be a constant
with the property of Lemma 1.5.2, and let D > 0 be a constant with the property that, for every
i < j and every a € A;, one has ||v;;(a)|| < D||a||. Furthermore, let J = {i} and a € A;. Ifa € a®®,
let ¢ = (¢j) € A be the element of A with ¢; = v;;(a), if ¢ < j, and ¢; = 0, otherwise. One then
has p;(c) = a and ||¢|| = max{]||c;||} < D||al|. Suppose now that a ¢ a”). By Lemma 1.5.2, there
exist j < i and b € a9 with v;;(b) = a and |[b]| < Cl|a||. If now ¢ = (cx) € A is the element of A
with ¢ = v, (D), if j <k, and ¢, = 0, otherwise, then p;(c) = a and ||c|| < D||b|| < CD||al]. ]

We set X = M(A) and, for i € I, X; = M(A). Corollary 1.5.3 implies that the canonical map

X; — X is injective.

1.5.4. Proposition. (i) For every point x € X, there exists a unique minimal i € I with
r € X; and, in particular, X = J,c; Xs;

(ii) if i < j, then X; N X; = M(A;/E;;) = M(A;/a;;);

(iii) X; C X, (resp. X; C X;) if and only if E;; C n(A;) (resp. aj; C zn(A4;)).

Proof. (i) One has z € X; if and only if E; = Ker(p;) C II = Ker(] |,). The latter implies
that a; = Zker(p;) C p = Zker(] |;). By Proposition 1.3.3.2, the set of i € I with a; C p has a

16



unique minimal element ¢ = ip, and one has E; = Ker(p;) C lp. Since ayp = p, we get E; C II,

ie., r € X;. u

A morphism of twisted data of Banach K-algebras f : {I', Ay, vy aji} — {1, Ai,vij,a5}
is a morphism of twisted data in the sense of Definition 1.3.2.2 such that, for every ¢ € I, the
homomorphism f; : A;; — A; is a bounded homomorphism of Banach K-algebras. Such a morphism
is called a quasi-isomorphism if it is a quasi-isomorphism in the sense of Definition 1.3.2.4 with
the stronger property (1): for every i € I, the homomorphism f; : Ay — A; is an admissible
epimorphism. It follows easily from §1.3.2 that twisted data of Banach K-algebras form a category,
that the correspondence {I, A;,v;;,a;;} — A = [[7 4; is a funtor from it to the category of Banach
K-algebras, and that quasi-isomorphisms are precisely the morphisms that go to isomorphisms
under that functor.

Furthermore, let A be a Banach Fi-algebra. A twisted datum of A-modules {I, M;,v;;, Nj;}
(see §1.3.6) is said to be a twisted datum of Banach A-modules if, for every i € I, M; is a Banach
A-module and, for every pair ¢ < j in I, the quasi-homomorphism v;; is bounded and induces
an admissible epimorphism M; — M;/N,;. For such a twisted datum, the twisted product M =
[17 M; is a Banach A-module with respect to the supremum norm via the canonical embedding

vi:M = e M.

1.5.5. Remark. By the construction of the twisted product A = [[; 4; (in the proof of
Proposition 1.3.1.2), A is the union of all a)’s taken over i € I and glued along their zeros. The
function || || : A — Ry, defined by [|0|] = 0 and ||a||" = ||ai|| for a = (a;);er € aP\{0}, is of
the type considered in Remark 1.1.5, i.e., it is equivalent to the Banach norm || ||, and there is a

constant C' > 0 such that ||ab||" < C||al|" - ||b]|" for all a,b € A.

§2. K-affinoid algebras

2.1. Definition of a K-affinoid algebra. Let K be a real valuation F;-field.

2.1.1. Definition. A K-affinoid algebra is a Banach K-algebra A for which there exists

an admissible epimorphism K{r; LT r1T,} — A. A K-affinoid algebra for which such an

r'n

epimorphism can be found with r; = ... =17, =1 is said to be strictly K-affinoid.

2.1.2. Example. Every real valuation K-field K’ with finitely generated cokernel of the
canonical homomorphism K* — K’* is a K-affinoid algebra. Indeed, represent the cokernel as

a direct sum Z™ @ (®},,,1Z/d;Z), take representatives fi,..., f, of the canonical generators of
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the direct summands, and set r; = |f;| for 1 < ¢ < n. Then K’ is isomorphic to a quotient of
K{r{'Ty,...,r; Ty, 7181,...,7Sn}. For example, the valuation K-field H(x) of any point = of

r'n

the spectrum of a K-affinoid algebra A is a K-affinoid algebra.

The following lemma lists properties of (strictly) K-affinoid algebras that easily follow from

previous results.

2.1.3. Proposition. Let A and B be a (strictly) K-affinoid algebras. Then

(i) the quotient of A{r=1Ty,...,r 1T, } by a closed ideal is a (strict if r; = ... =1, = 1)
K-affinoid algebra (called an A-affinoid algebra);

(ii) given bounded homomorphisms of (strictly) K-affinoid algebras A — B and A — C,
B®4C is a (strictly) K-affinoid algebra;

(iii) given a real valuation K-field K', A®yk K' is a (strictly) K'-affinoid algebra;

(iv) A/K** and |A| are finitely presented (strictly) |K |-affinoid algebra;

(v) if A is finitely presented over K, then there exist a real valuation Fy-subfield K' C K
with finitely generated group K'* and a (strictly) K'-affinoid K’-subalgebra A’ C A such that
A' @ K = A (an isometric isomorphism);

(vi) if A and B are finitely presented over K, then for any bounded homomorphism ¢ : A — B
there exist a real valuation F1-subfield K’ C K and K'-affinoid K'-subalgebras A’ C A and B’ C B
with the properties (v) and such that ¢ is induced by a bounded homomorphism of K'-affinoid
algebras A’ — B'.

Proof. The statements (i)-(iii) are trivial.

(iv) Since the canonical map K{r—!T} — |K|{r~!T} is isometric, it follows that, for any
admissible epimorphism K{r~'T} — A, the induced epimorphism |K|{r~ 1T} — A/K** is also
admissible, and so the quotient A/K** is a (strictly) |K|-affinoid algebra. Thus, we can replace K
by |K| and A by A/K**, and we may assume that K = |K|. Then |A| = A/E, where the closed
ideal E consists of the pairs (f,g) with |f(x)| = |g(x)| for all x € M(A), i.e., |A| is also (strictly)
K-affinoid. It remains to notice that both K-algebras are free K-modules and, therefore, they are
finitely presented over K, by Proposition 1.6.2.

(v) Assume that A is the quotient of K{r—'T} = K{r{'Ty,...,r;'T,} by a finitely generated
ideal F, and let K’ be the Fi-subfield of K which is generated by coefficients of all term components
from a finite set of generators of E. Let also E’ be the ideal of K'{r~1T} generated by the same
system of generators. Then E’ is the intersection of F with K'{r~'T} and, therefore, it is closed in

the latter. It follows that, for A’ = K'{r='T}/E’, there is an isometric isomorphism A’®@ K = A.
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(vi) We do the same procedure as in (v) but choose the valuation subfield K/ C K big enough
so that the properties (v) hold for both A and B and the image of a finite system of generators of
A’ lies in B’. .

Proposition 2.1.3 allows one to reduce investigation of K-affinoid algebras to the case K = F;.
Namely, the canonical homomorphism A — A/K** is isometric, and this allows one to reduce
situation considered to the case when K = |K| and, in particular, when a K-affinoid algebra A is
finitely presented. In this case, one can find an Fi-subfield K’ C K with finitely generated group
K’* and a K’-affinoid subalgebra A’ C A with A’ ®x K = A, and this allows one to reduce the
situation to the case when the group K™ is finitely generated. In this case, A can be viewed as an

F;-affinoid algebra. Here is an example.

2.1.4. Corollary. Every finitely presented K-affinoid algebra A admits a primary decompo-
sition A(A) = (i, E; with finitely generated closed ideals E;.

Proof. Let K’ be an F-subfield of K with finitely generated group K'*, and A’ a K’-affinoid
subalgebra of A with A’ ®x» K =+ A. Then A’ is a finitely generated F-algebra and, therefore, it
admits a primary decomposition A(A4’) = (., E} with E] = Ker(A" — Aiﬂé/a;Abi)’ where p) is a
Zariski prime ideal in A and a is a Zariski ideal in p;. Proposition 1.2.6.6 implies that the ideal E;
of A generated by E; coincides with Ker(A — Ap — Ap/a;Ap ), where p; = p;A and a; = ajA,
and one has A(A4) = ('_, E;. Since the ideals E; are finitely generated, Example 1.1.4(ii) implies
that they are closed in A. "

2.2. Basic properties of K-affinoid algebras. We are now going to establish properties of
K-affinoid algebras which are analogous to properties of k-affinoid algebras over a non-Archimedean
field k£ and are, in fact, deduced from those of the latter. Namely, reducing a situation considered
to the case of an Fi-affinoid algebra, we notice that, for such A and any non-Archimedean field k&,
the Banach Fy-algebra k{A} is k-affinoid and the canonical map A — k{A} is isometric. Here is

an example.

2.2.1. Proposition. Let A be a K-affinoid algebra. Then, for any non-nilpotent element
f € A, there exists a constant C' > 0 such that ||f™|| < Cp(f)" for alln > 1; in particular, p(f) > 0.
Proof. Using the remark from the previous subsection, the situation is reduced to the case
when A is an Fi-affinoid algebra. Since for any non-Archimedean field k the canonical map A —

k{A} is isometric, the required statement follows from [Berl, Proposition 2.1.4(i)]. .
It will be convenient to us to have a special term for the class of Banach F;-algebras with the
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property of Proposition 2.2.1.

2.2.2. Definition. A Banach Fi-algebra A is said to be quasi-affinoid if, for any non-nilpotent
element f € A, there exist a constant C' > 0 such that ||f"|| < Cp(f)™ for all n > 1.

Besides K-affinoid algebras, the main example of a quasi-affinoid Fi-algebra, which will be
used later, is the following one. Let K — k be an isometric homomorphism from K to a non-
Archimedean field k (e.g., K = k). Then any Banach k-algebra A can be viewed as a Banach
K-algebra and, if A is k-affinoid, then A" is a quasi-affinoid F-algebra (by the fact used in the
proof of Proposition 2.2.1).

2.2.3. Corollary. Let ¢ : A — B be a bounded homomorphism from a K-affinoid algebra A

to a quasi-affinoid Fy-algebra B. Let fi,...,f, € B, and let r1,...,r, be positive numbers with
r; > p(fi), 1 < i < n. Then there exists a unique bounded homomorphism A{r{ 'Ty,...,r'T,} —
B extending ¢ and sending T; to f;. "

2.2.4. Corollary. Let A be a K-affinoid algebra, and let K{r{*Ty,...,r; Ty} — A :T; — f;
be an admissible epimorphism. If f; is not nilpotent, let s; = p(f;) and, if f; is nilpotent, let s; be
an arbitrary positive number. Then the homomorphism K{s;'T\,...,s; T} — A: T; — f; is an
admissible epimorphism.

Proof. That the homomorphism considered is bounded follows from Corollary 2.2.3. Suppose
that s; > r; for 1 < i < m, and s; < r; for m+ 1 < i < n. (The elements f; for 1 < i < m are
of course nilpotent.) Let d > 0 be such that !}"id+1 = 0 for all 1 < i < m. There exists a constant

C > 0 such that every nonzero element f € A has a preimage A\T* in K{r;'Ty,...,r;'T,} with

',
[Alm#* < C||f||. We have
s1 H1 s Hm
g < o () <m>
o 1 T'm

Since u; < d for 1 < i < m, all possible multiple of r* on the right hand side are at most a constant

C’' > 0. We get |A|s* < CC'||f||, and the required statement follows. .

2.2.5. Corollary. Let A be a K-affinoid algebra. Then

(i) the map M(A) — Zspec(A) : x — Zker(| |,) Is surjective;

(ii) the following properties of a pair (f, g) of elements of A are equivalent:
(a) f(x) = g(x) for all x € M(A);
(b) (f,9) € n(4);

(i) In 55 I5.
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Proof. (i) It suffices to verify that, for any Zariski prime ideal p C A, the zero ideal of A/p
lies in the image of the similar map M(A/p) — Zspec(A/p). Thus, replacing A by A/p, we may
assume that A has no zero divisors. Let fi,..., f, be nonzero generators of A. By Proposition
2.2.1, for the element f = f1-...- f, one has p(f) > 0 and, therefore, there exists a point x € M(A)
with f(x) # 0. This implies that Zker(| |;) = 0.

The statement (ii) follows straightforwardly from (i) and Corollary 1.2.1.5.

(iii) If e, f € I4 then, for any point x € M(A), f(z) is either 0 or 1 and, therefore, the equality
le(x)] = |f(z)] is equivalent to the equality e(x) = f(z). Thus, if the images of e and g in I; are
equal, then (e, f) € n(A) and, therefore, e = f. Conversely, let f € A be an element whose image
in A is an idempotent. It follows that f2(z) = f(z) for all points € M(A), and the statement
(i) implies that (f2, f) € n(A), i.e., the image of f in A/n(A) is an idempotent. Lemma 1.2.1.7

implies that there exists an idempotent e € I4 whose image in Ais I .

2.2.6. Proposition. A K-affinoid algebra A is strictly K-affinoid if and only if p(f) € /| K|
for all f € A.

Proof. To prove the required property of A, we may assume, by Proposition 2.1.3(v), that
the group K* is finitely generated. Then A can be viewed as an Fi-affinoid algebra. Let rq,...,7r,
be a maximal set of numbers from the group |K*| which are linearly independent over Q. Take an
arbitrary field k£ provided with the trivial valuation, and denote by k, the non-Archimedean field

of formal Laurent series TH with a, € k and |a,|r* — 0 as |u| — oo (see [Berl, §2.1]).

pezn
Then the k,-affinoid algebra k,{A} is strictly k,-affinoid, and it follows from [Berl, Corollary 2.1.6]
that p(f) € \/|k,| = /| K] for all elements f € k,{A}. In particular, p(f) € \/|K| for all f € A.
Conversely, assume that p(f) € \/m for all f € A. By Corollary 2.2.4, it suffices to show that
the K-affinoid algebra K{r;'Ty,...,r;1T,} is strictly K-affinoid if r; € \/|K*| for all 1 <i < n.
If |K*| = {1}, the required fact is trivial. Assume therefore that |K*| # {1}. For every 1 <i <mn,
there exist an integer d; > 1 and an element a; € K* with 7% = |a;|. This gives rise to an
isometric embedding A = K{S,...,S,} — B = K{r{'Ty,...,r;'T} : S; = % Notice that
every element of B can be represented in a unique way in the form fT* with p; < d; — 1 for all
1 <i < n, and that ||fg|| = ||f|| - ||g|| for all f € A and g € B. Since |K*| # {1}, we can find,
for every 1 < i < n, an element ; € K* with |3;| > r;. It follows that the bounded surjective
homomorphism C = A{Vy,...,V,,} = B:V, — L is admissible and, therefore, B is a strictly

Bi
K-affinoid algebra. .

2.2.7. Proposition. Let A be a K-affinoid algebra. Then any bounded A-homomorphism be-
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tween finitely generated Banach A-modules is admissible. In particular, every Zariski A-submodule
of a finitely generated Banach A-module is a finitely generated Banach A-module.

Proof. As above, the situation is easily reduced to the case when A is an Fi-affinoid algebra.
Let k be a non-Archimedean field with nontrivial valuation. Then k{A} is a k-affinoid algebra
and, for every finitely generated Banach A-module M, k{M} is a finitely generated Banach k{A}-
module. By [BGR, 5.7.3/5] (see also [Berl, 2.1.10]), any bounded homomorphism between finitely
generated Banach k{A}-modules is admissible. Let now ¢ : M — N be a bounded homomorphism
between finitely generated Banach A-modules. Since the induced homomorphism k{M} — k{N}
is admissible, there is a constant C' > 0 such that every element G from the image of the latter
homomorphism has a preimage F' with ||F|| < C||G||. For G =n € p(M), take G = >_ \,,m as
above. It follows that | >~ A,,| = 1 and max |A,,| - [|m|] < C||n]||, where the sum and the maximum
are taken over all m € M with ¢(m) = n. The equality implies that there exists m with ¢(m) =n

and |\,,| > 1, and the inequality implies that for this m one has ||m|| < ﬁHnH < ClInl|. .

2.2.8. Corollary. For any pair of finite Banach A-modules M and N, Hom(M,N) is a
finite Banach A-module.

Proof. Take an admissible epimorphism A(™) — M. Then the canonical homomorphism
of Banach A-modules Hom(M, N) — Hom(A(™), N) is an admissible monomorphism. It follows
that Hom(M, N) is a Zariski Banach A-submodule of the finitely generated Banach A-module
Hom(A(™), N) = N and the required fact follows from Proposition 2.2.7. .

2.2.9. Proposition (see Lemma 2.3.6). Let ¢ : A — B be a bounded homomorphism from
a (strictly) K-affinoid algebra A to a Banach K-algebra B. If B is a finitely generated Banach
A-module, then it is a (strictly) K-affinoid algebra.

Proof. Let A — B :e; — g; be an admissible epimorphism, and let 7; be positive numbers
with r; > p(g;). Then the bounded epimorphism A{r~'T} = A{r{'Ty,...,r;'Tn} = B : T~ g;
is admissible since its composition with the bounded homomorphism A™ — A{r=1T} : ¢; s T;
is admissible. This implies that B is K-affinoid. Assume now that A is strictly K-affinoid. If
the valuation on K is nontrivial, we can find the above numbers r; in |K*|, and so B is strictly
K-affinoid. Suppose therefore that the valuation on K is trivial. Then the spectral norm of any
non-nilpotent element of A is one. Let g be a non-nilpotent element of B. Then ¢™ = fg¢™ for
some m > n > 0 and a non-nilpotent element f € A. If g(y) # 0 for a point y € M(B), then
lg(y)|™~™ = |f(y)] <1, ie., p(g) < 1. This means that the above admissible epimorphism is well

defined for the numbers r; = 1, i.e., B is again strictly K-affinoid. .
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2.2.10. Corollary. Let A be an integral (strictly) K-affinoid algebra. Then the integral
closure of A in any finite extension of its fraction field has the structure of a (strictly) K-affinoid
algebra.

Proof. By Lemma 1.2.5.7, B is a finitely generated A-module and, by Lemma 1.2.4, it has
the structure of a Banach A-algebra which is a finitely generated Banach A-module. The required

fact now follows from Lemma 2.2.9. "

2.2.11. Remarks. By [BGR, 3.7.3/6] (see also [Berl, 2.1.10]), if k is a non-Archimedean field
and A is a k-affinoid algebra, then M@ 4N = M@ 4N and M@ 4B = M & 4B for any finite Banach
A-modules M and N and any .A-affinoid algebra B. The corresponding facts are not true for K-
affinoid algebras. Indeed, assume that |K*| # {1}, and let A be the K-affinoid field K{T1,T>}/F,
where E is the closed ideal generated by the pair (7175, A) for some A € K* with |A] < 1. If f; and
f2 are the images of Ty and Ty in A, then p(f1) = p(f2) =1 and p(fi") = p(f5') = |A~' > 1. By
Lemma 1.3.10, the ideals F; and FEs that correspond to the subgroups of A* generated by f; and
fa2, respectively, are closed, and so By = A/FE; and By = A/FE, are finite Banach A-algebras (also
K-affinoid fields). The tensor product B = By ® 4 B is the quotient A/FE, where E corresponds
to the subgroup of A* generated by the elements f; and f, (and so B* is the quotient of K* by
the subgroup generated by the element A). On the other hand, f1fo = A and |\| < 1, the ideal F

is not closed and, therefore, B1®4Bs = 0.

2.3. The spectral norm of K-affinoid algebras.

2.3.1. Proposition. Let A be a reduced K-affinoid algebra. Then the Banach norm on A is

equivalent to the spectral norm.

The statement is not true for the class of Zariski reduced K-affinoid algebras (see Remark

2.3.8).

Proof. The situation is easily reduced to the case when K = Fy, i.e., A is an Fi-affinoid
algebra. By [BGR, 6.2.4/1] (see also [Berl, 2.1.4(ii)]), it suffices to show that for some non-
Archimedean field k the k-affinoid algebra k{A} has no nilpotent elements. Furthermore, since A
embeds in a direct product B = [[_; A4; of integral F;-affinoid algebras, it suffices to show that the
Banach k-algebra k{B} has no nilpotent elements. We claim that this is true if the characteristic

of k is prime to the orders of torsion elements of all groups F;, where F; is the fraction Fi-field

Of Az
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For a nonempty subset I C {1,...,n}, let B; denote the subset of elements (a1,...,a,) € B
with either a; # 0 precisely for ¢ € I, or a; = 0 for all 1 < ¢ < n. It is a sub-semigroup of B and
an Fi-algebra isomorphic to the tensor product ®;c5A;. One also has By - By = Bjny if one sets
By = {0}. We consider each By as a Banach F;-algebra provided with the Banach norm induced
from B. Then every element f € B has a unique representation in the form ), f; with f; € By.
If f # 0 and I is a minimal subset of {1,...,n} with f; # 0, then (f!); = (f7)" for all { > 1. Thus,
it suffices to verify that the Banach k-algebra k{B;} has no nilpotent elements.

Since each map X; = M(A;) — Zspec(4;) is surjective, there exists a point z; € X; with
Zker(| |,) = 0. Its valuation Fi-field H(z;) coincides with the Fi-field F;. The space M(By)

coincides with the direct product [[,.; X;, and for the point y = (x;);cr one also has Zker(] |,) = 0.

icl
Since By is an integral domain, the valuation F;-field H(y) coincides with the fraction F;-field of
By, which naturally embeds in the tensor product ®;c;F; (it is also an Fi-field). Thus, there is
an injective bounded homomorphism of Banach k-algebras k{B;} < k{H(y)}. The latter has no

nilpotent elements, by Lemma 1.4.3(ii). =

2.3.2. Corollary. Let ¢ : A — B be a bijective bounded homomorphism between reduced
Banach K-algebras which is an isometry with respect to the spectral norm, and assume that A is
K-affinoid and the Banach norm on B coincides with the spectral norm. Then ¢ is an isomorphism.

Proof. By Proposition 2.3.1, the Banach norm on A is equivalent to the spectral norm, and

the statement follows. n

2.3.3. Corollary. Let A be a K-affinoid algebra. Then the canonical map |A| — A is an
isomorphism of |K|-Banach algebras and, in particular, Aisa | K |-affinoid algebra.

Proof. The statement follows from Corollaries 1.3.7 and 2.3.2. n

2.3.4. Corollary. Let A be a quasi-integral K-affinoid algebra. Then the Banach norm on
A is equivalent to a Banach norm with respect to which ||f|| = p(f) for all f & zn(A).

Proof. Let || ||' be the function A — Ry defined by ||f||" = p(f) for f & zn(A) and
[If]]" = inf{p(g)||h||} for f € zn(A), where the infimum is taken over all representations f = gh
with g € zn(A) and h € zn(A). We claim that || || is a Banach norm equivalent to || ||. Indeed,
the canonical map A — A’ = A/zn(A) is an admissible epimorphism. Since A’ is reduced, its norm
is equivalent to the spectral norm and, therefore, there exists C' > 0 with |[f|| < Cp(f) for all
f & zn(A). Furthermore, if f € zn(A), then ||f||" <||f|| since f =1-f. If f = gh, where g & zn(A)
and h € zn(A), then ||f|| < ||g|| - ||h]] < Cp(g)||h||. It follows that || f|| < C||f]| for all f € zn(A).
Finally, we have to verify that || fif2||” < [|f1]]" - ||f2]|’. If at least one of the elements f; or f3 is not
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nilpotent, this is clear. Suppose that fi, fo € zn(A). If f1 = g1h1 and fo = goho are representations

as above, then fifo = (g192) - (h1h2) and g192 & zn(A) and, therefore, || f1f2]|" < p(g192)||h1h2]l.
The required property follows. .

2.3.5. Proposition. Let ¢ : A — B be a bijective bounded homomorphism of K-affinoid
algebras which is an isometry with respect to the spectral norm. Then ¢ is an isomorphism.

2.3.6. Lemma. Let o : A{r{'Ty,...,r;'T,} — B : T; — g; be an admissible epimorphism of

K-affinoid algebras. Assume that, for every 1 < i < n, either g; is nilpotent, or g; is non-nilpotent
and g™ = g¥io(f;) for some m; > k; > 0 and fi € A with p(gi0(fi)) = p(gi)p(f:). Then

(i) B is a finitely generated Banach A-module;

(ii) for any sy > r1,...,8, > 7, the epimorphism A{s7'Ty,...,s; Ty} — B : T + g; is

admissible.

Notice that, if g; is not nilpotent, then one has p(¢(f;)) = p(fi) = p(g:)™ .

Proof. Suppose that g; is nilpotent precisely for 1 < ¢ < [. For such 4, let m; be such that
g" =0, and set f; = 0 and k; = 0. Let M be the Zariski Banach A-submodule of A{r—'T}
generated by the monomials T* with pu; < m; — 1 for all 1 <i < n. Let M be the Zariski Banach
A-submodule of A{T’IT} generated by the monomials T" with p; < m; — 1 forall 1 <¢<n. We
claim that the induced map M — B is an admissible epimorphism.

Indeed, by Proposition 2.2.1, we can find a constant C; > 0 such that, for every [+ 1 <i <mn
and every v > 0, one has ||f/|| < Cip(fi)V. We can also find a constant Cy > 0 such that,
for any nonzero element g € B, there exists a term a7 € A{r~'T} in the preimage of g with
[laT<|| = ||a||r™ < Csllg||- Our purpose is to show that such a preimage (with a different constant)
can be found with a; < m; — 1 for all 1 < i < n. (Notice that a; < m; — 1 for all 1 < i <1
since g is nonzero.) For this it suffices to show that, if o; > m; for some i, such a preimage can
be found with a strictly smaller power of T;. Let a = u + mv, where p,v,m = (m4,...,m,) € Z7
and p; < m; —1 for all 1 < 4 < n. Then the image of the term af*T**+*” in B is g, where
k= (ki,...,ky). Since ||f¥|| < Cip(f)" = Chp(g)m—F¥ < CLr(™=F¥ one has ||af'THF|| <
lla|| - [|f¥||reHRY < Chl|a|[rm =Ry rrtky = Clla||r® < C1CL||g]|. The claim and (i) follow.

To prove (ii), we let M’ denote the Zariski Banach A-submodule of A{s~'T} generated by the
monomials T# with u; < m; — 1 for all 1 < ¢ < n. The canonical bijection of finitely generated
A-modules M — M’ is an isomorphism of Banach A-modules. Since M — B is an admissible
epimorphism, then M’ — B is an admissible epimorphism. It follows that A{s~!T} — B is an

admissible epimorphism. .
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Recall that, for an Fi-algebra A and an integer n > 1, we denoted by A™ the Fi-subalgebra
of A consisting of elements of the form f” for f € A (see the end of §1.2.4). Recall also that, given
such A, there exists d > 1 such that for every n divisible by d the Fi-algebra A™ is reduced (see
Lemma 1.2.7.2).

2.3.7. Lemma. Let A be an Fi-affinoid algebra, and let n > 1 be an integer such that the
F-subalgebra A™ is reduced. Then

(i) the Fi-subalgebra A™ provided with the induced Banach norm is F1-affinoid;

(ii) A is a finitely generated Banach A™-module.

Proof. Step 1. Let first n > 1 be arbitrary. Then the Banach Fi-algebra A, = A, pro-
vided with the norm ||f||, = ||f||", is Fi-affinoid. Indeed, if F1{r~'T} — A is an admissible
epimorphism, then the induced epimorphism Fi{r~"T} — A (it coincides with the previous one)
is also admissible since there is an evident equality F1{r=1T},, = F1{r "T}. Furthermore, the
correspondence | | — | | gives rise to a homeomorphism M(A) = M(A,). It follows that for any
element f € A one has p,(f) = p(f)", where p,(f) is the spectral radius of f with respect to 4,,.
The correspondence f +— f" induces a bounded surjective homomorphism of Banach Fi-algebras
¢ A, — A" and, therefore, a bounded bijective homomorphism v : A, /Ker(¢) — A™. Notice
that the quotient A, /Ker(y) is an Fi-affinoid algebra, and there are canonical homeomorphisms
M(A™) S M(A,/Ker(p)) = M(A,,). The latter implies that the homomorphism 1) is isometric
with respect to the spectral norms.

Step 2. Assume that n is such that A™ is reduced. In particular, the Fi-affinoid algebra
A, /Ker(p) is reduced. By Proposition 2.3.1, the Banach norm on it is equivalent to the spectral
norm. Together with boundness of v, this implies that there is a constant C' > 0 such that
||| < Cp(f)™ for all elements f € A. Since the spectral norm of f™ with respect to Banach
F-algebra A™ is equal to p(f)", it follows that the bijection v is an isomorphism of Banach F;-
algebras and, in particular, A" is a F;-affinoid algebra (i.e., (i) is true), and its Banach norm is
equivalent to the spectral norm. The statement (ii) now follows from Lemma 2.3.6 applied to any

admissible epimorphism A"{r=!T} — A. .

Proof of Proposition 2.3.5. The situation is easily reduced to the case when K = F;. By
Lemmas 1.2.7.2 and 2.3.7, we can find an integer n > 1 such that both A™ and B"™ are reduced F-
affinoid algebras, and A and B are finitely generated Banach modules over A™ and B"™, respectively.
By the assumption and Proposition 2.3.1, the induced bijection A™ — B"™ is an isomorphism of

F;-affinoid algebras. The required fact now follows from Lemma 1.2.2(i). .
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2.3.8. Remark. Let A be the F;-affinoid algebra which is the quotient of F1{r=1T3, Ty, T3},
r > 1, by the ideal generated by the pairs (T1753,7%), (TxT5,T3) and (T3,T3). If t; denotes the
image of T; in A, then every element of A\{0} is of one of the following forms 7, t}ts, or t§ with
n >0, and one has |[t7]| = |[t7t2]| = r™ and [|t}]| = 1. But since (t}t3)? = t§, one has p(tts) = 1.

Thus, the Banach norm on A is not equivalent to the spectral norm.

2.4. Twisted products of K-affinoid algebras.

2.4.1. Proposition. Given a twisted datum of (strictly) K-affinoid algebras {I, A;,v;j,a;;},
the Banach K-algebra A =[]} A; is (strictly) K-affinoid.

Proof. We can find sufficiently large m > n > 1 such that, for every ¢ € I, there are an admis-
sible epimorphism m; : B; = K{ri_llTil, . ,ri_anm} — A; and nonzero elements fi1,..., fim € A;
with the following properties: if al® # A;, they generate the Zariski ideal a(?, and, if a(®) = A;,
they contain among themselves all of the elements 7;(T;%), 1 < k < n. We may assume that the
Banach norm on each A; coincides with the quotient norm with respect to m; and, in particular,
[|mi(b)|] < ||b]| for all b € B;. Furthermore, suppose that the elements f;i,..., fim, are nilpotent
in A; and fim,+1,.-., fim are not. Let g;x be a preimage of fi in B;. If 1 < k < my, let t;x be
a positive number which is at least the spectral radius of f;r in A and, if m; +1 < k < m, let
tit = ||lgik]|- Then pa(fir) < ti for all i € I and 1 < k < m and, by Corollary 2.2.3, there is a

bounded homomorphism of Banach K-algebras
B = K{t;;'Sir}ier1<k<m — A: Sik — fir -

We claim that m is an admissible epimorphism. Indeed, that it is an epimorphism easily follows
from the construction (see the proof of Proposition 1.3.1.6), and it suffices to verify the following
fact: there exists C' > 0 such that every a € al® has a preimage b € B with ||| < C||a|| (see
Remark 1.5.5). For this we take a positive constant C with the following properties for every i € I:
(1) for every element a € A;, there exists an element b € B; with 7;(b) = a; and ||b|| < C||al|; and
(2) for every element a € A;, there exist j < i and o’ € al%) with v;;(a’) = a and ||a’|| < C||a|| (see
Lemma 1.5.2).

Suppose first that a(® = A;. By (1), there exists an element b € B; with ||b|| < C||al|. Since
such B; can be considered as a subalgebra of B, the required fact follows. This allows us to verify
the required fact in the general case by induction. Namely, suppose that a(¥ # A, and that the
required fact is true with a constant C’ > 0 for all j < i. Then we can increase the constant C’ so

that for every j < i and every element a € al) there exists an element b € B with 7(b) = a and
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[1b]] < C’||a||. Let also I is the maximal integer for which there are i € I and 1 < k < m; with

i # 0.

Given a nonzero element a € a®, take an element b € B; with 7;(b) = a and ||b|| < C||al|

as above. Since the elements g;1, ..., gim generate the Zariski preimage of a(¥) modulo the Zariski
kernel of 7;, it follows that the element b has the form Ab'g/j* - ... - giim with A € K*, v, € Z4

and b € B;\b;. Notice that v, <1 for 1 < k < m,; and, since the norm on B; is multiplicative,
one has [[b|| = || - [|U]] - [lgar || - .- - ||gim||""™. It follows that a = Aa’fji* - ... fi™ where

o' =m(b) € A\a®. Since ||a/|| < ||b']|, we get an inequality o
AL lla'ffE5 -t - 7 < Cllal] -
where
Lik

m; ] Vik
C":min{H (HglkH> liel, vy <1} .
k=1

Furthermore, (2) implies that there exist j < i and a” € al) with vj;(a”) = o’ and ||a”]| <

C||d’|]. By the induction assumption, there exists an element " € B with 7(b"”) = a” and |[b”|| <

C’||a"|]. Tt follows that |[b”|| < CC'||d'||. If now ¢ = XV'S}j* ... - S;im, then 7(c) = a, and we
have
» Vi c2c’
llell = AL 177 - -t < =z llall

If all A;’s are strictly K-affinoid, the admissible epimorphisms 7; can be found with r;; €
V/|K*|. In this case the numbers t;; for m; < k < m lie in y/|K*| and for 1 < k < m,; can be
chosen in \/|K*|, and so A is strictly K-affinoid. .

2.4.2. Example. Let I be a finite idempotent F;-subalgebra of a (strictly) F;-affinoid algebra.
By Example 1.1.4(i), for every nonzero idempotent e € I the ideal F, of A generated by the prime
ideal TI,, of I is closed and, in particular, the quotient A(®) = A/F, is a (strictly) F;-affinoid algebra.
We claim that the bijective bounded homomorphism A — [[7 A (from Example 1.3.1.6) is an
isomorphism of Banach F1-algebras. Indeed, by Proposition 1.5.4, one has M(A) = [[,.; M(A®)
and, therefore, the homomorphism considered is isometric with respect to the spectral norm, and
Proposition 2.3.5 implies that it is an isomorphism. Proposition 1.3.2.5 implies that the functor
A {I4, A, Ver} from the category of K-affinoid algebras to that of twisted data of Banach
K-algebras is fully faithful.

Let K-Aff° denote the category of K-affinoid algebras (it is opposite to the category of K-
affinoid spaces K-Aff which will be introduced in §6), and let K-Aftw denote the category of

28



twisted data of K-affinoid algebras. By Proposition 2.4.1, the twisted product construction gives
rise to a functor K-Aftw — K-Aff°. Furthermore, let K-Aff/° denote the full subcategory of
finitely presented K-affinoid algebras, and let K-Aftw? denote the full subcategory of K-Aftw
consisting of twisted data of finitely presented quasi-integral K-affinoid algebras. Recall that, for
such a twisted datum {I, A;,v;;,a;;}, there is a canonical map I — Spec(A), where A = []7 A;.
Let K-Aftw?® denote the full subcategory of K-Aftw? consisting of the twisted data for which
the above map is injective. Finally, let Qx and Qg , denote the families of quasi-isomorphisms in
K-Aftw? and K-Aftw?, respectively. Theorem 1.3.4.3(i) easily implies that the systems Q and

Q K, admit calculus of right fractions.

2.4.2. Theorem. There are equivalences of categories
K-Aftwf Q] = K-Aftw” Q'] = K-Af f1° .

Of course, the similar equivalences take place for the categories of finitely presented strictly

K-affinoid algebras.

Proof. We only verify that the functor K-Aftwd® — K-Af f is essentially surjective.

Let A be a finitely presented K-affinoid algebra. Since it is decomposable, it follows from
§1.3.4 that there are a finite partially ordered set I with infimum operation, an injective map
I — Zspec(A) : i — p,; that commutes with the infimum operation and, for every i € I, a p,
primary ideal a; such that aj,¢; ;) C a; Ua; and A(A) = (), Ei, where Ej; is the p;-primary
ideal Ker(A — Ap/aAp). By the proof of Corollary 2.1.4, the ideals E; are finitely generated and
closed, and so the quotients A; = A/E; are finitely presented K-affinoid algebras. Furthermore, if
i < j, the quasi-homomorphism v;; : A; — A; is contracting (with respect to the quotient norms)
and, if aj; is the Zariski ideal of A; which is the image of a; under the admissible epimorphism
pj : A — Aj, then v;; induces an admissible epimorphism. Thus, the tuple {I, 4;,v;;,a;;} is a
quasi-integral twisted datum of finitely presented K-affinoid algebras.

We already know that the canonical map A — B =[] A; is an isomorphism of K-algebras,
and it is easy to see that it is bounded. That it is an isomorphism of K-affinoid algebras follows

from Proposition 2.3.5. "

Notice that, if A is reduced, one can find the above data with a;, = p, for all ¢ € I. In this
case, all of the K-affinoid algebras are integral. Thus, every reduced K-affinoid algebra is a twisted
product of integral K-affinoid algebras.

2.5. A description of the kernel of the homomorphism A — A.
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2.5.1. Proposition. The following properties of a pair (f,g) of elements of an irreducible
K-affinoid algebra A are equivalent:

(a) f* = g"h for some h € A;

(b) there exists C' > 0 with |f(z)| < C|g(x)| for all z € M(A).

Recall that A is called irreducible if its spectrum Spec(A) is an irreducible topological space
or, equivalently, its nilradical n(A) is a prime ideal (see Lemma 1.3.5.9). If A is integral, (a) is
equivalent to the property that, in the case when ¢ is nonzero, the element 5 of the fraction F-field
of A is integral over A.

The main ingredient of the proof of Proposition 2.5.1 is Liitkebohmert’s Riemann Extension
Theorem ([Lu, Theorem 1.6], [Berl, Proposition 3.3.14]). An elementary proof in the particular

case when 4 5 A will be given in §4.3.

2.5.2. Lemma. Let A be a normal Fi-affinoid algebra, and assume that the multiplicative
group F* of the fraction field F' of A has no torsion. Then, for any non-Archimedean field k, the
k-affinoid algebra k{A} is normal.

Proof. First of all, we notice that, if k¥’ is a bigger non-Archimedean field, the canonical
homomorphism k{A} — k’{A} is faithfully flat and, therefore, it suffices to verify it for a sufficiently
large field k. We may therefore assume that p(f) € |k| for all f € A, i.e., the k-affinoid algebra
k{A} is strictly k-affinoid.

The assumptions means that A is a saturated lattice in the torsion free group F*. It follows
that the k-algebra k[A] is normal (e.g., see [Ful, p. 29-30]). By [Berl, 3.4.3], the analytification
X" of the affine scheme X = Spec(k[A]) is normal. Since M(k{A}) is an affinoid domain in A",
it follows that k{A} is normal. .

Proof of Proposition 2.5.1. The implication (a)=-(b) is trivial. To verify the implication
(b)=(a), we may assume that A is integral. Indeed, if the required fact is true in the latter
case, then (f",¢g"h) € n(A) for some n > 1 and h € A and, therefore, there exists m > 1 with
fmm = ¢g™"h™, Thus, we assume that A is integral. Furthermore, we may assume, by Proposition
2.1.3(v), that the multiplicative group F* of the fraction F;-field F' of A is finitely generated, and
so we may consider A as an integral F;-affinoid algebra.

Step 1. If A satisfies the assumptions of Lemma 2.5.2, then f = gh for some h € A. Indeed,
we may assume that the elements f and ¢ are nonzero, and we can consider them as elements of
the normal k-affinoid algebra k{A}. It follows that |f(x)| < C|g(x)| for all for all points of the
normal k-affinoid space X = M(k{A}). Let Y be the Zariski closed subset {z € X‘g(:ﬁ) = 0}.
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Then the function 5 is analytic and bounded in the complement of Y. By Liitkebohmert’s Riemann

Extension Theorem, this function has a unique analytic continuation to X, i.e., f = gH for some
H € k{A}. This easily implies that f = gh for some h € A.

Step 2. The required fact is true if the group F* has no torsion. Indeed, let B be the integral
closure of A in F. By Corollary 2.2.10, it is also an Fi-affinoid algebra. By Step 1, given a pair
(f,9) as in (b), there exists an element h € B with f = gh. One has b = u € A* for some n > 1
and, therefore, f"* = g™u.

Step 3. The required is is true in the general case. Indeed, let E be the ideal of A consisting
of the pairs (f,g) with f = ¢g" for some n > 1. Since the Banach norm on A is equivalent to the
spectral norm, the ideal E is closed. It is easy to see that the F;-affinoid algebra B = A/ E satisfies
the assumption of Step 2. Thus, given a pair (f,g) as in (c), there exist n > 1 and h € A with
(f™,g"™h) € E. It follows that there exists m > 1 with f™" = ¢"™"h™, and we are done. .

2.5.3. Corollary. The following properties of a pair (f,g) of elements of an irreducible
K-affinoid algebra A are equivalent:

(a) f* = g"h for some h € A* and n > 1;

(b) there exist 0 < C" < C" with C'|f(x)| < |g(x)] < C"|f(x)| for all z € M(A).
In particular, if A** denotes the subgroup of elements f € A* with the property that |f(z)| =1 for
all - € M(A), then Ker(A — A) = {(/, 9)|f™ = g"h for some n > 1 and h € A**}.

Proof. The implication (a)==(b) is trivial. Let (f, g) be a pair of non-nilpotent elements of
A with the property (b). Assume first that A is integral. By Proposition 2.5.1, there exist elements
u,v € A and integers m,n > 1 such that f = ¢g"™wu and g" = f"v. It follows that f™" = f™"y"v™
Since A is integral, the latter equality implies that «"v™ = 1 and, therefore, u,v € A**. If A is
arbitrary, then (f",g"h) € n(A) for some n > 1 and h € A**. It follows that f™" = ¢g™"h™ for

some m > 1. n

2.5.4. Corollary. If A is an irreducible K-affinoid algebra, then A is an integral domain.
Proof. Suppose that _]?E = ﬁﬁ for some f,g,h € A with h # 0. Corollary 2.5.3 implies that
f"h = g"™hu for some u € A**. Since h is not nilpotent and the nilradical of A is a prime ideal, it

follows that f™ = ¢g™u and, therefore, J?: g. .

2.5.5. Corollary. Let A be a K-affinoid algebra, and let p,,...,p, be the Zariski prime
ideals of A such that Spec(A;) for A; = A/Ilp are the irreducible components of Spec(A). Then

-~

the ideal Ker(A — A) consists of the pairs (f, g) for which there exists m > 1 such that, for every
Mmh with h € A

(2 1)

1<i<mn,onehas f" =g where f; is the image of f in A;. .
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2.5.6. Remark. The converse implication in Corollary 2.5.4 is not true (see Remark 4.3.7).

§3. Rg-polytopes

Let R be an Fi-subfield of R. An R-affinoid polytope is a subset V' of R defined by a finite
number of equalities of the form f(t) = g(¢) with f,¢g € R[T1,...,T,] and the inequalities ¢t; < r;
for all 1 <4 < mn, r; > 0. One associates to V' the Banach R-algebra Ay g of the restrictions of
functions from R[T7,...,T,] to V provided with the supremum norm. An R-polytopal algebra is a
Banach R-algebra isomorphic Ay for some R-affinoid polytope V. Before studying these objects,
we consider polytopes of a more general form.

A semiring is a set provided with two binary operations, addition and multiplication, so that
with respect to each of them it is a commutative monoid with the neutral elements denoted by
0 and 1 and z(y + z) = zy + xz. For example, every (commutative) ring is a semiring, and the
same set Ry is a sub-semiring of R. Furthermore, for a semiring S, an S-module is a commutative
monoid M provided with an action of S possessing the usual properties of modules over a ring.

Let S be a sub-semiring of R. We consider R as an S-module under the action (s,t) — ¢°.
If S C R,, then the same formula (with 0° = 1 and 0° = 0 for s > 0) defines the structure of an
S-module on R.. Let R be an S-submodule of R;. If 0 € R, we always assume that S C R, and
we set R = R\{0}. If 0 ¢ R (resp. 0 € R), we denote by A"(Rg) the set of functions on (R% )"
(resp. RY) of the form (ti,...,t,) = rtj' -...-t;» with » € R and sy,...,s, € S. Notice that
each function from A™(Rg) is continuous on (R% )™ (resp. R”}), and the set A"(Rg) is preserved
by multiplication and provided with an action of S. If 0 € R, A"(Rg) is an F;-algebra.

If 0 € R (resp. 0 € R), a generalized Rg-polytope in (R% )™ (resp. RY) is a subset V' of (R%)"
(resp. RY) defined by a finite system of inequalities of the form f(t) < g(t) with f,g € A"(Rg). If
V' is compact, it is said to be an Rg-polytope in (R} )™ (resp. R’ ). If all of the above inequalities
are in fact equalities, V' is said to be an Rg-affine subspace of (R%)™ (resp. RY). If, in addition to
the latter, R = {1} (resp. R = {0,1}), then V is said to be an S-vector subspace of (R} )™ (resp.
RY).

In what follows, we often denote the spaces R’} and (R7 )™ by W and W. More generally,
for I C {1,...,n} and V.C W, we set V; = {t = (t1,...,ty) € V|t; = 0 for all i ¢ I} and
Vi ={t € Vi|t; # 0 for all i € I'}, and we denote by Z(V) the set of all I C {1,...,n} with V; # 0.
If m = #I, then W; 5 R’ and w5 (R%)™. We denote by 77 the composition of the canonical

projection W — W with the canonical embedding W; — W.
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3.1. Generalized Rg-polytopes for 0 ¢ R: first properties. If S = R and R = R’ , the
notion of a generalized Rg-polytope coincides with that of an H-polyhedron from [Zie, §1.1], and
will be called here a generalized polytope in (R )™. If the latter is compact, it is called a polytope
in (R%)". We recall some basic facts on generalized polytopes from [Zie, §§1-2].

First of all, the Minkowski product of two sets U,V C (R} )" is the set
U-V:{x'y‘xEU, yeV}.

Furthermore, given a finite set X = {x1,...,2,} C (R%)", one defines the conical hull cone(X)
(resp. the convez hull conv(X)) as the set of all vectors of the form a:i‘l .. mz" with Aq,..., Az >0
(resp. and Zle Ai = 1). The theorem of Motzkin states that a set P C (R%)" is a generalized
polytope if and only if there exist finite sets X,Y C (R%)" with P = conv(X) - cone(Y") (see [Zie,
Theorem 1.2]).

The set cone(Y) coincides with the set of all y € (R%)™ such that = -y’ € P for all z € P
and ¢t > 0 and, in particular, it is uniquely determined by P. It is called the recession cone of

P and denoted by rec(P). If P is nonempty and defined by inequalities f(¢) < g(t), then rec(P)

is defined by the inequalities f(t) < g(t), where for a function f = rtj' - ... t3» with r # 0 one
sets f =t]" ... -t (see [Zie, §1.5]). For example, a subset P C (R% )™ is a polytope if and only

if it is the convex hull of a finite set of points. For a polytope P one has rec(P) = {1}. For an

n

affine subspace P, rec(P) is a vector subspace of (R’ )", and it is the image of P under any shift

I with a fixed point y € P. Our first goal is to find when a generalized polytope is a

T
generalized Rg-polytope.

Recall that a face of a generalized polytope P C (R )" is P itself, or a nonempty subset which
is the intersection of P with a hyperplane such that P lies in one half of the space (R% )" divided
by hyperplane. Every face of P is defined by the same inequalities as P but with some of them
turned to equalities and, in particular, it is a generalized polytope. The set of faces face(P) of P
is finite and, if two faces intersect, their intersection is a face. Zero dimensional faces are called
vertices and their set is denoted by ver(P). The cell of a face is the complement of the union of
all strictly smaller faces. The generalized polytope P is a disjoint union of all of its cells. The
inclusion partial ordering on the set of faces face(P) gives rise to a partial ordering on the set of
cells cell(P). The maximal cell of P is an open subset in the affine subspace of (R% )" generated
by P. If P is a polytope, then P is the convex hull of its set of vertices ver(P), and for every face
F C P one has ver(F) = F(ver(P). It is easy to see that all faces of a (generalized) Rg-polytope

are (generalized) Rg-polytopes.
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Let S denote the subfield of R generated by S, and let R denote the S-vector subspace of R’
generated by R. A point of (R*)™ is said to be an R-point (resp. R-point) if all of its coordinates
are contained in R (resp. R). For example, if R = {1}, (1,...,1) is the only R-point. A line
in (R%)™ is said to be S-rational if there exist sq,...,s, € S such that, for some (and therefore
every) pair of distinct points z = (z1,...,z,) and y = (y1,...,y,) of the line, one has Z— = {5
with ¢t € R%, 1 < i < n. Notice that replacing ¢ by ¢+ for some nonzero s € S , one can achieve

that s1,...,8, € 5, i.e., such a line can also be called S-rational.

3.1.1. Proposition. A generalized polytope P C (R%)" is a generalized Rg-polytope if and
only if it can be represented in the form conv(X) - cone(Y') with the following properties:

(1) every vertex of conv(X) is an R-point;

(2) every edge of conv(X) is S-rational;

(3) every line that connects a point of Y with 1 is S-rational.

Proof. Let us say that a subset P C (R} )" is a generalized Rg—polytope if it is a generalized

*

R? -polytope. To prove the lemma, it suffices to show that a generalized polytope is a generalized
Rg—polytope if and only if it can be represented in the form conv(X) - cone(Y') with the properties
(1)-(3). In particular, we may assume that S is a field. If R = {1} or P is a polytope, the statement
is an easy consequence of linear algebra. We may therefore assume that R # {1}, and P is different
from (R’ )™ and not a polytope .

Assume first that P is a generalized Rg-polytope. It can be defined by a finite system of
inequalities ¢ - ... - tSin < r; withr;, > 1,1 < i <m. If , =1 forall 1 <i < m, then P
is a generalized {1}g-polytope, and we can use the first of the previous cases. Assume therefore
that r; > 1 for 1 < ¢ < kwithl <k <mandr; =1for k+1 < i < m. Consider the
generalized {1}g-polytope P C (R%)"** defined by the inequalities ¢} - ... - t5in < t,,; and
tnei > 1, 1 < i < k. Notice that P = {(tl,...,tn)‘(tl,...,tn,rl,...,rk) € 13} By the first
of the previous case, one has P = cone(Y), where Y is a finite subset of (R%)™™* such that
every line that connects a point from Y with 1 is S-rational. Let Y/ = {y € ?}ynﬂ = 1 for
all 1 < i < k}and Y’ = YV\Y. IfY = {y = (yl,...,yn)}(yl,...,yn,l,...,l) € Y'}, and
V={(t1,....tn)|(t1,. - tn,71, ..., 7%) € cone(Y")}, then one evidently has P =V - cone(Y). We
claim that V is a polytope. Indeed, let V' = {y € cone(Y")|yn4; = r; for all 1 <4 < k}. Then the
recession cone of V' is the subcone of cone(Y"”) defined by the equalities y,,+; =1 forall 1 <i <k
(see [Zie, 1.12]). It follows that rec(V’) = {1} and, therefore, V' is a polytope. The second of the

previous cases implies that V' possesses the properties (1) and (2).
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Conversely, assume that P is represented in the form conv(X) - cone(Y) with conv(X) and

cone(Y') possessing the properties (1)-(3). Then the polytope conv(X) can be defined by a finite

system of inequalities ¢7"* -...-t5in <r; withr; > 1,1 <i<m. Letr; >1for1<i<kandr, =1
for k+1 < i < m. Consider the cone C in (R} )"™* defined by the inequalities ¢} - ... t5in < i,

and tp4; > 1,1 < i < k. Notice that conv(X) = {(z1,...,2,)|(x1,...,&n,71,...,7,) € C}. One
has C' = cone(Y"”) for a finite subset Y” C (R%)"" such that every line that connects a point
of Y” with 1 is S-rational. Let Y = Y’ JY”, where Y is the set of all (y1,...,yn,1,...,1) with
(y1,...,yn) €Y, and let P = cone(Y). Then P = {(t1,. .. ,tn)}(tl, ceistpy T,y TE) € 13} Since
Pisa generalized Rg-polytope, then so is P. "

3.1.2. Corollary. Let P be a generalized Rg-polytope in (R*)". Then

(i) the image of P under any map f = (fi,...,fm) : P = (R3)™ with f; € A"(Rg) is a
generalized Rg-polytope in (R%)™;

(i) if R # {1}, the subset of R-points is dense in P;

(iii) the affine subspace of (R’ )" generated by P is an Rg-affine subspace. .

Notice that the recession cone rec(V') of a generalized Rg-polytope V' is an {1}g-polytope. If
V is an Rg-affine subspace, rec(V') is an S-vector subspace L, and V is a principal homogeneous

space for L.

3.2. Generalized Rs-polytopes for 0 ¢ R: closure in R"}. For asubset I C {1,...,n}, we
set CT = {(t1,...,t,) € W‘ti =1foralli € Iandt; <1foralli¢gI}. Notice that C1-C7/ = CI"/.

3.2.1. Proposition. Let P be a generalized Rg-polytope in W, Q the closure P of P in W,
and I a subset of {1,...,n}. Then

(i) Qr # 0 if and only if rec(P)(CT # 0;

(ii) if Q # 0, then Q; = 11(Q) and Q; = 77(P).

Proof. Assume first that a point a = (a1,..., ) € rec(P) is such that oy =1 forall i € I
and a; < 1 for all i € I. Then for every x € Q the point z - o with £ > 0 lies in P and tends to the
point 77(x) as t — oo. It follows that 7;(Q) C Q; and 7;(P) C Q.

Let I be a maximal proper subset of {1,...,n} with Q; # (§, and let ¥ be a compact subset
of rec(P)\{1} with the property that for every y € rec(P)\{1} there exist unique f € ¥ and ¢ > 0

™ with an Euclidean space structure and take the

with y = 8¢, (For example, we can provide (R%)
intersection of rec(P) with the unit sphere of a positive radius with center at one.) Given a point

r € Qr, we can find two sequences of points v; € conv(X), B € ¥ and a sequence of positive
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numbers t; with ¢; — oo and vy, - B,tc’“ — x as k — oo. Since the sets conv(X) and ¥ are compact,
we can replace the sequences of points with convergent subsequences so that vy — u € conv(X)
and 8 — «a € X. Since u - B,i’“ — 2z € W and Br,i — o for all 1 < i < n, it follows that o; <1
foralll <i<nanda;=1foralliel. If J= {i’ai = 1}, the set @ is nonempty because it
contains 7;(P). Since « # 1, J is a proper subset of {1,...,n}. It follows that J = I, and therefore
71(Q) € Qr and 77(P) C Q;. Since 77(P) is a generalized polytope in W7, it is closed in W7, and
since 77 (u - ,i’“) — z it follows that z € 7;(P), i.e., Q; = 77(P). Notice that, if z € Q; for a
subset J C I, there is a sequence of points vy € P with vy — x as k — 0o. Then 77(vx) — = and,
therefore, Q; = @HWL} In particular, Q; = a Since 77(Q) C Q and Q; = 17(P), it follows
that Q@ = 77(Q).

To verify the same properties for an arbitrary proper subset I C {1,...,n} with Q; # 0, we
may assume that there is a strictly bigger proper subset J C {1,...,n} for which Q; = 0 and the
same properties hold. Let 5 € rec(P) with 8; = 1 for i € J and §; < 1 for ¢ ¢ J. By the above
remark, Q; = @ﬂ Wr. The space Wi has smaller dimension than W. By induction, there exists
a point v € rec(P) with v; = 1 for ¢ € I and v; < 1 for i € J\I. Then for a sufficiently large m > 1,

the point a = ™ - v € rec(P) satisfies the condition ; =1 for i € I and «o; < 1 for i & I. .

3.2.2. Corollary. In the situation of Proposition 3.2.1, the following is true:

(i) Qr is a generalized Rg-polytope in Wi;

(ii) if Q1 # 0 and J C I, then Q; = Q; N\ Wy;

(iii) if Qr # 0 and Q; # 0, then 77(Qr) = Qrny and Qrny = Q1N Q.. =

3.2.3. Lemma. In the situation of Proposition 3.2.1, the following are equivalent:

(a) the set @) is compact;

(b) P is contained in a set of the form {t € W‘ti <r;forl1<i<n},ry,...,r, >0;

(c) for all points y € rec(P), one hasy; < 1,1 <1i < n.

Furthermore, in this case ver(P) is a unique minimal set X with P = conv(X) - rec(P).

Proof. The equivalence (a)<=-(b) is trivial. To prove other implications, let us represent P
in the form conv(X) - rec(P), where X is a finite subset of W. Then every point from P has the
form z -y with x € conv(X) and y € rec(P). If (c) is true, then for every 1 < ¢ < n, one has
(x-y); = zy; < x; and, therefore, (b) is true. On the other hand, assume that there exists a
point y € rec(P) with y; > 1 for some 1 < i < n. Then for every ¢ > 0 one has z - y* € P and
(x-y"); = z;yf — 00 as t — oo, which contradicts (b).

Assume now that P possesses the equivalent properties (a)-(c). It is clear that rec(P) lies
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in any finite set X with P = conv(X) - rec(P). It is also clear that P is the convex hull of

n

ver(P) if P is a polytope in (R%)". In general, suppose that dim(P) > 2 and that the equality
P = conv(ver(P)) - rec(P) holds for generalized polytopes of strictly smaller dimension. Then all
points from the boundary of P lie in the set on the right hand side. Let now = = (z1,...,z,) be a
point from the interior of P. Then x lies in the intersection of P with the affine subspace defined

" and so x

by the equation ¢y -...-t, =1 -...-x,. The latter intersection is a polytope in (R%)
lies in the convex hull of the set of vertices of that polytope. Since all of them lie in the boundary

of P, the induction hypothesis implies the required equality. "

3.2.4. Proposition. The following properties of an Rg-affine subspace V. C (R%)" are
equivalent:

(a) V is closed in R} ;

(b) there exist positive elements $1,...,s, € S and r € R such that all points of V satisfy the
equality t7* - ... tin =1,

Proof. The implication (b)==(a) is trivial. Assume that V is closed in R’}. By Proposi-
tion 3.2.1(i), this means that the recession cone rec(V'), which is an S-vector subspace of (R )",
possesses the property that the intersection of the S-vector subspace rec(V) with the quadrant
{t € Ry)"|t; < 1forall 1 <i < n}is the point of origin (1,...,1). Let L be the image of
rec(P) under the isomorphism —log : (R%)™ = R that take a point (f1,...,t,) € (R%)™ to
(—log(t1),...,—log(t,)) € R. It is a linear subspace of the Euclidean space R" with the prop-
erty LNR!} = 0, and it is defined by linear equations of the form (u; —v1)xy+... 4 (ttn —Vn) Ty =0
for each equality pti* -...-thn = gt{*-...-t¥» among those that define V. We now need the following

lemma.

3.2.5. Lemma. Let L be a linear subspace of the Euclidean space R™. Then LNR"T =0 if
and only if L+ N (R)™ # 0.

Proof. The converse implication is trivial, and so assume that L N R’} = 0. The statement
is evidently true for n = 1. Suppose that n > 2 and that it is true forn — 1. If L ¢ R*~! ¢ R"
and (x1,...,2,-1,0) € L+ N (Ri)"*l, then for any x,, > 0 the vector (x1,...,Zp—1,%,) lies
in L+ N (R%)". Assume therefore that L is not contained in R"~*. Since LN R%} = 0, then
L = (LNR"1)®Ruw for some nonzero v € L. Let 7 denote the canonical projection R™ — R" ™! to
the first n—1 coordinates, and consider the two cases: (1) m(L)NR'}~! # 0, and (2) 7(L)NR} " = 0.

(1) We may assume that 7(v) € R}, i.e, if v = (v1,...,v,), then vi,...,v,_1 > 0 (and

not all of them are zero) and v, < 0. By induction, there is x = (z1,...,2,_1,0) € (LNR" 1) N
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(R7)""*. Then the numbers (z,v) and z, = —%—’:) are positive. It follows that the vector
(T1,.. ., Tp_1,Ty,) lies in L+ N (R3)™.

(2) By induction, there is z = (z1,...,2,-1,0) € 7(L)* N (R%)"'. Since n(L) # LNR"!,
there is y € (LNR™ 1) \7(L)*. Then z+ay € (LNR™ 1)L N (R7)" for any sufficiently small
a € R. We claim that there exists x,, > 0 such that, for ' = (x1,...,2p_1,2,) and for some
small a € R, one has z = 2/ + ay € L+ N (R%)". Indeed, by the construction, any such z lies in
(LN R YL and one has (z,v) = z,v, + a(y,v). Let a be a sufficiently small number such that
a{y,v)

the sign of a(y, v) is opposite to the sign of v,,. Then the number z,, = —=,* is positive, and the

corresponding vector z is orthogonal to v and lies in (R )". .

By Lemma 3.2.5, one has L+ N (R%)™ # (. Since L is defined by linear equations with
coefficients in S, then so its orthogonal complement L+, and we can therefore find a vector with
positive coordinates (s1, ..., S, ) in S such that s;z1 +. ..+ sz, = 0 for all points (z1,...,x,) € L.
It follows that all points of the recession cone rec(V') satisfy the equation ¢7* -...-¢» = 1. Let
(r1,...,mn) be an R-point of V. Multiplying all s;’s by a positive element of S, we can achieve

inclusion 7 = ri* - ...-ri» € R. Then all points of V satisfy the equality ¢t} -... -t =r. .

3.3. Generalized Rgs-polytopes for 0 € R. Let R = R\{0}.

3.3.1. Theorem. A closed subset V' C R} is a generalized Rg-polytope (resp. an Rg-affine
subspace) if and only if it possesses the following properties:

(1) Z(V') is preserved under intersections;

(2) for every I C J in Z(V), 71(Vy) C Vi;

(3) for every I € I(V), V; is a generalized Rg-polytope (resp. an Rg-affine subspace) in W7.

For an element f = rt{* ... t5» € A"(Rg), we set c(f) = {i|s; # 0} (if r =0, c(f) = 0).

3.3.2. Lemma. Given two subsets I C J C {1,...,n} and a generalized Rg-polytope (resp.
an Rg-affine subspace) P in W, assume that for its closure Q in R one has Qr = 0. Then there

exist functions f,g € A"(Rg) with ¢(f) =1, c(g9) C J and c(g) ¢ I such that all points of P satisfy
the inequality f(t) < g(t) (resp. the equality f(t) = g(t)).

Notice that the above inequality is not satisfied at any point of W7.

Proof. Of course, we may assume that J = {1,...,n} and P is nonempty. First of all, we
deduce the statement for affine subspaces from that for generalized polytopes. Thus, suppose P is

an Rg-affine subspace of (R%)", and let f and g be elements of A"(Rg) with ¢(f) = I, ¢(g) C J
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and ¢(g) ¢ I such that all points of P satisfy the inequality f(¢) < g(¢). This means that the affine
subspace P lies in one half of the space (R% )" divided by the hyperplane L = {t| f(t) = g(t)}. Let «
and y be R-rational points of P and L, respectively. Then the shift t — tz 'y takes the point z to y
and, therefore, the image of P is contained in L. It follows that f(tz~'y) = g(tz~'y) for all points
t € P. One has f(tz™ly) = L f(t) and g(tx=ty) = Sg(t) for r1,12,51,50 € {a € R |a™ € R
for some m > 1}. Replacing f and g by f™ and g™ for some m > 1}, we may assume that
1,72, 51,82 € R. Then the functions f’ = risof and ¢’ = rys1g are contained in A™(Rg), satisfy
the conditions ¢(f’) = I, ¢(¢’) C J and ¢(g¢’') ¢ I, and one has f'(t) = ¢'(t) for all points t € P.

By Proposition 3.2.1(i), one has rec(P)(C! = 0. It suffices to find two functions f and g
of the form #J* - ... 3 such that (a) all points of C satisfy the inequality f(t) > g(¢), and (b)
all points of rec(P) satisfy the inequality f(¢) < g(t). Indeed, assume that such functions f and g
exist. We may assume that c(f)()c(g) = (0. It is easy to see that the property (a) is equivalent to
the following: ¢(f) C I and ¢(g) ¢ I. By Lemma 3.1.1, P can be represented in the form V -rec(P),
where V is a polytope in W all of whose vertices are R-points. The restriction of the function %
to P takes its minimum 7 at a vertex of V and, in particular, r € R. Replacing the functions f and
g by their powers, we may assume that r = 71 with ry, 72 € R. Then the inequality 71 f(t) < 72g(t)
is satisfied on P but, since ¢(f) C I and ¢(g) ¢ I, it is not satisfied at any point of W;. It remains
to multiply both functions f and g by some of the variables to achieve the equality c(f) = I.

To find the above functions f and g, it is more convenient to consider the additive vector space
R™ (instead of (R%)™), and we can replace S by the subfield S of R generated by it. Our problem
is the following. Let 0 <m <n—1, C ={z = (x1,...,z,) ER”’mi =0forl<i<mandz; <0
for m+1 <i < n}, and let P be the convex hull of a finite set of S-rational vectors in R™ such that
P C = 0. Then there exists an S-rational linear functional ¢ on R™ such that ¢(z) < 0 < {(y)
for all z € C and y € P. If we provide R™ with the usual scalar product (z,y) = > i, =y,
then the latter is equivalent to the fact that there exists an S-rational vector z € R"™ such that
(z,2) <0< (z,y) forall x € C'and y € P.

For a subset V' C R™, let V' denote its polar set {z € R"|(z, ) < 0}, and let V- denote its
orthogonal complement. We have to find an S-rational vector z € (C"\C+)(—P)’. Notice that
C' = D' and C*+ = D+, where D = {z = (21,...,2,) € R”‘:Ui =0forl1<i<mandaz; <0 for
m+1 <i<n}. Since P and D are the convex hulls of finite sets of S-rational vectors, then so are
D', P', D— P and (D — P)'. Since (C'\C*+)((=P)" = (D — P)'\D*, it follows that to prove that
the latter set contains an S-rational vector, it suffices to show that it is nonempty.

Assume that (D — P)’ € D*. Then (D*)" C (D~ P)"” = D— P. But (D)’ coincides with the
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vector subspace E = {z = (1,...,2,) € R"|z; =0 for 1 <i < m}, and we get E C D — P. Since
D C E, it follows that E C D — (P[) E). To show that the latter is impossible, we can replace R"
by E, i.e., we may assume that m = 0.

Let V! denote the relative interior of a subset V' C R". Notice that the convex hull of a finite

set of vectors coincides with the closure of its relative interior. One has
(D-P) = (DI - P = (DI - PI)! =D - P

Thus, if D — P = R", then D' — P/ = R". Since D! = C, it follows that C — P = R", which is a
contradiction because P () C = (. (The above reasoning is borrowed from [StWi, Ch. 3].) ]

Proof of Theorem 3.3.1. (a)==(b). It is clear that, for every subset I C {1,...,n}, V is
a generalized Rg-polytope. Assume that for some subsets I, J C {1,...,n} one has V; # () and
Vy # 0. To show that 77 (Vr) C Viny, we have to verify that every inequality f(t) < g(t) with
f,g € A"(Rs) which is satisfied at V is also satisfied at 77~7(V7). Let f = aT* and g = bT",
where a,b € Ry and pu,v € ™. If a = 0, then the inequality is satisfied everywhere, and so we
may assume that a = 1. If there exists i ¢ I()J with p; # 0, then the inequality is satisfied at
Wins, and so we may assume that pu; = 0 for all ¢ ¢ I()J. If there exists ¢ € I (resp. i € J) with
v; # 0, then the inequality is not satisfied at V; (resp. VJ) and, therefore, v; =0 for alli ¢ I J.
It follows that the validity of the inequality at V7 is equivalent to its validity at 77n J(VI), and the
inclusion 777(V7) C Viny follows.

(b)=(a). To show that V is a generalized Rg-polytope (resp. an Rg-affine subspace), we
associate with each subset of {1,...,n} a finite family of inequalities (resp. equalities) so that all
of them together define the set V. The inequalities depend on the type of a subset. Namely, let A
be the family of subsets I C {1,...,n} with V; # (), B the family of subsets I ¢ A for which there
exists J € A with I C J, and C the family of subsets I C {1,...,n} not in A|JC.

A.For I € A, let (fr,gx)x be a finite system of functions from A™(Rg) such that the inequalities
fr < gi (resp. the equalities f, = gi) define V7 in W;. We associate with I the following inequalities
(resp. equality)

(Tt < Lt (TGSP- (It =1 tﬁ)!}k)

il il i€l i€l
for every system of elements j; € I'\{i}. Notice that this system of inequalities (resp. equalities)
defines the set TI_1<‘7[ UUier Wn(iy), and we claim that the latter contains V. Indeed, let J € A.
If J O I, then 7/(Vy) € V;. If J A I, then JN T C I\{i} for some i € I and, therefore,
1(Vy) C Wn (i}
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B. For I € B, let J be the minimal subset of {1,...,n} which is contained in A and contains
I. By Lemma 3.3.2, there exist functions f,g € A"(Rg) with ¢(f) = I, ¢(9) C J and ¢(g) ¢ I
such that the inequality f < ¢ (resp. the equality f = g) is satisfied at V;. We claim that it is
satisfied at V. Indeed, since ¢(f),c(g) C J, the validity of the inequality (resp. equality) at a point
is equivalent to its validity at the image of the point under the projection 7;. Let J' € A. If J' D J,
then 7;(Vy) C V. Assume that J’ 5 J. Then J' NJ # I and, therefore, the function f is equal
to zero at the set Wy~ that contains 7 J(VJ/). Notice that the above inequality (resp. equality) is
not satisfied at any point of W;.

C. If I € C, we associate with it the equality

HtZ:O.

This equality is evidently satisfied at V, and is not satisfied at any point of W;.
Thus, all of the above inequalities (resp. equalities) define the set V. "

3.3.3. Corollary. Let V' be a generalized Rg-polytope in R}, and @ the image of V' under
the map f = (f1,...,fm): V — R} with f; € A"(Rg). Then, for every subset J C {1,...,m},
Q is a generalized Rg-polytope and, for every pair of subsets I,.J C {1,...,m} with Qs # (), one
has 7;(Qr) C Qrny. In particular, if the map f is proper (e.g., V is an Rg-polytope), then Q is a
generalized Rg-polytope.

Proof. We may assume that all of the functions f; are nonzero. Then for a subset I C
{1,...,n} one has f(W;) C W}, where W = R and J is the subset of j € {1,...,m} with
c(fj) € I. Let A, B and C be the families of subsets of {1,...,n} introduced in the proof of
Theorem 3.3.1. For a subset I C {1,...,m}, we set I = Uicr c(fi) and, if I € AJB, we denote
by I the minimal subset from A that contains I. Tt follows that Q1 # 0 if and only if either IeC ,
or I € AUB and c(f;) ¢ T for all i ¢ T, and in this case one has Q; = f(f/f). In particular, Q;
is a generalized Rs-polytope in W}. Let now I,J C {1,...,m} be such that Q; # () and Q; # 0.
We have to verify that 7,(Qr) C Qrny. The left hand side is 7;(f(V5)), and the right hand side
is f(V7=7). Since IﬁJ c INJ, it follows that IﬁJ € AUB and I J C I J. Moreover, for
every i ¢ I(J either i & I, or i ¢ J. In both cases, ¢(f;) ¢ I(\J and, in particular, c¢(f;) ¢ I(J,
ie., Qs # 0. It follows also that 7;(f(V5)) = f(r77(V5)). Since 77=5(V5) C V=, the required

inclusion follows. L]

3.3.4. Corollary. If P is a generalized Rg-polytope in (resp. an Rg-affine subspace of) W7,

its closure P and the set P\ P are connected generalized Rg-polytopes in (resp. Rg-affine subspaces
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of) R%.
Proof. The statement follows from Corollary 3.2.2 and Theorem 3.3.1. "

3.3.5. Corollary. Let V be a generalized Rg-polytope in (resp. an Rg-affine subspace of)
R”, and let U be the subset U C R such that, for every I C {1,...,n}, U; is the recession cone
of V;. Then U is a generalized {0,1}s-polytope in (resp. an S-vector subspace of) R".

Proof. It suffices to verify that U is closed in R%, i.e., UrcUforallc {1,...,n} with
rec(V;) # (). For this we may assume that I = {1,...,n}, i.e., we have to verify that UcU. .

3.3.6. Definition. In the situation of Corollary 3.3.5, the generalized {0, 1} s-polytope (resp.

the S-vector subspace) U is said to be the recession cone of V' and denoted by rec(V).

3.4. Irreducible and connected components of a generalized Rg-polytope. For a
generalized Rg-polytope V' in R, let Z(V) denote the set of all subsets I C {1,...,n} with
Vi # 0. Theorem 3.3.1 implies that Z(V) is preserved under intersections and, in particular, it has
a unique minimal element with respect to partial ordering by inclusion. Notice that, if I is the
minimal element of Z(V'), then V; = V.

We introduce a weaker partial ordering on the set Z(V) as follows: I < J if V; C V. (Of
course, one then has I C J.) An irreducible component of V' is a subpolytope of the form ‘71, where
I is a maximal element with respect to <. Any V is a finite union of its irreducible components,

and it is called #rreducible if it has only one irreducible component.

3.4.1. Lemma. IfV is irreducible, then the partial ordering < on Z(V') coincides with the
ordering by inclusion.

Proof. We may assume that the maximal element of Z(V') coincides with {1,...,n}. Let I, .J
be elements of Z(V) with I C .J. Since V; C ?, Proposition 3.2.1 implies that there is an element
v = (y1,...,yn) € rec(V) with y; = 1 for i € I and y; < 1 for i ¢ I. Since V; C V, it follows
that 7;(y) is an element of rec(Vy) with similar properties and, therefore, V; C V7, by the same

Proposition 3.2.1. "

We say that a generalized Rg-polytope is quasi-irreducible if the partial ordering < on Z(V)

coincides with the ordering by inclusion.

3.4.2. Lemma. The following properties of generalized Rg-polytope V are equivalent:
(a) V is quasi-irreducible;

(b) for every I € Z(V'), one has Vi = V7.
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Proof. (a)==(b). For every I € Z(V), V; is a union of all V; with J € Z(V) and J C I.
Since for every such J one has J < I, it follows that V;C 171, ie, Vi = 171
(b)=(a). If JC I for I,J € Z(V), then V; C V} = Vi, e, J<I. =

3.4.3. Lemma. Every connected component of a generalized Rg-polytope (resp. an Rg-affine
subspace) is a generalized Rg-polytope (resp. an Rg-affine subspace).

Proof. Let U be a connected component of V' C R’}. Then for every subset I C {1,...,n}
one has either U; = 0 or U; = V; and, in particular, U; is a generalized Rg-polytope in (resp. an
Rg-affine subspace of) W;. By Theorem 3.3.1, we have to show that, given subsets I and J with
U; # () and U, # (), one has TJ(UI) C Urny. For this we notice that the projection 7;(U) is a
connected subset of V; that contains U; = Vj. It follows that 7 7(U) lies in U, i.e., it coincides
with Uj;. Since Vi contains the nonempty set TJ(U 1), it follows that it coincides with Urng and,

in particular, TJ(UI) C U]mJ. n

We now introduce a related partial ordering on the set Z(V): I < J if there are sets I = I; C
I, C...C1,, = J such that ?13, ﬂ§jj+l # () for all 1 < j < m — 1. Connected components of the
partially ordered set (Z(X), =) correspond to connected components of X, i.e., mo(Z(V)) = mo(V).
If U is a connected component of V', then the restriction of the partial ordering <y to Z(U) coincides
with <y and, since the set Z(U) is preserved under intersection, there is a unique minimal element

of Z(U) with respect to the usual inclusion; it will be denoted by I.

3.4.4. Lemma. Let U be a connected component of a generalized Rg-polytope V. Then

(i) Iy is a unique minimal element of Z(U) with respect to the partial ordering =<;

(ii) if U’ is a connected component of V' with Iy C J for some J € Z(U'), then Iy C Iy:.

Proof. (i) We may assume that V is connected, and we have to show that I}y < J for every
J € Z(V). The latter is verified by induction on the cardinality #Z(V') of Z(V)). Assume that
#IZ(V) > 2 and that the required fact is true for connected generalized Rg-polytopes U with
#I(U) < #IZ(V). Let J be a maximal element of (Z(V'),=<). From Theorem 3.3.1 it follows that
the set U = V\VJ is a generalized Rg-polytope, and Corollary 3.3.4 implies that U is connected.
By induction, the required fact is true for U and, therefore, it is also true for V.

(ii) It suffices to show that, for any subset I C J with Uifj NW; # 0, one has Iy C I. By
Proposition 3.2.1(i), there exists an element y = (y1,...,yn) € rec(U}) with y; = 1 for i € I and
y; < Lforie€ J\I (and y; = 0 fori ¢ J). One has z-y* € U/ for any point € U’y and any t € RY,..
It follows that 7y, (x) - 77, (y)! € Uy, . Since the set Uy, is closed in W7, , the latter is possible only
if Iy N (J\I) = 0, ie., Iy C 1. .
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3.4.5. Corollary. Given connected components U’ and U" of V, there exists a connected
component U that contains Vyqy» for all pairs of subsets I' € Z(U') and I" € T(U").

Proof. Let V' be the connected component of V that contains Vyinz, and let V' be the
connected component of V that contains V.~ for J' = Iy and J” = Iyw. Since Iy € J'NJ" C
I'NI" € Z(V'), Lemma 3.4.4(ii) implies that Iyy» C Iys. On the other hand, since Iy C I' € Z(U’)
and Iy, C I" € Z(U"), it follows that Iy, C Iy NIy» = J'NJ" € Z(V") and, therefore, Iy, C Iyn.
Thus, V' =V". .

We introduce a partial ordering on the finite set o (V") of connected components of a generalized
Rg-polytope V as follows: U’ < U” if Iy C Iy». Notice that the partially ordered set mo(V)
possesses the property that for any pair U’, U” € mo(V') there is a well defined connected component

inf(U’,U"), which is given by Corollary 3.4.5.

3.4.6. Corollary. Given a subset U C mo(V'), the union |J;;¢, U is a generalized Rs-polytope
in R if and only if, for any pair U',U" € U, one has inf(U',U") € U.

Proof. The statement follows straightforwardly from Theorem 3.3.1 and Corollary 3.4.6. =

3.5. The convex hull of a subset in R’ . For a pair of points z,y € R, let £, , denote
the intersection of all polytopes that contain both z and y. It is easy to see that ¢, , is a polytope
which is describes as follows. Suppose that = € W; and y € Wy (i.e., Z(z) = {I} and Z(y) = {J}).
If I = J, then £, , is the interval in W; that connects z and y. If I C J # I, then £, , = {y}Uly.,/,
where y' = 77(y), and £, ,» <y in my(¢; ). If none of the inclusions I C J and J C I holds, then
lyy ={x}U{y}Uly v, where 2’ = 7in;(z) and ' = 775 (y), and £y v = inf(z,y) in 7m9({y ).

3.5.1. Definition. A subset ¥ C R is said to be conver if it contains ¢, , for any pair of

points x,y € X.. The convex hull conv(X) of ¥ is the minimal convex subset that contains X.

For example, if ¥ C (R%)", then conv(X) is the usual convex hull of ¥ in (R%)".

m

3.5.2. Proposition. The convex hull P of the union of Rg-polytopes P',..., P™ in RY is
an Rg-polytope.

Proof. Consider first the case when P? = P for all 1 < i < m. Then P! = conv(X;) - cone(Y;)
for finite subsets X;,Y; C (R%)™, and P is the closure of @ = conv({J;"; X;)-cone(lJ;"; Y;) in R,
i.e., it is a polytope. That it is an Rg-polytope follows from Proposition 3.1.1. We claim that a
subset I C {1,...,n} belongs to T(P) (i.e., Py # 0) if and only if there exist 1 < iy,...,i; < m
and, for every 1 < k <1, a set I, € Z(P") such that I = I, N...NI;. Indeed, by Proposition 3.2.1,
I € Z(P) if and only if there exists (¢1,...,t,) € rec(P) with t; =1 fori € I and t; < 1 for i & I.
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By the above argument, one has rec(P) = rec(P!) - ...-rec(P™) and, since all P*’s are compact,
one has t; < 1forall 1 <i<n and all (t,...,t,) € rec(P¥). This easily implies the claim.

In the general case, let Z be the minimal subset of P({1,...,n}) which is preserved under
intersections and contains all of the sets Z(P*). For I € Z, we denote by Q; the convex hull in
W; of the union of the sets TI(P}) taken over all 1 < i < m and J € Z(P*) with I C J. It is an
Rg-polytope in W;. The collection {Q;};cr possesses the property (b) of Theorem 3.3.1, and we
claim that the union P = J;.; Q1 is a closed subset of R'}. Indeed, it suffices to verify that the
closure @ of each Q; for I € T lies is Q. By Proposition 3.2.1, the closure Q7 is the union of Q;
with the projections 7x(Qr) taken over all K € Z(Q;), and so it suffices to verify that every set
T (Qr) lies in Q. For this we notice that, by the above claim, K is the intersection of sets from
I(P%)’s, ie., K € T. Since for such K one has 7x(Qr) C Qx, the claim follows.

By Theorem 3.2.1, P is an Rg-polytope. Since the convex hull considered should contain all

of the sets )y, it follows that it coincides with P. "

3.5.3. Proposition. If P! and P? are connected (resp. irreducible) polytopes and, for any
pair I € Z(P') and J € Z(P?), none of the inclusions I C J and J C I holds, then P is a disjoint
union of P!, P? and a nonempty connected (resp. irreducible) polytope which is inf(P*, P?) in
mo(P).

Proof. It follows from the construction and Proposition 3.5.2 that P is a disjoint union of P!,
P? and a nonempty polytope P’, and it suffices to verify that if P! and P? are irreducible, then
so is P'. Suppose P! = 157111 and P? = ?122 Then every set J from Z (see the proof of Proposition
3.5.2) has the form J! N J? for some J! € Z(P') and J? € Z(P?), and Proposition 3.2.1 easily
implies that Q7 C Q, where I = I' N I%. The required fact follows. .

3.6. A partial ordering and a transitive relation on an Rg-polytope. Let V be a
generalized Rg-polytope in R’}. We introduce a partial ordering < on the set of points of V' as
follows: = <y if = 77(y) for some I € Z(V'). If the latter is true for some I, it is also true for the
set I with z € V7. Notice that the map V' — Z(V) that takes a point x to the set I with 2 € V;
commutes with the partial orderings on both sets. Notice also that any pair of points z,y € V, for
which there exists a point z € V with 2 < z and y < z, admits the infimum inf(z, y); namely, if
x € V; and y € Vy, then inf(z,y) = 77 (2).

Furthermore, let < y, and suppose that € V; and y € V;. We write z < y if, for any
subset K € Z(V) with I C K C J and I # K, one has z Qﬁ
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3.6.1. Lemma. The relation < is transitive.
Proof. Let 2 <y < 2,2 € V;, y € V, z € Vi, and suppose that there is a subset L € Z(V)
with ] C L C K, I+#L and z € V. .

For a point z € V, we set V(Z?) = {y ¢ V}:C < y}. Tt is a subpolytope of V since V(Z#) =
{y e V}t,—(y) =t;(z) for all i € I € Z(V) with = € V;}. We write = < y if the points = and y lie in

different connected components of the set V(Z#) (and, in particular, z < y).

3.5.1. Lemma. If x < y < z, then © < z and, in particular, the relation < is transitive.

Proof. Suppose that the points z and z lie in one connected component of V(%) and let
z e Vi, yeVyand z € Vk. Replacing V by V(2% we may assume that I is the minimal element
of Z(V) and that V; = {z}. The assumption and Lemma 3.4.4(i) imply that I < K, i.e., there are
sets I =1, C I, C...C I,, = K such that ?[j ﬂ§1j+1 # () forall 1 < j <m —1. It follows that
the points x € T J(Vij) and y = 75(2) € 7 J(ﬁ) lie in one connected component of V', which is a

contradiction. n

64. R-affinoid polytopes and R-polytopal algebras

4.1. R-affinoid polytopes and associated R-algebras. Let R be an Fj-subfield of R.
Rz, -affine and Ry, -affine subspaces of R’ and (R% )™ will be called R-affine and R*-affine sub-

spaces, respectively. (Since R is an F;-field, we use the notation R* instead of R.)

4.1.1. Definition. An R-affinoid polytope in R’} is an (R )z, -polytope V which can be
represented as the intersection of an R-affine subspace with a set of the form {¢ € R:t|ti < r; for

all 1 <i<n}, r,>0.

4.1.2. Proposition. Let V be an R-affinoid polytope in R}, which is the intersection of an
R-affine subspace with the set P = {t € R'.|t; < r; for all 1 < i < n}, and, for I € Z(V), let L; be
the R*-affine subspace of W generated by V;. Then

(i) L = \JL; is an R-affine subspace of R (the R-affine subspace generated by V) and, in
particular, V is the intersection of this R-affine subspace with P;

(ii) for every I € Z(V'), one has 17[ = E N P and, in particular, ‘71 is an R-affinoid polytope.

Proof. (i) To apply Theorem 3.3.1, we have to verify that the set L is closed in R'}. It suffices
to show that, for any J € Z(V'), the closure of L is contained in L. For this we can replace V by
Vy, and so we may assume that J = {1,...,n}. We claim that, for every subset I C {1,...,n},
one has rec(V) N C!' = rec(L) N C!. Indeed, let z € rec(L) N CT, ie., z; =1fori € I and 2z < 1
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fori ¢ I, and yzt € Lforally € Landt > 1. If y € V, then (y2!); = y; < r; for i € I and
(yz')s = yizt < i <rifori @ I andt > 1. Since V.= LN P, we get yzt € V for all t > 1, and
the claim follows. Let now z be a point from the closure of L which lies in W for a smaller subset
I c{1,...,n}. By Proposition 3.2.1, one has z = 7;(y) for some y € L, and there exists a point
z € rec(L) N CT = rec(V) N C. In particular, V; # (). Furthermore, since L is generated by V, it
follows that y = a*b'~* for some points a,b € V and a number s € R, . Since 77(a), 77(b) € V7, it
follows that the point z = 77(a)%77(b)'~* lies in L.

(ii) Let = be a point from L; N P which is contained in W for some J C I. This means that
x=7;(y) fory € Ly . Asin (i), we can find a point z € rec(V;) with z; = 1 for i € J and z; < 1 for
i € I\J. One has yz! € L for all t > 1. We see that, if ¢ is big enough, the point yz* is contained
inVy = {t e L]‘ti <r; for all i € I'}. Tt follows that = € ‘71 "

Notice that, for any R-affine subspace L C R}, there exist ry,...,r;, > 0 such that, if r; > 7}
for 1 <i < n, then L is generated by the R-affinoid polytope L N {t € R’fr‘ti <r; for 1 <i<n}.

For an R-affinoid polytope V' in RY, let Ay, r denote the Fi-algebra of continuous functions
V' — Ry which are the restrictions of functions from A™(Rz,) = R[T},...,T,]. It is a Banach
R-algebra with respect to the supremum norm || f|| = max f(x). One evidently has p(f) = || f]| for
all f € Ay g and, in particular, there is an isometric isomorphism Ay, g = /TV/ r- If R is an Fy-
subfield of R that contains the coefficients of the terms from the equalities that define the R-affine
space generated by V, then V' is also an R’-affinoid polytope, and one has Ay /r @r' R = Ay/R-
Since one can find such R’ with finitely generated group R, the R-algebra Ay g is finitely presented
(see Proposition I.1.6.1). For example, if V' is the R-affinoid polytope defined only by the inequalities
t; < r; with 7, > 0 for all 1 <4 <n, then Ay, g is isometrically isomorphic to the Banach R-algebra

R{r7™,...,r; T, }.

r'n

4.1.3. Proposition. Let V' be an R-affinoid polytope in R'}. Then

(i) the canonical map V' — M(Ay,r) is a homeomorphism;

(ii) Ay, g is an R-affinoid algebra with Ay g = EV/R;

(iii) Ay, is strictly R-affinoid if and only if V' can be represented as the intersection of an
R-affine subspace with a set {t € Rmti <r; for 1 <i<n} with allr; € VR.

Proof. (i) It suffices to verify that every bounded homomorphism x : Ay,r — Ry is of the
form x(f) = f(x) for some point € V. Let x = (x1,...,x,) be the point of R} with z; = x(t;),
where t; is the restriction of the i-th coordinate function. Suppose V' is defined by equalities f; = g;

and inequalities t; < r;, where f;,g; € R[T1,...,T,], 7 > 0,1 < j <mand 1 <i <n. One has
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fj(z) = gj(x) since x is a homomorphism, and ¢;(x) < r; since x is bounded. It follows that z € V.
Since x(f) = f(z) for all f € R[T1,...,T,], the required fact follows.

(ii) Assume that V' is the intersection of an R-affine subspace with a closed subset U = {t €
Rf{_‘ti <riforalll <i<n}. We claim that the canonical map ¢ : Ay r = R{r7 ™y, ...,7 T} —
Ay/r is an admissible epimorphism. Indeed, this map induces a bounded bijection of Banach R-
algebras Ay r/Ker(¢) — Ay, which, in its turn, induces a homeomorphism between their spectra,
It follows that this bijection is isometric with respect to the spectral norm, and the claim follows
from Proposition 2.4.5. The isomorphism Ay, g = A\V/ R is evident.

(ili) We change the representation of V' as the intersection of an R-affine subspace with a
closed subset U as in (ii) in the following way. If the coordinate function ¢; is identically zero at
V', we replace the inequality ¢; < r; by the equality ¢; = 0 and the inequality ¢; < 1. Otherwise,
we replace 7; by the maximal value of ¢; at V', which is p(t;). Thus, if Ay g is strictly R-affinoid,
then r; € m, by Proposition 2.2.7. Conversely, if r; € \/@ for all 1 < i < n, the same
proposition implies that R{r; AT ,r 1T, } is strictly R-affinoid and, therefore, so is Ay since

it is a quotient of the latter. "

An R-affinoid polytope possessing the equivalent properties of Proposition 4.1.3(iii) is said to
be strictly R-affinoid. 1t follows from Proposition 4.1.2(ii) that, if V' is strictly R-affinoid, then so
is 171 for every I € Z(V'). An R-polytopal algebra is said to be strictly R-polytopal if it is isomorphic
to an algebra of the form Ay, g for a strictly R-affinoid polytope V.

4.1.4. Corollary. For an R-affinoid polytope V in R, let Ry denote the F-subfield of R
generated by the spectral norms p(f) of elements f € Ay, . Then

(i) the quotient group Ry, /R* is finitely generated;

(ii) V' is strictly R-affinoid if and only if the group Ry, /R* is torsion (and therefore finite).

Proof. We may assume that V' # {(0,...,0)}. Let V be the intersection of an R-affine
subspace with the closed subset {t € R’}r‘ti <r;for 1 <i<n}.

(ii) If the group R} /R* is torsion, then any strictly Ry-affinoid polytope is automatically
strictly R-affinoid. Conversely, assume that V is strictly R-affinoid, i.e., the above representation
of V can be found with r; € v/R*. In this case V is an Rz -polytope and, by Proposition 3.1.1, for
every nonempty element I € Z(V) the coordinates of vertices of the generalized polytopes V; are
contained v/ R*. Since any bounded linear function on V] takes its maximum at a vertex, it follows
that the quotient group R, /R* is finite.

(i) Let R denote the R-subfield of R generated by the numbers ;. Then V is a strictly
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R-affinoid polytope and, by the fact already established, the quotient group ﬁ’{/ / R* is finite. Since
the quotient group fi*/ R* is finitely generated, the required statement follows. "

Let V' be an R-affinoid polytope in R, and let D be the {0, 1}-vector subspace of R’} that
corresponds to the R-affine space L C R/} generated by V. Then the recession cone U = rec(V)
(see Definition 3.3.6) coincides with the set U = {t € D’ti <1 forall 1 <i<n} and, in particular,
U is a {0, 1}-affinoid polytope in R’}. Let Ay denote the corresponding {0, 1}-polytopal algebra
Ayyo,1y, and let Ay denote the quotient Ay, r/R* provided with the trivial norm.

4.1.5. Proposition. There is a canonical isomorphism of Banach F1-algebras j\/ 5 Ap.

Proof. Let E be the kernel of the canonical surjective homomorphism R[T},...,T,] — Ay :
f— f|v If for elements f,g € F1[T1,...,T,] one has (af,bg) € FE with a,b € R*, then f’U = g‘U.
This means that the canonical surjective homomorphism Fq[T},...,T,] — Ay goes through the
surjective homomorphism Ay — Ay. That the latter is an admissible epimorphism is clear and,
in particular, U = M(Ay) is embedded in M(Ay ). Thus, to prove the required fact, it suffices to
show that U = M(Ay).

Suppose that z € M(Ay ) NW; for some I C {1,...,n}. If I € Z(V), then clearly x € rec(V7).
Assume therefore that I ¢ Z(V), i.e., Vi = 0. If V; = (), then the Zariski ideal of Ay generated
by t; (the image of T; in A) for some ¢ ¢ I is trivial, i.e., the element ¢; is invertible in Ay . Then
it is also invertible in Ay, which contradicts the inclusion x € Wy, It V; # (), then the function
J = I1Lie; ti is equal to zero at all points of V. This implies that (f,0) € E, which again contradicts

the inclusion = € W7j. "

For an R-affine subspace L C R, let Ay /p denote the F;-algebra of continuous functions
L — R which are the restrictions of functions from A"(Rz,) = R[T1,...,T;,]. It is a reduced
finitely generated R-algebra which is free as an R-vector space. If L is generated by an R-affinoid
polytope V' C R}, then there is a canonical isomorphism of R-algebras Ay, /g 5 Ay /r- For a finitely
generated R-algebra A, we set X = Spec(A) and denote by X2 the set of all homomorphisms of
R-algebras | | : A — R4 provided with the weakest topology with respect to which all functions
X — Ry of the form | | — [f| with f € A are continuous. If A = Ay /g, there is a canonical
homeomorphism L = X", If A is arbitrary, then any system of generators fi, ..., f,, of A over R

gives rise to a continuous map A*" — R/ that identifies X*" with an R-affine subspace of R'".

4.1.6. Proposition. Let P be an (R, )z, -polytope in RY'. Then there exists a {0,1}-
affinoid polytope V in R’ such that the canonical projection R'T™ — R™ @ (t1,..., tyin) —

(t1,...,tm) induces a surjective map with connected fibers V. — P.
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Proof. The polytope P is defined by a finite set C'(P) of inequalities of the form ¢/ -... ¢t <
rt{t ... - tim. We may assume that the set C(P) includes the inequalities t; < r; with r; # 0 for
all 1 <7 < m, and let S(P) be the subset of the inequalities from C(P) which are not of the latter
form and in which either both sides are not identically equal at P or r # 1. If n is the cardinality of
S(P), we define a polytope V in R}"™™ by the inequalities from C(P)\S(P) and, instead of every
inequality ¢} - ... - the < pt]* . - tlm from S(P), the equality " ... ths =¢71 . . - t¥mg and
the inequality t,,+1 < 7, where s is the corresponding additional variable in RTJF”. Then V is a
{0, 1}-affinoid polytope, and it is easy to see that the canonical projection RT+” — R induces
a surjective map V' — P. It remain to verify that the fibers of the latter map are connected. For
this notice that V' is the result of the n-th step of the following construction. Given an inequality
from S(P) as above, let Q be the polytope in R7"" by the other inequalities from C(S) and the
equality ¢{" -... - th =t .. .- t/ms and the inequality ¢,,4+1 < 7. Since |S(Q)| < |S(P)], it suffices
to verify that the fibers of the canonical projection ¢ : Q — P are connected.

Let V* be the open subset {(t1,...,tm) € V|t; # 0 for all 1 <i < m with v; # 0}. We claim
that o= (V*) = V* and o~ 1(t) = [0,7] for all pointst € V\V*. Indeed, the first bijection is trivial.
Ift € V\V*, there exists 1 < i < m with v; # 0 and ¢; = 0 and, therefore, t{" -...-t#m = (. Since all
other inequalities from C'(S) do not contain the variable s, it follows that all points (t1,...,tm,s)

with s < r belong to Q, i.e., o~ 1(t) = [0,7]. .

4.2. Comparison of properties of V' and Ay/g. In this subsection, V' is an R-affinoid
polytope in R’}. Since the Fi-field R is fixed, we use the notation Ay instead of Ay /g.

Consider the canonical continuous map V = M(Ay) — Zspec(Ay ) that takes a point z € V
to the Zariski prime ideal Zker(| |,). For a Zariski prime ideal p C Ay, we set Vp = {z € Vip C
Zker(| |,)} and Vp = {z € M(Av)|p = Zker(| |;)}. The former is the homeomorphic image of the
canonical map M(Ay /p) = V = M(Ay ), and the latter is the preimage of p under the above map
V — Zspec(Ay).

4.2.1. Lemma. (i) The correspondence p +— J = Jp = {z}tl ¢ p} gives rise to an isomorphism
of partially ordered sets Zspec(Ay) — Z(V);

(ii) one has Vp = V; and Vp =Vy;

(iii) the projection 7; : V' — V; coincides with the retraction mp : V' — Vp.

Proof. Let f be the product of ¢;’s with 7 € Jp. Then f & p and, in particular, the spectral
radius of the image f in Ay /p is positive. This implies that there exists a point * € M(Av /p) = Vp
with f(z) # 0 and, therefore, t;(x) # O for all i € Jy. The latter means that = € VJp and, in
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particular, Jp € Z(V). It follows also that 2 € Vp if and only if t(z) # O for all i € Jp, i.e., V, = Vjp.
The remaining equality in (ii) and the statement (iii) are now trivial. Let now J € Z(V'), and let
x € V;. Then the Zariski kernel of x, is the Zariski prime ideal p generated by the elements ;
with @ & J. It follows that J = Jp. .

Since Vp = VJp, it follows that Vp is an R-affinoid polytope in RY}.

4.2.2. Corollary. The canonical map Ay — Avp gives rise to an isometric isomorphism of
Banach R-algebras Ay /p = Avp-

Proof. The map considered is evidently surjective. Furthermore, if f ¢ p, then f(z) =
f(mp(z)) for all points x € V and, in particular, that the supremum norm of f is achieved at
Vp. This implies that the map considered is isometric. Finally, assume that, for a pair of nonzero
elements f,g € Ay, one has f(z) = g(z) for all z € V. Then for each point z € X one has
f(z) = f(mp(x)) = g(p(x)) = g(z). It follows that f = g, i.e., the map considered is injective. =

4.2.3. Corollary. The following are equivalent:
(a) the R-algebra Ay has no zero divisors;
(b) the set Z(V') has a unique maximal element.

Proof. The statement follows from Corollary 1.2.2.3(ii) and Lemma 4.2.1(i). .

4.2.4. Proposition. The following are equivalent:

(a) the R-algebra Ay is an Fi-field;

(b) the set Z(V) consists of only one element, i.e., V.C Wy for some I C {1,...,n};

(c) there exist a subset I C {1,...,n} and positive integers {i; }icr such that all points of V
satisfy the equalities [[,., t}" = p withp € R* and t; =0 fori ¢ I.

Proof. The equivalence (a)<=-(b) and the implication (c)==(b) are trivial. To prove the
implication (b)==(c), we may assume that I = {1,...,n}, ie.,, V C (R%)". Assume V is defined
by equalities p; f; = ¢qjg; for 1 < j < m and inequalities ¢; < r; for 1 <4 < n, where f; and g, are
monomials in t1,...,%,, p; € R and r; > 0. Notice that, since V' C (R} )", then p;,q; > 0 for all
1<j<m.Onehas V= {t ¢ P‘ti < r; for 1 < i < n}, where P is the affine subspace of (R )"
defined by the equalities p; f; = ¢;g; for 1 < j < m, and so the assumption implies that P is closed

(R%)™. The required property (c) now follows from Proposition 3.2.4. .

Let Iy denote the idempotent F;-subalgebra 4, of Ay . By Corollary 1.2.1.6, Iy is finite and,
therefore, any Banach norm on it (and, in particular, that induced from Ay ) is equivalent to the

trivial one.
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4.2.5. Proposition. (i) Given a nonzero idempotent e € Ay, there is a unique minimal

connected component U, with e‘U =1, and, for a connected component U’, e

ifU, <U’;

i = 1 if and only

(ii) the map e +— U, induces an isomorphism of partially ordered sets Iy = Iy/\{0} = mo(V).

Proof. (i) The idempotent is equal to 0 or 1 at each point of V. Since {z € Vl]e(z) = 0} =
{z e V}e(a:) < 1}, it follows that e is identically equal to 0 or 1 at every connected component of V.
Furthermore, let e be represented by a monomial ptf™ -... -t/ with p € R*, and set [ = {Z‘,Uz > 1}.
From the above remark it follows that, given a connected component U of V, e’U =1,if I C Iy,
and e‘U =0, if I ¢ Iy. The required facts now follow from Lemma 3.4.2.

(ii) The statement (i) straightforwardly implies that the map considered is injective and, if
e < f, then U. < Uy. Conversely, let U be a connected component of V', and set I = Iy. Since
V; = Uy is compact, Proposition 4.2.4 implies that there is a monomial ¢# with p; > 1 if and only if

i € I and such that all points from V; satisfy the equality t* = p € R*. If eyy denotes the restriction

of p~'t* to V, Lemma 3.4.2 implies that, for a connected component U’ of V, ey ;= 1if and
only if U < U’. Tt follows that the idempotent ey is really determined by U and U,, = U. In

particular, the map considered is surjective. It remains to show that, if U < U’, then ey < ey-.

By the characterization ey, one has ey = 1, and we see that the product eyeys possesses the

U
property that characterizes ey.. It follows that eyey: = eys, ie., ey < eyr. "
4.2.6. Proposition. The following properties of V' are equivalent:
(a) Ay is an integral domain;
(b) V is irreducible;
(c) iff‘u = g}u for f,g € Ay and a nonempty open subset U C V', then f = g.
Furthermore, in this case the dimension of V is equal to the (rational) rank of the quotient group

F*/R*, where F is the fraction Fy-field of Ay .
Notice that the group F* is torsion free, but the quotient F**/R* may have torsion.

Proof. (a)==(b). By Corollary 4.2.3, the set Z(V') has a unique element maximal with
respect to the inclusion relation, and we may assume that it coincides with {1,...,n}, i.e., V #£0.
Assume that U = V does not coincide with V. If V = L N P, where L is the R-affine subspace of
R" generated by V and P = {t € R’fr‘ti <r;for 1 <i<n}. Then U = Lnp, by Proposition
4.1.2. This implies that the R-affine subspace L does not coincide with L and, therefore, there
exists a pair (F,G) of terms in R{r;'Ty,...,7 'T,} which are equal at U but are not equal at

all V. If f and g are the images of F' and G in Ay, and h is the product of the images of all
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coordinate functions, we get fh = gh. Since Ay is an integral domain, it follows that f = g, which
is a contradiction.

(b)=(c). We may assume that V = V. Suppose that f!u = g‘u for f,g € Ay and a
nonempty open subset & C V. Since V = ?, the open subset &/ C V has nonempty intersection
with V. Tt follows that f’f/ = g‘v and, therefore, f = g.

(c)==(a). Suppose that fh = gh for elements of Ay with nonzero h. ThenU = {x € V|h(z) #
0} is a nonempty open subset of V', and one has f ‘ u= g!u. It follows that f = g.

To prove the last statement, we again may assume that I = {1,...,n}. Let L be the R-affine
subspace generated by V. It has the same dimension as V, and the group F* coincides with the
group of restrictions of functions of the form ¢ = (t1,...,t,) + rth = rt* ... .-th» to L with r € R*
and p; € Z. If L is defined by equalities ) = r; for r; € R*, p9) € Z" and 1 < j < m, then the
dimension of L is equal to the rank I of the integral matrix (uz(.j ))199%13 j<m- After a permutation
of the coordinates we may assume that the projection to the first l-coordinates (R%)™ — (R* )’
gives rise to an isomorphism L = (R%)!. It follows that the rank of the group F*/R* is at least [.
It follows also that each t; with [+ 1 < j < m is expressed in the form r¢{* - ... - ¢/ with r € R*

and v; € Q for 1 <4 <. This implies that the rank of F*/R* is at most [, i.e., they are equal. =

Let V be an irreducible R-affinoid polytope in R, and assume for simplicity that V #0,
ie., V = V. The recession cone U = rec(V) is a strictly {0, 1}-affinoid polytope in R’} with
Z(U) = Z(V), and U is the recession cone rec(V) of V. By Proposition 4.1.8, there is an isomorphism
of strictly {0, 1}-polytopal algebras jv 5 Ap. Thelater is an integral finitely generated F;-algebra.
In §1.1.3 we associated with Ay a convex rational polyhedral cone C'in Ng = N ®z R, where N is
the multiplicative group of the fraction field of Ay written additively. Notice that since Af;, = {1},
the cone is strictly convex, i.e., C N (—C) = {0}. Recall also that, by Lemma 1.1.3.3, there is a
canonical isomorphism of partially ordered sets Zspec(Ay) — face(C). Let Ng be the dual space
of Ng, and CV the strictly convex rational polyhedral cone {v € Ng|(v,u) > 0}. It is easy to see
that the map that takes a point v € C'V to the homomorphism of F;-algebras x, : Ay — [0, 1] with
Yo(a) = e~ for a € Ay gives rise to an isomorphism of strictly convex cones CV = U.

Turning back to the ambient space R, we see that there is a bijection Z(U) = face(U)
that reverses the partial orderings on both sets and takes an element I € Z(U) to the face F =
{(aq,...,ap) € U|ozi =1foriel}.

4.2.7. Corollary. In the above situation, let V®) be the fiber of the canonical projection

77 :' V. — Vi over a point x € V;. Then:
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(i) V(@) is an irreducible R -affinoid polytope;
(ii) the recession cone of V®) is canonically isomorphic to Fy;

(iii) dim(V®)) = dim(Ey).

Recall that, by Corollary 1.1.3.5, dim(F 1) = m, where m is maximal for which there is a strictly

increasing sequence Ip =1 C I; C ... C I, ={0,...,n} of elements of Z(V).

Proof. The statement (i) and (ii) are trivial. To prove (iii), we notice that I is the minimal
element of Z(V @), and (V®); = {x}. Proposition 4.2.6 implies that A;‘/M/R+ = R’ and that
dim(V®)) and dim(E}) are equal to the Krull dimensions of Ay () /r, and Ap, /r., respectively.

Propositions 4.1.6(ii) and 4.1.8 then imply that both dimensions are equal. .

4.2.7. Proposition. Let p and q be Zariski prime ideals of Ay . Then

(i) there is an isomorphism of Banach R-algebras Ay /Il = A% and, in particular, Ay /Ilp
is an R-polytopal algebra;

(ii) the dimension of Vp is equal to the rank of the quotient group k(p)*/R*;

(iii) Vp C VT:‘ if and only if Ilq C llyp; in particular, there is a canonical bijection between the
set of minimal prime ideals of Ay and the set of irreducible components of V.

Proof. (i) First of all, if (f,g) € Ip\(p x p), then there is h € p with fh = gh. Tt follows
that f(z) = g(x) for all z € Vp and, therefore, the homomorphism considered is well defined
and surjective. We claim that it is bijective. Indeed, assume that f(x) = g(z) for all x € VT;,
If the functions f and g do not lie in p, they are expressible in the coordinate functions ¢; for
i € J = Jp (see Lemma 4.2.1). If h is the product of all coordinate functions ¢; with i ¢ J
(ie., t; € p), then fh = gh. Indeed, let z € V;. If J ¢ I, then h(z) = 0. If J C I, then
f(z) = f(rp(x)) = g(mp(x)) = g(=). Tt follows that (fh)(x) = (gh)(z) for all x € V and, therefore,
fh = gh, and the claim follows. Furthermore, the image of M(Ay /Ilp) in V' contains VTJ By
Proposition 4.2.6, it is irreducible. Since it is contained in Vj, it follows that M(Ay /IIp) = VTJ
The required statement now follows from Corollary 2.4.2.

(ii) and (iii) follow from (i) and Proposition 4.2.6. ]

4.2.8. Corollary. Let T be a subset of Z(V') which is preserved under intersection and
contains all I € Z(V') for which V7 is an irreducible component of V. Then there is an isomorphism

of Banach R-algebras Ay = [[5 Az .

4.2.9. Corollary. The following properties of V are equivalent:

(a) Ay is quasi-irreducible;

54



(b) V is quasi-irreducible;

(c) iff‘u = g}u # 0 for f,g € Ay and a nonempty open subset U C V', then f = g.

Proof. (a)=(b). Given a Zariski prime ideal p C Ay, one has Ay /p = Avp, by Corollary
4.2.2, and Ay /Il = A%, by Proposition 4.2.7(i). Since Iy = A(Ay) U (p X p), then Ay /p =

Ay /Ty and, therefore, Vp = VTJ, i.e., V is quasi-irreducible, by Lemma 3.4.2.
(b)=(c). We may assume that U C ‘V/TJ for an irreducible component VTJ of V. Then f ‘% =

g’% and f,g ¢ p. Since Vp = VTJ, it follows that f = g in Ay /p and, therefore, f = g in Ay.
(c)=>(a). It suffices to verify that IIy = A(Ay) U (p x p) only for Zariski prime ideals p for

which pr is an irreducible component of V. Suppose that (f,g) € Iy for f,g & p. Then fh = gh

for some h ¢ p and, therefore, f |% = g‘% Since pr contains a nonempty open subset of V, it

follows that f = g. .

4.3. Faces and cells of an R-affinoid polytope. A face of an R-affinoid polytope V C R}
is a nonempty closed subset F of the form Vy = {t € V|f(t) = p(f)} with f € Ay . For example,
V itself is a face since it coincides with V;. The set of faces face(V') of V' is not changed if V is
considered as an R’-affinoid polytope for an Fi-subfield R C R" C Ry. Notice that Vy is an R’
affinoid polytope where R’ is the R-subfield of R generated by the number p(f) and, in particular,
if V is strictly R-affinoid, then so are all faces of V. Because of this, we again use the notation Ay
instead of Ay p.

The intersection V¢ NV, is nonempty if and only if p(fg) = p(f)p(g), and in this case it
coincides with the face Vy,. In particular, any nonempty intersection of two faces is a face. Notice
also that, if F' is a face of V, then any face of V' which is contained in F' is a face of F' (see also
Lemma 4.3.4). The set of faces of V' is denoted by face(V'). The following lemma implies that this

set is finite.

4.3.1. Lemma. (i) Given a face F of V, Fy is a face of V; for every I € Z(F);

(ii) given I € Z(V), for every face U of Vi there exists a face F of V with Fr = U.

Proof. The statement (i) is trivial, and to verify (ii) recall that any face of a polytope in an
affine space is defined by the same inequalities but with some of them turned to equalities. Suppose
V' is represented as the intersection of an R-affine subspace of R’ with a set {t € R’fr‘ti < r; for
1 <i < n}for r; > 0. Then there is a subset J C I such that U = {t € V{|t; = r; for i € J}. Then
F={teV|[licsti=Ilic, i} is a face of V with F; = U. .

4.3.2. Corollary. IfV is irreducible, then face(V') = face(V). .
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The subset of one point faces (the vertices) of V' is denoted by ver(V).

4.3.3. Proposition. (i) The set ver(V) is the Shilov boundary of Ay, i.e. a unique minimal
subset of V' at which each function from Ay achieves its maximum;
(i) if Vi, ..., Vi

m

are the irreducible components of V', then

ver(V) = U Ver(VIj)\ U Ti; (V1,)

-y

Proof. Let I" denote the set on the right hand side of (ii). First of all, we claim that for every
point xg € I' there is a function f € Ay that achieves its mazimal precisely at xo. Indeed, suppose
Tg € ver(VIj). Then there exists a function f € Ay in the variables ¢; for ¢ € I; such that f(z) <r
for all z € V7, and some r > 0 and {zo} = {z € V7, | f(#) = r}. Furthermore, if € Vi]j\‘v/]j, then
x = 717(y) for some proper subset I C I; and a point y € VI]., and there exists a point z € reC(VIj)
with z; = 1 for i € I and 2z; < 1 for ¢« € I. It follows that f(z) = Slggo f(yz®) < r. Finally, if
r € V\Vp,, then z € V, for some k # j and, therefore, f(x) = f(77,(x)) < r. Thus, the claim
follows and, in particular, I' C ver(V'). To prove the lemma, it suffices to show that every nonzero
function f € Ay achieves its maximum at I'. It is clear that it achieves its maximum at a point
x € Ver(f/fj) for some 1 < j <m. If x € 74, (V1,) for some k # j, then f(y) = f(x) for every point
y € Vi, with 77,(y) = . Tt follows that f achieves its maximum at a point from ver(V7,). Since

I; C I}, we can continue this process and find a point from I' at which f achieves its maximum. =

4.3.4. Corollary. An R-affinoid polytope V is strictly R-affinoid if and only if all vertices of
V have coordinates in v R. .

4.3.5. Proposition. If I' is a face of V', then any face of F is a face of V.

4.3.6. Lemma. Let F' =V, be a face of V. Then for every function f € Ay with f‘F #0
there exists ko > 1 such that Vi C F for all k > kq.
Proof. Let yi, ...,y be the vertices of V outside F. Then g(y;) < p(g) for all 1 <i < m. It

follows that there exists kg > 1 such that, for every k > kg, one has

(")) = Flwo) (“’(y”)k p(@)* < pr(o(g)* = pr(fa¥)
’ “\Uplg) ’

where pr(f) = max f(z). Since the function fg”* takes its maximum at ver(V), it is achieved at
ver(V) N F and, in particular, the right hand side of the above inequality is equal to p(fg*). We
claim that Vige C F for all k > ko. Indeed, if z & F, then (fg"~')(z) < p(fg"™ ") = pr(fg*)
and, therefore, (f¢*)(x) < p(fg*), which implies the claim. .
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Proof of Proposition 4.3.5. Let U be a face of F, and let R’ be the F;-subfield of R
generated by R and p(g). Then there exists a function ' € Ap/p with U = {z € F‘f’(:):) =
pr(f')}. The function f’is the restriction of a function from Ay /g/. The latter has the form r f for
some 7 € R" and f € Ay = Ay/r and, therefore, one has U = {z € F‘f(a:) = pr(f)}. We claim
that U = Vygr for all k > ko, where ko is the number provided for the function f, by Lemma 4.3.6.
Indeed, the inclusions U C Vg x C F are clear. If x € F\U, then f(z) < p(f) and g(z) = p(g) and,
therefore, z & Vi gx. .

The cell of a face F' is the subset F consisting of the points x € F' for which F' is the minimal
face that contains x, i.e., F is the complement of the union of all strictly smaller faces. It is an
open subset of F. A cell of an R-affinoid polytope V is a cell of a face of V. Notice that V is a

finite disjoint union of all of its cells.

4.3.7. Proposition. The cell F of a face F is always nonempty and connected, and it lies in

the minimal connected component of F'.

4.3.7. Lemma. (i) IfFENV; # (), then F N V; is the cell of the face F; of Vi;

(i) if C is a cell of V; and F is the minimal face of V that contains it, then C = F N Vj.

Proof. (i) Suppose a point = € F N Vp lies in the cell U of a face U of V;. Since Fy is a face
of V7 that contains the point z, it follows that U C F;. By Lemma 4.3.1(ii), there exists a face F’
of V with U = F 7, and we may assume that F” is the minimal face of V' with the latter property.
In particular, F/ C F. On the other hand, since F' is the minimal face of V' that contains the point
z, it follows that F C F’, i.e., F = F' and U = F7.

(ii) Since Fy is a face of V7, it follows that, for any point € C, F is the minimal face of V
that contains z, i.e., C' C FNV;. It follows also that C = U for U = F;. The required equality

now follows from (i). .

Proof of Proposition 4.3.7. Proposition 4.3.5 reduces the situation to the case F' = V. Let
I be the minimal element of Z(V') (with respect to the inclusion relation), and let  be a point from
the cell of the maximal face of V; = V; (which is V7 itself). We claim that any face F of V that
contains the point x coincides with V. Indeed, F must contain V7. But F = {y € V|f(y) = p(f)}
for some nonzero function f € Ay . Since V; C F, it follows that f is expressed in the variables ¢; for
i € 1. Then for any point y € V one has f(y) = f(71(y)) = p(f), i.e., the function f is a constant
and F' = V. Thus, V is nonempty. that it is contained in the minimal connected component of V'

follows from Proposition 4.2.5.
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Suppose now that the cell V is not connected, and let J be a minimal subset of {1,...,n} with
the property that the intersection VN V; is nonempty and contained in a connected component
of V different from that of V;. Since V is contained in the minimal connected component of V, it
follows that V) is not compact and, in particular, there exists a point z € rec(Vy) with z; = 1 for
i € L and 2z; < 1 for i € J\L, where L is a proper subset of J that contains I. If y € V;, then
for any function f € Ay and any s > 0 one has f(yz°) < f(y). If, in addition, y lies in vVnvy,
then f(y) < p(f) for any nonconstant function f on V and, therefore, all points yz° and their limit

71.(y) lie in V. the latter contradicts the assumption on the minimality of J. n

Thus, if cell(V') denotes the set of cells, then the correspondence F' — F gives rise to a bijection
face(V) = cell(V)). The inclusion partial ordering on the former set defines a partial ordering on
the latter set. Notice that ver(V') is precisely the subset of minimal elements of cell(V'), but a one

point cell is not necessarily a vertex. If V is irreducible, then cell(V) = cell(V').

4.4. A property of R-affinoid polytopes. For an R-affinoid polytope V' C R, we
introduce a partial ordering on the algebra Ay as follows: f < g if f(x) < g(x) for all x € V.
Notice that, if f < g, then fh < gh for any function g € Ay .

4.4.1. Proposition. Any set of functions in Ay, which tends to zero with respect to the filter

of complements of finite subsets, has a finite number of maximal elements (with respect to <).
Notice that any such set is at most countable.

Proof. Let F = {fr}r>1 be such a set, and consider an admissible epimorphism
R{Tl_lTl,...,T‘ngn} — Ay .

We can find a map o in the opposite direction which is a section of ¢ and possesses the property
that there exists a constant C' > 0 such that p(o(f)) < Cp(f) for all f € Ay. It follows that the
functions {o(fx)}k>1 tend to zero as k — oo. Thus, it suffices to verify the required fact for the
R-affinoid polytope V = [0,71] x ... x [0,7,] with Ay = R{r{'T},...,r;'T,}. Notice that, for
[ =at* € Ay, one has p(f) = art. If, for u € Z7, the set contains a nonzero function of the form
at*, there is such a function with the maximal coefficient a, and we can remove from F all other
functions of the same form. We may therefore assume that, if fi, = at* and f; = bt*, then k = .
We may also assume that F does not contain constants. Furthermore, let f; = akt“(k), and fix a

monomial order on the set of monomials in T7,...,T, as in §l.1.4. After a permutation of the set

(1) (2)
F, we may assume that ™" <1 < .
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Let [ be maximal with the property that p(f;) > p(fx) for all k > 1. We claim that, for every
k # 1 with uz(»k) > ugl) for all 1 < i < n, one has fr < f;. Indeed, the assumption implies that
" < T“(k), i.e., k > [ and, therefore, alr“(” > akr“(k). It follows that alm“(” > akx“(k) for
all x € [0,r1] x ... x [0,7,], and the claim follows. Notice that the claim immediately implies the
required fact for n = 1.

Assume that n > 2 and the required fact is true for n — 1. By the above claim we already know
that fr < f; for all k # [ with " > Y for 1 <i<n. Given1<i<nand0<j<pu -1,
let F; ; denote the set of all functions f in the variables ¢q,...,t;—1,ti41,...,t, for which ftf e F.
The functions from F; ; tend to zero with respect to the filter of complements of finite subsets
and, by induction, the set m(F; ;) of maximal elements of F; ; is finite. It follows that the set of
maximal elements of F is contained in {f;} UJm(F;;)t!, where the second union is taken over

1<i<nand 0<j< ,ugl) — 1, and, therefore, it is finite. n

§5. Further properties of K-affinoid algebras

Let K be a valuation Fi-field, and A a (strictly) K-affinoid algebra. Any admissible epimor-
phism K{r 'T1,...,r T, } — A gives rise to a homeomorphism between the spectrum X = M(A)

of A and a (strictly) |K|-affinoid polytope in R'}. In this section we deduce properties of K-affinoid
algebras from those of |K|-affinoid polytopes.

5.1. The |K|-polytopal algebra associated to a K-affinoid algebra. Let A be a (strictly)
K-affinoid algebra.

5.1.1. Proposition. (i) Ais a (strictly) |K|-polytopal algebra;

(ii) there is an isomorphism of partially ordered sets Zspec(A) = Zspec(A) : p — p;

(iii) for every Zariski prime ideal p C A, one has Z/\p > AJp.

Proof. The above admissible epimorphism gives rise to a homeomorphism between M (A)
and a |K|-affinoid polytope V' in R’ and a bounded bijective homomorphism A Ay k|- Since
it is isometric with respect to the spectral norm, it is an isomorphism, by Corollary 2.4.2. The
statement (i) follows from the facts that the maps M(A) — Zspec(A) and M(A) — Zspec(A) are
surjective (Corollary 2.2.4) and M(A) 5 M(A). The statement (iii) is trivial. .

5.1.2. Corollary. Let R be an Fq-subfield of Ry. An R-affinoid algebra A is R-polytopal if
and only if A 5 A. "
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5.1.3. Corollary. In the situation of Proposition 5.1.1, the following properties in (i) and (ii)
are equivalent:
(i) (a) A has no zero divisors;
(b) A/zn(A) has no zero divisors.
(i) (a) A is an Fy-field;
(b) A/zn(A) is an Fq-field;

(c) A is a local artinian F;-algebra. .

We say that the space X = M(A) is irreducible (resp. quasi-irreducible) if it possesses this
property as a |K|-affinoid polytope or, equivalently, the |K|-polytopal algebra is irreducible (resp.
quasi-irreducible). The set of irreducible components of X will be denoted by Irr(X).

For a finitely generated K-algebra B, we set ) = Spec(B) and denote by Y*" the set of all
homomorphisms of Fi-algebras | | : B — R4 that extend the valuation on K. We provide }*"
with the weakest topology with respect to which all functions Y** — R of the form | | — |f]
with f € B are continuous. Any system of generators fi,..., fi,, of B over K gives rise to a
continuous map Y** — R that identifies Y*" with an |K|-affine subspace of R7’. Notice that
there is a continuous map Y** — )Y : y — y that takes a point y € Y?", that corresponds to a
homomorphism | |, : B — R, to the point y € ), that corresponds to the prime ideal Ker(]| |,).

For example, if Y = Spec(ﬁ), then the above admissible epimorphism gives rise to a homeo-
morphism between *" and the |K|-affine subspace of R generated by the associated |K|-affinoid
polytope X (see the end of §4.1). The |K|-affine subspace X" for X = Spec(A) may be bigger (see
Remark 5.1.6(i)).

5.1.4. Proposition. The canonical maps X — Y*"* — X*" — X give rise to isomorphisms
of partially ordered sets T4 = mo(X) = mo(X*™) 5 7o (V™) 5 mo(X).

Proof. The statement follows from Propositions 1.3.5.1 and 4.2.5. .

For a Zariski prime ideal p C A, we set Xp = {z € X|f(z) =0 for all f € p}, Xp ={z €
Xp|f(x) #0 for all f ¢ p}, and XB) = X,

5.1.5. Proposition. (i) There is an isomorphism of |K|-polytopal algebras A7ﬁp = A\/Hg
(see Proposition 5.1.1(ii));

(i) M(A/Mp) = XP).

Proof. By Corollary 2.5.4, the |K|-polytopal algebra A7ﬁp is an integral domain. It follows
that its spectrum, which coincides with that of A/ Iy, is irreducible. Since it contains Xp and
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is contained in Xp, we get (ii). Furthermore, by Proposition 4.2.7(i), the spectrum of the |K|-
polytopal algebra E/H/p\ also coincides with }p. It follows that the homomorphism of (ii) is

bijective, and the required isomorphism follows. "

5.1.6. Remark. (i) Let A = F{T,T"'}. Then X = {(1,0)} € R} and X" is the
affine line {(l,t)‘O <t < oo} C R3. Notice also that A =Fy, e, for Y = Spec(fT) one has
yer={(1,0)} = X.

(ii) If, for two Zariski prime ideals p,q C A, IIq C Ilp then, of course, Xp C Xiq, but the
converse implication is not true in general. Indeed, let A be the Fi-affinoid algebra which is the
quotient of Fy{T}, T, *, T2} by the ideal generated by the pair (TyT%,Ts), and let f and g be the
images of T} and T, in A. The spectrum X = M(A) is naturally identified with the interval
{(1,£)[0 <t <1} C R%. The only Zariski prime ideals of A are the zero ideal 0 and the maximal
ideal m = A\A*. (Notice that A* is the cyclic group generated by the element f.) One has
X = {(1,t)[0 < ¢t <1} and Xm = Xm = {(1,0)}. In particular, X, C Xo. On the other hand,
the prime ideal II,, = A(A) U (m x m) does not contain IIy = A(A) U {(f™, ™) }m.nez. By the
way, in this example A5 F.[T,] is an integral domain, but A is not irreducible (see Corollary

2.5.4). One also has X = {(1,¢)|0 < t < oo} U{(t,0)[0 < ¢ < oo}.

5.2. Finite Banach modules over a K-affinoid algebra. Let A be a K-affinoid algebra,
and let M be a finite Banach A-module.

5.2.1. Theorem. Given elements f € A and m € M, one of the following is true:

(1) f*m =0 for some k > 1 (i.e., f € zr(0:m));

(2) there exist a unique positive number r such that, for some positive constants C' < C"" and
for all k > 1, one has C'r* < || ffm|| < C"rF.

Furthermore, if A is strictly K-affinoid, the number r from (2) belongs to \/|K*|.

5.2.2. Definition. The spectral radius p,,(f) of an element f € A with respect to an element

m € M is zero in the case (1) and the number 7 in the case (2).

5.2.3. Lemma. The finite Banach A-module M has a finite chain of Zariski A-submodules
No=0C Ny C...C Ny =M which are finite Banach A-modules such that each quotient N;/N;_;
is isomorphic to a Banach A-module of the form A/II, where II is a closed prime ideal of A.

Proof. By Proposition 1.2.7.1(iii), if we disregard the Banach structure, such a chain exists.
Then each Zariski A-submodule is finitely generated and, by Proposition 2.2.8, it is a finite Banach
A-module. By the proof of Corollary 2.4.3, the Zariski A-submodule N; is generated by an element
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m € M such that IT = ann(m) is a prime ideal of A. The homomorphism of A-modules A — M :
f — fm is bounded and, therefore, the prime ideal II which is its kernel II is closed. That the

bijection A/IT — Nj is an isomorphism of Banach A-modules follows from Proposition 2.2.9. "

5.2.4. Lemma. Assume that the K-affinoid algebra A is integral. Then for any pair of nonzero
elements f,g € A there exist positive constants C' < C" such that C'p(f)* < ||f*g|| < C"p(f)*
for all k > 1 (i.e., py(f) = p(f)).

Proof. By Proposition 2.4.1, we may assume that the Banach norm on A coincides with the
spectral norm. Then |[f*g|| = p(f*g) < p(g)p(f)¥, and so it suffices to prove the existence of
C > 0 with p(f*g) > Cp(f)* for all kK > 1. Let x1,...,2, be the points of the Shilov boundary
of A. Since A is integral, every nonzero element of A has a nonzero value at every point x; (see
Proposition 4.3.2) and, therefore, there is a positive constant C' with |g(z;)| > C for all 1 < i < n.

ko) — k A Ak — k -
It follows that p(f*g) = max [(f*g)(z:)| = C max |f(z:)]" = Cp(f)".

Proof of Proposition 5.2.1. Suppose that f & zr(0 : m), and consider a chain of Zariski A-
submodules Ny =0 C Ny C ... C Ny = M provided by Lemma 5.2.3. Then there are ¢,/ > 1 such
that fim € N;\N;_; for all j > [. Let n be an element from N;\N;_; such that A/Tl = N;/N;_ :
g — gn. In particular, since the norm on B = A/II is equivalent to the spectral norm, there are
positive constants C’ < C” such that C'pp(g) < ||gn|| < C"pp(g) for all g € A with (¢,0) ¢ IL. If
flm = gn, then fim = fi~lgn for all j > 1. Tt follows that C'pp(f7~lg) <||f/m|| < C"pp(f’"g)
for all j > [, and the required fact follows from Lemma 5.2.4. As for the last statement, it suffices

to notice that, if A is strictly K-affinoid, then so is the quotient of A by any closed ideal. n

5.3. The reduction of K-affinoid algebras. Let A be a Banach F-algebra. For r € R, we
set A, = {f € Alp(f) =r}U{0} and, for r, s € R’ we define as follows a map m : A, x A, C Ay
for f € A, and g € A,, m(f,g) = fg, if p(fg) = rs, and m(f,g) = 0, otherwise. Then the
direct sum A = EBreRin is an Fi-algebra, called the reduction of A. Notice that Zl is an F-
subalgebra of A. Notice also that A is Zariski reduced and that there is a canonical isomorphism
A/fr\le) 5 A/n(A). If A is quasi-integral, then A is reduced.

There is a map A — A: e fvthat takes an element f € A to zero, if p(f) = 0, and to the
corresponding element of A, ifr = p(f) > 0. If the equality p(fg) = 0 implies that either f =0
or g = 0, then the above map is an isomorphism of Fi-algebras. For example, this is so for any
finite idempotent F-algebra A, and for any Banach F;-algebra whose norm is multiplicative. The

correspondences A — A and A — A; are functorial on A.
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There are canonical maps 7 : M(A) — Zspec(A) and m : M(A) — Zspec(A,), called the
reduction maps, that take a point z € M(A) to the Zariski kernels of the induced homomorphisms
A 7—?@) = H(z) and A; — 7—?@)1, respectively. The latter coincide with the Zariski kernels of
the induced homomorphisms A — f{+ =R, and A (f{+)1 = {0, 1}, respectively. For example,
the set of nonzero elements of the Zariski prime ideal 7 () (resp. 1 (z)) consists of elements f € A
with |f(z)| < p(f) (resp. |f(z)| < p(f) = 1). Notice, that the map m; is the composition of the
map 7 with the canonical projection Zspec(A) — Zspec(A, ).

Let now K be a valuation F;-field. As we already mentioned, one has K — K. One also has
K 1 = KU {0}. Applying the above construction to a K-affinoid algebra A, we get a K-algebra
A and a I?l—algebra A;. Notice that there is a canonical injective homomorphism of K-algebras
A ®z K— A, which is bijective if p(A) C |K|. Notice also that, if A = A’®g K as in Proposition
2.1.3(v), then A = A’ @k K.

5.3.1. Proposition. The K-algebra A s finitely presented.

Proof. By the above remark, it suffices to show that A is finitely generated. Let us fix
an admissible epimorphism K{r{'Ty,...,7 T} — A. It gives rise to a homeomorphism of the
spectrum M (A) with an |K|-affinoid polytope V in R’}. For a monomial F' € F[T1,...,T,] whose
image f in A is not identically zero at V', let o(F') denote the set of all vertices z € ver(V') with
f(z) = p(f). Notice that, for such elements F' and G, one has p(fg) = p(f)p(g) if and only if
o(F)No(G) # 0, and in this case the intersection coincides with o(FG) (here g is the image of G
in A). Notice also that the number of decompositions of a nonconstant monomial F' = T} -. ... Tk»
as an ordered product of nonconstant monomials G- H is equal to A(F) = (u1+1)-...- (un+1)—2.
Let N be the number of pairs (o1,02) of nonempty subsets of ver(V') with empty intersection,
and let ¥ be the finite set of nonzero elements of A which are the images to V of nonconstant
monomials F' with A\(F') < N. We claim that A is generated over K by the elements ffor fex.
Indeed, let f be a nonzero element of A which is, up to an element of K*, the image of a monomial
F=T{"....-TH and assume that A(F) > N. Then there is a decomposition of F' as a product
G - H of two monomials with o(G) No(H) # 0. It follows that for the corresponding elements
g,h € A one has f = gh and p(f) = p(g)p(h), ie., f = 'gviNz in A. It remains to notice that
AMG),A(H) < A(F). .

5.3.2. Corollary. If A is strictly K-affinoid, then the monomorphism A ®%, K — Ais
finite.
Proof. By Corollary 4.1.4(ii), there exists m > 1 such that p(f)™ € |K]| for all f € A. This
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implies that the homomorphism considered is integral. It is then finite because the K-algebra Ais

finitely generated. .

Let X = M(A), and consider the reduction map 7 : X — Zspec(A). For points z,y € X, one
has 7(z) = m(y) if and only if, for any element f € A, the inequality |f(z)| < p(f) is equivalent
to the inequality |f(y)| < p(f). It follows that, if the preimage of a Zariski prime ideal of A is

nonempty, it is a cell of X.

5.3.3. Proposition. The reduction map induces a bijection cell(X) = Zspec(A) which

reverses the partial ordering on both sets.

For example, the preimage of the maximal Zariski ideal of Ais a unique maximal cell of X,
and the preimages of the minimal Zariski ideals of A are the vertices of X.

Let {I, Ai,vi;,a;;} be a quasi-integral twisted datum of K-affinoid algebras that represents A
and, in particular, A = [17 A;. For every pair ¢ < j in I, the quasi-homomorphism v;; induces a
homomorphism of reduced K-algebras v;; : ﬁ, — Zj. Let aj; be the image of the Zariski ideal aj;
under the map A; — Zj f e f It is a Zariski ideal of ﬁj, The following statement is easily

verified.

5.3.4. Lemma. {I, gi, Vij,aj;} is a twisted datum, and there is an isomorphism of K -algebras
A/m(A) STV A .

Proof of Proposition 5.3.3. It suffices to show that the map cell(X) — Zspec(A) is sur-
jective. By Lemma 5.3.4 and Corollary 1.3.3.3, the situation is easily reduced to the case when
A is integral. To prove the required fact, we may also increase the F-field K and assume that
p(A) C |K| and, in particular, that A is strictly K-affinoid. Let p is a Zariski prime ideal of A.
Since A is finitely generated over K, there exists an element f € A such that p is the maximal
Zariski ideal of A that does not contain the element f Multiplying f by an element of K*, we may
assume that p(f) = 1. We claim that 7=1(p) = V for the face V = Xy. Indeed, V is the rational
domain {z € X’ |f(z)| > 1}. As a K-algebra, Ay coincides with the localization Ay.

5.3.5. Lemma. In the above situation, the following is true:
(i) the ideal E of A{T'} generated by the pair (fT,1) is closed and, in particular, the K -affinoid
algebra B = A{T'}/E is isomorphic (as a K-algebra) to the localization A;

(i) the canonical homomorphism A — B gives rise to a homeomorphism M(B) = V and an

isomorphism lev}v% B.
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Proof. (i) Notice that the homomorphism Ay — A{T'} : i P> al™ gives rise to an isomor-

_a_

fm
Example 1.1.3(ii), there exist sequences of elements by, by, ... € A and of positive integers ny, na, . ..

phism of K-algebras Ay 5 A{T}/E. Suppose that the quotient norm of an element is zero. By

with 757 = be’“k and ||bg|| — 0 as kK — oo. Since A is integral, it follows that ||af"*|] — 0 as k — oo

and, therefore, the restriction of a to V' = X is zero and, in particular, a is zero at the vertices of
X in Xy. This implies that a = 0.
(ii) The first statement is trivial, and so we have to verify bijectivity of the homomorphism

Injectivity. Suppose that the images of nonzero elements ?im, f% € K? in B coincide. Then
the images of 5]7” and Efm in B coincide and, therefore, the images of the elements g f™ and hf™

in B coincide. Since B = Ay and A is integral, it follows that gf™ = hf™ and, therefore, }% = J;Ln
Surjectivity. Let (;im/) be a nonzero element of B,. Then pv(g) = r. By Lemma 4.3.6, there
exists ko > 1 such that X ;x, C V = X/ for all k > k. It follows that py (g) = p(f*g) for all k > ko

and, therefore, (;im/) is the image of the element }!: < from Z}v .

By Lemma 5.3.5, we can replace X by V', and so we may assume that p is the maximal Zariski
ideal of A. In this case 7 Hp) = X. Indeed, let g € A be such that g is nonzero and non-invertible
in A. If lg(x)| = p(g) for some point x € X, then the same equality holds for all points from X,

i.e., g is invertible in A, which is a contradiction. "

-~ ~.

5.3.6. Corollary. (i) Zspec(A) = Zspec(A);
(i) if A is strictly K-affinoid, then the reduction map m : M(A) — Zspec(A;) is surjective.

5.3.7. Corollary. The following properties of non-nilpotent elements f,g € A are equivalent:

(a) Xp C Xy

(b) f* = gh for some n > 1 and h € A with p(gh) = p(f)p(h).

Proof. (b)—(a). If € X, then p(f)" = f(2)" = g(x)h(x) < plg)p(h) = plgh) = p(f)". Tt
follows that g(x) = p(g) and h(z) = p(h) and, therefore, z € X,,.

(a)==(b). Let p be the Zariski prime ideal of A whose preimage under the reduction map is
X ¢. From Proposition 5.3.1 it follows that there exist elements u,...,u, € /T\p such that the
monoid g\p is generated by them and K*. Notice that f, ge Z\p

Step 1. For every 1 < i < n, there exists m > 1 such that fm = u;h with h € A\p. Indeed,
assume this is not true precisely for k +1 < i <n with k < n —1, and let M be the submonoid of
g\p generated by uq,...,ur and K*. Then ug41,...,u, € M and, in particular, the Zariski prime
ideal q = E\M is strictly larger than p. Proposition 5.3.3 implies that, if & is the element of A with
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h =wuy-...-u, then the face X} is strictly smaller that Xy and, in particular, X N X’f = (). Since
ug+1 € q, it follows that v(x) < p(v) for any point x € )"(f and the element v € A with U = ugyq.
This contradicts the fact that the preimage of p under the reduction map is X ¥

Step 2. There exists m > 1 such that fm = \ut for some A € K* and p1,..., u, > 1. Indeed,
by Step 1, for every 1 < ¢ < n there exists m; > 1 such that fm = u; - (\u”) for some m; > 1,
Ai € K* and v € Z'}. The product of these equalities gives the required claim.

Step 3. One has g = au” for some v € K* and v € Z"}. Let k > 1 be such that ku; > v; for
all 1 < < n, where yu is from Step 2. Then we get f*™ = gh, where h = Ao~ 1uf*=" € A\p. Tt is
clear that p(gh) = p(g)p(h), and so (b) is true. .

5.3.8. Proposition. Given a bounded homomorphism of K-affinoid algebras ¢ : A — B, the
following are equivalent:

(a) B is a finite Banach A-algebra;

(b) B is integral over p(A);

(¢) B is a finite A-algebra;

(d) B is integral over $(A).

Proof. The implications (a)==(b) and (c)==-(d) are trivial, and (d)==(c) follows from
Corollary 1.2.5.4 and the fact that B is finitely generated over K (Proposition 5.3.1).

(b)==(a). The above argument shows that B is a finitely generated A-module.

To prove other implications, it suffices to consider the case when the group K™ is finitely
generated and, therefore, we may assume that A and B are Fi-affinoid algebras.

(a)==(c). By Proposition 2.2.8, there is an isomorphism of Banach K-algebras A/Ker(¢) —
©(A). Thus, to verify the property (c), it suffices to consider the following two cases: (1) ¢ is
injective and the norm on A is induced from that of B, and (2) ¢ is an admissible epimorphism.

(1) Since ¢ is isometric with respect to the spectral norm, the induced map A — B is also
injective. By Proposition 1.2.6.1, all elements of B are integral over A, i.e., for every g € B there
exist m > n > 0 and f € A with ¢ = fg". We claim that p(fg) = p(f)p(g). Indeed, if g is
nilpotent, or n = 0, the claim is trivial, and so assume that p(g) > 0 and n > 1. Let x be a point
from X;. Then g(z)™ = f(z)g(z)" = p(f)g(z)™ and, therefore, p(f) = g(x)™™" < p(g)™™". It
follows that p(g)™ < p(fg)p(g)" 1 < p(f)p(g)™ < p(g9)™, i.e., the inequalities are in fact equalities
and, in particular, we get the claim. The claim implies that g™ = fgn, i.e., all elements of B are
integral over A.

(2) First of all, we notice that it suffices to verify the required fact in the case when A and
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B are reduced. Indeed, assume this is true. First of all, if C = Fl{rl_lTl, e, iT,} — Ads an
admissible epimorphism, then we may replace A by C. Furthermore, since B / n(é) 5B HB),
the assumption implies that for every element g € B there exist m > n > 0 and f € A with
(3™, 3(f)§™) € n(B). In its turn, the latter implies that g™ = @(f)'g" for large enough i, i.e., §

is integral over ¢(A). Thus, assume that A and B are reduced.

5.3.9. Lemma. Let A be a reduced Fi-affinoid algebra, and let k be a non-Archimedean
field. Assume that the order of any torsion element of k(p)* for each minimal prime ideal Iy of A
is prime to the characteristic of the residue field of k. Then for any element F' =}, s A f € k{A}

one has

p(F) = max |Af|p(f) -
feA

The statement is not true without the assumption that A is reduced. Indeed, if (f,g) € n(4),
then f(x) = g(x) for all x € M(A) and, therefore, (f — g)(y) = 0 for all y € M(k{A4}), ie.,
p(f —9) =0

Proof. Step 1. The statement is true if A is an integral domain. Indeed, by Lemma 1.4.2,
one has

F) = F,),
p(F) éﬁaf()

where F, is the image of F' in k{H(x)}. Since the quotient A/p, is also an integral domain,
the canonical map A/p, — H(x) is injective. The assumption and Lemma 1.4.3(ii) imply that the
Banach norm on k{H(z)} coincides with the spectral norm and, therefore, p(F,) = max |A¢|-|f(x)]|.
The claim follows. e

Step 2. The statement is true in the general case. Indeed, let {I, A;,v;;,a;;} be a twisted datum
of integral Fi-affinoid algebras that represents A. One has F' = . _; F;, where F; = Efea(i) Arf.
For every i € I, the element F; and its powers can be considered as elements k{A;}, and it follows
from Step 1 that the required fact is true for F;. To verify it for F', we can withdraw from F' all
summands F; with p(F}) < Hz‘?IXp(Fi)’ i.e., we may assume that p(F;) = p(F;) for all pairs i,j € 1
with nonzero F; and Fj. Notice that the supremum % of two elements ¢,j € I exists, then the
product F; - F} is of the form ZfEa(k) Ay f and, if it does not exists, then F;- F; = 0. It follows that,
if 7 is a minimal element of I with nonzero F;, then (F™); = F/* and, in particular, ||[F"|| > ||F||

for all n > 1. Thus, p(F) = lim {/||F™|| > p(F;), and the required fact follows. .
n—o0

Let k£ be a field with trivial valuation satisfying the assumptions of Lemma 5.3.9 for A and

B. Then k{A} 5 k:/{j} and k{B} 5 I{:?B/} Since ¢ is an admissible epimorphism, then so is
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the induced map ¢ : k{A} — k{B}. By [Tem, Proposition 1.3.1(iii)], the induced homomorphism
k{A} — k{B} is finite. It follows that, for every clement g € B, § satisfies an equation §™ +
P(F)G™ 1 +. . 4+@F(Fp) = 0 with F; € k{A}. This implies that there exists f € A with g™ = &(f)g"
for some 0 < [ < m, i.e., § is integral over G(A).

(c)==(a). Let C = F{r{'Ty,...,7;'T,,} — A be an admissible epimorphism. By the
implication already proved, A is a finite C~’—algebra and, therefore, B is a finite (j—algebra. Thus, to
prove the required fact, we can replace A by C, and so we may assume that A is reduced, i.e., the
homomorphism ¢ satisfies the assumption (1) of Lemma 2.4.6. To verify validity of the assumption
(2), it suffices to show that, for every non-nilpotent element g € B, one has ¢ = g™ ¢(f) for some
feAand m >n >0 with p(e(f)g) = p(e(f))p(g). The assumption implies that §™ = &(f)g"
for some m > n > 0 and f € A. It follows that ¢ = g"o(f), p(e(f)g) = ple(f))plg), and
p(p(f)) = p(f). Thus, the assumption (2) is satisfied, and the property (a) follows from Lemma

2.4.6. "

5.3.10. Corollary. Let A be a K-affinoid algebra, and B and C are A-affinoid algebras.
Then the canonical homomorphism Bg@ZC —~ B® Avé is finite.

Proof. Take an admissible epimorphism A{r—'T} = A{r['T},..., 7 'T,,} — C. By Propo-
sition 5.3.8, the induced homomorphism A[r~1T] — C is finite, and so is the homomorphism
E[T_IT] =B Q% E[T_IT] —~ B e C. On the other hand, the same epimorphism gives rise to
an admissible epimorphism B{r~'T} = B&4 A{r~'T} — B&4C. By Proposition 5.3.8, the latter
induces a finite homomorphism B [r=1T] — Bé);(}’ , which is compatible with the above finite

homomorphism B{r='T} — B® T C. This implies required fact. .

§6. K-affinoid spaces

6.1. K-affinoid spaces and affinoid domains. Let K be a real valuation Fi-field. The
category K-Aff of K-affinoid (resp. st-K-Aff of strictly K-affinoid) spaces is, by definition, the
category opposite to that of K-affinoid (resp. strictly K-affinoid) algebras. For brevity, the K-
affinoid space that corresponds to an K-algebra A will be mentioned by its spectrum X = M(A),
and the morphism of K-affinoid spaces that corresponds to a bounded homomorphism of K-algebras
will be mentioned by the induced map of their spectra Y = M(B) — X = M(A). The categories
K-Aff and st-K-Af f admit fiber products which correspond to complete tensor products of K-
affinoid algebras. (Recall that, by Lemma 1.3.8, the forgetful functor to the category of topological

spaces commutes with fiber products.) If K’ is a valuation F;-field over K, there is a ground field
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extension functor K-Aff — K'-Aff that takes X = M(A) to X®K’ = M(AXK"). Notice that

the canonical map X®K' — X is a homeomorphism.

6.1.1. Definition. (i) A K-affinoid space X = M(A) is said to be integral (resp. quasi-
integral, resp. finitely presented, resp. reduced, resp. Zariski reduced, resp. artinian, resp. local
artinian) if the K-affinoid algebra A possesses the corresponding property.

(ii) A morphism of K-affinoid spaces ¢ : ¥ = M(B) - X = M(A) is said to be a finite
morphism (resp. a closed immersion) if the homomorphism A — B makes B a finite Banach
A-algebra (resp. is surjective and admissible).

(iii) A closed subset P of a (strictly) K-affinoid space X = M(A) is said to be a (strictly)
rational polytope if it can be defined by a finite number of inequalities of the form |f(z)| < r|g(x)|
with f,g € A and r € Ry (resp. r € |K]).

If we fix an admissible epimorphism K {r; 'Ty,...,7,'T,} — A that gives rise to a homeomor-
phism between X = M(A) and a |K|-affinoid polytope in R, then rational polytopes in X are
precisely (R )z, -polytopes in R’ which lie in X. It follows easily that the image of a (strictly)

rational polytope under a morphism of (strictly) K-affinoid spaces is a (strictly) rational polytope.

6.1.2. Lemma. Given a (strictly) rational polytope P in a (strictly) K-affinoid space X,
there exists a morphism of (strictly) K-affinoid spaces ¢ : Y — X whose image coincides with P
and all of the fibers are connected.

Proof. Let X = M(A), and let P be defined by inequalities |f;(x)| < 7i|g:(x)|, 1 < i < m,
and suppose that r; # 0 precisely for 1 < i < n. If B = A{r;'Ty,...,r;'T,}/E, where E is the

closed ideal generated by the pairs (f;, g;1;) for 1 <i < mn and (f;,0) for n+ 1 < i < m, then for
the morphism ¢ : Y = M(A) — X one has p(Y) = P (see the proof of Proposition 4.1.6). .

Here is an important example of a rational polytope.

6.1.3. Definition. A closed subset V' of a K-affinoid space X = M(A) is said to be an
affinoid domain if there is a homomorphism of K-affinoid algebras A — Ay such that

(1) the image of M(Ay) in X lies in V;

(2) any homomorphism of K-affinoid algebras A — B such that the image of M(B) in X lies

in V' goes through a unique homomorphism of K-affinoid algebras Ay — B.

It is clear that for a subset V' with the above properties the homomorphism A — Ay is unique

up to a unique isomorphism.
6.1.4. Lemma. Let V be an affinoid subdomain of a K-affinoid space X = M(A). Then
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(i) the induced map M(Ay) — V is bijective and, for every point y € M(Ay) with the image
x € X, there is an isometric isomorphism H(z) = r(p,) = H(y) = k(p,);

(ii) the induced map Zspec(Ay ) — Zspec(A) is injective, and the partial ordering on Zspec(Ay)
coincides with the restriction of that on Zspec(A).

Proof. (i) Let 2 be a point from V. Since the valuation F;-field H(z) = H(p,,) is a K-affinoid
algebra, we can apply the property (2) to the canonical homomorphism A — H(x). It follows
that the later goes through a unique homomorphism of K-affinoid algebras Ay — H(z), which
corresponds to a point y € M(Ay) whose image in X is x. It follows also that H(z) = H(y) and,
in particular, y is a unique preimage of x.

(ii) Injectivity easily follows from (i). Suppose that, for two Zariski prime ideals q;,q, C Ay,
one has p; C py, where p; and p, are their preimages in A. Then the preimage of the ideal

po = p; Up,y coincides with q; U q,. The injectivity implies that q; U q, = q9, i-e., q; C g5. .

Notice that, if V- and W are affinoid domains in X = M(A), then VNW is an affinoid domain
in X which corresponds to the homomorphism A — Ay ®4Aw . Furthermore, if V is an affinoid
domain in X, then any affinoid subdomain of V is an affinoid domain in X, and V is an affinoid
domain in any bigger affinoid subdomain of X. Notice also that the preimage of an affinoid domain
V under a morphism of K-affinoid spaces Y = M(B) — X = M(A) is an affinoid domain that

corresponds to the homomorphism B — BR4 Ay .

6.1.5. Definition. A morphism of K-affinoid spaces ¢ : ¥ — X is said to be an affinoid
domain embedding or, for brevity, an ad-embedding if, for any morphism of K-affinoid spaces v :

Z — X with ¢(Z) C ¢(Y), there is a unique morphism y : Z — Y with ¢y = g o x.

If p: Y — X is an ad-embedding, then ¢(Y') is an affinoid domain in X. The correspondence
© — (YY) gives rise to a bijection between the set of equivalence classes of ad-embeddings in X
and the set of affinoid domains in X. We shall denote by K-Aff® the subcategory of K-Aff
with the same family of objects and with ad-embeddings as morphisms.

We now consider examples of affinoid domains. Let X = M(A) be a K-affinoid space.

6.1.6. Lemma. Given tuples f = (f1,...,fm) and g = (g1,...,9n) of elements of A and
tuples of positive numbers p = (p1,...,pm) and ¢ = (q1, .. .,qn), the following is true:
(i) the subset X (p~1f,qg7') = {x € X’|fi(x)| < i, lgj(x)| > ¢;} is an affinoid domain (called

Laurent) that corresponds to the homomorphism

A— A{p_lf, qg_l} = A{pflTl, .. ,p:anm, @151, -+ qnSn}/E
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where E is the closed ideal generated by the pairs (T;, f;) and (g;5;,1);

(ii) if g = g1 - ... gn, the canonical homomorphism A, — Ay is surjective, and its kernel
coincides with the Zariski kernel.

Proof. (i) That the image of the spectrum of A{p=1f, qg~ '} is contained in X (p~1f, qg 1)
is easy. Let ¢ : A — B be a bounded homomorphism to an arbitrary quasi-affinoid algebra B
(see Definition 2.2.2) such that the image of Y = M(B) in X is contained in X (p~1f,qg~!). This
means that |(¢fi)(y)| < p; and |(¢g;)(y) > g; for all y € Y. The former inequalities imply that
p(efi) < p;, and the latter inequalities imply that the elements ¢(g;) are invertible in B and
p((pg;)~1) < gj. Thus, by Corollary 2.2.3, the homomorphism ¢ : A — B can be extended in
a unique way to a bounded homomorphism A{p~'T, ¢S} — B that takes T; to ¢(g;) and S; to
©(g;)~*. The ideal F lies in the kernel of the latter, and so it gives rise to a bounded homomorphism
A{p~'f,q97'} = B.

(ii) The ideal E is the closure of the ideal E’ generated by the pairs (T}, f;) and (g,5;,1). It fol-
lows that E = E'U(ag xag) (see §1.1). Since the canonical homomorphism A — A{p~1f,qg~'}/E’

induces an isomorphism of K-algebras A, = A{p~'f,qg~'}/E’, the required fact follows. n

Notice that every point of X has a fundamental system of compact neighborhoods consisting
of Laurent domains. If n = 0 in Lemma 6.1.6, the affinoid domain is called Weierstrass and denoted
by X(p~tf). If V is a Weierstrass domain, the canonical homomorphism A — Ay is surjective,
and its kernel coincides with the Zariski kernel.

Here is an example of a K-affinoid space in which any rational subpolytope is an affinoid

subdomain (see also Corollary 6.2.3).

6.1.7. Lemma. Assume that X is a local artinian K-affinoid space. Then

(i) every rational subpolytope V of X is a Weierstrass domain;

(ii) if V' is nonempty, the kernel of the homomorphism A — Ay is a Zariski ideal in zn(A)
and, in particular, V is also a local artinian K-affinoid space.

Proof. (i) An admissible epimorphism K{r 'T},..., 7 T,} — A gives rise to a presentation
of X in the form of an (R, )z, -polytope in W C R for some I C {1,...,n}. Any nonempty
subpolytope V of the same type is defined by a finite number of inequalities f(t) < rg(t), where f
and g are monoms in T; for 4 € I, which are invertible at X, and » € R%.. The restrictions of f
and g to X define invertible elements of A, and so the above inequality can be written in the form
|(§)(a:)| < r. This implies that V is a Weierstrass domain.

(i) If V = X(p~'f), the quotient of A{r~'T} by the ideal generated by the pairs (T}, f;) for
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1 <4 < m is isomorphic to A, i.e., is a local artinian Fi-algebra. It follows that, if the quotient

seminorm of one of its invertible elements is zero, then it is zero identically. n

6.1.8. Lemma. Given similar tuples f = (f1,..., fm) andp = (p1,...,pm), an element g € A
and a number q > 0, the following is true

(i) the subset X(p’li,qgfl) ={z € X’|f1(:r3)| < pilg(z)|, |g(z)| > ¢} is an affinoid domain
(called rational), and it corresponds to the homomorphism

A A{p—lg,qg—l} — Ay Ty p T S} E

where E' is the closed ideal generated by the pairs (gT;, f;) and (¢S, 1);

(ii) the canonical homomorphism A, — Ay is surjective, and its kernel coincides with the
Zariski kernel.

Proof. Both statements are verified in the same way as Lemma 6.1.6 (and for homomorphisms

A — B to arbitrary quasi-affinoid algebras B). .

If in Lemma 6.1.8 ¢ = 1 and ¢ = 1, we again get a Weierstrass domain. Notice that, for a
rational domain V', the canonical homomorphism Ay — Ay is surjective. (If V' is defined as
above, then the homomorphism A, — Ay is surjective.) Notice that the preimage of a Weierstrass
(resp. Laurent, resp. rational) subdomain under a morphism of K-affinoid spaces is an affinoid

domain of the same type.

6.1.9. Lemma. Let V be a rational subdomain of an K-affinoid space X = M(A). Then

(i) if V' is a Weierstrass (resp. rational) subdomains of X, then V NV’ is a Weierstrass (resp.
rational) subdomain of X ;

(ii) if U is a Weierstrass (resp. rational) subdomain of V, then U is a Weierstrass (resp.
rational) subdomain of X.

Proof. (i) The statement is trivial for Weierstrass (and Laurent) domains. Let V and V'
be rational domains in an K-affinoid space X = M(A), ie.,, V = {z € X||g(:L')| > q, |fi(z)] <
pilg(@)l, 1< i< mpand V' = {z € X||¢(@)| 2 ¢, 1fi(@)] < #lg'()l, 1 < j < n}. Then
the intersection V N V' is defined by the inequalities |(gg')(z)] > qd, |g(x)| < (¢') 7 |(99")(x)],
@] < a 199" @), 1(F9)@)] < pil(99)(@)], and [(£19)(@)] < 5)(99')(@)], L., it is a rational
subdomain of X.

(ii) If V' is Weierstrass, the canonical homomorphism A — Ay is surjective, and the required
fact easily follows. Assume that V is rational and defined as in (i). Then the map A, — Ay

is surjective, and so U = {z € V}|(;ii)(x)| < P& @), () (@) > ¢/, 1 < j < n} for some
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fiy.oosfl,gd € Aand k > 0. The latter can be defined by the following inequalities in X:
(99") (@) = ¢**1¢, |g' ()] < ¢ (99" )(@)], |9"+ (@)] < (@) (99" )(@)], |(fig)(@)] < pil(99")(2)],

and |(f;9)(z)| < pjl(g99’)(x)], i.e., it is a rational subdomain of X. .
6.1.10. Corollary. Any Laurent domain is also a rational domain. "

6.1.11. Lemma. Let E be an ideal of the idempotent subalgebra I4 of A. Then the subset
X(E)={z€ XHe(x)\ = |f(x)| for all (e, f) € E}

is an affinoid domain (called idempotent ), and it corresponds to the homomorphism A — A{E} =
A/F, where F is the ideal of A generated by E (it is closed by Example 1.1.4(i)).

Proof. Let ¢ : A — B be a bounded homomorphism to an arbitrary Banach Fi-algebra B
such that the image of Y = M(B) in X is contained in X (FE). If, for (e, f) € E, ¢’ and f’ denote
the images of e and f in B, then for every point y € M(B) one has |¢/(y)| = |f'(y)|. Since €'(y)
and f’(y) are idempotents in the Fi-field H(y), it follows that they are equal either to 0, or to 1.
Thus, €'(y) = f'(y) for all points y € M(B). Corollary 2.2.5 implies that ¢/ = f’. It follows that
the homomorphism ¢ : A — B goes through a bounded homomorphism A{E} — B. .

Notice that an idempotent domain is an open-closed subset of X, i.e., a union of connected

components.

6.1.12. Proposition. Let V be an open-closed subset of X, i.e., V = UUEZ U for some
subset ¥ C mo(X). Then the following are equivalent:

(a) V is an affinoid domain in X,

(b) for any pair U’',U" € %, one has inf(U',U") € X.

(c) V is an idempotent domain.

Proof. The implication (¢c)==(a) is trivial, and (a)==(b) follows from Proposition 4.2.5.

(b)=(c). If Y is the spectrum of the idempotent subalgebra I, of A, then, by Proposition
6.2.5, there is an isomorphism of partially ordered sets mo(X) = mo(Y'). Recall that Y is a discrete
set, mo(Y) = Y, and there is an isomorphism of partially ordered sets Y = I4\{0} that takes a
point y € Y to the maximal idempotent e with e(y) = 1. Let P be the subset of I4\{0} that
cep e, the image of M(A/Ep) in
Y = 14\{0} is precisely the set P. It follows that V = X(Ep). =

corresponds to the set ¥. By Lemma 1.1.3.5(i), for Ep = )

6.2. A description of affinoid domains in quasi-integral affinoid spaces. Let X =

M(A) be an integral K -affinoid space. We fix an admissible epimorphism K {r{ 'T},... ,r;'T},} —

r'n
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A:T, — f; with f; # 0 for all 1 < i < n. Then X is identified with an |K|-affinoid polytope
in R such that X = }, and Zspec(A) is identified with the partially ordered set Z(X). Notice
that any affinoid domain in X is a rational polytope. For a rational polytope V C X, we set
Z’(V) =Z(V)\{{1L,...,n}} and (V) = Nrez (v 771 (Vr) (71 is the canonical projection X — X7).
Notice that V\V = Urezoy ViV C (V).

6.2.1. Theorem. In the above situation, the following properties of a rational polytope
V C X are equivalent:

(a) V is an affinoid domain;

(b) V is a rational domain;

(c) for every I € Z(V'), V contains a neighborhood of Vy in 7; ' (Vr);

(d)V = V, and rec(V) is a face of rec(X).

Furthermore, in this case V' the following is true:

(1)if I € Z(V) and I C J, then J € Z(V);

(2) V is a Weierstrass domain if and only if rec(V) = rec(X) or, equivalently, Z(V) = Z(X).

Proof. The implication (b)=(a) is trivial. To prove the implications (a)=—=-(d)=(c)=(b)
and the last statement, we can replace A by 121\, and so we may assume that K = |K| and A is a
K-polytopal algebra.

(a)==(d). Every face of rec(X) has the form rec;(X) = {(ai,...,an) € rec(X)‘ai =1
for i € I} with I € Z(X), and the interior of such a face is the set réc;(X) = {(aq,...,a,) €
recI(X)‘ai < 1 for i ¢ I}. Assume that, for some I € Z(V), there is a point (aq,...,a,) €
récr(X)\rec(V). We may assume that it represents a rational direction, i.e., a; = a® for i ¢ I,
where k; are positive integers and 0 < a < 1. (Recall that a; = 1 for i € I, and so we may set
ki = 0 for i € I.) Take a point = (z1,...,2,) € Vi (i.e., 2y # 0 for i € T and z; = 0 for
i ¢ I) and a point y = (y1,...,yn) € X with y; = z; for i € I. By Proposition 3.1.1, we may
assume that all y; lie in a bigger Fi-subfield K € K’ C Ry with finite quotient group K"*/K*.
The ray L = {y, = (y1t*, . yntF ) oci<y lies in X\V and 3, — z as t — 0. Consider the
homomorphism K{r'T},...,7'T,} — B = K'{T} that takes T} to y;T%. This homomorphism
is clearly bounded, and the induced map Y = M(B) — M(K{r;'T1,...,r;'T,}) is injective and
its image coincides with the set L = L U {x}. Since A = A and L C X, it follows that the above
homomorphism goes through a bounded homomorphism A — B. Since B is a K-affinoid algebra, it

follows that the preimage of the affinoid domain V in Y = L is an affinoid domain U that coincides

with the point z. We claim that the latter is impossible.

74



Indeed, let g be the product of the images of the elements f; in B, and let h be the image of ¢
in By. Since h(x) = 0 and M(By) = {x}, it follows that A" = 0 for some m > 1. But if b denote
the Zariski ideal of B generated by g, then b*! £ b™. Indeed, if b™*! = b™, then ¢™ = g™ lu
for some v € B. Since g(y;) # 0 and g(y;) — 0 as t — 0, it follows that u(y;) — oo as t — 0,
which is a contradiction. Hence, we get a bounded homomorphism B — C = B/b™*! such that
the image of M(C) in Y coincides with U = {z}. It follows that the latter homomorphism goes
through a bounded homomorphism By — C, which is impossible since h™ = 0 but the m-th power
of its image in C' is not zero.

Thus, rec;(X) C rec(V) for all I € Z(V). Since rec(V) C rec(X), it follows that rec(V) =

recy(X), where I is the minimal element of Z(V'). It follows also that V = V.

(d)=(c). Replacing X by (V), we may assume that Z(X) = Z(V) and X; = V; for all

I € Z(X), and that rec(X) = rec(V'). Notice that maximal elements of Z'(X) correspond to one
dimensional faces of rec(X) and, for every I maximal in Z’(X), the fibers of the canonical projection
X — X are rays (see Lemma 4.3.9). Let us fix a; € récy(X) for every such I, and let 1. .., 2.,
be the vertices of X. Then there exists t, > 0 such that zal € V for all I as above, 1 < i < m,
and t > ty. Since X = conv(ver(X)) - conv({as}), it follows that the set of points of the form
[T, 2 - T]; &% is a neighborhood of X\X in X, where 0 < \; <1, 37" A, = 1, 7 > 0, and
there exists J with ¢; > ty. The above point is equal to [}, (z;a%)* - [Trss o, Since the first

product lies in V, by the construction, and the second one lies in rec(X) = rec(V), it follows that

the point lies in V.

(c)=(b). The required implication is evidently true if n = 1, and so assume that n > 2
and that the implication is true in the cases when the dimension of the ambient space is strictly
less than n. We notice that, for any I € Z(X), the projection 77 : X — X is a morphism of
K-affinoid spaces (that corresponds to the canonical isometric homomorphism A; — A, where Aj
is the quotient of A by the Zariski prime ideal generated by f; for i & I). It follows that the
preimage of a rational subdomain of X; under 77 is a rational domain in X. If I € Z'(V'), then the
property (c) holds for the pair (X7, V;) and, by the induction hypothesis, V7 is a rational domain
in X;. It follows that the set Y = (V') is a rational domain in X that contains V. Moreover, one
has Z(V) = Z(Y), rec(V) = rec(Y), and V; = Y7 for all I € Z'(Y). A representation of Y as a
rational domain, gives rise to an embedding of Y into R’ with m > n such that its image is a
K-affinoid polytope there. Thus, replacing X by that image, we may assume that Z(V) = Z(X),

rec(V) = rec(X), and V; = Xy for all I € 7/(X), and so V is a Weierstrass domain in X, by the
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following lemma.

6.2.2. Lemma. In the situation of Theorem 6.2.1, suppose that I[(V) = I(X), rec(V) =
rec(X), and Vi = Xy for all I € I'(X). Then V is defined by a finite number of inequalities of the
form |f(z)| < r withr > 0 and f € A such that f‘XI =0 for all I € I'(X). In particular, V is a
Weierstrass domain in X.

Proof. As at the beginning of the proof of the theorem, we may assume that K = |K| and A4 is
an K-polytopal algebra. The rational polytope V is defined in X by a finite number of inequalities
of the form f(z) < rg(z) for f,g € A\{0} and r» > 0. By the implication (d)=(c) already verified,
V contains an open neighborhood U of X\ X in X and X\U is a compact subset of X, it follows
that for any such pair (f,g) there exists C' > 0 with f(x) < Cg(x) for all x € X. Proposition 2.5.1
implies that f™ = ¢™h for some m > 1 and h € A\{0}. It follows that the inequality f(z) < rg(z)
is equivalent to the inequality h(z) < r. If h‘v, # 0 for some I € I'(X), then h comes from a
function in A; and, therefore, h(x) = h(77(x)) for all points x € X. Since X; C V, the inequality

h(z) < r holds for all points of X, i.e., it can be removed. The required fact follows. "

It remains to verify the last statement. Suppose first that V' is a Weierstrass domain, i.e.,
V=A{zr e X‘fi(aj) < r; for 1 < i < m}, where f1,...,fm € A and rq,...,7r, > 0. If I is the
minimal element of Z(X), then for any point € V the point 77(x) satisfies the same inequalities,
i.e., 77(V) C V and, in particular, I € Z(V). Since rec(V) is a face of rec(X), it follows that
rec(V) = rec(X). Conversely, suppose that rec(V) = rec(X). If X = X, the required fact follows
from Lemma 6.1.7(i), and so assume that X # X and that the required fact is true in dimensions
of the ambient space less than n. Then, for every I € 7'(X), V; is a Weierstrass domain in X;. It

follows that (V') is a Weierstrass domain in V. The proof of the implication (¢)==(b) shows that

V is a Weierstrass domain in (V'), and so V is a Weierstrass domain in X. .

6.2.3. Corollary. Let X = M(A) be a quasi-integral K-affinoid space, and V a nonempty
affinoid domain in X. Then the following properties of an open affine subscheme V of X = Spec(A)
are equivalent:

(a) V is the preimage of Zspec(Ay ) with respect to the map X — Zspec(A);

(b) V** contains V' and the homomorphism Ay, — Ay is surjective;

(c) V is a unique minimal open affine subscheme of X such that V*" contains V.

Furthermore, in this case the following is true:

(1) the kernel of the homomorphism Ay, — Ay is a Zariski ideal in zn(Ay);

(2) V is a quasi-integral rational domain;
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(3) for a Zariski ideal a C A, VN M(A/a) # 0 if and only if V N Spec(A/a) # 0;

(4) V is a Weierstrass domain if and only if V = X.

Proof. Theorem 6.2.1 implies that V is a rational domain, ie., V = {z € X||fi(z)| <
pi, |g(x)| > ¢} with f1,..., fn,g € Aand p1,...,pn,q > 0. Then g & zn(A) since V is nonempty,
and Ay = B/E, where B = A{p;'Th,...,p; Tmm,qS} and E is the closure of the ideal E generated
by the pairs (¢7;, fi) and (¢S,1). We claim that the principal open subset U = D(g) = Spec(Ay)
possesses the properties (a)-(c) and (1)-(2). Indeed, it is clear that U/*" contains V and Ay = B/E.
The latter implies that the homomorphism A;; — Ay is surjective and, in particular, & possesses
the property (b). Furthermore, since A is quasi-integral, it suffices to verify the property (1) for a
smaller affinoid domain. We may therefore assume that V' = {z} for a point € X. In this case,
Ay is the localization of A with respect to the complement of the Zariski prime ideal zn(Ay), i.e.,
a local artinian F'i-algebra. It follows that any nontrivial Zariski ideal of Ay is contained in its
nilradical zn(A4;,), and the property (1) follows (see the proof of Lemma 6.1.7(ii)). The property (1)
implies (2) and also the property (a), i.e., U is the preimage of Zspec(Ay ) with respect to the map
X — Zspec(A). To verify the property (c), we may assume that X is reduced, i.e., A is integral.
In this case the homomorphism A;; — Ay is bijective and, therefore, V is a unique minimal open
affine subscheme of X such that &*" contains V. Thus, the claim is true. It implies the implications
(c)<=(a)=(Db).

Suppose that an open affine subscheme V possesses the property (b). Then V D U. This
implies that the kernel of the surjective homomorphism Ay — Ay is an ideal in zn(Ay) and,
in particular, Ay /zn(Ay) = Ay /zn(Ay). Since f is invertible in Ay, it follows that it is also
invertible in Ay, i.e., ¥V =U.

Finally, the property (3) implies that VNSpec(A/a) is the preimage of Zspec(Ay )NZspec(A/a).
Since the map V' — Zspec(Ay ) is surjective, the latter intersection is nonempty if and only if
VN M(Ax) # 0, and (3) follows. It remains to show that, if 4 = X, then V is a Weierstrass
domain in X. By the above construction, the equality &/ = X implies that g € A* and, therefore,

V' can be represented in the form {x € X}|%| < pi, |§| < %}, i.e., it is a Weierstrass domain. =

6.2.4. Corollary. In the situation of Corollary 6.2.3, the following is true:
(i) if X is integral, then V is also integral and Ay, = Ay;
(i) if A is a K-polytopal algebra (in particular, K = |K|), then Ay is K-polytopal if and only

if dim(V') = dim(X);

(iii) if for some nontrivial Zariski ideal a C A, V. N M(A/a) is a nonempty Weierstrass domain
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in M(A/a), then V is a Weierstrass domain in X.

Proof. The statement (i) follows directly from Corollary 6.2.3.

(i) Suppose that A is a K-polytopal algebra, i.e., A = A. If Ay is also K-polytopal then,
by Proposition 4.3.1, the dimensions dim(X) and dim(V) are equal to the ranks of the quotient
groups F*/K* and F};/K*, where F' and Fy are the fraction F;-fields of A and Ay, respectively.
Since F' 5 Fy, we get dim(V) = dim(X). Conversely, if dim(V) = dim(X), then the interior of
V in X is nonempty, and Proposition 4.3.1 implies that the canonical homomorphism A — EV is
injective. If (v, B) € Ker(Ay — Ay) for a = o and B = & with u,v € A and m > 0 (we use the
notation from the proof of Corollary 6.2.4), then u(z) = v(z) for all x € V. The previous remark
implies that v = v, i.e., Ay = Ev. If Ay is K-polytopal, then Ay = gv.

(iii) We know that V' is a rational domain in X, i.e., V = {z € X||fi(z)| < pilg(=)], |9(z)| = ¢}
for some f1,..., fn,g € Aand p1,...,pn,q > 0, and the associated open affine subscheme of X is the
principal open subset D(g). It follows that VNM(A/a) = {x € M(A/a)||fi(z)| < pilg(2)],|g(x)| >
q}, and the associated open affine subscheme of Spec(A/a) is the intersection D(g) N Spec(A/a).
The assumption implies that the latter coincides with Spec(A/a) and, therefore, g is invertible in

A/a. It follows that ¢ is invertible in A. .

6.2.5. Corollary. Every affinoid domain in an irreducible K-affinoid space is an irreducible

rational domain. -

6.2.6. Corollary. In the situation of Theorem 6.2.1, if V'O X for some I € Z(V), then V is
a Weierstrass domain and a neighborhood of Xy in X.

Proof. We may assume that I € Z'(V). The statement is evidently true if n = 1. Suppose
that n > 2 and that the statement is true if the dimension of the ambient space is strictly less
than n. Then, for every J € Z'(X), V; contains X;n;. The induction hypothesis implies that
V; is a neighborhood of Xjn; and a Weierstrass domain in X ;. It follows that T;l(VJ) is a
neighborhood of 7;'(Xrns) and a Weierstrass domain in X. Since 7, '(X;ns) D X7, it follows
that (V) = N, 7, (V) is a neighborhood of X; and a Weierstrass domain in X. By Theorem
6.2.1, V is a Weierstrass domain and a neighborhood of X7 in (V'), and the required fact follows. =

6.3. A description of affinoid domains in arbitrary affinoid spaces. Let X = M(A)
be a K-affinoid space. Recall that, for a Zariski prime ideal p € Zspec(A), we set Xp = {z €
X|f(z) =0 for all f € p}, Xp ={z € Xp‘f(x) # 0 for all f¢p}, and XP) = Xip By Proposition
5.1.5(ii), one has X®) = M(A/Ip). Given Zariski prime ideals p C g, the canonical injective
isometric homomorphism A/q — A/p induces a bounded homomorphism A/Tlq — A/Ilp which, in
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its turn, gives rise to continuous maps 7pq : Xp — Xq and X®) — X@_ For a subset U C X, we
set Up = UNXyp, Up =UNXp and UP) = UNXP). We also set Z(U) = {p € Zspec(A)|Up # 0}
(Notice that the latter notation is consistent with that from the previous subsection since, for the

set Z(X) introduced there, there is a canonical bijection Z(X) = Zspec(A).)

6.3.1. Theorem The following properties of a nonempty subset U C X are equivalent:

(a) U is an affinoid domain;

(b) (b.1) for every p € Z(U), UP) is a rational domain in X®P);

(b.2) for any pair p,q € Z(U), one has pUq € Z(U);
(b.3) if p C q in (b.2), then qu(Up) c Uy.

Furthermore, in this situation the following is true:

(i) the homomorphism A — Ay possesses the property 6.1.3(2) for bounded homomorphisms
to arbitrary quasi-affinoid algebras B;

(ii) if U is connected, then

(ii.1) U is a rational domain;
(ii.2) U is a Weierstrass domain if and only if U N Xy, # 0 (i.e., my € Z(U));
(ii.3) given a pair p C q in Z(U), one has vt € Z(U) for all v € Z(U) withp C v C g;

(iii) if X is connected and U N Xy, # 0, then U is connected.

Proof. Step 1. IfU is an affinoid domain, the properties (b.1)-(b.3) hold. Indeed, the property
(b.1) holds, by Theorem 6.2.1, (b.2) holds because Z(U) is the image of Zspec(Ay) in Zspec(A),
and (b.3) holds because the maps 7pq : X ) — X @ is consistent with the corresponding map on
the K-affinoid space U.

On the contrary, suppose that the properties (b.1)-(b.3) hold for U. Our first aim (Steps 2-7)
is to show that, if U is connected, it possesses the properties (ii.1)-(ii.3). Thus, suppose that U is
connected.

Step 2. The exists a connected Weierstrass domain domain W with U C W and Uy, = Wi
(where Uy = U N Xy and Wy, = W N Xy,). Indeed, since Xy, is a local artinian K-affinoid space,
Lemma 6.1.7 implies that Uy, is a Weierstrass domain in Xy, i.e., Un = {z € Xul|fi(z)| < ri}
with f1,..., fn € A* and r1,...,7, > 0. If W is the Weierstrass domain {z € X||f;(z)| < r;}, then
Wm = W N X, coincides with Uy, and property (b.3) implies that W contains U. It remains to
notice that the latter properties also hold for the minimal connected component of W (which is
also a Weierstrass domain in X).

Step 3. Suppose we are given a Zariski prime ideal p € Z(U) with p # m and a connected
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Weierstrass domain W with U C W and Uq = Wy for all Zariski prime ideals q € Z(W) with q D p
and q # p. Then there exists a Weierstrass domain U C W' C W with Uq = VVC’l for all Zariski
prime ideals ¢ € Z(W') with ¢ O p. Indeed, we may replace X by W and assume that W = X. By
(b.1), U® is a rational domain in X® . We apply Theorem 6.2.1 and Lemma 6.2.2 to U®) and
X®). The above assumption implies that Z(U®)) = Z(X®)) and, therefore, UP) is a Weierstrass
domain in X®) defined by a finite number of inequalities of the form |f(z)| < r with r > 0 and
feA®) =4/ lp such that f ‘ Xq = 0 for all Zariski prime ideals q D p different from p. We may
view f as an element of A, and the latter property implies that f lies in the intersection of all
Zariski prime ideals q D p different from p. It follows that the Weierstrass domain W' defined by
the same inequalities on the whole space X possesses the required property. It remains to replace
W' by its minimal connected component.

Step 4. By Step 3, there exists a connected Weierstrass domain U C W C X such that
UP) = W for all Zariski prime ideals p € Z(W) that contain some q € Z(U). We claim that
U = W. Indeed, suppose that U # W. Then there exists p € Z(WW) that does not contain any
Zariski prime ideals from Z(U). We may assume that p is maximal with the latter property. Since
W is connected and W N Xy, # U N Xy = 0, there exists a Zariski prime ideal q € Z(W) with
q D pand q p such that W®) n W@ £ (). By the maximality of p, it follows that q € Z(U) and,
since UM = W@ it follows that UP) £ (), which is a contradiction.

Thus, if UN Xy, # 0, then U is a Weierstrass domain. (Notice that the property (b.2) was not
used so far.)

Step 5. Let U be just connected, but the equality U N Xy, # () is not assumed. Then U is a
rational domain. Indeed, by the property (b.2), there exist p € Z(U) maximal among Zariski prime
ideals in Z(U). Let f be an element from A\p which lies in all Zariski prime ideals q D p with q # p.
Since U is compact, there exists r > 0 with |f(z)| > r for all z € U. We may therefore replace X
by the Laurent domain {z € X’|f(m)| > r}. In this case, the element f becomes invertible in A
and, therefore, p becomes the maximal Zariski ideal of A. In particular, the intersection U N X,
is nonempty and, by Step 4, U is a Weierstrass domain in X.

Step 6. In the situation of Step 5, given a pair p C q in Z(U), one has v € Z(U) for all
v € Z(U) with p C v C q. Indeed, by Step 5, it suffices to verify the required property for an
arbitrary rational domain and, therefore, it suffices to consider the following two cases (with f € A
and r > 0).

(1) U = {z € X||f(z)] = r}. Since U@ £ (), then f ¢ q. It follows that the inequality
|f(x)| > r holds at every point from Tpt(U(p)) and, therefore, U®) £ 0, i.e., v € Z(U).
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(2) U ={z € X||f(z)| <r}. If fer, then X® C U. If f & v then, as in (1), the inequality
|f(x)| <r holds at every point from Tpt(U(p)) and, therefore, U™ # (). In both cases, v € Z(U).

Step 7. In the situation of Step 5, if U is a Weierstrass domain, then U N Xy, # (. Indeed,
suppose U = {z € X||fi(z)| < r; for all 1 < i < n}, and let y € U®) for some p € Z(U) with
p#m=myu. If f; € m, then the inequality |f;(x)| < r; holds at every point from X,,,. Otherwise,
this inequality holds at the point Tpy,(y) and, therefore, Tpm(y) € U N X.

Step 8. If X is connected and U N Xy, # 0, then U is connected. Indeed, let V be the
connected component of U with V,, = U, and suppose that there exists a Zariski prime ideal
p € Z(U)\Z(V). Since X is connected, there is a strictly decreasing sequence of Zariski prime
ideals pp =m D p, D...Dp, =p with XPI N XPir1) £ for all 0 < i < n—1. Let i be maximal
with the property that p, € Z(V). Since m € Z(V) and p € Z(V), then 0 < i < n — 1. One has
Tppi(X(p)) C Tpini(X(piH)) c X®PInx®Pir1) | By the property (b.3), Tppi(U(p)) cU®) =y ®)
and, therefore, V N X Pis1) # (). By the property (b.1), the latter is a rational domain in XPin)
and Theorem 6.2.1 implies that VPi+1) £ () ie., P41 € Z)(V), which contradicts the maximality
of i.

It remains to prove the implication (b)==(a) and the property (i). We already know that
all of the connected components V' of U are rational domains, and we are going to show that the
K-affinoid algebras Ay form a twisted datum of K-affinoid algebras whose twisted product defines
an affinoid domain structure on U.

Step 9. We define a partial ordering on the set mo(U) as follows: V' < W if p(V) 5 pM) | where
p") is maximal among the Zariski prime ideals from Z(U) (i.e., p(*") is the minimal element of Z(U)).
We claim that this partial ordering admits the infimum operation. Indeed, if Vi, Vs, € mo(U), the
property (b.2) implies that q = p("1) Up(V2) € Z(U). Let V be the connected component of U that
contains U™, Since p(V) > q, it follows that V' < Vi, Va. To verify the equality V = inf(V1, V3), we
have to verify the following fact: given connected components V and W of U, if p(") > q for some
q € Z(V), then p™) 5 p(V). Suppose the latter is not true, and let q¢ € Z(V) be maximal among
the Zariski prime ideals from Z(U) with g C p"). Since q # p(") and V is connected, there exists a
Zariski prime ideal v € Z(V) with q C t, q # v and Ve N V@ # (. One has Tqp) (V@) c W)
and qu(W)(Vt N V(q)) C Utup<W>- Since W®™) = prv), it follows that t U pM") = p("W) which
is a contradiction.

Step 10. For every connected component V of U, there exists a rational domain Y C X such
that V is the minimal connected component of Y and UNY is the union of the connected components

W of U with V< W. Indeed, for each Zariski prime ideal ¢ C A which does not lie in p, take
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an element fq € q\p and denote by f the product of such elements fq. Then for any » > 0 the
Laurent domain Y, = {z € X||f(x)| > r} has empty intersection with every connected component
W of U with V' £ W. On the other hand, if r is sufficiently small, Y. contains all of the connected
components W of U with V' < W. Replacing X by such Y,., we may assume that V is the minimal
connected component of U and U N Xy, # 0. Let X’ be the minimal connected component of X.
By Step 8, V is the only connected component of U that lies in X’. By Step 4, V is a Weierstrass
domain in X', ie., V = {2/ € X'||f;(2/)] < r; for all 1 < i < n} with f1,...,f, € Ax,. The K-
affinoid algebra A is the twisted product of the K-affinoid algebras Ax of connected components
X" of X. We can therefore consider the elements f; as elements of A. By (b.3), the set U lies in
the Weierstrass domain ¥ = {x € X H fi(x)| < r; for all 1 <4 < n}, which possesses the required

properties.

Step 11. Let V and W be connected components of U with U < W, and let Y be a ra-
tional domain in X with the properties of Step 10 for U. then Y contains W, and W lies in a
connected component Y/ of Y different from U. It follows that there is an associated bounded quasi-
homomorphism Ay — Ay whose composition with the restriction homomorphism Ay — Ay gives
a bounded quasi-homomorphism vy : Ay — Aw. It is easy to verify that the system of quasi-
homomorphisms vy possesses the properties of Definition 1.3.1.1, and so we get a disconnected

twisted datum of K-affinoid algebras {mo(U), Ay, vyw }.

Step 12. We set Ay = H;O(U) Ay. It is clear that the canonical bounded homomorphism
A — Ay induces a homeomorphism M(Ay) = U. Let ¢ : A — B be a bounded homomorphism
to an arbitrary quasi-affinoid algebra B for which the image of Y = M(B) in X lies in U. That
the required fact is true if U is a rational domain or an idempotent domain is verified in the proof
of Lemmas 6.1.6 and 6.1.11. The assumption (b) implies that the required fact is true if U is
connected. Suppose that U is not connected and that the required fact is true for subsets of X
possessing the property (b) and having strictly smaller number of connected components. By Step
10, we can replace X by a rational domain and assume that U contains the minimal connected
component of X. Let J be the image of 4 in B. By Examples 2.4.2 and 1.3.2.4, the homomorphism
¢ gives rise to a morphism of disconnected twisted data {I4, A©®) v, ., } — {J, BY) vs 4, } and, for
every f € J, M(B (f )) is the preimages of the connected component X (/ ") of X that corresponds to
the idempotent f’ = sup{e € I4 ’4,0(6) < f}. Applying the induction hypothesis to the intersections
Unx /), we get the required bounded homomorphism Ay — B. "

6.3.2. Corollary. Let K — K’ be an isometric homomorphism of real valuation F1-fields,
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and A — A’ a bounded homomorphism from a K-affinoid algebra A to a K'-affinoid algebra A’
which is consistent with the previous homomorphism and induces a homeomorphism ¢ : X' =
M(A") = X = M(A). Then the correspondence U s o~ (U) gives rise to a bijection between the

families of affinoid domains in X and in X’. n

6.3.3. Example. The assumptions of Corollary 6.3.2 are satisfied in the following cases:
(1) A’ = ARk K';

(2) K' =|K|=K/K* and A’ = A/K**;

(3) K' = K and A/zn(A) = A’ /zn(A’);
(4

) if the cokernel of the homomorphism of abelian groups K* — K’* is finitely generated

K
K

then, any K’-affinoid algebra A’, A is A’ viewed as a K-affinoid algebra.

6.3.4. Corollary. Let k be a non-Archimedean field, K — k' an isometric homomorphism of
Fi-algebras, and B a k-affinoid algebra. Given a bounded homomorphism of K-algebras A — B’
the following is true:

(1) the preimage of any affinoid subdomain U of X = M(A) with respect to the induced map
¢:Y = M(B) — X is an affinoid subdomain of Y';

(ii) if o(Y') C U, then the image of the map M(B') — X also lies in U.

Proof. Since the Banach K-algebra B is quasi-affinoid, both statements easily follow from

Theorem 6.3.2. -

6.4. The relative interior and boundary of a morphism. Let ¢ : Y = M(B) —» X =
M(A) be a morphism of K-affinoid spaces.

6.4.1. Definition. The relative interior of ¢ is the subset Int(Y/X) C Y consisting of the
points y € Y for which the K-algebra )Zy(é) is integral over va(g) The relative boundary of ¢ is
the complement §(Y/X) of Int(Y/X) in Y. If A = K, the set Int(Y/X) (resp. §(Y/X)) is denoted

by Int(Y") (resp. 6(Y)) and is called the interior (resp. boundary) of Y.

In other words, the relative interior Int(Y/X) consists of the points y € Y with the property
that, for every non-nilpotent element g € B with |g(y)| = p(g), one has g(y)" = f(y) for some
n>1and f € A with |f(y)| = p(f). Notice that the above objects do not change if we replace X
and Y by M(A/n(A)) and M(B/n(B)), or by M(A/K**) and M(B/K**), respectively.

For example, suppose that B = A{rl_lTl, oo,y YT, }, Then, for an element g = f17*-.. .- T4 €

B with f € A, one has p(g) = p(f)r{*-...-rkr. It follows that, if |g(y)| = p(g) # 0, then |T;(y)| = r;
for all ¢ with v; # 0. This implies that y € Int(Y/X) if and only if |T;(y)| < r; for all 1 <1i <mn.
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6.4.2. Proposition. (i) If there exists an admissible epimorphism A{r; 'T,... ,r-'T,} —
B : T; — g; such that |g;(y)| < r; for all 1 <i <n, then y € Int(Y/X);
(ii) if ¢ is a finite morphism, then Int(Y) =Y;

(iii) given a second morphism ) : Z — Y, one has
Int(Z/Y) N~ (Int(Y/X)) C Int(Z/X) C Int(Z/Y)

and, if the kernel of the canonical homomorphism H(¢(z))* — H(z)* lies in the image of K** for
all points z € Z, then the first inclusion is an equality;

(iv) for a morphism 1 : X' — X, one has ¢/~ !(Int(Y/X)) C Int(Y'/X') where ¢’ is the
canonical morphismY' =Y xx X' = Y;

(v) for an Fy-valuation field K' over K, one has ¢~ (Int(Y/X)) = Int(Y®K'/XRK"), where
1 is the canonical map Y®K' — Y (which is a bijection).

The converse implication in (i) is not true in general (but see Proposition 6.4.3), and the first
inclusion in (iii) is not necessarily an equality (see Remark 6.4.11). But the converse implication
in (ii) is true (see Proposition 6.4.9). By Lemma 6.1.4, the assumption on the morphism ¢ in (iii)

holds in the case when Z is an affinoid subdomain of Y.

Proof. (i) Let ¢ : C = A{r;'T},...,7;'T,,} — B be the epimorphism considered. By

Proposition 5.3.8, the induced homomorphism C — B is finite and, therefore, iy(é) is integral
over iy({pv(é’)) The latter ring coincides with iy(g) because p(¢(T;)) < ri, 1 <i < n. It follows
that )Zy(é) is integral over )?y(ﬁ)

(ii) If ¢ is finite, then B is a finite g—algebra, by Proposition 4.3.8, and it follows that
Int(Y/X) =Y.

(iv) follows from Corollary 5.3.10, and (iii) and (v) are trivial. .

6.4.3. Proposition. (i) If y € Int(Y/X), then there exists a rational neighborhood V of
y and an admissible epimorphism A{rflTl,...,rngn} — By : T; — g¢; such that, for X' =
M(A{r{ Ty, . TR )), one has y € Int(V/X) = V N Int(X'/X) and, in particular, |g;(y)| < i
for all 1 <1 <m;

(ii) if the quotient of B by any Zariski prime ideal is integral (e.g., B is quasi-integral), then
(i) is true for V=Y

(iii) in the situation of (ii), one has Int(Y) = 7= 1({p € Zspec(g)‘m(p) is a finite extension of
K =K}).
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Proof. (i) and (ii). Let C, = A{r'T},...,r;'T,,} — B : T; + g; be an admissible epimor-
phism. Then |g;(z)| < r; for all z € Y and 1 <4 < n. For z € Int(Y/X), let I(2) = {i||g:(2)| = s}
If © € I(z), then g;(2)™ = fi(z) in H(z) for some m; > 1 and f; € A with p(f;) = |fi(2)]. In
the situation of (ii), the quotient B/Zker(y.) is integral. It follows that it embeds in H(z) and,
therefore, g/" is equal to the image of f; in B. Lemma 2.3.6 implies that, for any system of numbers
s; > r; with ¢ € I(z), the epimorphism C,» — B is admissible, where 1, = s, fori € I(z) and v, = r;
for i ¢ I(z). Setting now I = U, c1yq(v,x) 1(#) and taking numbers s; > r; for each i € I, we get an
admissible epimorphism C,» — B with the required property, where r; = s; for i € I and r} = r;
fori & I.

In the general case of (i), we can find an element h € B with h(y) # 0 and g;""h = f;h for

all 1 <4 <1 If0 < p < |h(y)|, then V = {z € Y||h(z)| > p} is an affinoid neighborhood of

my;
7

the point y, and the images of g."* and f; in By coincide. Furthermore, 1) can be extended to an
admissible epimorphism C{an_H}{rflTl, . ,rflﬂ} : Try1 — h~!. By the construction, we have
|[h=1(y)] < p~!, and the required fact follows from Lemma 2.3.6 as above.

(ii) The set on the left hand side contains that on the right hand side because the homo-
morphism ¥, : B — 7-2@) = H(y) is the composition of the homomorphisms B — (p) and
k(p) — 7—2@) = H(y). To prove the converse inclusion, we need the following fact. The quotient
of B by any Zariski ideal p is integral and, if 7(y) = p, the homomorphism k(p) — H(y) is injec-
tive. Suppose there are elements f,g,h € A with f,g,?i ¢ p and ﬁl = ﬁﬁ Then |f(y)| = p(f),
l9(y)| = plg) and [h(y)| = p(h). It follows that |[(fh)(y)| = p(f)p(h) = p(fh) and, therefore,
|(£h)(W)] = p(fh) and fh = fh. Similarly, one has |(gh)(y)| = p(gh) and gh = Gh. We get fh = gh
and, in particular, f(y) = h(y). By the assumption, the homomorphism B/Zker(x,) — H(y) is
injective and, therefore, f = g and, in particular, ]7 = ¢g. Thus, the quotient B /p is integral. It
remains to verify injectivity of the homomorphism B /p — H(y). Given f,g € A with f, g & pand
ff(\gj) = @, it follows that f(y) = g(y). The assumption implies that f = ¢ and, in particular,

f =79. the fact we have just verified implies that, if y € Int(Y"), the F;-field x(p) is algebraic over

K = K. Since it is finitely generated over K, the required statement follows. n

6.4.4. Proposition. The following four subsets of Y coincide:

(1) Tut(V/X);

(2) {y € Y|y € Int(YD/X) for every Zariski prime ideal ¢ C B with y € Yq};
(3) {y € Y|y € Int(Y’/X) for every irreducible component Y’ of Y with y € Y'};
(4) {y € Y|y € Int(YD/X) for the Zariski prime ideal g C B with y € Yq}.
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Proof. (1)C(2). By Proposition 6.4.2(ii), one has Int(Y(9 /Y) = Y, and the required inclusion
follows from the statement (iii) applied to the composition Y@ — Y — X. The inclusions
(2)C(3)C(3) are trivial.

(4)c(1). One has H(y) = Hq) (y) = £(q), and so y € Int(Y/X), by Proposition 6.4.2(iii). =

6.4.5. Corollary. The subsets Int(Y/X) and 6(Y/X) are open and closed, respectively.
Proof. Proposition 6.4.4 reduces the situation to the case when Y is integral, and the required

fact follows from Proposition 6.4.3(i). .

6.4.6. Proposition. IfY is an affinoid domain in X, then Int(Y/X) coincides with the
topological interior of Y in X.

Proof. Suppose first that a point y € Y lies in the topological interior of Y in X. Then we
can find a Laurent domain V = {z € X“fl(az)] < pi,|gj(x)| < g;} which is contained in Y and
such that |f;(y)| < p; and |g;(y)| > ¢; for all 1 <i¢ <m and 1 < j < n. By Lemma 6.1.4, one has
Hy (y) = Hy (y). We may therefore assume that Y = V. Then there is an admissible epimorphism
v A{p;'T;,q;8;} = B :T; — f;,S; — yj‘l such that |f;(y)| < p; and |§j_1(y)| < gj, where f;
and g; are the images of f; and g; in B, respectively. This means that y € Int(Y/X).

Suppose now that y € Int(Y/X). By Proposition 6.4.4, we may assume that Y is integral
and then, by Proposition 6.4.3(i), there exists an admissible epimorphism A{rl_lTl, R e i

B : T; + g; with |g;(y)] < r; for all 1 < i < n. Then the open subset {z € X||g;(z) < r; for all

1 <i < n} contains the point y and is contained in Y. n

6.4.7. Corollary. IfY is an affinoid domain in X and B is a finite Banach A-algebra, then
Y is an idempotent domain (and, in particular, A — B is an admissible epimorphism).
Proof. Proposition 6.4.2(ii) implies that Int(Y/X) =Y, i.e., Y is an open and closed subset

of X, and the required fact follows from Proposition 6.1.12. "

6.4.8. Proposition. Int(Y/X) =Y if and only if the morphism ¢ : Y — X is finite.

Proof. The converse implication follows from Proposition 6.4.2(ii). Assume therefore that
Int(Y/X) =Y. Given a non-nilpotent element g € B, let y be a point from the Shilov boundary
of B with [g(y)| = p(9).

and consider first the case when Y is integral. Given a nonzero element g € B, let y be a
point from the Shilov boundary of B with |g(y)| = p(g). Then Zker(x,) = 0 and, therefore, the
homomorphism B — H(y) is injective. Since g™ = fin 7—2@) = H(y) for some m <1 and f € A,
it follows that g™ = f, i.e., g is integral over A. In the general case, we take a morphism of quasi-

integral data {I', Ay, vy, a0} — {I, B;,v;j,bj;} with amap I — I’ : ¢ — ¢’ and homomorphisms
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fi + Ay — B; that represents the homomorphism A — B. Given a non-nilpotent element b € B,
we can replace it by its power so that, if b = (b;);c; € b, then b; is not nilpotent in B;. By the
previous case, one has b" = f;(a;) in B; for some m > 1 and an element a = (a;)yep € A. It

follows that b™*t! = ab in B, i.e., b is integral over A. "

6.4.9. Proposition. Let y € Y. Suppose that Uy,...,U, are affinoid domains in X that
contain the point x = ¢(y) and such that Uy U ... U U, is a neighborhood of x, and suppose that
V; is an affinoid neighborhood of y in =1 (U;). Then y € Int(Y/X) if and only if y € Int(V;/U;)
foralll <i<n.

Proof. If y € Int(Y/X), then y € Int(o~*(U;)/U;) for all 1 < i < n, by Proposition 6.4.2(v).
Proposition 6.4.6 implies that y € Int(V;/¢~1(U;)) and, therefore, y € Int(V;/U;), by Proposition
6.4.2(iii) and (iv). Conversely, suppose that y € Int(V;/U;) for all 1 < ¢ < n. Consider first the case
when n = 1. In this case Proposition 6.4.2(iii) implies that y € Int(p~1(U)/U) Since z € Int(U/X),
the same fact implies that y € Int(p=1(U)/X) = Int(¢~1(U)/Y) NInt(Y/X) C Int(Y/X). Thus,
we can replace X by a small affinoid neighborhood of = (and Y by its preimage), and so we may
assume that X = |J_, U; and V; = o= 1(U;) for all 1 < i < n. Furthermore, we may assume that
both X and Y (and therefore all U; and V;) are reduced. By Proposition 6.4.4, we may assume
that Y is irreducible and, replacing X by the irreducible component of X that contains the image
of Y, we may assume that X is also irreducible. In this case, all of the affinoid domains U; are
rational, i.e., they are of the form {2’ € X||g(2')| > q, |fi(2")| < ps|g(a’)| for all 1 < < n}, where
fiyo- s fn,g € A and p1,...,pn,g > 0. Replacing X be an affinoid neighborhood, which is the
intersection of Laurent domains of the form {z’||g(z’)| < ¢’} for some 0 < ¢’ < ¢, we may assume
that all U;’s are Weierstrass domains.

We claim that one can find f = (f1,..., fm) € A™ andp = (p1,...,pm) € (R )™ such that the
covering {U; }1<i<n of X has a Laurent refinement, i.e., a refinement of the form {X ((p~'f)%)},

where
X((p~'f)°) = {2’ € X||f;(2")| < pj, if g5 = +1, and |f;(2)| > p;, if g5 = —1},

and € = (€1,...,6m) € {£}™. Indeed, if U; = X(pi_llfil, .. ,pi_kifiki), then such a Laurent refine-

ST I > e

I Rl

1 <i<nthereis 1 < j < k; with g;; = —1. Suppose that U is not contained in any U;. Then for
every 1 <i¢<nonehas UNU; = {2’ € U‘|fij(x’)| = p;; for all j with ¢;; = —1}. It follows that
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the intersection U N Uj; is a generalized subpolytope of U of dimension strictly less than that of U.
This contradicts the inclusion U C |J;_, (U N U;), and the claim follows.

By the claim, we may assume that {U;}1<;<, is a Laurent covering and, by induction on n,
we may assume that it is a covering of the form X = U; UU, with Uy = {«/ € X||f(2")| < p} and
Uy = {2’ € XHf(a:’)| > p}. To verify the proposition in this case, we need the following fact (cf.
[Berl, Lemma 2.5.18]).

6.4.10. Lemma. Let A be an Fi-subalgebra of an Fi-algebra B, and let f be an invertible
element of A. Then the intersection of the integral closures of A[f] and A[f~'] in B coincides with
the integral closure of A in B.

Proof. Let g be an element from the intersection. Then g™ = af*g™ and g? = bf~!gP for
some a,b € A, k,1 >0, m>n>0,and p > q> 0. It follows that g™+ = glpkgni+tak je. g is

integral over A. "

If Vi = ¢ }(Uy) and Vo = ¢~ !(Uz), the assumption implies that )Zy(évl) and )Zy(EVQ) are
integral over Y, (Ay,) and Xy (Ay,), respectively, and we have to deduce that )A{y(é) is integral over
Xy(g) By Proposition 5.3.8 applied to the admissible epimorphisms A{p~'T} — Ay, : T — f and
A{pT} — Ay, : T f~1, Ay, and Ay, are finite algebras over A[f] and A[f!], respectively. It
follows that Y. (Ap,) and Xz(Ay,) are integral over X (A)[f(z)] and X4 (A)[f(z)""], respectively.

It follows that )Zy(é) is integral over )?y(ﬁ) [f(y)] and X, (A)[f(y) '], and the required fact follows

from Lemma 6.4.10. n

§7. Further properties of K-affinoid spaces

7.1. Affinoid subdomains of M(A) and open subschemes of Spec(A). Let X be a
K-affinoid space M(A), and let X be the affine scheme Spec(A). Recall that X*" denotes the
space of all homomorphisms of Fi-algebras A — R, which extend the real valuation on K. It
follows that there is a canonical continuous map X — A" that identifies X with a compact subset
of X#" and its composition with the canonical continuous map X*" — X gives rise to a continuous
map X — X. It follows easily from Theorem I. 4.4.2.1 that, for any open affine subscheme U C X,
the canonical homomorphism A — Ay, gives rise to a homeomorphism of /*" with the open subset

of X#" which is the preimage of U/ with respect to the map X" — X.

7.1.1. Theorem. Let U be a nonempty affinoid domain in X, and let U be the minimal open

subscheme of X which contains the image of U in X. Then
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(i) U is an open affine subscheme of X;
(i) there is a canonical isomorphism of partially ordered sets mo(U) — mo(U)

(iii) the canonical homomorphism Ay — Ay is surjective.

For an open subscheme U C X, let U*" denote the preimage of V with respect to the map
AX* — X. (By the remark before the formulation of Theorem 7.1.1, U*" coincide with the union
of V*" taken over open affine subschemes V C U.) Then U contains the image of U if and only if

U™ contains U.

Proof. (i) follows from Corollary 1.4.5.2.

(ii) Let V be a connected component of U, and V the minimal open affine subscheme of X
which contains the image of V in X. Since the latter is equivalent the requirement that V lies in
V2% and connectedness of V2" is equivalent of connectedness of V, it follows that V is connected
and, therefore, the map 7o(U) — mo(U) is surjective. That it is injective follows from Theorem
6.3.1(iii) and the fact that the minimal elements of Z(V') and Z(V) coincide.

(iii) Since both Ay and Ay are twisted product over the same partially ordered set mo(U) —
mo(U), the situation is reduced to the case when U is connected. Replacing X by U, we get
UNXm # 0. Then, by Theorem 6.3.1(ii.2), U is a Weierstrass domain in X and, therefore, the

homomorphism A — Ay is surjective. .

7.1.2. Theorem. For any open affine subscheme U C X, there exists an increasing sequence
of nonempty affinoid domains U; C Uy C ... with the following properties:

(1) X NU*™ =2, Un;

(2) U,, is a Weierstrass subdomain of U,,+1 and lies in the topological interior of U, 41 in X;

(3) U is the minimal open subscheme of X that contains the image of Uy ;

(4) for any finitely generated Banach A-module M, there exists i > 1 such that the canonical
homomorphism M;; — My is a bijection for every affinoid domain U; C U C X NU?".

Proof. Case 1: U is a principal open subset of X. Let U = D(f) for f € A and, for r > 0,
let U denote the Laurent domain {z € X||f(x)] = r}. (Notice that U™ = () if and only if
r < p(f).) If r1 = p(f) >ry > ...1is a strictly decreasing sequence of positive numbers that tend
to zero, we set U, = U). We claim that the sequence Uy C U, C ... possesses the properties
(1)-(4). Indeed, validity of (1) and (2) is trivial. Since the image of U in U contains a point from
U, the property (3) follows from Corollary 1.4.2.4. To verify the property (4), suppose first that
A is finitely presented over K. Lemma 5.2.3 then implies that there is a finite chain of Zariski

A-submodules Ng =0 C Ny C ... C N, = M which are finite Banach A-modules such that each
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quotient N;/N;_1 is isomorphic to A/II, where II is a closed prime ideal of A. This reduces the
situation to the case when M = A/II. For such M, one has My, = 0 if and only if (f,0) € IT and,
in this case, My = 0. If My # 0, Corollary 6.2.3 implies that, if My # 0, then My, = My;. Thus,
if My, # 0, the property (4) holds for i such that r; is at most the spectral radius of the image
of fin A/II. If A is arbitrary, we apply the previous case to the finitely presented |K|-affinoid
algebra A = A/K** and the finitely presented Banach A-module M = M/K**. Since My = My
and My = My, the required fact follows.

Case 2: U is connected. By Theorem 1.4.2.1, U is the minimal connected component of a
principal open subset V of X. By the previous case, there exists a sequence of affinoid domains
Vi € Vo C ... in X with the properties (1)-(4) for V. Since V is the minimal open subscheme of
X that contains the image of V; with ¢ > 1, Theorem 7.1.1(ii) implies that there exists a unique
connected component U; of V; whose image in X lies in 4. Then the sequence Uy C Uy C ...

possesses the properties (1)-(4) for U.

Case 3: U is arbitrary. By the previous case, for every connected component U(¢) of U,
where e € I4,,, there exists an increasing sequence of affinoid domains Ul(e) - UQ(E) C ... with the
properties (1)-(4) for U(®). Suppose we are given a system of integers k. > 1, e € I4,,. We claim

that there is a system of integers lo > ke, € € jAu such that U = | Ul(ee) s an affinoid domain

e€la

in X. We construct the integers [, inductively as follows. If e is a I;aximal element in [ Ays We
set I, = k.. Suppose now e € fAM is such that [y is defined for every f € fAu with e < f. By
the validity of the property (1) for (), we can find a sufficiently large integer I, > k. such that
qu((Ul(ff))(p)) C (Ul(:))(q) for every pair of Zariski prime ideals p € Z(U)) and q € Z(U®)) with

p C q. The claim now follows from Theorem 6.3.1. Using the claim, one easily constructs a required

sequence of affinoid domains that possesses the properties (1)-(4) for U. .

7.1.3. Corollary. Given open subschemes U,V C X, one has X N"U*" C X NV?*" if and only
ifuU Cy.

Proof. The converse implication is trivial. Suppose that X NU/?"* C X NV, Let U and V be
unions of open affine subschemes U U...UU™ and V! U...UV", respectively, and let Ui C Us C ...
and Vlj C sz C ... be sequences of affinoid domains in X provided by Theorem 7.1.2 for 2% and
V7, respectively. By the property (3), U is the minimal open affine subscheme of X that contains
the image of U} and, therefore, I is the minimal open subscheme of X that contains the image of
Ul U...uU™. By the assumption, the latter union lies in V;} U...U V™ for some k > 1. It follows

that V contains the image of the same union and, therefore, U C V. .
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7.1.4. Definition. An open subset of a K-affinoid space X = M(A) is said to be a Zariski
open subset if it is of the form X NU*", where U is an open subscheme of X = Spec(A).

Notice that the intersection of two Zariski open subsets is a Zariski open subset, and the

preimage of a Zariski open subset under a morphism of K-affinoid spaces is a Zariski open subset.

7.2. A continuity property. Let X = M(A) be a K-affinoid space, and let V' be a rational
domain in a X, ie., V = {z € X||fi(z)| < pilg(z)|, |g(z)] > ¢} for some fi,..., fn,g € A and
Dy, DPn,q > 0. Given positive numbers p; > p; and ¢’ < ¢, let V' be the bigger rational domain
{z € X‘ |fi(x)] < pilg(x)|, |g(z)| > ¢'}. Notice that V' is a Weierstrass subdomain of V', and it lies

in the topological interior of V' in X.

7.2.1. Theorem. In the above situation, if M is a finitely generated Banach A-module, then
for any pl,...,pl,,q sufficiently close to p1,...,pn,q, respectively, the canonical homomorphism of
A-modules My, — My, is a bijection, where My = M&4Ay.

Proof. Replacing X by the affinoid domain {z € X“g(az)] > r} for some r < g, we reduce
the situation to the case when g is invertible, i.e., both V and V'’ are Weierstrass domains. In
this case, the homomorphisms A — Ay and A — Ay are surjective and their kernels coincide
with the Zariski kernels. It follows that the same is true for the homomorphisms Ay, — Ay and
My — My . Thus, it suffices to show that Zker(M — My ) C Zker(M — My) for all pj,...,pl,
sufficiently close to pi,...,p,, respectively. For this it suffices to consider the case n = 1, i.e.,
V = {z € X||f(x)] <p} and V' = { € X||f(z)| <p'}.

We have My = M{p~'T}/E and My, = M{p' 'T}/E’, where E and E’ are the closed
submodules generated by the pairs (T'n, fn) with n € M. By Example 1.2.4(ii), one has ||m||y =
inf{||n||p*} and ||m||y» = inf{||b||p’"}, where the infimums are taken over all representations
m = fFn with n € M and & > 0. Suppose that the image of m in My is zero. Then the
first infimum is zero, and we have to show that the second infimum is also zero for all p’ > p
sufficiently close to p. Recall that by the same Example 1.2.4(ii) one has m € (,—, f*M. For
k > 0, we set ||m||;, = inf ||n||, where the infimum is taken over all representations m = f¥n with

n e M (and so [lmly = inf{|lm]*}).

7.2.2. Lemma. In the above situation, the following is true:
i) for every nonzero element m € (oo, f*M there exist positive constants C' < C" and
(i) Y k=1 p

r = ra(m) such that C'r* < ||m||;, < C"r* for all k > 0;

(i) if the element m form (i) lies (resp. does not lie) in a Zariski A-submodule M' C M, then
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m € (pey f¥M' (resp. m € ooy fH(M/M’)) and rar(m) = rar(m) (vesp. rar(m) = rarar (m)).

Proof. Let N =(\;—, f*M. By Corollary 1.1.5.3, one has N = {m € M‘m = fgm for some
g € A} and, in particular, the map N — N : m — fm is a bijection. It follows that, for the
canonical isometric homomorphism M = M/K** : m + m, one has m € My f*M if and only
if m € N. One also has ||m||x = ||m||x. We may therefore replace A by A = A/K** and M by
M = M/K** and assume that A and M are finitely presented.

(i) Step 1. Let P = {p € M|f*p € N} for some k > 0}. Since M is Zariski noetherian, there
exists [ > 0 such that f!P C N. Let m be a nonzero element of N. We claim that there exist positive
constant C' < C" such that, for every k > 1, one has C'||m||, < inf||f'n|| < C"||m||x, where the
infimum is taken over all representations m = f¥n. Indeed, since ||f'n|| < ||fY] - ||n||, the second
inequality holds for C” = ||f!||. As for the first inequality, consider the bounded homomorphism
of finite Banach A-modules P — N : p — flp. By Proposition 2.2.8, this homomorphism is
admissible, and so there exists a positive constant C such that, for every element n’ € f*P, there
exists p € P with f'p = n/ and ||p|| < C||n/||. If m = f*n, we apply the latter for the element
f'n. It follows that there exists an element p € P with flp = f'n and ||p|| < C||f'n||. Since
m = fkn = f¥p, we get ||m|| < ||p|| < C||f'n]|, i.e., the first inequality holds for C" = &.

Suppose that m = f¥n, where k > I. Since f'n € N and the multiplication by f on N is
a bijection, it follows that the element p; = f'n for which m = f*~!p, is uniquely defined by m
and k. The above claim implies that it suffices to verify the required behavior for the function
k= [lpell

Step 2. By Lemma 5.2.3, there is a chain of Zariski A-submodules Ng =0C N; C...C N; =
N such that each quotient N;/N;_; is isomorphic to a Banach A-module of the form A/II, where
IT is a closed prime ideal of A. Suppose that m € N;\N;_1. Then p; € N;\N;_1. We identify
N;/N;_1 with a quotient A/IT and assume that the Banach norm on the latter coincides with the
spectral norm. Let x1,...,zs be the points of the Shilov boundary of A/II. Then

1<i<s | fa)lF

It follows that for some positive constants C’ < C” one has C'r*¥ < ||px|| < C”r* with the number

r = (inf |F(z)) .
(ii) If m ¢ M’, both statements are trivial. Suppose therefore that m € M’. The inclusion

m € N' = (=, f*M’ follows from Corollary 1.1.5.3, and the equality 7;(m) = ra(m) follows
from the proof of (i). .

If r is the number provided, by Lemma 7.2.2, for the element m, the equality ||m||y = 0 is
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equivalent to the inequality rp < 1. Thus, if ||m||y = 0, then rp < 1 and, therefore, rp’ < 1 and

[|m||v: = 0 for all p’ > p sufficiently close to p. .

7.2.3. Corollary. In the situation of Theorem 7.2.1, given finitely generated Banach A-
modules M and N, for any p,...,p.,q sufficiently close to p1,...,pn,q, respectively, the canonical
homomorphism of A-modules Homy,, (My+, Ny+) — Homu,, (My, Ny) is a bijection.

Proof. The statement follows from Theorem 7.2.1 applied to the finitely generated Banach
A-module Hom 4 (M, N) (see Corollary 2.2.8). .

7.2.4. Corollary. For any affinoid domain V in X, there exists a decreasing sequence of
affinoid domains Vi D Vo D ... such that

(1) V41 is a Weierstrass subdomain of V,, and lies in the topological interior of V,, in X;

(2) Nt Vu = V5

(3) for any finitely generated Banach A-module M, there exists k > 1 the canonical homomor-
phism My, — My is a bijection for every n > k.

Proof. If V is connected, it is a rational domain, and so the statement follows from Theorem
7.2.1. In the general case, we use the reasoning from the proof of Theorem 7.1.2, Case 3. Namely,
by the previous case, for every connected component V(¢ of V, where e € T Ay, there exists a
decreasing sequence of affinoid domains Vl(e) D VQ(E) D ... with the properties (1)-(3) for V().
Suppose we are given a system of integers k. > 1, e € fAV. We claim that there is a system
of integers lo > ke, e € fAV such that U = UeeiAV Vlie) is an affinoid domain in X. Indeed,
we construct the integers [, inductively as follows. If e = 1, the minimal element in I4,,, we set
le = k.. Suppose now e € I4,\{1} is such that l¢ is defined for every f € Ia, with f < e. By
the validity of the property (2) for V() we can find a sufficiently large integer I, > k. such that
qu((Vlie))(p)) C (Vlgf))(q) for every idempotent f € T4, with f < e and every pair of Zariski prime
ideals p € Z(V(©)) and q € Z(V(H)) with p C q. Tt follows that Vlscf) < Vlie) for every f € I, with
f < e, and this implies the claim. Using the claim, one easily constructs a required sequence of

affinoid domains that possesses the properties (1)-(3) for V. .

7.2.5. Definition. Let M be a finitely generated A-module. The stalk of M at a point z € X
is the inductive limit M, = lim My, taken over all affinoid domains V' that contain the point z. If
—_—

M = A, A, is called the stalk of X at x.

7.2.6. Corollary. For every point x € X, there is a sufficiently small Laurent neighborhood
V of x such that My = M,.
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Proof. Theorem 7.2.1 implies that M, coincides with the inductive limit taken over all affinoid
neighborhoods of x. Consider an admissible epimorphism K{r; 'T1,...,r 1T} — A : Tj — f;.
Then {z} = {y € X||fi(y)| = |fi(z)| for all 1 < i < n}. It follows that the Laurent domains
Vo={y e X||fi(z)| —e < |f;(y)| < |fi(x)|+e forall 1 <i<n}, e >0, form a fundamental system
of affinoid neighborhoods of x. Let g be any positive number with the property that it is strictly
less than each of the nonzero numbers |f;(z)|. Then, for every pair 0 < e < &’ < ¢gg, Vo = M(A,)
is a Weierstrass domain in V., = M(A.) and, in particular, the homomorphism A, — A, is
surjective and its kernel coincides with the Zariski kernel. It follows that the same is true for
each of the homomorphisms My, — My, and, therefore, for the homomorphisms My, — M,.

The required statement now follows from the fact that the finitely generated Ay -modules My, are

Zariski noetherian (Proposition 1.1.5.2). .

The following statement is a consequence of the previous results, and is an analog of the
non-Archimedean analytic geometry fact that the k-affinoid algebra Ay of an affinoid domain

V C X =M(A) is flat over A.

7.2.7. Theorem. Given a finitely generated Banach A-module M, a Zariski A-submodule
N C M and an affinoid domain V C X, the canonical map Ny — My is an admissible monomor-
phism and My /Ny = (M/N)y .

Proof. Suppose first that V is a Weierstrass domain. By induction, it suffices to consider the
case V ={z € X“f(z)\ < p}. We know that the homomorphism M — My is surjective and that
its kernel coincides with its Zariski kernel, which consists of the elements m € M with ||m||y = 0.
By Lemma 7.2.2(i), the latter is equivalent to the property m € (r—, f*M and rj;(m)-p < 1. The
same facts are true for the finite Banach A-modules N and M/N, and so the required statement
follows from Lemma 7.2.2(ii).

Suppose now that V is an arbitrary affinoid domain, and let V be the minimal open subscheme
of X = Spec(A) that contains the image of V' in X. The canonical homomorphism Ny — My, is
injective and My, /Ny, = (M/N)y. By Theorem 7.1.2, we can find an affinoid domain U C X N Y28
such that V is a Weierstrass subdomain of U and My, = My, Ny — Ny and (M/N)y = (M/N)y.
Thus, replacing X by U, we reduce the situation to the previous case when V is a Weierstrass

domain. n

For a nontrivial ideal E, we set E = {(f,9)|f = Af’,g = pg’ for some \,u € K** and
(f',g") € E}. The latter is also an ideal, and it is closed if E is closed. We say that an ideal F
of A is prime modulo K** if the ideal E is prime. If E is closed and prime modulo K**, then
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M(A/E) = M(A/FE) is an irreducible closed subset of X. Lemma 5.2.3 implies that every finitely
generated A-module M has a chain of Zariski A-submodules Ng =0 C Ny C ... C Ny = M such
that each quotient N;/N;_1 is isomorphic to a Banach A-module of the form A/FE, where E is an
ideal closed and prime modulo K**. (Recall that, by Proposition 2.2.7, Zariski A-submodules of A

are finitely generated Banach A-modules.)

7.2.8. Corollary. In the above situation, if V is an affinoid domain in X that contains the
set Ule M(A/E;), then there is a canonical isomorphism of Banach A-modules M — My, .

Proof. Theorem 7.2.7 easily implies that if, for a Zariski A-submodule N C M, one has N =
Ny and M/N 5 (M/N)y, then M = My,. This reduces the situation to the case when M = A/E
for a closed ideal E. In this case the preimage of V with respect to the canonical morphism of

K-affinoid spaces M(A/E) — X coincides with M(A/E) and, therefore, A/E 5 A/E@Ay. =

7.3. K-affinoid germs. A K-affinoid germ is a pair (X,U), where X is a K-affinoid space
and U is an affinoid domain in X. The affinoid K-germs form a category in which morphisms
from (Y,V) to (X,U) are the morphisms ¢ : Y — X with (V) C U. The category of K-
germs K-Agerms is the localization of the latter category with respect to the system of morphisms
¢ : (Y,V) — (X,U) such that ¢ induces an isomorphism of Y with an affinoid neighborhood of
U in X. Notice that this system admits calculus of right fractions, and so the set of morphisms
Hom((Y,V),(X,U)) in K-Agerms is the inductive limit of the sets of morphisms ¢ : V! — X with
o(V) C U, where V' runs through a fundamental system of affinoid neighborhoods of V in Y. It
follows that a morphism ¢ : (Y,V) — (X,U) is an isomorphism in K-Agerms if it induces an
isomorphisms between some affinoid neighborhoods of V' and U. Notice that the correspondence

X — (X, X) gives rise to a fully faithful functor K-Aff — K-Agerms.

7.3.1. Theorem. Let ¢ : Y — X and ¢ : Z — X be morphisms of K-affinoid spaces, and
let V.CY and W C Z be affinoid domains, and suppose that W C Int(Z/X). Then there is a
canonical bijection

Hom((Y, V), (Z,W)) = Hom(V, W) .

Proof. Let X = M(A),Y = M(B) and Z = M(C). By Corollary 7.2.4, W is the intersection
of a decreasing sequence of affinoid domains Wy D Wy O ... with W;y; C Int(W;/Z) and for which
the canonical homomorphisms Cyy, — Cyy are bijections. This implies that the map considered is
injective. For the same reason, we can shrink Y and Z and assume that the canonical homomor-

phisms B — By and C — Cyy are bijections, and both V and W are Weierstrass domains. Suppose
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now we are given a morphism of K-affinoid spaces ¢ : V. — W, i.e., a bounded homomorphism
of K-affinoid algebras ¢* : Cyy — By. Since the homomorphisms B — By and C' — Cy are
bijections, the bounded homomorphism ¢* extends to a homomorphism 8 : C' — B, and we have
to show that one can shrink V' so that the homomorphism S8 becomes bounded.

Fix an admissible epimorphism A{rl_lTl, et AT} — C Ty v hy, and set g; = B(f;). It
suffices to verify that, given 1 < i < n, every point y € V has an open neighborhood V in Y such
that |g;(y')| < r; for all ¥ € V. One has |g;(y)| = |hi(z)|, where z = ¢(y). If |h;(2)| < r;, we can
take V = {y' € Y||gi(y')| < ri}. Suppose therefore that |h;(z)| = r;. Then p(h;) = r; and, since
z € Int(Z/X), it follows that hl'(z) = f(z) for some f € A with p(f) = |f(x)| = 7", where z is
the image of z in X. This implies that 'k’ = fh' for some h' € C with h'(z) # 0. If ¢’ = B(K'),
then ¢7'¢’ = f¢’ and ¢'(y) # 0. It follows that, for every point ¢ € Y with ¢'(y’) # 0, one has

gM(y') = f(a'), where 2’ is the image of ¢’ in X and, therefore, |g;(y')| < p(f)w =1 .
7.3.2. Corollary. In the situation of Theorem 7.3.1, suppose in addition that V C Int(Y/X).

Then any isomorphism of K -affinoid spaces V. =+ W extends to a unique isomorphism of K-affinoid

germs (Y, V) 5 (Z,W). .

7.4. Acyclic K-affinoid spaces. For a finite affinoid covering U = {U, };c; of a K-affinoid
space X = M(A) and a finitely generated Banach A-module M, we set
Mu = KEI‘(H MUz- — H MUiﬁUj) .
i€l ijel

An element of My, is a tuple {m; };c;r with m; € My, and m;

vinw, = mj\UiﬁUj for all 4,5 € I. The

supremum norm |[{m;};cr|| = sup||m;|| defines the structure of a Banach A-module on M. In
iel
this subsection we investigate properties of the canonical bounded homomorphism M — M, and

give a sufficient condition for M to possess the following property.

7.4.1. Definition. A finitely generated Banach A-module M is said to be acyclic over X if,
for any finite affinoid covering U of X, the homomorphism M — M, is an isomorphism of Banach

A-modules. If M = A satisfies this condition, then X is said to be acyclic.

7.4.2. Theorem. Let M be a finitely generated Banach A-module. Then

(i) for every finite affinoid covering U = {U,}icr of X, the canonical map M — My is an
admissible monomorphism;

(ii) if M has a chain of Zariski A-submodules Ng =0 C Ny C ... C Ny = M with N;/N;_1 =
A/E; for ideals E; closed and prime modulo K** and such that ﬂle Yim # 0, where Y; =
M(A/E;), then M is acyclic over X.
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Proof. Step 1. If M is isomorphic to A/E, where E is an ideal closed and prime modulo
K**, then M is acyclic over X. Indeed, we can replace A by A/E and assume that M = A and
A is integral modulo K**, i.e., the quotient A = A/K** is integral. Since the canonical surjective
homomorphism A — A is isometric, it follows that the Banach norm on A is equivalent to the
spectral norm. Furthermore, every affinoid domain U in X is rational, and it is Weierstrass if and
only if U N X # 0. Finally, if U = X(p_lg, qg~ "), then the canonical homomorphism 4, — Ay
is a bijection. Indeed, the latter is a surjection and its kernel coincides with the Zariski kernel
(Lemma 6.1.8). Since A; — Ay is a bijection, the required fact follows. It follows that Ay is

integral modulo K**.

Let U = {U,;}ier be a finite affinoid covering of X, and let U; be an element of the covering U
with U; N X, # 0. Then U; is a Weierstrass domain, and the canonical homomorphism A — Ay,
is a bijection. This implies that the homomorphism A — Ay, is injective. That it is an admissible
monomorphism follows from the fact that the Banach norm on each U; is equivalent to the spectral
norm. To prove that it is in fact a bijection, we claim that for every element j € I there exists a
sequence iy = 1,11,...,1, = J of elements of I such that each intersection U;, , NU;, is a nonempty

Weierstrass domain in Uy, .

We prove the above claim by induction on the Zariski-Krull dimension d of A (see §1.1.3). If
d =0, then A is an F;-field, and so all affinoid domains in X are Weierstrass. Suppose that d > 1
and that the claim is true for K-affinoid algebras which are integral modulo K** and of Zariski-Krull
dimension smaller than d. If there exists a nonzero Zariski prime ideal p C A with U;p # () then,
by the induction hypothesis applied to Xp = M(A/p), we can find a sequence ig = 4,41, ...,in = j
in I such that each intersection U;, _, p NU;, p is a nonempty Weierstrass domain in U;, p. This
implies that U;,_, N U;, is a nonempty Weierstrass domain in U;,. If U;p = 0 for all nonzero
Zariski prime ideals p C A, we can find a sequence ij,441,...,%, = j in I with U;,_, NU;, # 0
and U;, p = () for all I < k < n and all nonzero Zariski prime ideals p C A, and Up # () for
some nonzero Zariski prime ideal p C A. Notice that all affinoid domains in U;, for | < k < n are
Weierstrass. By the previous case, we can find a sequence ig, 41, .. .,% with the required property,

and so the sequence iy = i,11,...,%, = j has the same property, and the claim follows.

Let now {f;}jer be an element of Ay. Since A 5 Ap,, we can view f; as an element of A,
and we claim that f; = fi‘UA for all j € I. Indeed, let ig,i1,...,i, be a sequence as above, and
J

suppose that f;, = fi‘U- for all 0 < [ < k — 1 with some 1 < k < n. Since U;,_, NU;, is a
K

nonempty Weierstrass domain in Uj;, , the canonical map AU% — AUik,mU is injective and, since

ik

97



i

it follows that f;, = fi‘U. . The claim follows.
'k

Ui, NUsp, firs = fily,

i Ui,  NU;

1 NU; oMU’

Step 2. The statement (i) is true. Indeed, let No =0 C Ny C ... C Ny = M be a chain of
Zariski A-submodules with N;/N;_; 5 A/E;, where FE; are ideals closed and prime modulo K**.
By Step 1, the statements (i) and (ii) are true for each of the quotients N; /N,_;. This easily implies
that the canonical homomorphism M — M, is admissible, and so it remains to verify that it is
injective. Let m and n be two distinct elements of M, and assume m € N, and n € N, with p <wv
and p and v are minimal with those inclusions. If u < v, take ¢ € I with M(A/E,)NU; # (). Then
(Ny)u, # (Ny—1)u, and, therefore, the images of m and n in My, are not equal. If ;1 = v, then the

images of m and n in My, are not equal by Step 1 applied to the quotient N, /N, _;.

Step 3. The statement (ii) is true. We have to verify that, for every element (m;)ic;r € My,

U, for all s € I. Of

there exists an element m € M which gives rise to (m;)ier, i.€., m; = m
course, we may assume that all of the affinoid domains U; are connected and, in particular, rational
domains.

Let Y = ﬂle Yim. We claim that there exists an affinoid domain V that contains the set
Ule Y and such that Y NV, # (0. Indeed, let E! denote the preimage of the maximal Zariski
ideal of A/E;. Then Y = M(A/F), where F is the closed ideal generated by the ideals Ef, ..., E;.
Furthermore, let p be the Zariski preimage in A of the maximal Zariski ideal of A/F. If p = m,
then Y N Xy, # (0, and so the required property holds for X. Assume therefore that p # m. Then
we can find an element f € A\p which lies in all Zariski prime ideals q D p with q # p. Since
f(z) # 0 for all points z € Y, it follows that the same holds for all points of the sets Y; , and,
therefore, for all points of the sets Y;. Thus, f(z) # 0 for all points = € Z and, therefore, we can
find 7 > 0 with |f(z)| > r for all points z € Z. Then the Laurent domain V = {z € X||f(z)| > r}
possesses the required property. By the above claim and Corollary 7.2.8, we can replace X by an
affinoid subdomain and assume that it is connected and Y N Xy, # (. Let U; be an element of
the covering U which has nonempty intersection with the latter set. Since U; N Xy, # (), Theorem
6.3.1(ii.2) implies that U is a Weierstrass domain and, in particular, the kernel of the canonical
homomorphism A — Ay, coincides with its Zariski kernel. It follows that, if m; # 0, there exists a
unique element m € M with m‘Ui =m;. If m; =0, we set m = 0. We claim that m}Uj =m; for
all j € I. Indeed, if k = 1, this was proved in Step 1. Assume therefore that k£ > 2 and the claim is
true for finitely generated Banach A-modules with shorter chain of Zariski A-submodules as above.

Consider first the case when m; € (Ny_1)y,. Since Ni_1 — (N,_1)yu,, one has m € Ny_;. By

Step 1, applied to M /Ny _1, we get m; € (Np_1)y, for all j € J and, therefore, (m;);jcr € (Ne—1)u-
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The induction hypothesis, applied to Nj_1, implies that m; = m‘Uj for all j € I.

Suppose now that m; € (Nx—1)u,, i.e., m & Ni_1. By the induction hypothesis applied to
M/Ny, we get m’Uj = my, if m; & (N1)y,, and m}Uj € (N1)y,, it my € (N1)y;. It remains to
show that in the latter case one has m‘Uj = my. If in this case the intersection U; NY; is empty,
then both m|Uj and m; are equal to zero. Thus, we have to verify the equality m‘Uj = m; in
the case when U; NY; # (0 (and m|U]_,mj € (N1)u,;). We use for this the reasoning from Step
1. Namely, we notice that, if U C V are affinoid domains such that the intersection U NY7 is a
nonempty Weierstrass domain in V' N Y7, then the canonical homomorphism (Np)y — (N1)y is
injective. Let j € I be as above. By Step 1, there exists a sequence ig = i, 19, ...,%, = j of elements
of I such that each intersection U;, , NU; NY; is a nonempty Weierstrass domain in U;, N Y7.

Let | be maximal with the property m;, & (N1)u,,. (Notice that 1 <1 < j.) Then m; = m

U;
and, for every [ + 1 < pu < n, one has miu,m‘U_ € (Nl)U.;#- Since each of the homomorphisms
b

(N)u,, = (N1)u, _1nus, is injective, it follows easily that m;, =m . forall+1<pu<n. =

U;

Let K — K’ be an isometric homomorphism of real valuation Fi-fields, A’ a K’-affinoid
algebra, A — A’ a bounded homomorphism compatible with the homomorphism K — K’ and ¢
is the induced map X' = M(A") - X = M(A).

7.4.3. Corollary. In the above situation, assume that the fibers of the map ¢ are finite. Let
x € X and o Y(x) = {x},...,x),}. Given a finitely generated Banach A’-module M’, there exists
an affinoid neighborhood U of x in X such that every affinoid domain x € V C U is acyclic, the
preimage ¢~ (V) is a disjoint union [[}_, V/ and, for every 1 < i < n, the aflinoid domain V; is
acyclic and M‘//{ is acyclic over V.

Proof. Suppose first that K’ = K and A’ = A. Let No=0C Ny C...C Ny =M = M’ be
a chain of Zariski A-submodules such that each quotient N;/N;_; is isomorphic to A/E;, where F;
is an ideal closed and prime modulo K**, and set Y; = M(A/E;). Shrinking X, we may assume
that © € ﬂ?zl Y;. The Zariski ideal p = {f € A|f(z) = 0} is prime. If p = m, then z € Xy,. If
p # m, let f be an element in A\p which lies in all Zariski prime ideals q D p different from p. If
0 <7 < |f(«)|, then replacing X by the Laurent domain {y € X||f(y)| > r}, we get z € Xm. In
this case, one also has x € ﬂle Yi m, and Theorem 7.4.1 implies that M is acyclic over X. Since
the similar inclusion holds in any affinoid domain x € V' C X, Mj, is acyclic over V.

Consider now the general case. By the above case, we can find an affinoid neighborhood U
of the point x such that every affinoid domain x € V C U is acyclic. Furthermore, we can find

pairwise disjoint affinoid neighborhoods Uj, ..., U], of the points zi,...,z], in X’ such that every

n
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affinoid domain z; € V;/ C U] is acyclic and My, is acyclic over V. Shrinking U, we may assume

that o= H(U) C [[;—, U/. This affinoid domain U possesses the required properties. .

7.4.4. Corollary. Given finite affinoid coverings U and V such that V is a refinement of U,
the following is true:
(i) the canonical map My — My is an admissible monomorphism;

(ii) there exists U such that for any V the admissible monomorphism in (i) is a bijection. =

We shall denote by K-Caff the full subcategory of K-Aff consisting of acyclic K-affinoid
spaces.

For a finite Banach A-module M, let (M) denote the filtered inductive limit h_r)nMu taken
over all finite affinoid coverings U of X. By Corollary 7.4.4, there is a finite affinoid covering U of
X with My = (M), and so (M) is a Banach A-module which is not necessarily finitely generated.
If M = A, we get a Banach A-algebra (A) which is not necessarily K-affinoid or even finitely
generated over A (see Remark 7.4.5).

Given finitely generated Banach A-modules M and N, we set Hom?, (M, N) = Hom 4 (M, (N)),
where the right hand side is the set of homomorphisms of A-modules M — (N). Let ¢ : M — (N)
be such a homomorphism. There is a finite affinoid covering & = {U;} of X such that ¢ is goes
through a homomorphism M — Ny and, by Lemma 1.2.3, ¢ is bounded. Let V = {Vi} be a
finite affinoid covering of X, which is a refinement of U. Then every Vj lies in some U;, and so
the homomorphism M — Ny — Ny, — Ny, goes through a unique bounded homomorphism of
finite Banach Ay, -modules ¢y, : My, — Ny,. It is easy to see that the latter homomorphism does
not depend on the choice of U;, and all ¢y, ’s give rise to a bounded homomorphism of Banach
A-modules ¢y : My — Ny. It follows that ¢ extends to a bounded homomorphism of Banach
A-modules (p) : (M) — (N) and, given a second homomorphism ¢ : N — (P), one can define
a composition homomorphism ¢ o ¢ : M — (P) by ¥ o ¢ = (¢) o ¢. Thus, one can define a
category A-FmodP whose objects are finitely generated Banach A-modules and morphisms are the

sets Hom") (M, N).

7.4.5. Remark. Let A be the quotient of F1{T1,T5} by the ideal generated by the pair
(TTy, T1T3), and let f and g be the images of T and Ty in A. Then A = {0,1, f™, g", fg"} with
n > 1, and X = M(A) is a union of the three irreducible components X; = {(0,%)}, X2 = {(¢,0)}
and X3 = {(1,t)} with 0 < ¢t < 1. Given 0 < < B < 1, let Uy = X; U{(£,0)[0 < ¢ < 8} and
Uz = X3 U{(t,0)|a <t < 1}. Then Uy, U and Uy N Uz = {(t,0)|a < ¢ < B} are acyclic rational
subdomains of X and, in particular, (A) = Ay for U = {Uy,Us}. but g‘UlﬂUQ = fg'Ung =0. It
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follows that the Banach Fi-algebra (A) is generated by f, g, and the elements u for which u‘Ul =g

and u‘U2 =0, v, with n > 2 for which vn}Ul = g™ and vn|U2 = g, and w,, with n > 2 for which

n+1 un+1

wn‘Ul = g and wn‘Uz = ¢g". (One has u,w, =g , UV, = and vww,, = u2.) It is easy to see

that (A) is not finitely generated over A.

7.5. The category K-AffP. Let X = M(A) and Y = M(B) be K-affinoid spaces. For a
finite affinoid covering V = {V;};er of Y, we set
Homy (Y, X) = Ker(HHom(Vi,X) 3 H Hom(V; NV}, X)) .
iel ijer
One has Homy (Y, X) = Hom(A, By), where the latter is the set of bounded homomorphisms of

Banach K-algebras. Furthermore, we set
Hom”(Y, X) = lim Homy (Y, X) ,
—

where the inductive limit is taken over finite affinoid coverings V of Y. (All transition maps in this
inductive limit are injective.) One has Hom”(Y, X) = Hom(A, (B)), and Corollary 7.4.4 implies
that there is a finite affinoid covering V of Y such that Homy (Y, X) = Hom?(Y, X) for all X. In
particular, if Y is acyclic, then Hom(Y, X) = Hom?(Y, X) for all X.

Elements of Hom” (Y, X) are said to be p-morphisms from Y to X. As in the previous sub-
section, one shows that any bounded homomorphism A — (B) extends in a canonical way to a
bounded homomorphism (A) — (B). Given a second morphism Z = M(C) — Y, i.e., a bounded
homomorphism B — (C), one can define a bounded homomorphism A — (C) as the composition
of A — (B) with the extended homomorphism (B) — (C), i.e., one can define the composition
p-morphism Z — X. This means that there is a well defined category K-Af fP whose family of
objects coincides with that of K-Aff, and in which the set of morphisms from Y to X are the
sets of p-morphisms of K-affinoid spaces Hom” (Y, X). The canonical functor K-Aff — K-Af fP
is faithful but not fully faithful. The functor K-Caff — K-Af [ is fully faithful.

Notice that any p-morphism from Y to X represented by a system of compatible morphisms
w; : Y; = X defines a continuous map ¢ : ¥ — X. Furthermore, there is a well defined homomor-
phism of K-algebras A, — B,, where x = ¢(z). In particular, there is a well defined isometric

homomorphism of real valuation Fi-fields H(z) — H(y).

7.5.1. Lemma. Given a finite covering {Y;};c; of Y by affinoid domains, the following

sequence of maps of sets is exact

Hom? (Y, X) — [ [ How?(v;, X) 5 ] Hom?(YinY;, X) . .

iel i,5€1
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7.5.2. Remarks. (i) Let A = {0,1,e} with e = e. Then (A) = F; x F; is an idempotent
F;-algebra of 4 elements. A homomorphism A — (A) can take e to any of the elements of (A4), and
so the set Hom(A, (A)) consists of 4 elements. On the other hand, the set Hom((A), (A)) consists
of 9 elements.

(ii) Let X = M(A) and Y = M(B) be F;-affinoid spaces. If A and B are idempotent
F-algebras with the same number of elements, then X and Y are not necessarily isomorphic in
F-Af f, but they are isomorphic in F1-Af fP. Here is an example of connected non-isomorphic X
and Y which are isomorphic in F1-Af fP. Let A = F1{T1,T>}/E, where E is the ideal generated
by the pair (TTy, T1T3), and B = F1{T},Ts,T3}/F, where F is the ideal generated by the pairs
(ThT5,T5), (T1T3,0) and (1275,0). Then X and Y are non-isomorphic affinoid polytopes that can
be identified with the following subsets of Ri and Ri, respectively:

X={0,t)0<t<1}u{(t,0)o<t<1}u{(L,po<t <1},
Y ={(0,0,t)[0 <t <1}U{(t,0,0)[0 <t <1} U{(1,£,0)[0 <t < 1} .
For 0 < a < 8 < 1, let Uy and U; (resp. V4 and V3) be the Laurent domains in X (resp. Y') defined
by the inequalities |17 (z)| < B and |T>(x)| > «, respectively. It is easy to see that there are canonical

isomorphisms U; = Vi and Uy = V5 which induce the same isomorphism U; N Us = V3 N Va. Tt

follows that X and Y are isomorphic in Fi-Af fP.

7.6. Classes of p-morphisms.

7.6.1. Definition. A p-morphism ¢ : Y — X is said to be a p-affinoid domain embedding
or, for brevity, a pad-embedding if it possesses the following property: any p-morphism ¢ : Z — X
with ¥(Z) C ¢(Y) goes through a unique p-morphism Z — Y.

It follows easily from the definition that, for a pad-embedding ¢ : Y — X, the set ¢(Y) defines
the morphism ¢ uniquely up to a unique isomorphism in K-AffP. Such a subset of X is said
to be a p-affinoid domain. Furthermore, applying the above property to the canonical morphism
M(H(x)) — X for a point x = ¢(y), we see that ¢~(x) = {y}, i.e.,  is an injective map, and

Notice that, by Lemma 7.5.1, to show that a p-morphism ¢ : ¥ — X is a pad-embedding, it
suffices to verify the condition of Definition 7.6.1 for morphisms of K-affinoid spaces ¢ : Z — X

(with ¢(Z) C o(Y)).
7.6.2. Theorem. The following properties of a morphism of K-affinoid spaces ¢ : ¥ — X

are equivalent:
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(a) ¢ is an ad-embedding;

(b) ¢ is a pad-embedding.

Proof. The implication (a)==(b) is trivial. To prove the implication (b)==-(a), assume that
© is a pad-embedding.

Step 1. For any morphism of K-affinoid spaces f : X' — X, the morphism ¢ : Y' =
Y xx X' — X' is a pad-embedding. Indeed, suppose we are given a morphism of K-affinoid spaces
Y Z — X" with ¥(Z) C ¢'(Y'). Then (f ov)(Z) C ¢(Y), and so the morphism fo : Z — X
goes through a unique p-morphism g : Z — Y. The latter is represented by a compatible system
of morphisms ¢g; : Z; — Y, ¢ € I. Since pog; = fo MZZ_, g; goes through a unique morphism
hi; : Z; — Y'. The morphisms g; and g; are compatible on the intersection Z; N Z;, and so they

give rise to the required p-morphism h: Z — Y.

Step 2. For any isometric homomorphism of valuation F1-fields K — K', the morphism of
K'-affinoid spaces @' : Y' = Y@K’ — X' = XQxK' is a pad-embedding. Indeed, suppose we are
given a morphism of K’-affinoid spaces ¢ : Z — X' with ¢(Z) C ¢/(Y”). Since all of the affinoid
algebras considered are finitely presented, the morphism ¢ comes from a morphism of K”-affinoid
space ¥ : Z" — X", where K" is a valuation F;-field provided with isometric homomorphisms
K — K" — K' such that the kernel and cokernel of the homomorphism of groups K* — K'"* are
finitely generated. In this case 1" can be considered as a morphism of K-affinoid spaces, and so

the required fact follows from Step 1.

Step 3. The theorem is true. It suffices to verify that the image of Y in X is an affinoid
domain. Using Step 1 and Theorem 6.3.1, we easily reduce the situation to the case when X is
integral. Furthermore, using Steps 1 and 2, we reduce the situation to the case when K = |K]|
and X is K-polytopal. To show that the image V of Y in X is an affinoid domain, we are going
to verify the property (d) of Theorem 6.2.1 using the reasoning and notation from the proof of the
implication (a)==(d) of that theorem.

Let X = M(A) and Y = M(C), and let V be the image of Y in X. We fix an admissible
epimorphism K{r{'Ty,..., 71T} — A : T; — f; with f; # 0 for all 1 < i < n. Then X is
identified with a K-affinoid polytope in R} and V' is identified with an Kz -subpolytope of X. It
suffices to show that rec;(X) C rec(V) for all I € Z(V). If the latter is not true for some I € Z(V),
one constructs as in the proof of Theorem 6.2.1 a morphism of K-affinoid spaces Z = M(C) — X
with C = K'{#71T}, where K’ is a bigger F-subfield of R with finite quotient K*/K*, and this
morphism identifies Z with an interval L = LU {z} in X such that L ¢ X and LNV = {z} C X.
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By Step 1, this implies that the morphism U = {z} — Z = L is a pad-embedding, and the same
reasoning as in the proof of Theorem 6.2.1 implies that the latter is impossible. Namely, let g
be the product of the images of the elements f; in C, and let A be the image of g in Cy. Since
h(z) = 0 and M(Cy) = {z}, it follows that A™ = 0 for some m > 1. But if b denote the Zariski
ideal of C' generated by g, then b™*! # b™. Hence, we get a morphism of K-affinoid spaces
M(C/b™ 1) — Z whose image coincides with U = {z}. It follows that it goes through a weak
morphism M (C/b™*1) — M(Cy). Since both spaces are points, this weak morphism is in fact
a morphism, i.e., it is induced by a bounded homomorphism Cy; — C/b™*! which is impossible

since h™ = 0 but the m-th power of its image in C' is not zero. .

7.6.3. Corollary. Let ¢ : Y — X be a p-morphism of K-affinoid spaces represented by a
system of compatible morphisms @; : Y; — X, i € I. Then the following are equivalent:

(a) ¢ is a pad-embedding;

(b) ¢ is an injective map, and all of the morphisms ¢; are ad-embeddings.

Proof. (a)=(b). We already know that the first property of (b) holds, and the second
property of (b) follows from Theorem 7.6.2.

(b)==(a). We have to show that any morphism of K-affinoid spaces ¢ : Z — X with ¢)(Z) C
o(Y) goes through a unique p-morphism x : Z — Y. Since ¢;(Y;) is an affinoid domain in X,
Z; = ¥~ Y(¢;(Y;)) is an affinoid domain in Z, and the morphism v; : Z; — X goes through a unique
morphism Z; — Y;. Furthermore, since ¢ is an injective map, it follows that Y; = ¢~ 1(p;(Y3)),
i.e., the composition y; : Z; — Y; — Y is a unique morphism whose composition with ¢ is ;.
The morphisms y; : Z; — Y are compatible, and so they give rise to a unique weak morphism

X:Z —Y with poyx =1. "

7.6.4. Corollary. The functor K-Aff — K-Af fP is conservative (i.e., any morphism in the

first category, which becomes an isomorphism in the second one, is an isomorphism). "

We shall denote by K-Af fP%¢ the category whose objects are K-affinoid spaces and morphisms
are pad-embeddings. The canonical functor K-Aff*® — K-AffP* is not fully faithful but, by
Theorem 7.6.2, its restriction to K-Caff*® is fully faithful.

7.6.5. Definition. Let ¢ : Y — X be a p-morphism of K-affinoid spaces.
(i) ¢ is said to be a p-finite morphism if there exists a finite covering of X by acyclic affinoid
domains {U;};e; such that, for every i € I, ¢~ }(U;) is a finite disjoint union of acyclic affinoid

domains [] Vij for which all of the induced p-morphisms V;; — U; are finite morphisms of

Jj€Ji

K-affinoid spaces.
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(i) ¢ is said to be a p-closed immersion if there exists a finite affinoid covering {U;};er of
X such that, for every i € I, = 1(U;) is an acyclic affinoid domain and the induced p-morphism

0 1(U;) = U; is a closed immersion of K-affinoid spaces.

7.6.6. Theorem. The following properties of a morphism of K-affinoid spaces ¢ : ¥ — X
are equivalent:

(a) ¢ is a finite morphism (resp. a closed immersion);

(b) ¢ is a p-finite morphism (resp. a p-closed immersion).

Proof. (a)=(b). By Corollary 7.4.3, every point # € X has an acyclic affinoid neighborhood
U such that the preimage »~!(U) is a disjoint union of acyclic affinoid domains U] []...[] U}, and,
if ¢ is a closed immersion, n = 1. This implies the property (b).

(b)==(a). Let U = {U,}icr and {V;;};c; be finite affinoid coverings of X and ¢~!(U;) as in
Definition 7.6.5(i). Then Int(V;;/U;) = V;; for all ¢ € I and j € J;. Proposition 6.4.9 implies that
Int(Y/X) = Y and, therefore, the morphism ¢ is finite, by Proposition 6.4.8. Suppose now that
the morphisms ¢ is a p-closed immersion. In this case we have to verify the following fact. Given
a bounded homomorphism of finite Banach A-modules f : M — N, where X = M(A), if all of the
homomorphisms f; : My, — Ny, are surjective, then f is surjective. Indeed, by Proposition 2.2.8,
f is an admissible homomorphism, and so replacing M by M /Ker(f), we may assume that M is a
Zariski A-submodule of N. The assumption implies that Ny, /My, = 0 for all ¢ € I. By Theorem
7.2.7, this implies that (N/M)y, =0 for all ¢ € I, i.e., (N/M)y = 0. Theorem 7.4.1(i) then implies
that N/M =0, i.e., M = N. .

§8. K-analytic spaces

8.1. The category K-An. Let X be a locally Hausdorff topological space, and let 7 be a
net of compact subsets of X. As in §1.5, we consider 7 as a category and denote by 7 the canonical
functor 7 — Top to the category of topological spaces Top. Let 7% denote the forgetful functor
K-Af fred — Top that takes a K-affinoid space to the underlying topological space. Its restrictions
to the subcategory K-Af f% and the full subcategory K-Caf f®¢ are denoted by the same way.

8.1.1. Definition. (i) An affinoid (resp. acyclic affinoid, resp. a p-affinoid) atlas with the
net 7 is a pair consisting of a functor A : 7 — K-Aff* (resp. K-Caff®, resp. K-AffP*?) and
an isomorphism of functors 7o A 5 7.

(ii) A K-analytic space is a triple (X, A, 7), where X is a locally Hausdorff topological space,

7 is a net of compact subsets of X, and A is an acyclic affinoid atlas on X with the net 7.
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Let (X, A,7) be a K-analytic space. The functor A takes each U € 7 to an acyclic K-affinoid
space M(Ay), and the isomorphism of functors provides a homeomorphism M(Ay) = U. We

consider such U as a K-affinoid space.

8.1.2. Proposition. (i) If W is an acyclic affinoid domain in some U € T, it is an acyclic
affinoid domain in any V € T that contains W;

(ii) the family T consisting of all W with the property (i) is a net on X, and there exists an
acyclic affinoid atlas A on X with the net T which extends A.

Notice that the acyclic affinoid atlas A in (ii) is unique up to a unique isomorphism. It is also

clear that 7 = 7.

8.1.3. Lemma. Let ¢ : X' — U € 7 be a morphism of K-affinoid spaces. Then there is a
unique system of compatible morphisms of acyclic K-affinoid spaces oy : Y' — V' for all pairs
consisting of V. € 7 and a morphism 1 : Y’ — X' with (p o )(Y') C V such that, if there are
affinoid domains U' C X' and W € T|Uﬁv with Y(Y') C U and o(U") C W, then py/ v is the
composition Y - U — W — V.

Proof. Since (po¢)(Y') Cc UNV, we can find Wy,..., W, € T|Umv with (p o) (Y') C
WiU...UW,. Let X! = ¢~ (W;) and let Y/ = ¢~1(X/). Then X and Y; are affinoid domains in
X" and Y, respectively, and the composition morphisms of K-affinoid spaces Y/ — X] — W; -V
are well defined. Since the latter are compatible on intersections and Y is acyclic, they define a

morphism Y’ — V. =

Proof of Proposition 8.1.2. (i) By Lemma 8.1.3, there is a well defined morphism of acyclic
affinoid spaces W — V. If we apply the construction from its proof for Y/ = W and X’ = U, we
get a finite affinoid covering {Y;'} of W such that each morphism Y/ — V' is an ad-embedding, i.e.,
the morphism W — V is an pad-embedding. Theorem 7.6.2 then implies that the latter morphism
is an ad-embedding.

(ii) Let U,V € 7, and z € UNV. Take U',V' € 7 with U C U" and V C V’. We can find
Wi, . Wy € Tlgay
in U'NV'. Tt follows that U; = UNW/ and V; = V N W/ are affinoid domains in U’ and V’,

such that x € Wi Nn...N W, and W] U...U W), is a neighborhood of =

respectively, and U; N'V; is an affinoid domain in W/. By Theorem 7.4.5, there exists an acyclic
affinoid neighborhood W; of z in U; N'V;. We have W, € ﬂUmV and x € Wi n...NnW,. Since
U, UinVy) = (U NV)n (U, W), it follows that W; U ... U W, is a neighborhood of z in U N V.

Thus, 7 is a net.
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Furthermore, for each V € 7 we fix V/ € 7 with V C V’ and a structure of an affinoid
domain on V, i.e., an ad-embedding (V, Ay) — (V’, Ay/). Lemma 8.1.3 and the reasoning from
(i) imply that, for each pair U,V € 7 with U C V, there is a canonical ad-domain embedding
(U, Ay) — (V, Ay). This defines the required acyclic K-affinoid atlas A. .

8.1.4. Definition. A strong morphism of K-analytic spaces ¢ : (X, A,7) — (X', A',7) is a
pair consisting of a continuous map ¢ : X — X', such that for every U € 7 there exists U’ € 7/
with ¢(U) C U’, and of a compatible system of morphisms of K-affinoid spaces ¢y : U — U’
with oy = gp’U (as maps) for all pairs U € 7 and U’ € 7/ with p(U) C U".

Lemma 8.1.3 easily implies that any strong morphism ¢ : (X, A,7) — (X', A’,7) extends in
a unique way to a strong morphism @ : (X, 4,7) — (X, Z/,?’ ) and that one can compose strong
morphisms. In this way we get a category of K-analytic spaces K -An with strong morphisms as

morphisms.

8.1.5. Definition. A strong morphism of K-analytic spaces ¢ : (X, A,7) — (X', A", 7') is
said to be a quasi-isomorphism if it possesses the following properties:
(1) ¢ induces a homeomorphism of topological spaces X — X';

(2) for every pair U € 7 and U’ € 7" with ¢(U) C U’, ¢y ,y- is an ad-embedding.
For example, the canonical strong morphism (X, A,7) — (X, 4, 7) is a quasi-isomorphism.

8.1.6. Lemma. The system of quasi-isomorphisms in K -An admits calculus of right fractions.

Proof. It suffices to verify that the system possesses the properties c) - d) which are recalled
in Step 5 of the proof of Theorem 1.3.4.1 (the verification of a) and b) is trivial).

¢) Suppose we are given strong morphisms (Y, B,0) = (X, A,7) < (X', A’,7'), where g is
a quasi-isomorphism. We may identify X’ and X. Then 7 C 7. Let o’ denote the family of all
V' € 7 for which there exists U’ € 7" with (V') C U’'. We claim that ¢’ is a net. Indeed, it
suffices to verify that ¢’ is a quasi-net. For every point y € Y, we can find V4,...,V, € o with
yeVin...NV, and such that V; U... UV, is a neighborhood of y and, for every 1 <1 < n, we
can find U; € 7 with ¢(V;) C U;. Furthermore, for every 1 <i < n, we can find U;1,...,Ujn, €T
for which ¢(y) € Uix N ... N Uiy, and U U ... U Uy, is a neighborhood of ¢(y) in U;. Let Vi
be the preimage of Uj, in V;. Then y € (), Vir and J;, Vir is a neighborhood of y in Y, i.e., o’
is a quasi-net. Since ¢’ C o, the K-affinoid atlas B extends to a K-affinoid atlas B’ with the net
o’. The canonical strong morphism ¢’ : (Y, B’,¢0’) — (Y, B, 0) is clearly a quasi-isomorphism, and

strong morphism ¢ extends in a unique way to a strong morphism ¢’ : (Y, B’ ¢0’) — (X, A", 7).
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d) Suppose we are given two strong morphisms ¢,1 : (Y,B,0) — (X,A,7) and a quasi-
isomorphism ¢ : (X, A,7) = (X', A’,7") with gp = gy. Then the strong morphisms ¢ and 1)
coincide. Indeed, that they coincide as maps is trivial. Let V € ¢ and U € 7 be such that
©(V) C U and, therefore, (V) C U. Take U’ € 7" with g(U) C U’. Then we have two morphisms
of K-affinoid spaces ¢y i, ¥y, u : V — U whose compositions with gy : U — U’ coincide. Since

guyu is an ad-embedding, it follows that oy, = Yy u. "

8.1.7. Definition. The category of K-analytic spaces K-An is the category of fractions of

K-An with respect to the system of quasi-isomorphisms.

By Lemma 8.1.6, morphisms in the category K-An can be described as follows. Let (X, A, 7) be
a K-analytic space. If o is a net on X, we write ¢ < 7if o C 7. Then A defines an acyclic K-affinoid
atlas A, with the net o, and there is a canonical quasi-isomorphism (X, A,,0) — (X, A, 7). The
system of nets o with o < 7 is filtered and, by Lemma 8.1.6, for any K-analytic space (X', A’,7")
one has

Hom((X, A, 7), (X", A',7")) = lim Hom - ((X, A,,0), (X', A", 7)) .

o<t
Notice that all of the transition maps in this inductive system are injective. Notice also that, if
o <71,thenc < 7.

For example, Theorem 7.4.5 implies that, for K-affinoid space X = M(A), the family 7. of
acyclic affinoid domains in X is a net (with 7. = 7). The functor A. that takes U € 7. to the
K-affinoid space M(Ay ) is an acyclic affinoid atlas with the net 7., and so the triple (X, A., 7.) is

a K-analytic space.

8.1.8. Proposition. The correspondence X = M(A) — (X, A, 7.) gives rise to a fully
faithful functor K-Af f? — K-An.

A K-analytic space will be said to be a K-affinoid space it lies in the essential image of above

functor (i.e., it is isomorphic to (X, A., 7.) for some X = M(A)).

Proof. Let ¢ : Y = M(B) - X = M(A) be a p-morphism of K-affinoid spaces. It induces
a morphism from every acyclic affinoid subdomain V of Y to X. Theorem 7.4.5 implies that
the family o of acyclic affinoid domains V' C Y whose image is contained in an acyclic affinoid
subdomain of X is a net with o < 0., where o, is the net of all acyclic affinoid domains in Y. Thus,
¢ induces a morphism (Y, B.,0.) — (X, A¢, 7), i.e., we have a functor K-Af P — K-An. It is
clear that this functor is faithful. Furthermore, an arbitrary morphism ¢ : (Y, B.,0.) = (X, A, 7¢)

is induced by a strong morphism (Y, B.,0) — (X, A., 7.) for some net o < o.. Since Y is compact,
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we can find a finite affinoid covering {V;} of Y with V; € ¢ and, therefore, we have a system of
morphisms V; — X which are compatible on intersections, i.e., a p-morphism Y — X. It is easy to

see that the latter induces the morphism ¢, i.e., the functor considered is fully faithful. "

8.1.9. Corollary. For a K-affinoid space X = M(A) and a K-analytic space (Y, B,0),
morphisms (Y, B,o) — (X, A., 7.) can be identified with families of compatible bounded homomor-
phisms of Banach K-algebras A — By, V € 0.

Proof. Such a morphism induces, for every V € o, a morphism (V, By, 0.) = (X, Ac, 7c).
Since V is acyclic, Proposition 8.1.9 implies that the latter is induced by a morphism of K-affinoid
spaces V. — X, i.e., by a bounded homomorphism A — By. In this way we get the required
family of compatible morphisms A — By. Conversely, such a family induces a continuous map
¢ Y — X, and the collection ¢’ of acyclic affinoid subdomains V' of Y with w(V) lying in an
acyclic affinoid subdomain of X is a net with ¢’ < o. If B’ is the restriction of the atlas B, to o,

we get a strong moprhism (Y, B’,0’) — (X, A, 7¢), which induces the family we started from. =

8.1.10. Corollary. The functor K-Af f — K-An commutes with fiber products.

Proof. Let Y = M(B) - X = M(A) and X’ = M(A’) — X be morphisms of K-affinoid
spaces. Proposition 8.1.8 implies that the set of morphisms from a K-analytic space (Z, D, o) to
the K-affinoid space ¥ xx X' = M(B@ AA’) is identified with the set of families of compatible
bounded homomorphisms B4 A’ — Dy, V € 0. Each of the latter homomorphisms is a pair of
bounded homomorphisms B — Dy and A" — Dy which coincide on A. This gives the required

fact. n

8.1.11. Proposition. A strong morphism becomes an isomorphism in the category K-An if
and only if it is a quasi-isomorphism.

Proof. The converse implication is trivial. Suppose that a strong morphism ¢ : (X, A,7) —
(X', A’,7") becomes an isomorphism in K-An. It is clear that ¢ is a homeomorphism. The assump-
tion implies that one can find nets ¢ < 7 and ¢’ < 7/ and strong morphisms ¢ : (X', A.,,0") —

(X,A,7)and ¢’ : (X, A,,0) = (X', AL, 0') such that the following diagram is commutative

o’

(X, A7) LN (X', AT
T N T
(X,A,,0) (X' AL o)
where the vertical arrows are the canonical quasi-isomorphisms.
Let U € 0. We can find U' € ¢/, V € 7 and V' € 7/ with ¢'(U) C U’, 4(U’) C V and
o(V) C V'. Since U is an affinoid domain in V', its preimage U" = w[;}/v(U) is an affinoid domain
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in U’. The commutativity of the lower triangle implies that the composition of the morphisms
<p’U/U, : U — U" and Yy y : U” — U is the identity morphism on U. The commutativity of the
higher triangle implies that the composition of the morphisms ¢y iy : U” — U and ¢y : U —

U" is the identity morphism on U”. Thus, U = U". The required fact follows. .

In what follows, we do not make difference between a K-analytic space (X, A,7) and the K-
analytic spaces isomorphic to it, and denote it simply by X. We call any net 7 that defines the
K-analytic space structure on X a net of definition. The underlying topological space of X will be

denoted by |X]|.

8.2. Analytic domains. Let X be a K-analytic space. We fix a triple (X, A, 7) that

represents it.

8.2.1. Definition. A subset Y C X is said to be an analytic domain if, for any point y € Y,
there exist sets V1,...,V,, € ?!Y such that y € ViN...NV, and the set V;U...UV,, is a neighborhood

ofyinY (ie., ﬂy is a net on Y'). (Notice that this property does not depend on the choice of 7.)

For example, any open subset of X is an analytic domain. It is easy to see that the intersection
of two analytic domains is an analytic domain, the union of two closed analytic domains is an
analytic domain, and the preimage of an analytic domain with respect to a morphism of K-analytic
spaces is an analytic domain, and the restriction of the acyclic K-affinoid atlas A to the net
?!Y defines a K-analytic space (Y, Z,ﬂy). (If ¢ < 7, then E’Y =< ﬂy.) The K-analytic space
(Y, Z,ﬂy), which will be denoted by Y, possesses the following property: any morphism of K-
analytic spaces ¢ : X’ — X with ¢(X’) C Y goes through a unique morphism X’ — Y.

8.2.2. Definition. An acyclic affinoid domain in X is an analytic domain isomorphic to an

acyclic K-affinoid space.

8.2.3. Proposition. (i) The family T of acyclic affinoid domains is a net on X, and there
is a unique (up to a canonical isomorphism) acyclic K -affinoid atlas A on X with the net 7 that
extends A;

(ii) the strong morphism ¢ : (X, A, 7) — (X, A, T) is a quasi-isomorphism.

Proof. (i) That 7 is a net is trivial. We fix a K-affinoid space structure on every W € 7, and
our purpose is to construct, for every pair W C W' in 7 a canonical ad-embedding W — W'. Let
{U;} and {U}.} be finite coverings of W and W' by sets from 7. Each intersection U; NUj, is compact
and, therefore, it is a union of a finite number of sets from 7. Replacing all U;’s by them, we may

assume that each U; lies in some U}, and, in particular, every U; is an acyclic affinoid domain in
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some Uj. It follows that there are canonical ad-embeddings U; — W’. It is easy to see that they
are compatible on intersections and, therefore, they give rise to a pad-embedding W — W'. Since
W is acyclic, Proposition 8.1.8 implies that the latter is a morphism of K-affinoid spaces and, by
Theorem 7.6.2, it is an ad-embedding.

The statement (ii) is trivial. .

8.2.4. Corollary. Let X and X’ be K-analytic spaces. Then

(i) there is a one-to-one correspondence between Hom(X, X') and the set of pairs consisting of
(1) a continuous map ¢ : X — X' for which there is a net of definition 7 on X such that the image
of every set from 7 lies in some acyclic affinoid subdomain of X', and (2) a compatible system of
morphisms of K-affinoid spaces @y : U — U’ for all pairs of acyclic affinoid subdomains U C X
and U’ C X' with p(U) C U’;

(ii) a morphism ¢ : X — X' is an isomorphism if and only if it is a homeomorphism and, for
every acyclic affinoid subdomain U’ C X', U = ¢~ 1(U’) is an acyclic affinoid subdomain of X and

¢y u 1S an isomorphism. =

8.2.5. Definition. A p-affinoid domain in X is an analytic domain isomorphic to a K-affinoid

space.
The following statement is verified in the same way as Proposition 8.2.3.

8.2.6. Proposition. (i) The family 7P of p-affinoid domains is a net on X;
(ii) there is a unique (up to a canonical isomorphism) p-affinoid atlas AP with the net TP that

extends A. "

8.2.7. Definition. A K-analytic space X is said to be good if every point of X has an acyclic
affinoid neighborhood.

Notice that, by Corollary 7.4.3, the latter is equivalent to the property that every point of X
has a p-affinoid neighborhood.

8.3. Grothendieck topologies on a K-analytic space. The family of analytic domains in
a K-analytic space X can be considered as a category, and it gives rise to a Grothendieck topology
defined by the following pretopology: the set of coverings of an analytic domain W C X is formed
by families of analytic domains which are quasinets on W. For brevity, this Grothendieck topology

is said to be the G-topology on X, and the corresponding site is denoted by X¢.
8.3.1. Proposition. Any representable presheaf is a sheaf on Xg.
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Proof. Let {X;};c; be a covering of X in Xg. We have to verify that, for every K-analytic
space Y, the following sequence of maps is exact
Hom(X,Y) — [ [ Hom(X;, V) 3 [ [ Hom(X; N X;,Y) .
i i,

Let ¢; : X; = Y be a family of morphisms such that, for every pair 7,5 € I, ;

{Xij = %ilx;nx;

Let 7 be the collection of acyclic affinoid domains U C X such that there exists ¢ € I with U C X;
and o;(U) C V for some acyclic affinoid domain V' C Y. It is easy to see that 7 is a net of definition

on X. It follows that the morphisms ¢;, ¢ € I, give rise to a morphism ¢ : X — Y. "

For example, the presheaf representable by the K-affinoid space M(K{r—'T}) is a sheaf on
Xg, it is denoted by O . If V is a p-affinoid domain, then O"(V) = {f € (Av)|p(f) < r}. The
inductive limit h_I)nO_’;( is a sheaf of K-algebras on X¢g denoted by Ox, and called the structural
sheaf on X¢. For a p-affinoid domain V, one has O(V) = (Ay). The category of Ox, modules
is denoted by Mod(X¢q). If X = M(A) is a K-affinoid space, then any finitely generated Banach
A-module M defines an Ox,-module Ox, (M) by V — (My). Notice that, by Theorem 7.4.5,
the stalk Ox (M) of Ox, (M) at a point x € X, i.e., the inductive limit th(MV> taken over all
p-affinoid domains V' that contain the point x, coincides with the stalk M, of M at x (see §7.2).
Furthermore, it follows from Theorem 7.4.2(i) that the canonical homomorphism (M) — [],c x Mz
is injective.

8.3.2. Lemma. In the above situation, the correspondence M +— Ox (M) gives rise to a
fully faithful functor A-FmodP — Mod(Xg).

Proof. Let ¢ : M — (N) be a morphism in A-FmodP. It is induced by a homomorphism
M — Ny for a finite affinoid covering U = {U;} of X. The latter induces a compatible system
of homomorphisms of Ay-modules My — Ny,ny for every affinoid subdomain V' C X, ie., a
bounded homomorphism of Ay-modules My — Nyny, where U NV is the covering {V NU;} of
V. It follows that ¢ induces a bounded homomorphism of Ay-modules Ox,(M)(V) = (My) —
Oxs(N)(V) = (Ny). All these homomorphisms are compatible on intersections, i.e., ¢ gives rise
to a homomorphism of Ox-modules pg : Ox, (M) = Ox, (V). In this way we get the required
functor which is evidently faithful. Let 1) be a homomorphism Ox-modules Ox (M) — Ox, ().
It induces a homomorphism of A-modules ¢ : M — (M) — (N). Since both 1 and ¢ induce the

same homomorphisms between stalks M, — N, it follows that ¥ = pg. "

8.3.4. Definition. An Ox,-module F' on a K-analytic space X is said to be coherent if

there is a quasinet 7 of affinoid domains in X such that, for every V € 7, F ‘Vc; is isomorphic to
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Oy, (M) for some finitely generated Banach Ay -module M. The category of coherent Ox-modules
is denoted by Coh(Xg).

Every K-analytic space is provided with a topology which is weaker than the usual one.

8.3.5. Definition. An open subset U of a K-analytic space X is said to be Zariski open if
there exists a quasinet of acyclic affinoid domains {U;};c; in X such that, for every i € I, U N U;

is a Zariski open subset of U;.

The topology on X formed by the Zariski open subsets is said to be the Zariski topology on X,
and the corresponding site is denoted by Xz.,. Notice that there is a canonical morphism of sites
Xg = | X| = Xzar

We now consider a process of gluing K-analytic spaces.

8.3.6. Definition. A morphism of K-analytic spaces ¢ : Y — X is said to be an analytic

domain embedding if it induces an isomorphism of Y with an analytic domain in X.

If o : Y — X is an analytic domain embedding, then any morphism of K-analytic spaces
Y Z — X with ¥(Z) C p(Y) goes through a unique morphism Z — Y.

Let {X;}icr be a family of K-analytic spaces, and suppose that, for each pair i,j € I, we are
given an analytic domain X;; C X; and an isomorphism of K-analytic spaces v;; : Xj; 5 Xj; s0
that X;; = X, vi(Xi; N Xix) = Xji N X, and v, = vj, o v on X;; N X, We are looking for a
K-analytic space X with a family of morphisms u; : X; — X such that:

(1) p; is an analytic domain embedding;

(2) {ui(X;)}ier is a covering of X in Xg;

(3) pi(Xij) = pi(Xi) Ny (X5);

(4) pi = pj ovij on Xi;.

If such X exists we say that it is obtained by gluing X;’s along X;;’s. Of course, a necessary
condition for existence of such X is existence of a topological space X with a family of continuous
maps u; : X; — X with the properties (1°) p; induces a homeomorphism X; = u;(X;), (27)
{1i(X;) }ier is a quasinet on X, (3) and (4).

8.3.7. Proposition. (i) If the above necessary condition is satisfied, then a K-analytic space
obtained by gluing of X; along X;; exists and is unique (up to a canonical isomorphism), and its
underlying topological space is X ;

(ii) the necessary condition is satisfied in each of the following cases:

(a) all X;; are open in X;;
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(b) for any i € I, all X;; are closed in X; and the number of j € I with X;; # () is finite.
Furthermore, in the case (a), all u;(X;) are open in X. In the case (b), all u;(X;) are closed in X
and, if all X; are Hausdorff (resp. paracompact), then X is Hausdorfl (resp. paracompact).

Proof. (i) Let 7 denote the collection of all subsets V' C X for which there exists ¢ € I such
that V C p;(X;) and p; '(V) is an acyclic affinoid domain in X; (in this case uj_l(V) is an acyclic
affinoid domain in X; for any j with V' C p;(X;)). It is easy to see that 7 is a net, and there is
an evident acyclic affinoid atlas A with the net 7. In this way we get a K-analytic space (X, A4, 7)
that possesses the properties (1)-(4). That such a K-analytic space is unique up to a canonical
isomorphism is trivial.

(i) Let X be the disjoint union [I; X;. The system {v;;} defines an equivalence relation R on
X. We denote by X the quotient space X /R and by p; the induced maps X; — X. In the case
(a), the equivalence relation R is open (see [Bou], Ch. I, §9, n°® 6), and therefore all u;(X;) are
open in X. In the case (b), the equivalence relation R is closed (see loc. cit., n° 7), and therefore
all p1;(X;) are closed in X and p; induces a homeomorphism X; = u;(X;). Moreover, if all X;
are Hausdorff, then X is Hausdorff, by loc. cit., exerc. 6. If all X; are paracompact, then X is
paracompact because it has a locally finite covering by closed paracompact subsets ([En], 5.1.34).

That X satisfies the necessary conditions is trivial. "

8.4. Fiber products and the ground field extension functor.

8.4.1. Proposition. The category K-An admits fibre products, and the forgetful functor
K-An — Top: X — |X| commutes with fibre products.

Proof. Let ¢ : Y — X and f: X’ — X be morphisms of K-analytic spaces. By Corollary
8.1.9, if both morphisms come from the category K-Aff (e.g., if the space X is K-affinoid, and
the spaces Y and X’ are acyclic K-affinoid), a fiber product Y x x X’ exists and is a K-affinoid
space and, by Lemma 1.3.8, one has [V xx X'| = [Y] x| x| | X|.

In the general case, we are going to use Proposition 8.3.7(i) in order to provide the topological
space Y/ = |Y| x| x| |X'| with a K-analytic space structure that makes it a required fiber product
Y xx X'. For this, we may assume that ¢ and f are represented by strong morphisms (Y, B,0) —
(X, A7) and (X', A", 7") — (X, A, 7).

Let S denote the family of all triples (V,U,U’), where V € o, U € 7, U’ € 7" and ¢o(V), f(U’) C
U. Fora = (V,U,U’) € S we denote by W,, the k-affinoid space V' xU’. The underlying topological
space of the latter coincides with |V'| x|y |U’| and, therefore, can be considered as a subset of Y. To

prove the required statement, it suffices to verify the following two fact: (a) the family {W, }oes is
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a quasinet on Y, and (b) for every pair «, 5 € S, the set W,3 = W, NWp is an analytic domain in
W, and there is a canonical isomorphism of K-analytic spaces vag : Wag — Wga. Let v/ = (y,2)
be a point of Y’ and let x be its image in X.

(a) Since T is a quasinet on X, there exist Uy,...,U; € 7 that contain the point = and such
that their union is a neighborhood of x in X. For the same reason, for every 1 <1 < j there exist
Vit,- -+ Vim, € 0 and U}y, ..., U, € 7’ that contain the points y and 2" and such that their unions
are neighborhoods of y and ’ in ¢ ~!(U;) and f~!(U;), respectively. It follows that the point 3’
lies in the intersection of W,’s with v = (Vi3,,U;,U})) for all 1 <i < j,1 <k <m; and 1 <[ < n,,
and the union of such W, ’s is a neighborhood of ¥ in Y.

(b) Suppose now that the point y lies in the intersection W, NWj for some o« = (V, U, U’) and
B=(V,U, U/). Since z € UNU and 7 is a net, we can find Uy, ...,U; € T’Umﬁ which contain the
point = and such that their union is a neighborhood of = in U N U. Similarly, for every 1 < i < j
there exist Vj1,...,Vim, € 7 and Uj},...,Uj, €7 that contain the points y and 2’ and such that
their unions are neighborhoods of y and 2’ in VN V' Ne~Y(U;) and VNV’ N f~1(U;), respectively.
It follows that the point y’ lies in the intersection of W, ’s with v = (Vix, U;, U})) for all 1 < < j,
1 <k <m;and 1 <[ < n;, and the union of such W,’s is a neighborhood of y' in Wo, N Ws. It
follows that W,3 = W, N Wy is an analytic domain in W, and there is a canonical isomorphism

of K-analytic spaces v : Wap = Waa. "

Notice that a fiber product of good K-analytic spaces is a good K-analytic space.

Similarly, given an isometric homomorphism of real valuation Fi-fields K — L, one constructs
a ground field extension functor K-An — L-An : X — X®gL. The L-analytic space X®x L
has the same underlying topological space and, if 7 is a net of definition of X, then the functor
T — L-Aff :V = V&gL is an L-affinoid atlas, and it defines a structure of an L-analytic space
on X®L. It is easy to see that both spaces have the same families of analytic domains and of
Zariski open subsets.

An analytic space over Fq is a pair (K, X), where K is a valuation Fi-field and X is a K-
analytic space. A morphism (L,Y) — (K, X) is a pair consisting of an isometric homomorphism
K — L and a morphism of L-analytic spaces Y — X®x L. The category of analytic spaces over
F, is denoted by Ang,.

For a point = of a K-analytic space X, let H(z) denote the filtered inductive limit of the
F-valuation fields Hy (z) taken over all acyclic affinoid (or p-affinoid) domains V' that contain x.

(Notice that all transition homomorphisms in this inductive limit are isomorphisms.) The valuation
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F;-field H(x) is a K-affinoid algebra (see Example 2.1.2), and so the point = defines a morphism of
K-analytic spaces M(H(z)) — X. The fiber product of the latter with a morphism of K-analytic
spaces ¢ : Y — X is a K-analytic space Y, which is said to be the fiber of ¢ at the point x. The
canonical morphism Y, — Y induces a homeomorphism Y, — cp’l(x). Notice that Y, can be also

considered as an H(z)-analytic space.

8.5. Finite and separated morphisms. Let ¢ : Y — X be a morphism of K-analytic

spaces.

8.5.1. Definition. (i) ¢ is said to be a finite morphism if, for every point z € X, there exist
acyclic affinoid domains Uy, ..., U, in X such that x € UyN...NU,, U;,U...UU, is a neighborhood
of z and, for every 1 <i < n, o~ 1(U;) is a finite disjoint union of acyclic affinoid domains ] | jes, Vi
for which all of the induced morphisms V;; — U; are finite morphisms of K-affinoid spaces.

(ii) ¢ is said to be a closed immersion if, for every point x € X, there exists acyclic affinoid

domains Uy, ...,U, in X as in (i) such that, for every 1 < i < n, ¢~ 1(U;) is an acyclic affinoid

domain and the induced morphism ¢~!(U;) — U; is a closed immersion of K-affinoid spaces.

Notice that is a closed immersion ¢ : Y — X it induces a homeomorphism between |Y| and

its image in | X|.

8.5.2. Proposition. Given a finite morphism (resp. a closed immersion) ¢ : Y — X, if X is
good then, for every point x € X, the property (i) (resp. (ii)) of Definition 8.5.1 holds for n = 1.
In particular, the space Y is also good and, when both spaces are K-affinoid, Definition 8.5.2 is
consistent with Definition 7.6.5.

Proof. First of all, we claim that every point y € Y has an acyclic affinoid neighborhood.
Indeed, since the preimage of the point x = ¢(y) in Y is a finite set of points, we can shrink X
and Y so that o~ !(z) = {y}. Since X is good, we can shrink it and assume that X is acyclic
affinoid and every affinoid domain that contains the point x is also acyclic. Shrinking X we may
also assume that x € X, and, in particular, every connected affinoid domain that contains z is
Weierstrass. The assumption implies that there are Weierstrass domains Uy, ..., U,, that contain
the point  and such that U; U...UU,, is a neighborhood of « and all of the induced morphisms
@i : Vi = o= Y(U;) — Uj; are finite morphisms of acyclic K-affinoid spaces. If U = Niv, U;, then
U={ye XHfl(y)\ < p;} for some py,...,pr >0 and f1,..., fr € A. In the further constructions,
we replace X by a Weierstrass domain of the form {y € X H fity)| < pi} for pi > p; sufficiently

close to p;. Thus, we can shrink X so that all of the induced homomorphisms A — Ay, — Ay
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and By, — By are bijections, where V = ¢~ }(U) = N, U;. The Banach Ay-algebra By is

isomorphic to a quotient of AU{rl_lTl, ..., 1T, } by a closed ideal E. Since the map A — Ay

r'n

is a bijection, we can consider the quotient B = A{r;'T},...,r;'T,}/E, and since F is closed in

Ap{r Ty, ..., r VT, ), it is also closed in A{r{ 'T},...,7-'T,}, i.e., B is a Banach A-algebra which
is a finitely generated Banach A-module. By the construction, there is a canonical isomorphism
of finitely generated Banach Ay-modules B& 4 Ay — By, and Corollary 7.2.3 implies that we
can shrink X so that the latter extends to a system of compatible isomorphisms of finite Banach
Ay, -algebras B® 4Ay, = By,. This defines an isomorphism of the K-analytic space Y with the
K-affinoid space M(B). Shrinking X, we may assume that Y is acyclic, and the claim follows.
Let now z € X and ¢ 1(z) = {y1,...,ym} with m > 0 (resp. 0 < m < 1 if X is a closed
immersion). By the above claim, we can find, for every 1 < i < m, an acyclic affinoid neighborhood
V; of the point y;. Furthermore, we can find a p-affinoid neighborhood U of x whose preimage in
Y is contained in U™, V;. Shrinking U and all V;’s, we may assume that o= *(U) = [[/~, V; and all
Vi’s are acyclic. Theorem 7.6.6 now implies that all of the morphisms V; — U are finite morphisms

(resp. closed immersions) of K-affinoid spaces. .

8.5.3. Corollary. The classes of finite morphisms and closed immersions are preserved under

composition, any base change functor, and any ground field extension functor. .

8.5.4. Definition. A morphism ¢ : Y — X is said to be a G-locally (resp. locally) closed
immersion if there exists a quasinet o of analytic (resp. open analytic) domains in Y and, for every
V € o, an analytic (resp. open analytic) domain U in X such that ¢ induces a closed immersion

V —-U.

Of course, any closed immersion is a G-locally closed immersion. If both spaces are good, the
converse implication is also true (this follows from Theorem 7.6.6). Notice that any locally closed
immersion ¢ : Y — X, which is injective as a map, is a composition of a closed immersion ¥ — Z
with an open immersion ¢ : Z — Y. (The latter means that ¢ induces an isomorphism of Z with
an open subset of Y.) It follows that a locally closed immersion ¢ : Y — X is a closed immersion
if and only if it is injective and the image of Y in X is closed. An example of an injective G-locally

closed immersion is the diagonal morphism Ay, x : Y — Y xx Y for a morphism ¢ : ¥ — X.

8.5.5. Definition. A morphism ¢ : Y — X is said to be separated (resp. locally separated)
if the diagonal morphism Ay /x : Y =Y xx Y is a closed (resp. locally closed) immersion. If the
canonical morphism X — M (K) is separated (resp. locally separated), X is said to be separated

(resp. locally separated).
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For example, good K-analytic spaces and morphisms between them are locally separated. If
a morphism ¢ : Y — X is separated, then Y is closed in |Y| x| x| [Y] = |[Y xx Y| and, therefore,
the map |Y| — | X| is Hausdorff. In particular, if X is separated, the underlying topological space
| X| is Hausdorff.

8.5.6. Proposition. A locally separated morphism ¢ 1Y — X is separated if and only if the
induced map |Y| — |X| is Hausdorff.
Proof. If the map Y| — |[X] is Hausdorff, the image of |Y]in |Y xx Y| = [Y]| x x| [Y] is

closed and, therefore, the diagonal morphism Ay x is a closed immersion. "

8.6. Piecewise K-affinoid spaces.

8.6.1. Definition. (i) A K-analytic space X is said to be piecewise K -affinoid if there is a
closed immersion of X in a K-affinoid space. The full subcategory of K-An formed by piecewise
K-affinoid spaces is denoted by K-Paf f.

(ii) An analytic domain in a K-analytic space is said to be piecewise affinoid if it is isomorphic

to a piecewise K-affinoid space.

8.6.2. Proposition. (i) Piecewise K-affinoid spaces are good;

(ii) the subcategory K-Paf f is preserved under finite disjoint unions and fiber products.

Proof. (i) follows from Proposition 8.5.3.

(ii) Let W be a disjoint union of two piecewise K-affinoid spaces. If X — X’ and Y — Y’
are closed immersions to K-affinoid spaces, then the induced morphism W — X’ [[Y” is a closed
immersion. Thus, to show that W is piecewise K-affinoid, it suffices to show that X’ [[ Y’ piecewise
K-affinoid, and so we may assume that X = M(A) and Y = M(B). We are going to construct
a closed immersion W — Z in a K-affinoid space Z = M(C'). For this we set C' = (AQx B){T}.
There are the following admissible epimorphisms « : C' — A and 5 : C — B defined by a(a®bT™) =
a for alln >0 (and b # 0), and S(a®b) = b and B(a @ bT™) =0 for all n > 1 (and a # 0). The
homomorphisms « and 8 induce closed immersions of K-affinoid spaces X — Z and Y — Z with
non-intersecting images and, therefore, they give rise to a closed immersion ¢ : W — Z.

Let now ¢ : Y — X and ¢ : Z — X be morphisms of piecewise K-affinoid spaces. If X — X’
is a closed immersion of X in a K-affinoid space, then Y x x Z = Y x x» Z. Replacing X by X', we
may assume that X = M(A) is a K-affinoid space. Furthermore, we can find closed immersions
Y - Y’ and Z — Z’ in K-affinoid spaces Y’ and Z’ over X. Then Y’ x x Z’ is a K-affinoid space,

and the induced morphism Y xx Z — Y’ x x Z’ is a closed immersion. .
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8.6.3. Corollary. (i) The disjoint union of two piecewise affinoid domains is a piecewise
affinoid domain;

(ii) the intersection of two piecewise affinoid domains in a separated K -analytic space is a
piecewise affinoid domain;

(iii) the preimage of a piecewise affinoid domain with respect to a morphism of piecewise K-

affinoid spaces is a piecewise affinoid domain. "

8.6.4. Proposition. Let Y — X be a closed immersion of a piecewise K-affinoid space
Y in a K-affinoid space X = Spec(A), p a Zariski prime ideal of A with Y N Xp # (0, and Y’
a connected component of the latter set. Then there exists a closed immersion Z — Y from an

integral K-affinoid space Z whose image coincides with Y.

8.6.5. Lemma. Let ¢ : Y — X be a closed immersion of a reduced piecewise K-affinoid
space Y in an artinian K -affinoid space X. Then every connected component Y' of Y is an integral
K -affinoid space, and the induced morphism Y’ — X is a closed immersion of K -affinoid spaces.

Proof. First of all, we may assume that both X = M(A) and Y are connected and reduced
and, in particular, A is an Fi-field. Let {U;};cr be a finite affinoid covering of X such that, for
every i € I, V; = o Y (U;) — U; = M(A4;) is a closed immersion of K-affinoid spaces. We set
J={i € I|Vi # 0} and V; = M(B;). Notice that each B; is an Fi-field. By Lemma 6.1.7,
all of the homomorphisms A — A, are bijections. By the same lemma, if ¢,j € J are such that
ViNV; = M(B;j) # 0, then the homomorphism B; — B;; is a bijection. It follows easily that the
ideal E = Ker(A — B;) with ¢ € J does not depend on i. We set B = A/E and Y’ = M(B). Then
for i € J there are compatible isomorphisms of K-affinoid algebras B ®4 A; — B;. They give rise

to an isomorphism of K-analytic spaces Y = Y, and the required fact follows. "

Proof of Proposition 8.6.4. We may assume that A = K{r;'Ty,...,7;'T,}. Then there
is a subset I C {1,...,n} such that p is generated by the variables T; for i ¢ I. Replacing X
by M(A/p) (and Y by the corresponding base change), we may assume that I = {1,...,n} and
p=0. IfY' C X, then Y =Y’, and it is a connected component of Y. Replacing Y by Y’, we
may assume that there are 0 < s; < r; with Y € M(K{r{'T1,...,r T, 51Ty ... 8,11} ©
[s1,71] X ... X [$p, 7], and the required fact follows from Lemma 8.6.5. Assume therefore that
Y’ ¢ X. Lemma 8.6.5 implies that Y’ is the intersection of X with an |K*|-affine subspace L
of (R%)". It follows that Y is the intersection of X with the |K|-affine subspace L = L and, in
particular, Y is the underlying space of an integral |K|-affinoid polytope Z = M(C). We claim

that the canonical closed immersion Z — X goes through a closed immersion Z — Y.
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Indeed, by Proposition 8.5.2, we can find a finite covering {U;};c; of X by affinoid domains
such that, for every i € I, the preimage V; of U; in Y is a K-affinoid space M(B;) and V; — U; is
a closed immersion of K-affinoid spaces and, for every i € I with V; N Y’ # (), V; contains an open
subset of Y’. By Corollary 6.2.4(ii), the latter implies that, for the preimage W; = M(C;) of U;
in Z, C; is a | K|-polytopal algebra. It follows that the admissible epimorphism A — C' induces an
admissible epimorphism A; — C; which goes through a unique admissible epimorphism B; — C;.

The claim follows. L]

8.6.6. Corollary. For every piecewise K-affinoid space X, there exists a finite family of

closed immersions ¢ : Y; — X with integral K-affinoid spaces Y; such that X = J, p:(Y;). .

8.7. The relative interior and proper morphisms. Let ¢ : ¥ — X be a morphism of

K-analytic spaces.

8.7.1. Definition. (i) The relative interior of ¢ is the subset Int(Y/X) C Y consisting of
the points y € Y with the following property: there exist acyclic affinoid domains Uy, ..., U, with
x=p(y) €Uy N...NU, such that U; U...U U, is a neighborhood of x and, for every 1 <1i < n,
there exists an acyclic affinoid neighborhood V; of y in ¢ =1(U;) with y € Int(V;/U;).

(ii) The relative boundary of ¢ is the complement 6(Y/X) of Int(Y/X) in Y.

(iii) If X = M(K), the set Int(Y/X) (resp. 6(Y/X)) is denoted by Int(Y") (resp. 6(Y)) and is
called the interior (resp. boundary) of Y.

Proposition 6.4.9 implies that this definition is consistent with that for morphisms of K-affinoid

spaces. It follows also that the sets Int(Y/X) and 6(Y/X) are open and closed, respectively.

8.7.2. Proposition. (i) For a morphism 1 : X’ — X, one has ¢'~'(Int(Y/X)) C Int(Y'/X")
where 1’ is the canonical morphism Y’ =Y xx X' - Y;

(ii) for a real valuation Fi-field K’ over K, one has ¢~ (Int(Y/X)) = Int(Y®K'/XRK"),
where 1) is the canonical map Y®K' — Y (which is a bijection);

(iii) if Y is an analytic domain in X, then Int(Y/X) coincides with the topological interior of
Y in X;

(iv) if ¢ is a finite morphism, then Int(Y/X) =Y;

(v) if¢ : Z — Y is a finite morphism, then ¢~ (Int(Y/X)) C Int(Z/X);

(vi) if both spaces X and Y are piecewise K -affinoid, the converse implication in (v) is true.

Proof. (i) Let ¢ € Y, y = ¢¥'(y), = = ¢(y) and 2’ = ¢'(y’), where ¢’ is the induced
morphism Y’ — X’. Suppose that y € Int(Y/X). Then there exist acyclic affinoid domains
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xe€Ui,...,U, C X and, for every 1 <i < m an acyclic affinoid neighborhood V; of y in ¢=(U;)
such that U; U...UU, is a neighborhood of z in X and y € Int(V;/U;). We can find acyclic affinoid
domains 2’ € Uy, ...,U), C X’ such that U; U...UU], is a neighborhood of 2’ in X’ and, for every
1 <i < n, thereis 1 < j < m with ¥(Uj) C U;. The fiber product V; xy, U] is a p-affinoid
neighborhood of 3 in ¢'~*(U}).If V/ is an acyclic affinoid neighborhood of 3" in V; X, U/ then, by
Propositions 6.4.2(iv) and 6.4.6, one has ¢y’ € Int(V;//U}) and, therefore, y' € Int(Y’/X").

The statement (ii) is verified in the same way as (i), the statement (iii) easily follows from
Proposition 6.4.6, and the statement (iv) is trivial.

(v) Let z € Z is such that y = ¥(z) € Int(Y/X), and set x = ¢(y). By Definition 8.7.1, there
exist acyclic affinoid domains Uy, ...,U, in X with x € Uy N...NU, such that U; U...UU, is
a neighborhood of z and, for every 1 < i < n, there exists an acyclic affinoid neighborhood V; of
y in ¢~ Y(U;) with y € Int(V;/U;). By Proposition 8.5.2, we can shrink V; so that ~1(V;) is a
finite disjoint union of acyclic domains [ | jes Wij for which all of the induced morphisms W;; — V;
are finite morphisms of K-affinoid spaces. If z € W;;, then W;; is an affinoid neighborhood
of z in (py)~*(U;), and Proposition 6.4.2 then implies that z € Int(W;;/U;). This means that
z € Int(Z/X).

(vi) We may assume that X is an acyclic K-affinoid space. Let x € X. We claim that the
preimage ¢~ '(z) is finite. Indeed, to prove the claim, we may assume that X is acyclic K-affinoid.
By Corollary 8.6.6, there is a finite family of closed immersions 1 : Z; — Y with integral K-affinoid
spaces Z; such that Y =, ¢i(Z;). the statement (i) implies that Int(Z;/X) = Z;. Since each Z;
is acyclic, ¢; : Z; — X is a morphism of K-affinoid spaces with Int(Z;/X) = Z;. Proposition
6.4.8 implies that this morphism is finite, and the claim follows.

Let o1 (x) = {y1,...,yn}. Then we can find affinoid domains Uy, ...,U,, that contain the
point x and such that their union is a neighborhood of = and, for every 1 < ¢ < m, pairwise disjoint
acyclic affinoid neighborhoods V;; of the point y; in ¢~!(U;) such that y; € Int(V;;/U;). Since
both spaces X and Y are compact, we can find, for every 1 <i < m, an affinoid neighborhood U]
of z in U; such that =1 (U}) C [icjcn Vig- UV =V 0 @~ 1(U]), then V}; is an acyclic affinoid
neighborhood of the point y; in ¢~!(U]) and V;; — U] is a morphism of K-affinoid spaces with
Int(V;;/U;) = V;;. Proposition 6.4.8 implies that the later morphisms are finite. This means that

J
the morphism ¢ is finite. .

8.7.3. Theorem. Let ¢ : Y — X be a separated morphism to a K-affinoid space X. Then for
every p-affinoid domain V- C'Y with V C Int(Y/X) there exists a bigger p-affinoid domain W C Y
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such that V' C Int(W/X) and U is a Weierstrass domain in W.
Proof. Suppose that By = A{r;'Ty,...,r;'T,}/E with a closed ideal E and, for 7} >

r'n

iyl > 1, we set C = A{r] Ty, ...,r'/"'T,}/E and Z = M(C). Then V is a Weierstrass
domain in Z with V' C Int(Z/X), and the canonical homomorphism C' — By is a bijection. In this
way we can construct a decreasing sequence of Weierstrass domains Z; D Z3 D ... in Int(Z/X)
with Cy, = By and Z;1; C Int(Z;/Z) and, by Proposition 6.4.2(iii), Z;41 C Int(Z;/X). Thus,
to prove the theorem, it suffices to show that the identity isomorphism of V extends to an open
immersion V < Z of an open neighborhood V of V in Y.

Let y be a point of V. Since V' C Int(Y/X), the point y has an affinoid neighborhood Wy
in Int(Y/X). In particular, y € Int(W,/X). By Corollary 7.4.3, we can shrink W so that every
affinoid subdomain of W, that contains the point y is acyclic. Since y € Int(W,/Y)NInt(Y/X) C
Int(W,,/X), there exists an affinoid neighborhood W, of y in Int (W, / X). If V,, = W, NV, then there
is an isomorphism of K-germs (W,,V,) = (Y,V,), and Corollary 7.3.2 implies that the identity
isomorphism on V,, extends to a unique isomorphism of K-germs (Y, V,) = (Z,V,).

It follows that there is a finite family {V;}ics of open subsets of Int(Y/X') such that V' C J,¢; Vi
and, for every ¢ € I, the identity isomorphism on V; NV extends to an open immersion @; : V; < Z.
Let y be a point of V, and suppose it lies precisely in V;,,...,V; . By the previous paragraph, we
can find an affinoid domain V,, in V.1 (V;, N...NV;,) that contains the point y and such that
the identity isomorphism on V, extends to a unique isomorphism of K-germs (Y, V,) = (Z,V,). It
follows that there exists an open neighborhood V), of y in V;, N...NYV;  at which all of the open
immersions ¢;,,...,y;, coincide. If V is the union of V,’s taken over all point y € V, then ¢;’s

give rise to an open immersion V — Z we are looking for. "

8.7.4. Definition. A morphism of K-analytic spaces ¢ : Y — X is said to be proper if it is
compact as a map of topological spaces and §(Y/X) = (.

8.7.5. Corollary. (i) Every finite morphism is proper;

(ii) the class of proper morphisms is preserved under any base change functor and any ground
field extension functor;

(iii) if ¢ ' Y — X is proper and ¢ : Z — Y s finite, then the composition ¢ : Z — X is

proper. "

8.7.6. Remark. In the following section we will show that if y € Int(Y/X) then, for every
acyclic affinoid domain U C X that contains the point ¢(y), the point y has an acyclic affinoid
neighborhood V of y in ¢~ }(U) with y € Int(Y/X). It will follow that the classes of morphisms
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without boundary and of proper morphisms are preserved under composition.

89. Local structure of K-analytic spaces

9.1. A category K-bir. Let K be a real valuation Fi-field. Objects of the category K-bir
we are going to introduce are triples X = (L, X, ¢) consisting of a real valuation K-field L with
finitely generated cokernel of the canonical homomorphism K* — L*, a connected locally compact
topological space X, and a compact map ¢ : X — Vi possessing the following properties:

(1) there exists a finite covering of X by closed subsets {X;};c; such that ¢ induces a homeo-
morphism of each X; with a rational convex polyhedral cone in Vp ,k;

(2) for every pair 4,5 € I, the image of X; N X in V k is a finite union of rational convex
polyhedral cones.

Notice that there exists n > 1 such that the fibers of the map ¢ have at most n points and,
since the space X is connected, the fiber of the point of Vi k that corresponds to the trivial
homomorphism L — R consists of one point. A subset of X; whose image in Vx is a rational
convex polyhedral cone will be called a rational convex polyhedral cone in X;. If such a subset lies

also in X, the property (2) implies that it is a rational convex polyhedral cone in X;.

9.1.1. Lemma. In the above situation, every closed subset Y C X with the property that ¢
induces a homeomorphism of Y with a rational convex polyhedral cone is a finite union Y = |, Yk
such that each Y* is a rational convex polyhedral cone in some X;.

Proof. We prove the required statement by induction on the cardinality of the set I. If it is
equal to one, the statement is trivial. Suppose that it is bigger than one and the statement is true
for X with strictly smaller cardinality of I.

A closed subset Z C X will be said to be a domain if it is a finite union |J,, Z¥ such that each
Z¥ is a rational convex polyhedral cone in some X;. (And so we have to show that Y is domain.)
The properties (1) and (2) imply that the class of domains is preserved under finite intersections
and that every domains itself possesses those properties.

We claim that, for any a rational convex polyhedral cone C' in Vi, , its preimage ¢~ HC) is a
domain. Indeed, if ¢; denotes the restriction of the map ¢ to X;, one has ¢~ (C) = U,¢; d)i_l(C’ N
#(X5)). Since each intersection C'N @(X;) is a rational convex polyhedral cone in Vi, /x, then so is
its preimage in X;.

It suffices to show that, for every ¢ € I, the intersection Y N X; is a finite union of rational

convex polyhedral cones in X;. Let X; denote the open set X\ Uju X EY' N X; = 0, then the
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required statement is true by induction applied to the closed subset X \X} Assume therefore that
Y N X; # 0. By the above claim, we can replace X by ¢~ (¢(Y)N¢(X;)) and Y by its intersection
with the latter, and so we may assume that ¢(Y) = ¢(X;). In this situation, we claim that X; C Y.

Indeed, suppose that X; ¢ Y. Since X, is dense in X, it follows that X; ¢ V. Let y be a point
in the topological boundary of Y N X; in X;. The point = = #(y) lies in the topological boundary
of (Y N X;) in ¢(X;). We can therefore find a sequence of points x1, 2o, ... in ¢(X;)\o(Y N X;)
that tend to the point x. Since ¢(Y) = ¢(X;), there are points y,, € ¢~ (z,) NY for all n > 1.
Replacing the latter sequence by a subsequence, we may assume that y,, € X; for some j # i and
all n > 1. The points y, lie in a bounded subset of X; and, therefore, they have a limit 3’ in
X,. Since Y is a closed subset of X, it follows that 3" € Y. The restriction of the map ¢ to Y is

injective, but we get ¢(y') = ¢(y) = = with y € YN X; and y' € Y N X;, which is a contradiction.

We define a morphism X = (L', X",¢') - X = (L, X,¢) in K-bir as a pair (h,i), where i
is an isometric homomorphism of valuation K-fields L — L’ and h is a continuous map X’ — X
which is compatible with the induced map Vi, /i — Vp k.

The category K-bir admits fiber products. Namely, for morphisms Y = (M,Y,?) — X =
(L,X,¢) and Z = (N,Z,x) — X, one has Y x+ Z = (M ® N,Y xx Z, ), where p is the
induced map Y xXx Z = Vug, Nk = Vm/x Xv,, VN/ik. Furthermore, given an isometric
homomorphism of real valuation F-fields K — K’, there is an associated ground field extension
functor K-bir — K'-bir : X = (L, X,¢) — X @ K' = (L', X',¢'), where L' = L @k K,
X' =X XV, Vi K, and ¢' is the induced map X’ — V1, k. Notice that the canonical maps
Vi /k — Vi/k and X’ — X are bijections.

The (non-full) subcategory of K-bir, formed by objects of the form X = (L, X, ¢) for a fixed
L and with morphisms (h,4) : Y = (L,Y,%) in which i is the identity map L = L, will be denoted
by K-bir(L). The triple (L, Vi, ¢) with the identity map ¢ : Vg = V1 k will be denoted
simply by V,/k, it is a final object of the category K-bir(L). The object Vg, x (whose underlying

space is one point) is a final object of the category K-bir.

9.1.2. Definition. Let X = (L, X, ¢) be an object of K-bir.

(i) A subset X’ C X is said to be an affine domain if ¢ induces a homeomorphism of X’ with
a rational convex polyhedral cone in Vi /i. If X' = X, X is said to be an affine object of K-bir.

(ii) A subset X’ C X is said to be a domain if it is a finite union of affine subsets of X.

(ili) A morphism (h,i) : X = (L,X’,¢/) — X in K-bir(L) is said to a domain (resp. an

affinoid domain) embedding if the map h induces a homeomorphism of X’ with a domain (resp. an
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affinoid domain) in X.

Lemma 9.1.1 implies that the class of domains is preserved by finite intersections. If X’ is a
domain (resp. an affine domain), it gives rise to an object X = (L, X', QS}X,) of K-bir(L), and the
induced morphism X' — X is a domain (resp. an affinoid domain) embedding. Notice that, given
a morphism Y — X, the preimage of a subdomain of X is a domain in Y. The similar fact holds
for the preimages of domains with respect to the ground field extension functors.

Let {X; = (X;,L,¢;)}icr be a finite family of objects in K-bir(L), and suppose that, for
each pair i,j € I, we are given a domain Yij C X, and an isomorphism of objects of K-bir(L),
Vij Yij = in which satisfy the usual conditions for gluing. Then there is an object X = (X, L, @)
of K-bir(L) which is obtained by gluing of all X;’s along Yij’s, i.e., it possesses the usual properties
of such an object (see §8.3). Indeed, the topological space X is obtained by the usual gluing of the

spaces X;’s, and the maps ¢;’s give rise to a continuous map ¢ : X — V.

9.1.3. Definition. A morphism (h,1) : X' — X is said to be separated (resp. proper) if the

induced map X’ — X XV, VYL K is injective (resp. bijective).
The following properties of separated and proper morphisms easily follow from their definition.

9.1.4. Proposition. (i) The class of separated (resp. proper) morphisms in K-bir is preserved
under composition, any base change functor, and any ground field extension functor;

(ii) if for a morphism (h,i) : X — X there exists a finite covering of X by domains {X}
such that all of the induced morphisms h=1(X ) — X, are separated (resp. proper), then so is the
morphism (h,i);

(iii) a morphism (h,i) : X - X is separated if and only if the induced morphism X -
b'e X5 X is proper;

iv) given morphisms (h,i) : X — X and (h',i') : X — X, if the composition X — X is

g p ) ) ) p
separated, then so is the morphism (h',i);
v) given morphisms as in (iv), if the composition X" = X is proper and the morphism (h, i
g p p prop p )
is separated, then the morphism (h',i") is proper;
(vi) in the situation of (v), if in addition the kernel of the homomorphism L'™* — L' lies in

the image of K**, then the morphism (h,1) is also proper. .

9.2. Germs of K-analytic spaces and the reduction functor K-Germs,; — K-bir. A
germ of a K-analytic space (or simply a K-germ) is a pair (X, .S), where X is a K-analytic space

and S is a subset of the underlying topological space |X| of X. If S is a point x, then (X, S) will be
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denoted by (X, z) or X,, and such a K-germ is said to be good if x has an affinoid neighborhood
in X. The K-germs form a category in which morphisms from (Y, T) to (X, S) are the morphisms
¢ :Y — X with o(T) C S. The category of K-germs K-Germs is the localization of the latter
category with respect to the system of morphisms ¢ : (Y,T) — (X,S) such that ¢ induces an
isomorphism of Y with an open neighborhood of S in X. Notice that this system admits calculus
of right fractions, and so the set of morphisms Hom((Y, T), (X, S)) in K-Germs is the inductive limit
of the sets of morphisms ¢ : V — X with ¢(T") C S, where V runs through a fundamental system of
open neighborhoods of T in Y. It follows that a morphism ¢ : (Y,T) — (X, S) is an isomorphism
in K-Germs if it induces an isomorphisms between some open neighborhoods of T" and S. Notice
that the correspondence X — (X, |X]|) gives rise to a fully faithful functor K-An — K-Germs.

The category K-Germs admits fiber products. Namely, given morphisms (Y, 7) — (X, S) and
(X,8") = (X,9),if p: (V,T) = (X,S) and (U',S") — (X, S) are their representatives, then a
required fiber product is (V xx U',T xg S"). Given an isometric homomorphism of valuation F;-
fields K — K’, the ground field extension functor K-An — K’-An : X — X®xK' extends in an
evident way to a ground field extension functor of K-germs K-Germs — K’'-Germs. A morphism
(Y,T) — (X, S) is said to be an analytic domain embedding if it has a representative ¥V — X which
is an analytic domain embedding of K-analytic spaces.

We are interested here in the full subcategory K-Germs,; of K-Germs consisting of pointed
K-germs, i.e., K-germs of the form X, = (X,z). Notice that an analytic subdomain of a K-
analytic space is closed at any of its points; it follows that the union of two analytic subdomains
of a K-germ X, makes sense, and is an analytic subdomain of X,. Furthermore, since the functor
X — | X| commutes with fiber products, it follows that the category K-Germs,, is preserved by fiber
products in K-Germs. For the similar reason, given an isometric homomorphism of real valuation
Fi-fields K — K’, the ground field extension functor K-Germs — K’'-Germs gives rise to a functor
K-Germsy, — K'-Germs,,. Finally, let K-Af f,: denote the category of pointed K -affinoid spaces
which is defined in the same way as above. Then Corollary 7.4.3 implies that the canonical functor
from K-Af fp: to the category of pointed good germs is an equivalence of categories.

We are going to construct a functor K-Germs,, — K-bir : X, — X,.

First of all, assume that X = M(A) is a K-affinoid space. Each point x € X corresponds to
a character x, : A — H(z) which, in its turn, gives rise to a character Y, : A — 7—?@) = H(z)
(that takes the element f € A of an element f € A to f(z) = x(f), if |f(z)] = p(f), and to
zero, otherwise). We set X, = (H(:U),VH(;C)/K{)ZE(K)},@, where ¢ is the canonical embedding
VH(w)/K{S{I(Z)} — Vi) k- If V is an affinoid domain in X that contains the point x, then there
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is an associated affine domain embedding 171 — )A(;x If, in addition, V is a neighborhood of  in X
then, by Proposition 6.4.6, X, (Ay ) is integral over %(Z) and, therefore, V, = X,. In this way we
get a functor from the category of pointed good K-germs to K-bir.

9.2.1. Proposition. Let X, be a good K-germ, and let {Y};c; be a finite family of good
analytic subdomains of X,. Then
(j) ﬂz‘el Yxi = ﬂzel YZ

(i) if the analytic domain Y, = ., Y is good, then Y, = |J

el ZGI
(iii) for any morphism of good K-germs ¢ : Z, — X, and any good analytic subdomain Y, of

X, one has ¢—T6/w) =5 YY,).

If f1,..., fn are functions analytic and invertible in a neighborhood of z, i.e., f; € O% ., they
come from an affinoid neighborhood Y = M(A) of z, i.e., f; € A, and so there is an affinoid domain

Y{ri'fi,...,r7'Tn}, where r; = |f;(2)|. The latter defines an affinoid subdomain of X, denoted
by XI{TZ_ fi}lﬁiﬁn = XI{Tl_lfla Ty fn}

9.2.2. Lemma. Every affinoid subdomain of X, has the above form Xz{ri_lfi}lgign, and
one has X, {7“ f1}1<2<n )Z'w{fz(:n)}lngn

Proof. We may assume that X = M(A) is K-affinoid and the affinoid subdomain considered
comes from a connected affinoid domain Y in X. By Theorem 6.3.1(ii), Y is rational, i.e., Y =
{y € XHg ) >q,|fi(y)| < p; for 1 <i<n}, where fi,...,fn,9 € Aand p1,...,pn,q > 0. Since
g(x) # 0, we can shrink X so that g is invertible in A, i.e., we can replace each f; by fig; L and
assume that Y is a Weierstrass domain X {r;*f1,...,r ' f.}. Suppose that |fi(z)| = r; for 1 <
i <m, and |f;(z)| <r; for m+1 <4 < n. Then the Weierstrass domain X {r,."; frnt1,...,75 ' fa}
is a neighborhood of the point x in X and so, shrinking X, we achieve the required form of Y and,
therefore, of Y.

Thus, let Y = X{ri'fi,...,r; fu} with 7; = |fi(x)| for all 1 < i < n. Then the map
A{r7 Ty, .., r T} — Ay Ty — f; is an admissible epimorphism. Proposition 5.3.8 implies
T, — Ay T — f;

? 7’L

that the induced homomorphism A[r1 T, ..., is finite, and the required

Tn ‘ Y

statement follows from Corollary 1.7.1.2. .

I f1,. oo fo € Ok s the family { X, {(5) 7 £ }i<icnhi<jcn with 7 = |f;(2)] is a finite affinoid

covering of X,. Such a covering of X, is said to be rational.

9.2.3. Lemma. Any finite affinoid covering of X, has a rational refinement.

Proof. We may assume that X = M(A) is K-affinoid, and let {Y}1<;<,, be a finite affinoid

127



covering of X. By Lemma 9.2.2, we can shrink X and assume that Y* = X{r;jlfij}lgjgm for
fij € A* with |fij(x)| = ri;. Adding ones to the system of functions {f;;}, we may assume that
ni =mn, fin =1and ry = 1 for all 1 < i < m. Let J be the set of all sequences j = (j1,---,Jm)
with 1 < j; < n and mlax{ji} = n. We claim that the rational covering of X defined by the

functions g; = fij, - ... fmj,, forj € J refines the covering we started from. Indeed, setting

_1$

% }iey is contained in YP
J

75 =T1j, - Tmj,., it suffices to show that each domain Vj = X{(%)
for 1 < p < m such that j, = n. To prove the latter, we have to verify that, for every point y € Vj,
one has |fyr(y)| < rp for all 1 < k < n. The point y lies in some Y! (we may assume that [ # p)
and, in particular, |fi;, (y)| < rij,. On the other hand, if i € J is such that ¢; = n and i, = jj for
k # [, then % = +— and 2 = L Tt follows that |fi;,(y)| = ry,. Finally, given 1 < k < n, let

i 3 Ly
9i — fpk
93 fui,

therefore, | for(y)| < 7pk. .

Tpk

and,
T’ljl

i € J be such that i, = k, 4y = n and ¢y = j, for all ¢ # p,{. Then and ;—; =

Proof of Proposition 9.2.1. We may assume that X, and all of the analytic domains
considered are K-affinoid. In this case (i) and (iii) follow from Lemma 9.2.2, and (ii) follows from

Lemma 9.2.3 applied to the finite affinoid covering {Y;};cs of Y. =

Let now X, be a separated K-germ (i.e., the point z has a separated open neighborhood). If
we fix a finite covering {Y;};cr of X, by good (e.g., affinoid) analytic domains then, for every pair
i,j € I, the intersection Y¥ = YN Y7 is a good analytic domain. Proposition 9.2.1 implies that
the family {Y;i};c; of objects of K-bir(#(z)) together with the family of affine domains {Y;/ Yijer
satisfy the gluing conditions, and so we can glue all ?j’s along 17;3', and we get an object )Z'x
of K-bir(H(z)). This object does not depend up to a canonical isomorphism from the choice
of the covering, and the correspondence X, X, gives rise to a functor from the category of
separated pointed K-germs to K-bir, which possesses the naturally extended properties (i) and (ii)
of Proposition 9.2.1.

Finally, if X, is an arbitrary K-germ, we fix a finite covering {Y;};c; of X, by separated
(e.g., affinoid) analytic domains. Then, for every pair i, € I, the intersection ¥ = Y N Y}/
is a separated analytic domain. As above, the family of domains {}796” }ijer satisfy the gluing
conditions, and so we can glue all ?;’s along 1795” , and we get an object X, of K -bir(H(z)), which
does not depend up to a canonical isomorphism from the choice of the covering. In this way we get
the required functor K-Germs,, — K-bir : X, — va This functor takes analytic (resp. affine)
domain embedding to domain (resp. affine domain) embeddings and also possesses the naturally

extended properties (i) and (ii) of Proposition 9.2.1.
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9.2.4. Proposition. Let ¢ : Y, — X, be a morphism of pointed germs. Then
(i) if ¢ has no boundary (i.e., y € Int(Y /X)), then the morphism ¢ : ley — X, Is proper;

(ii) for any morphism X!, — X, the canonical morphism Y, x;: X!, — }7y X% X !, is proper.

We will show in §9.5 that the converse implication in (i) is also true.

Proof. (i) By Definition 8.7.1, it suffices to consider the case when X = M(A) and Y = M(B)
are K-affinoid. In this case, one has X, = VH(w)/K{)?I(E)} and ?y = VH(y)/K{SZy(E)}. Since
Xy (B) is integral over Y, (A), the required fact follows.

(ii) As in (i), the situation is easily reduced to the case when X = M(A), Y = M(B) and

X" = M(A’) are K-affinoid. In this case the required fact follows from Corollary 5.3.10. =

9.3. Bijection between domains in X, and )?w

9.3.1. Theorem. Given a K-germ X, the reduction functor gives rise to a bijection between
the set of analytic domains in X, and the set of domains in )N(x

Proof. In Steps 1-4, the K-germ X, is assumed to be good and, in Step 5, we consider the
general case.

Step 1. If Y, and Z, are good analytic subdomains of X, with 3790 - Zm, then Y, C Z,.
Indeed, by Lemma 9.2.2, we may assume that X = M(A) is K-affinoid, Y = X{r; * f;}1<i<m and
Z = X{s; ' gjh<j<n with fi,g; € A*, r; = |fi(z)| and s; = |g;(z)|. Then X, = V() x{Xa(A)}
and, by Lemma 9.2.2, Y, = Vi) x {Xe (A)[fi(2)1<icm } and Z, = Vi) {Xe (A) 95 (2)])1<i<n }-
Since YIFZZE -Y,NZ, = }795, Corollary 1.7.1.2 implies that each element g;(z) is integral over
)A{z(;lv)[fi(x)]lgigm, ie., gi(x)k = (afir - ... flm)(z) for some a € A with |a(z)| = p(a) and
I, L > 0. Tt follows that (¢¥,af{*-...- fhr) €Iy, ie., ghh =af{*-...- fih for some element
h € A\p,. Shrinking X, we may assume that h € A* and, therefore, g;? = af{1 oo flm The
absolute value of the restriction of the function on the right hand side to Y achieves its maximum
|k

at the point x and, therefore, the same is true for the function g; It follows that

8§ = 1g; (@) v

Y CZ.

Step 2. If Y, is an arbitrary subdomain of X, with }N@ = )N(x, then Y, = X,. (Of course, if
Y, is good, the claim follows from Step 1.) To prove the claim in general, we need the following
analog of Lemma 9.2.3. Let L be an Fi-field, and let X be a subset of V. Then for any set
fi,.--, fn € L* the system {X{f—;, e J}—?}}lggn is a covering of X. Such a covering is said to be

rational.
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9.3.2. Lemma. Any finite covering of a set X C V[, by subsets of the form X{fi,..., fn}
has a rational refinement.

Proof. Let {Y'}1<;<, be a finite covering of X with Y = X{f;;}1<j<n;. Adding ones to the
system of functions f;;, we may assume that n; = n and f;;,, = 1 for all 1 <¢ < m. Let J be the
set of all sequences j = (j1,...,Jm) with 1 < j; <n and m?x{ji} =n. We claim that the rational
covering defined by the elements g; = fij, - ... fnj,, forj € J refines the covering we started from.
Indeed, it suffices to show that each domain V; = X {g—;}ie 7 is contained in Y? for 1 < p < m with
Jp = n. To prove the latter, we have to verify that, for every point « € Vj, one has fpr(z) <1
for all 1 < k < n. The point z lies in some Y' (we may assume that [ # p) and, in particular,

fij,(x) < 1. On the other hand, if i € J is such that i, = n and iy, = jj for k # [, then £ = 4Tt

9j o fljl :
follows that fi;, () = 1. Finally, given 1 < k < n, let i € J be such that i, =k, i; = n and iy = j,
for all ¢ # p,l. Then g—; = ]%" and , therefore, fpr(x) <1. n
1

By Lemma 9.2.2, Y, has a finite affinoid covering {V;}1<i<y, where each V; has the form
Xo{r; ' fit1<j<n with 7; = |f;(z)|, and V; has the form X,{f;(2)}1<jcn. Then {Vili<i<m is

a covering of )Afx = }733, and Lemma 9.3.2 implies that this covering has a rational refinement

gk (z)
g;j(z)

1<j<n Ifr;=|fj(z)| and U; = Xm{(:—’;)_“;—’;}lgkgn, then ﬁj = W;. Since ﬁj C V; for some

{Witi<j<n, ie., there are elements gi,...,g, € Ox, such that W; = X.{ t<k<n for all
1 <i <m, Step 1 implies that U; C V; and, therefore, the rational covering {U,}1<j<p of X, is in
fact a covering of Y, i.e., Y, = X,.

Step 3. If Y, and Z, are arbitrary analytic subdomains of X, with 3795 - Zx, then Y, C X,.
Indeed, let {Y.}ier and {Z%},c be finite coverings of Y, and Z, by good K-germs. Then, for
every i € I, {}N/x’ N Z; }jes is a covering of 17; Since Y is good, Step 2 implies that {Y; N ZJ},c;
is a covering of Y;! and, therefore, Y, C Z,.

Step 4. Every subdomain V' of X, is the reduction of an analytic subdomain of X, . It suffices
to consider the case when V' is affine and, by Lemma 9.2.2, it suffices to show that V is of the

*

form )Zm{ozl,...,an} for some ay,...,a, € H(x)*. This is clear since X, is identified with a
rational convex polyhedral cone in Vy(,),x and any rational convex polyhedral subcone in it has
the required form.

Thus, the theorem is true for good X,.

Step 5. The theorem is true for arbitrary X,. It suffices to verify the properties of Steps 3
and 4. Let {X{};cs be a finite covering of X, by good analytic domains. If Y, and Z, are analytic

subdomains of X, with Y, C Z, then, for every i € I, Y,NX: and Z,N X! are analytic subdomains
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of the good analytic domain X! with meﬂvX}C C Zx?ﬁ/X;. Step 3 implies that Y, N X¢ C Z, N X?
and, therefore, Y, C Z,. Furthermore, if V is a subdomain of )Z'm then for every i € I, V' N X; is
a subdomain of X’. Step 4 implies that V N X = Y for an analytic subdomain Y of X’. Then
Ye = Uier Y is an analytic subdomain of X, with Y, =V. .

9.3.3. Corollary. Let ¢ : Y, — X, is a G-locally closed immersion of pointed K-germs.
Then it is a locally closed immersion if and only if the morphism ¢ : ffy — Xx is proper.

Proof. The direct implication follows from Proposition 9.2.4(i). Conversely, suppose that
the morphism ¢ : ffy — X’m is proper, i.e., ffy 5 X’m XV x VHy) K- Since ¢ is a G-locally
closed immersion, the morphism Y, — X, goes through a closed immersion Y, — X, to an
analytic domain X and, in particular, the induced morphism ?y — 5(,; is proper, i.e., ?y =
)N(; XV x YH(y) K- 1t follows that )Z'; = )N(z, and Theorem 9.3.1 implies that X! = X, i.e., ¢

is a closed immersion. n

9.3.4. Corollary. Let ¢ : Y, — X, be a morphism of pointed K-germs. then

(i) ¢ is separated if and only if the induced morphism o : ?y — )A(ix is separated;

(ii) given a second morphism v : Z, — 'Y, if the composition i : Z, — X, is separated, then
so is the morphism 1.

Proof. (i) A morphism ¢ : Y, — X, is separated if and only if the diagonal morphism
Y, — Y, xx, Y, is a closed immersion. Since the diagonal morphism is always a G-closed immersion,
Corollary 9.3.3 implies that it is a closed immersion if and only if the induced morphism ffy —
Y, ><AX2 Y, is proper. By Proposition 9.2.4, the latter is equivalent to the property that the diagonal
morphism ffy — ffy X5 }N/y is proper and, by Proposition 9.1.4(iii), it is equivalent to the property
that the induced morphism ¢ : ?y — )Z'm is separated.

(ii) follows from (i) and Proposition 9.1.4(iv). .

9.3.5. Corollary. Let X be a K-affinoid space. A locally closed subset Y C X is an analytic
domain if and only if its intersection Y N X’ with each irreducible component X' of X is an analytic
domain in X',

Proof. We have to verify that, for every point y € Y, there is an analytic domain U in X that
contains the point y and such that U NU =Y NU for some open neighborhood U of y in X. Let
p=1p, and Z = M(A/Ip). Then the canonical morphism of pointed germs Z, — X, induces an
isomorphism Ey = )Z'y. The assumption implies that the point y has a neighborhood V in Z which
is an analytic domain in Z. By Theorem 9.3.1, there is an analytic domain V' in X which contains

the point y and such that V, = U, x x, Zy- We claim that U possesses the required property.
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Indeed, if X’ is an irreducible component of X, the assumption implies that there is an analytic
domain V’ in X’ that contains the point y and such that V' N’ = (Y N X’) nU’ for an open
neighborhood U’ of y in X’, and that there is an isomorphism of pointed germs V,, = Vyxx, Zy. It
follows that we can find an open neighborhood U of y in X such that (UNX')NnU = (Y NnX')nU
for each irreducible component X’ of X and, therefore, UNU =Y NU. "

9.4. A characterization of good germs.
9.4.1. Theorem. A K-germs X, is good if and only if its reduction )N(x is affine.

Let L be an F;-field, and let X be a subset of V. Then for any set f1,..., f, € L* the system

{X{fi o fir b heeqayn is a covering of X. Such a covering is said to be Laurent.

9.4.2. Lemma. Any finite covering of a set X C V[ by subsets of the form X{f1,..., fn}
has a Laurent refinement.

Proof. By Lemma 9.3.2, we may assume that we are given a rational covering of X, i.e.,
{X{f—;, e %}}1§j§n with fi1,..., fn € L*. We claim that the Laurent covering of X defined by
the elements g;; = ]’Z—j with 1 < i < j <n refines the above covering. Indeed, let V' be a set of that
Laurent covering which is defined by a choice of g;; with 1 <14 < j <mn. Given 1 <i # j < n, we
write ¢ < j if either 7 < j and €;; = 1, or @ > j and &;; = —1. This defines a transitive relation on
the set {1,...,n}. Let ¢ be a maximal element with respect to this relation, i.e., for every j # i

one has either j <7 and €5, =1, 0r j > 7 and €;; = —1. Then V C X{f—l_, e f—"} "

Proof of Theorem 9.4.1. The direct implication is trivial. To prove the converse implication,
we may assume, Corollary 9.3.4, that X is a compact K-analytic space. A finite affinoid covering
of X gives rise to a finite affine covering of of X, and, by Lemma 9.4.2, the latter has a Laurent
refinement {V. = X {aS', .. 05" }ee(+yn, Where aq, ..., o, nonzero elements of 7-2(\;) = H(x).
By Theorem 9.3.1, each V. is the reduction }71-(5) of an affinoid domain Y(¢) ¢ X. Shrinking X, we
may assume that X = [J, Y (). Induction on n reduces the theorem to verification of the following
fact.

Given a separated compact K-analytic space X and a point x € X, assume that X'm is affine
and that X is a union of two affinoid domains Y and Z such that x € Y N Z, Y, = )Z'x{oc}
and Zy = X {a'} for a nonzero element o € 7—2(;) = H(z). Then the point x has an affinoid
neighborhood in X .

In the construction which follows, we replace X by an analytic subdomain of the form Y’ U Z’,

where Y’ and Z’ are marked Laurent neighborhoods of the point x in Y and Z, respectively.
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Our purpose is to shrink X and construct a closed immersion X — X’ in a K-affinoid space X’.
(Proposition 8.6.2(i) will then imply that the point « has an affinoid neighborhood in X'.)

Let Y = M(B), Z = M(C) and Y N Z = M(A). Shrinking X, we may assume that all
affinoid subdomains of Y and of Z that contain the point x are acyclic. We may also assume that
a = f(z) = g(z) for some f € B* and g € C* with t = |a| = p(f) and p(g~1) =t~ 1.

Step 1. Given affinoid neighborhoods Y' and Z' of the point x in'Y and Z, respectively, one
can find smaller marked Laurent neighborhoods x € Y" CY' and x € Z"" C Z' withY"' N Z" =
Y"{tf~'} = Z"{t"1g}. Indeed, we can shrink X and assume that Y’ =Y and Z’' = Z. Since the
reductions of the K-germs of Y N Z, Y{tf~'} and Z{t"'g} at = coincide, Theorem 9.3.1 implies
that there are marked Laurent neighborhoods Y’ = M(B’) and Z' = M(C’) of z in Y and Z,
respectively, such that YN Z =Y'{tf~1} and Y N Z' = Z'{¢t~1g}. Furthermore, since Y’ N Z’ is
a neighborhood of z in Y N Z, there is a marked Laurent neighborhood W of z in Y N Z which is
contained in Y’ N Z". Let W = (Y N Z){p; ‘u;, qjv;} with u;,v; € A such that |u;(z)| > p; and
lvj(z)] < gj. It is also a marked Laurent neighborhood of z in Y'NZ =Y'{tf~'} and Y N Z' =
Z'{t"1g}, and the latter are Weierstrass domains in Y’ and Z’, respectively. It follows that the

elements u; and v; ‘Y . can be extended to elements uz, v; € B' and uj,v; € C’, respectively.

Y'NnZ 7 R

-1, n "

Then Y = Y’{pi_lug,qjv;} and Z" = Z'{p; u},q;vi} are marked Laurent neighborhoods of z
in Y’ and Z’, respectively. Finally, since W =Y" N (Y'NZ) = Z"n (Y NnZ"), it follows that
W=Y"{tf "} =2"{t"g} =Y" N 2"

Step 2. Given elements b € B and ¢ € C with b(x) = c¢(x) # 0, we can shrink X so that the
images of b and ¢ in A are equal. Indeed, let b’ and ¢’ be the images of b and ¢ in A, respectively,
and set p = {a € Ala(x) = 0}. Then there exists an element a € A\p such that ab’ = ac’. Since that
homomorphisms B — A and C' — A are surjective, we can find elements v € B and v € C' whose
images in A coincide with a. If 0 < r < |a(z)|, then Y{ru~!} and Z{rv~'} are marked Laurent
neighborhoods of x in Y and Z, respectively. We can therefore shrink X so that the element a
becomes invertible in A, and we get b’ = ¢’.

The above claim implies that we can shrink X and assume that the images of the elements
f and g in A are equal and, by Step 1, we may assume that Y N Z = Y{tf~1} = Z{t71g}. Let
0 < p <t < g be numbers with |f(y)] > p for all y € Y and |g(2)| < g for all z € Z.

Step 3. Since X’m is affine, it coincides with Vi) x{B1,...,Bm} for nonzero elements ; €
%) = H(x). We can shrink X so that one has ; = f;(x) = g;(x) for some elements f; € B and
gi € C with p(f;) = p(g:;) = |Bi] = ri. We can shrink X and assume that f; € B* and g; € C*

and, by Steps 1 and 2, we can shrink X and assume that the images of f; and ¢; in A coincide and
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YNZ=Y{tf '}y =2Z{t"1g}.
Step 4. Consider the bounded homomorphisms

= K{TflTlv"'7T7711Tmat71517p52} — B TZ — fiaSl = fa S2 = fﬁla

K{T‘l 1T1,... Tm,qilsl,tSQ} —C:T; gi,Sl — g,Sz — gil-

' T'm

By the construction, the point x lies in the interior of the morphisms Y — M(B’) and Z — M(C").
By Proposition 6.4.3(i) and Step 1, one can shrink X so that the above homomorphisms can be

extended to admissible epimorphisms

B'{r;\\Th, ... T} = B: Ty frnsi

bl m—l—/_/,

C/{rm+u+1T e m+#+yT}—>C Tj = Gmtptj

such that |f,1i(x)] < 7y and |gmiptj(@)] < rmqpyy forall 1 <4 < pand 1 < j < v,
and Y NZ = Y{tf '} = Z{t 'g}. Since Y N Z is a Weierstrass domain in both Y and Z,
we can find elements gpy1,...,9m+p € C and frgppt1,---, frgprr € B with 9m+i|ymz =
fm+i‘sz and fm+ﬂ+j‘YnZ = gmﬂtﬂ“ymz' By the construction, the Weierstrass domains Y’ =
Y{T;L]:i-#—‘rlfm‘f‘ﬂ‘f‘l’ - ,T%i“+yfm+u+l,} and Z' = Z{r;ﬁ_lgm_“, A r;ﬁi_ugmﬂi} are marked Lau-
rent neighborhoods of z in Y and Z, respectively, that contain Y N Z. One also has Y'{tf~ !} =
Y NZ = Z'{t"'f} and, in particular, this set coincides with Y’ N Z’. Thus, we can shrink X by
replacing Y by Y/ and Z by Z’ and, setting n = m + u + v, we get admissible epimorphisms

K{’l“;lTl,... 71T St Sl,pSQ}%BZTil—)fi,SlHf,ng—)fil,

’ n

K{T Tl,..., n,qflsl,tsz}%C:Tir%fi,Sl»—>g,52r—>g*1,

n

with p <t <q, filyny = 9ilyng flyas = 9lyay and Y NZ =Y{tf~1} = Z{t"g}.

Step 5. The K-analytic space X is piecewise K-affinoid. Indeed, let X’ be the K-affinoid
space M(K{r{'Ty,..., 7 T, q 1S1,pS2}), and let Y/ = X'{t~15,} and Z' = X'{tS,}. The
above admissible epimorphisms give rise to closed immersions ¥ — Y’ and Z — Z’ which are
compatible on the intersection Y N Z. This means that we have a closed immersion of the K-
analytic space X in the K-affinoid space X’ and, therefore, X is a piecewise K-affinoid space. In

particular, it is good at x. "

9.4.3. Corollary. A morphism of pointed K-germs ¢ : Y,y — X, has no boundary if and only
if the induced morphism ¢ : }N/y — X, is proper.
Proper. The direct implication follows from Proposition 9.2.4(i). Conversely, suppose that

the morphism @ is proper. This means that the map ?y — )Afm XV YH(y)/K 1S a bijection.
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To verify that ¢ has no boundary at x, we may assume that X = M(A) is K-affinoid and, in
particular, the canonical map )?z — Viz)/k identifies )Z'm with the rational convex polyhedral
cone V()i { Ya(A)}. It follows that the canonical map ?y — V(y)/ Kk identifies ?y with a rational
convex polyhedral cone in V() k. Theorem 9.4.1 implies that the pointed germ Y, is also K-
affinoid, and so we may assume that Y = M(B) is also K-affinoid. Then ny = Vi) k1Xy (B)}.
Since the later coincides with V), K{va(g)}, it follows that iy(é) is integral over Zy(g) and,
therefore, y € Int(Y/X). .

9.4.4. Corollary. Let ¢ : Y — X be a morphism of K-analytic spaces. Then

(i) if y € Int(Y/X) then, for every acyclic affinoid domain U C X that contains the point
x = ¢(y), the point y has an acyclic affinoid neighborhood V in ¢~ Y(U) with y € Int(V/U);

(i) for a second morphisms ¢ : Z — Y, one has Int(Z/Y) N~ (Int(Y/X)) C Int(Z/X) and,
if the morphism ¢ is locally separated, then Int(Z/X) C Int(Z/Y);

(iii) if in addition to (ii) the kernel of the canonical homomorphism H((z))* — H(z)* lies in
the image of K** for all points z € Z, then Int(Z/X) = Int(Z/Y) Ny~ (Int(Y/X)).

Proof. (i) We may assume that U = X. The reasoning from the proof of Corollary 9.4.3
shows that ?y is affine, the pointed germ Y/, is affine and, therefore, there exists an acyclic affinoid
neighborhood V' of the point y with y € Int(V/X).

(ii) Suppose a point z € Z lies in the set on the left hand side, and let y = ¢ (2) and = = ¢(y).
Then the morphisms ZZ — ?y and ffy — )A(:I are proper, and Proposition 9.1.4(i) implies that the
morphism Zy — X, is proper, i.e., z € Int(Z/X). .

9.4.5. Corollary. The classes of morphisms without boundary and of proper morphisms are

preserved under composition. .

§10. Examples of K-analytic spaces

10.1. GAGA. Let K-Sch denote the category of schemes of locally finite type over K, i.e.,
schemes X with the property that every point of X’ has an open affine neighborhood which is finitely
generated over K. We are going to associate to such a scheme X a K-analytic space X?". Before
doing this, we introduce as follows the notion of a morphism from a K-analytic space to X.

Thus, let (X, A,7) and (Y, B,0) be a scheme of locally finite type over K and a K-analytic
space, respectively. A strong morphism ¢ : (Y, B,o) — (X, A, T) is a pair consisting of a continuous

map ¢ : Y — X, such that for every V € o there exists U € 7 with (V) C U, and of a system of
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compatible morphisms of affine schemes ¢y : V = Spec(By) — U with go"{‘)“/u|v = <p|v (as maps)
for all pairs V € o and U € 7 with (V) C U. (The map on the left hand side is the composition
V = V¥ — Y™ — U, where the middle map is induced by the morphism ¢y ,.)

10.1.1. Lemma. Any strong morphism ¢ : (Y, B,0) — (X, A, T) extends in a unique way to
a strong morphism @ : (Y, B,5) — (X, A, 7).

Proof. Given a pair V € 7 and U € 7 with (V) C U*", we can find V' € o0 and U’ € T
with V' C V’ and (V') C U. The composition of the morphism ¢y : V' = Spec(By/) — U’
with the canonical morphism V = Spec(By) — V' gives rise to a morphism ¢y, : V — U’ with
oy (V) cUNU', ie., oy gives rise to a morphism of schemes V — U NU’. The composition
of the latter with the canonical morphism U NU’ — U gives rise to the required morphism of affine

schemes ¢y 1V — U. "

Lemma 10.1.1 easily implies that if, in addition to the strong morphism considered, we are
given strong morphisms (Y', B',¢’) — (Y, B,0) and (X, A,7) — (X', A’,7'), there is a well de-
fined strong composition morphism (Y’,B’,¢’') — (X', A’,7"). We define the set of morphisms
Hom((Y, B, o), (X, A, 7)) as the filtered inductive limit of the sets of strong morphisms (Y, B’,o’) —
(X, A, ) taken over all nets 0’ < 0. We now return to our brief notation for schemes and K-analytic

spaces.

10.1.2. Corollary. There is a one-to-one correspondence between Hom(Y, X') and the set of
pairs consisting of

(1) a continuous map ¢ : Y — X with the property that there is a net of definition o of Y such
that, for every V € o, there exists an open connected affine subscheme U C X with (V) CU;

(2) a system of compatible morphisms of affine schemes @y, : V = Spec(Ay) — U for all
pairs V and U, an acyclic affinoid subdomain of Y and an open connected affine subscheme of X,

respectively, with v, (V) CU and @%}}u‘v = go‘v (as maps). .
10.1.3. Corollary. If X = Spec(A) is affine, then Hom(Y, X') = Hom(({A), O(Y)). ]

The right hand side is the set of homomorphisms of K-algebras.
Let @y be the functor from the category of K-analytic spaces K-An to the category of sets
that takes a K-analytic space Y to the set of morphisms Hom(Y, X).

10.1.4. Theorem. (i) The functor ®x is representable by a K-analytic space without
boundary X*" and a morphism 7 : X*" — X;

(ii) the canonical functor Coh(X) — Coh(X'®") is fully faithful;
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(iii) there is an isomorphism of sites X3% = Xzar;
(iv) the correspondence X — X" gives rise to a fully faithful functor K-Sch — K-An that

commutes with fiber products and extensions of the ground field.

The morphism of sites in (iii) is induced by the correspondence U — 71 (i), and the latter
also induces a morphism of sites 7 : X3¢ — Xg. The functor from (i) is defined by 7g, i.e., it

takes a coherent Oy-module F to n{,.F = Wél]: ®wglox O yan.

Proof. Step 1. Let {Y;};er be a covering of a K-analytic space Y in Y,q. Then the following

sequence of maps is exact:

Hom(Y, X) — [ [ Hom(Y;, &) = [ [ Hom(Y; N'Y;, X)
i i
(i.e., the functor ®y is a sheaf on Xg). Indeed, let ¢; : Y; — X be a family of morphisms such

that, for any pair ¢,5 € I, @; and let 7 be the collection of affinoid subdomains

‘Yij - spj‘ymyj’
V C Y such that there exists ¢ € I with V' C Y; and ¢;(V) C U for some open affine subscheme
U C X. It is easy to see that 7 is a net of definition and, therefore, the morphisms ;, ¢ € I, give

rise to a morphism ¢ : Y — &X. That ¢ is unique is trivial.

Step 2. Let X' be the scheme affine space Spec(K|[T1,...,T,]). In this case one has

xe = JEWO;r),
r>0

where E(0;r) is the closed polydisc of radius r = (r1,...,7,) € (R%})" with center at zero defined
as the set {x € X**||T;(z)| < r; for all 1 <i < n}. The latter set is canonically identified with the
spectrum of the K-affinoid algebra K{r='T} = K{r='T,...,r;'T,}. This defines a K-affinoid
atlas on A" with the net {E(0;7)},~0, and the corresponding triple is a K-analytic space, which
is called the n-dimensional affine space and denoted by A"™. It follows from Corollary 10.1.3 that

A" and the canonical morphism A™ — X represent the functor ®y.

Step 3. Let M be a finite A-module for A = K[T',...,T,] and, for r = (ry,...,r,) € (R})",
we set A(r) = K{r{'T,...,r'T,}. By Lemma 1.2.2, there is a unique Zariski A-submodule
N(r) € M such that the quotient M(r) = M/N(r) has the structure of a finite Banach A(r)-
module. We claim that there exist i, ... 7], > 0 such that for every r; > ri, 1 <i < n, one has
N(r) = 0 or, equivalently, M = M(r). Indeed, by Corollary 2.4.3, there is a finite chain of Zariski
A-submodules No = 0 C Ny C ... C Ny = M such that each quotient N;/N,_; is isomorphic to
an A-module of the form A/II, where II is a prime ideal of A. This reduces the situation to the
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case when M is the quotient K-algebra B = A/II for a prime ideal II. If Y = Spec(B), the set
Y™ is identified with an irreducible affine subspace of R, and the spectrum Y**(r) = M(B(r))
is identified with the |K|-affinoid polytope {y € Y**||T;(y)| < r; for all 1 < i < n}. If all r;’s are
large enough, the | K |-affinoid polytope Y*"(r) generates the affine subspace Y*". This implies that

a nonzero element of B cannot be equal to zero on Y and, therefore, B = B(r).

Step 4. Let X = Spec(A) be an arbitrary finitely presented affine scheme over K. We fix
an epimorphism of K-algebras A’ = K[Ty,...,T,] — A : T; — f; and denote by F its kernel
and, for r = (r1,...,m,) € (RL)", we set A'(r) = K{r{'T1,...,r;*T,}. Let a(r) be the unique
minimal Zariski A(r)-submodule of A from Lemma 1.2.2(ii), i.e., the quotient A(r) = A/a(r) is a
K-affinoid algebra. Furthermore, the above epimorphism gives rise to a homeomorphism of A"
with a closed subset of A™. The set X*(r) = X** N E(0;r) = {z € X*||fi(z)| < r; for all
1 < i < n} is identified with the spectrum M (A(r)). This defines a K-affinoid atlas A on A"
with the net 7 = {X?"(r) },~0, and the corresponding triple (X®", A, 7) is a K-analytic space which
will be denoted simply by X2". We claim that the functor ®x is representable by X" and the
canonical morphism X*" — X. (In particular, the K-analytic space X" does not depend on the
choice of the above epimorphism.) Indeed, we have to verify that, for any K-analytic space Y, the
morphism X#" — X gives rise to a bijection Hom(Y, X**) = Hom(Y, X) = Hom(A4,O(Y)). Step
1 and Proposition 7.4.5 reduce the situation to the case when Y = M(B) is K-affinoid, and so we
have to verify that Hom(M(B), X*") = Hom(A, B). The set on the left hand side is the inductive
limit liLnHom(A(r),B). By Step 3, if 7;’s are large enough, then A = A(r), and so we have to
verify that for any homomorphism of K-algebras A — B : f; — g; one can find larger r;-s such
that the induced homomorphism of K-affinoid algebras A’(r) — B is bounded. But Corollary 2.2.2

guarantees this property if r; > p(g;) for all 1 <i < n.

Step 5. Let ¢ : Y = Spec(B) — X = Spec(A) be a closed (resp. open) immersion of finitely
presented affine schemes over K. Then the canonical morphism " : Y** — X2 is a closed (resp.
open) immersion of K-analytic spaces. Indeed, if ¢ is a closed immersion, the statement follows
from Step 4. Assume that ¢ is an open immersion. It this case, it suffices to consider the following
two cases (1) ) is the minimal connected component of X', and (2) ) is a principal open subset
of X. In the case (1), Y*" is the minimal connected component of X*", the morphism ¢ is also a
closed immersion, and the required fact follows. Suppose that ) is a principal open subset of &,
ie, Y = D(f) for some f € A. If we fix an epimorphism A" = K[T3,...,T,] — A as in Step 4, it

extends to an epimorphism B’ = A'[T,11] = B : Tp11 — % For ' = (r,rn41) € (RL)™ x RY,
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one has Y (r') = {x € X*(r)||f(z)| > rns1}, ie., Y*(r') is a Laurent subdomain of X*. This

implies that ©*" identifies }*" with an open analytic subdomain of X2,

Step 6. Let U be an open subscheme of an affine scheme X = Spec(A) as above. Then U*"
is an open analytic subdomain of X*". We claim that the functor ®y is representable by U*" and
the canonical morphism U™ — U. Indeed, by Step 1 and Proposition 7.4.5, we have to verify that
for any K-affinoid space Y = M(B) one has Hom(Y,U**) = Hom(Y,U), i.e., for any morphism of
affine schemes ¢ : Y = Spec(B) — & with ¢(Y) C U, the morphism ¢*" : Y — X*" is induced
by a unique morphism of K-analytic spaces Y — U®*". Since Y is compact, there is r € (R%)"
with ©**(Y) C X?**(r), i.e., the morphism ¢*" : ¥ — X?" is induced by a unique morphism of
K-affinoid spaces ®"(r) : Y — X*(r). Since the image of Y is contained in &*" N X?"(r) and the
latter set is an open analytic subdomain of X?"(r), the morphism ¢**(r) is induced by a unique

morphism of K-analytic spaces Y — U** N X?"(r), and the required fact follows.

Step 7. Let now X be an arbitrary scheme locally finitely presented over K. We define A®"
as the K-analytic space obtained by gluing of the K-analytic spaces U*" along the open analytic
domains (U N V)*" for all open affine subschemes U,V C X. We claim that the functor ®x is
representable by X** and the canonical morphism X** — X. Indeed, by Step 1 and Proposition
7.4.5, we have to verify that Hom(Y, X*") = Hom(Y, X), where Y = M(B) is a K-affinoid space
with either at most two connected components, or with three connected components U, V; and V;
such that V; and V5 are not comparable in m(Y') and U = inf(Vy, V3). In the first case, Y belongs
to any net of definition on Y and, therefore, for any morphism ¢ : Y — X one has ¢**(Y) C U*",
where U is an open affine subscheme of X, i.e., ¢ is induced by a morphism Y — U/. By Step 4, the
latter is induced by a unique morphism Y — U*", and the required fact follows. In the second case,
there exist open affine subschemes Vi,Vs, W C X and an affinoid subdomain ViUV, C W C Y
such that ¢ induces unique morphisms U UV; — Vi, UUV, — Vo and W — W. By Step 4, they
give rise to unique morphisms of K-analytic spaces U U V; — Vi, U UV, — V3" and W — U*",
and the latter are compatible on intersections. It follows that ¢ is induced by a unique morphism
of K-analytic spaces ¥ — X?". Theorem 7.1.4 implies that the K-analytic space X" has no

boundary, i.e., (i) is true.

Step 8. It suffices to prove (ii) in the case when X = Spec(A) is an affine scheme. In this case,
every coherent Oy-module F is of the form Oy (M) for some finite A-module M. Furthermore,
the K-analytic space X'?" is a union of an increasing sequence of affinoid domains V4 C V5 C ...,

and Step 3 implies that, for any finite A-module M, there exists k¥ > 1 such that M = My,

139



for all n > k, ie., F(X) 5 7&F(Vy) for all n > k. This immediately implies that the functor
Coh(X) — Coh(X?") : F — w& F is fully faithful, i.e., (ii) is true.

Step 9. We have to show that every Zariski open subset W C X" is of the form U?", where U
is an open subscheme X. Suppose first that X = Spec(A) is affine. Let U be an affinoid domain in
X with A 5 Ay. Then UNW = U NU?, where U is an open affine subscheme of X. We claim
that W = U?*. Indeed, if V is a bigger affinoid domain with A = Ay, then VNW = VNV, where
V is also an open affine subscheme of X'. It follows that U NU** = U NV*" and, by Corollary 7.1.5,
one has Y = V. Since X?" is a union such affinoid domains V, it follows that W = U/®". In the
general case, the intersection of W with Y?" for every open affine subscheme ) C X coincides with
V2" for some open affine subscheme V C Y. If I/ is the union of all such V’s, then W = U*". Finally,
we have to show that, given an open subscheme U C X, a family {U;};c; of open subschemes of
U is a covering of U in X if and only if the family {U?"}icr is a covering of U** in A" . The
direct implication is trivial. To verify the converse implication, we have to show that every open
affine subscheme V = Spec(B) C U, which is of the form V' U V" Uinf(V’, V") for some connected
components V' and V" of V, is contained in some U;. We know that the K-analytic space V" is
a union of an increasing sequence of affinoid domains V; C Vo C ... with B 5 By, for all n > 1.
Since {U }icr is a covering of U*" in X722, it follows that, for every n > 1, there exists i,, € I with

Vi, CUM and, therefore, V;, C (V NU;, )*". Since the number of open subschemes of V is finite, it

follows that V C U;, for some n > 1, i.e., (iii) is true.

Step 10. Let X and Y be schemes locally finitely presented over K. We have to show that
the canonical map Hom (), X') — Hom()?*", X'?") is a bijection, and in fact it suffices to verify this
only for affine )’s. Indeed, if the map considered is a bijection for affine )’s, it is also a bijection
for separated )’s, by Proposition 1.5.5.1 and 8.4.4, and then for the same reason it is a bijection
for arbitrary )’s. Thus, assume that )} = Spec(B) is affine. Notice that if X" is also affine, the

required bijectivity easily follows from Steps 3 and 4.

Step 11. Suppose that X is arbitrary, and we are given two morphisms @, : Y — X with
p* = ¢p*". To show that they coincide it suffices to verify that their restrictions to every connected
component of ) coincide, and so we may assume that ) is connected. In this case there exist open
affine subschemes U, W C X with ¢(Y) C U and (YY) C W. Since ¢@**(Y*") = ¢**(Y*") C
U MW = (UNW)»" it follows that (), (YY) C UNW. This means that ¢ and ¥ go through
morphisms to the open subscheme U/ NW. By the same argument, there exist open affine subscheme

U W cunw with p(¥),¥() C U’ N W'. Since the number of open subschemes in ¢ (and W)
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is finite, we can find an open affine subscheme in &/ N W which contains ¢()) and ¥(Y), i.e., we

reduce the situation to the case when X is also affine and, therefore, p = .

Step 12. Suppose now we are given a morphism of K-analytic spaces ¢ : Y?" — X?". To verify
that ¢ is induced by a morphism of schemes Y — X', we use the result and a reasoning from Step
9. It suffices to show that, if ) is a union Y’ U Y” Uinf()’, ") for connected components )’ and
V" of Y, the image ©()?") lies in U*", where U is an open affine subscheme of X. We know that
the K-analytic space Y*" is a union of an increasing sequence of affinoid domains V;, C V,, C ...
with B = By, for all n > 1 and, for every n > 1, one has ¢(V},) C U2, where U,, is an open affine
subscheme of X'. The preimage of U3" in Y*" is a Zariski open subset and, therefore, Step 9 implies
that ¢ =1 (U2") = Va0, where V, is an open affinoid subscheme of ). Since Y" is a union of V,,’s
and the number of open affine subschemes of ) is finite, it follows that V,, = ) for a sufficiently
large n and, therefore, o(Y*") C UZ".

Thus, the functor X — X2" is fully faithful. Since it commutes with fiber products and the

ground field extension functor on affine schemes, the same properties hold for arbitrary schemes. =

§11. Non-Archimedean analytic spaces associated to analytic spaces over F;

11.1. Construction of a functor X — X (%), Let K be a real valuation F;-field, and let
k be a non-Archimedean field, and suppose we are given an isometric homomorphism of F-fields
¢ : K — k. The latter allows one to view any Banach k-algebra B as a Banach K-algebra B'.
If A is a Banach K-algebra, the set of bounded ¢-homomorphisms A — B will be denoted by
Homy (A, B).

11.1.1. Definition. A ¢-morphism from a k-analytic space Y to a K-analytic space X is a
pair consisting of the following:

(1) a continuous map ¢ : Y — X such that, for every point y € Y, there exist affinoid domains
Vi,...,Vu, CY suchthat y e Vin...NV,, V1 U...UV, is a neighborhoods of y and, for every
1 <i<n, p(V;) lies in an acyclic affinoid subdomain of X;

(2) a system of compatible bounded ¢-homomorphisms Ay — By, for all pairs consisting of an
affinoid domain V' = M(By) C Y and an acyclic affinoid domain U = M(Ay) C X with (V) C U
such that the induced map V' — U coincides with gp‘v.

It is easy to see that, given a ¢-morphism ¢ : Y — X, a morphism of k-analytic spaces

¥ :Y’ — Y, and a morphism of K-analytic spaces x : X — X', there is a well defined composition
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morphism ypy : Y — X’. Let ®x be the functor from the category of k-analytic spaces to the
category of sets that takes a k-analytic space Y to the set of ¢-morphisms Hom, (Y, X).

11.1.2. Theorem. (i) The functor ®x is representable by a k-analytic space X(?) and a
¢-morphism 7 = 7x : X%} — X which is compact as a map;

(i) the preimage 7~1(Y) of an analytic (resp. piecewise affinoid) domain Y C X is an analytic
(resp. affinoid) domain in X (®);

(iii) given a morphism of K -analytic spaces Y — X, one has w3 (Int(Y/X)) C Int(Y(#) /X (9));

(iv) the functor X + X (%) commutes with fiber products and takes open and closed immer-
sions, and finite and proper morphisms to morphisms of the same type;

(v) the functor X — X(®) gives rise to a functor K-Paff — k-Aff;

(vi) for any scheme X of locally finite type over K, there is a canonical isomorphism of k-

analytic spaces (X(®))an 5 (xan)(9),

If Y is a k-analytic space, a ¢-homomorphism o : A — O(Y)" from a Banach K-algebra A is
said to be bounded if, for any affinoid domain V' C Y, the induced ¢-homomorphism A — By, is
bounded.

11.1.3. Lemma. If X = M(A) is K-affinoid, then Hom(Y, X) coincides with the set of
bounded ¢-homomorphisms A — O(Y)".

Proof. The statement is easily reduced to the case when Y = M(B) is a k-affinoid space.
Given a ¢-morphism ¢ : Y — X let {V;};cr be a finite affinoid covering of Y such that, for every
i € 1, p(V;) lies in an acyclic affinoid subdomain U; of X. This gives rise to a family of bounded
homomorphisms Ay, — Bj, which are compatible on intersections. Since B = Ker(]],c; By, 3
I jer By,nv;), we get a bounded ¢-homomorphism A — B Conversely, given such a bounded ¢-
homomorphism A — B, let ¢ be the induced map Y — X, and let U C X and V C Y be affinoid
subdomains with (V) C U. Corollary 6.3.4 implies that the bounded ¢-homomorphism A — B* —
By, goes through a unique bounded ¢-homomorphism Ay — By, such that the corresponding map

V' — U coincides with the restriction of ¢ to V. This means that the ¢-homomorphism ¢ gives

rise to a unique ¢-morphism Y — X. "

11.1.4. Lemma. For any K-affinoid algebra A, the functor B — Homg (A, B') that takes a k-
affinoid algebra B to the set of bounded ¢-homomorphisms A — B’ is representable by a k-affinoid
algebra ky{A}.

Proof. First of all, if A is the K-affinoid algebra K{r;'Ti,...,r 'T,}, then the functor

~1

considered is representable by the k-affinoid algebra k{r; 7, , 7 Tn}. In the general case, we
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represent A as a quotient B/E of a K-affinoid algebra B of the above form. Then the functor
considered is representable by the K-affinoid algebra ky{B}/bg, where bg is the ideal of ky{B}
generated by the elements f — g for (f,g) € E. (Recall that all ideals of a k-affinoid algebra are

closed.) .

The k-affinoid algebra kg{A} can be also constructed as follows. Let {f;};cr be a system of
elements of A which represent nonzero elements of the quotient A/K*. Then there is an isomor-
phism of K-Banach spaces @;erK f; — A. Let I’ be the set of all 4 € I such that the stabilizer of
fi in K* lies in the kernel of the homomorphism of groups K* — k*. Then the above isomorphism
gives rise to an isomorphism of k-Banach spaces ®cpkfi — ks{A}, where the space on the left
hand side consists of sums F' = » ., Aif; such that [A;] - |[f;|| — O with respect to the filter of
complements of finite sets in I’ and ||F|| = max IXil - 11 fill-

Notice that the correspondence A — ky{A} is a covariant functor left adjoint to the functor

from the category of k-affinoid algebras to that of quasi-affinoid K-algebras (induced by ¢).

11.1.5. Lemma. (i) For an element f € A and a number r > 0, there are canonical
isomorphisms kg {A{r 1 f}} 5 ks{AHr 1 f} and ks {A{rf=1}} > ko{AMHrf '}

(ii) for A-affinoid algebras B and C, there is a canonical isomorphism
ko{B&ACY S ko{B}®y, (a1ks{C} ;

(iii) if a bounded homomorphism of K-affinoid algebras A — B is surjective admissible (resp.
finite), then so is the homomorphism of k-affinoid algebras ks{A} — ky{B};

(iv) the kernel of the admissible epimorphism ky{A} — kys{A/r(A)} is a nilpotent ideal.

Proof. The statements (i) and (ii) follow from the fact that both k-affinoid algebras represent
the same functor, and (iii) follows from the construction of k4, {A}. The kernel of the homomorphism
in (iv) is generated by elements of the form a — b with (a,b) € r(A). By the proof of Lemma

1.8.1.4(iv), one has (a — b)>"*1 =0, and the claim follows. .

Let I be an Fy-subalgebra of 14, the finite idempotent F-subalgebra of A. For an idempotent
e €I, weset A®) = A/F,, where F, is the ideal of A generated by the prime ideal II,, of I. (Recall
that, by Example 1.1.4, the ideal F, is closed.)

11.1.6. Lemma. In the above situation, there is a canonical isomorphism of k-affinoid

algebras

ko{A} 5 [ [ ho{A} .

eef
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Proof. As in the proof of Lemma 1.8.1.5, it suffices to consider the case when I has only one
nontrivial idempotent e. In this case, F. = {(a,b)|ae = be} and F is the ideal associated with the
Zariski ideal Ae, i.e., AN = A/Ae. Tt follows that there are canonical isomorphisms of k-algebras

kp{AE} 5 ky{A} /ky{A}(1 —e) and ky{AM} 5 ky{A}/ky{A}e. The required fact follows.  m

For a K-affinoid space X = M(A), let X(®) denote the k-affinoid space M (ks{A}). There is
a canonical continuous map m = wx : X(?) — X that takes a bounded multiplicative seminorm

ks{A} — R to its composition with the canonical bounded homomorphism A — kg{A}.
11.1.7. Lemma. (i) The correspondence X ++ X (%) gives rise to a functor
K-AffP = k-Aff;

(ii) this functor takes p-affinoid domain embeddings, p-closed immersions and p-finite mor-
phisms to p-morphisms of the same type;

(iii) given a p-morphism Y — X, one has 7y (Int(Y/X)) C Int(Y(®) /X (9)).

Proof. (i) Let ¢ : Y = M(B) - X = M(A) be a piecewise affinoid morphism of k-affinoid
spaces represented by a compatible system of morphisms V; = M(B;) — X, i.e., by a compatible
system of bounded homomorphisms of K-affinoid algebras a; : A — B;, where {V;};c; is a finite
covering of Y by affinoid domains. Lemmas 11.1.5(i) and 11.1.6 imply that the preimage W; of
each V; in Y(#) = M(B), where B = kys{B}, is an affinoid domain, and one has W; = M(B;), where
B; = kg{B;}. Tate’s Acyclicity Theorem ([Berl, 2.2.5]) implies that, for the finite affinoid covering
{W;}ier of Y (#) there is an exact sequence of admissible homomorphisms of k-affinoid algebras
B — [lic; Bi = [ jer Bij, where B = k¢{B;;} and B;; = By,ny;. The compatible system
of bounded homomorphisms {«;};c; induces a compatible system of bounded homomorphisms of
k-affinoid algebras ky,{A} — B;, and the above exact sequence implies that the system {c;};cs is
induced by a bounded homomorphism kg{A} — B, which gives rise to the required morphism of
k-affinoid spaces V() — X (),

The statement (ii) follows from Lemma 11.1.5 and the properties of k-affinoid algebras.

(iii) Let v’ € 7y (Int(Y/X)), and let y, 2/ and = be its images in Y, X(®) and X, respec-
tively. First of all, replacing X and Y by acyclic affinoid neighborhoods of the points = and y,
we may assume that ¥ — X is a morphism of K-affinoid spaces. By Proposition 6.4.3(i), we
can replace Y by an affinoid neighborhood of y such that there is an admissible epimorphism
C = A{r{'Ty,...,r;'T,} — B : T; = g; with |g(y)] < r; for all 1 < i < n. Tt gives rise to an
admissible epimorphism kg{C} = kg{r;'T1,...,r; Tn} — ke{B} : T;  g; with [g(y')| < r; for
all 1 < i < n and, therefore, y/ € Int(Y(¢) /X (%)), .
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Proof of Theorem 11.1.2. (i) First of all, if X = M(A) is K-affinoid then, by Lemma
11.1.3, for any k-analytic space ¥ = M(B), Homg (Y, X) coincides with the set of bounded
¢-homomorphisms A — B and, by Lemma 11.1.4, the latter coincides with Hom(k{A},B) =
Hom(Y, X(®)). This means that the k-affinoid space X (%) and the morphism 7 : X(#) — X repre-
sent the functor ® x. This easily implies that, for any analytic domain U C X, its preimage 7~ (U)
is an analytic subdomain of X (?) which represents the functor @, i.e., U®) = = HU).

Furthermore, suppose that X is a paracompact K-analytic space. Then we can find a locally
finite covering of X by affinoid subdomains {U;};c;. This allows us to view X as the k-analytic
space obtained by gluing of all of the affinoid domains U; along their joint intersections U; N Uj.
Let X(®) be the Hausdorff k-analytic space obtained by gluing the k-affinoid spaces Ui(¢) along
the analytic subdomains (U; N U;)(®) (see [Ber2, 1.3.3]). The morphisms Ui(¢) — U, give rise to a
morphism 7 : X(® — X, and X(® and 7 represent the functor ® x. as above, this implies that, for
any open analytic i C X, its preimage 7~ (U) is an open analytic domain of X () which represents
the functor @y, i.e., U®) = 7= 1(U).

Finally, suppose that X is an arbitrary K-analytic space. We take an open covering of X
by paracompact open subsets {U; };c;. By the previous case, each functor &, is representable
by a Hausdorff k-analytic space Ui(¢) and a morphism 7; : Z/{i(d)) — U;. If X¥) is the k-analytic
space obtained by gluing of the Lliw) along the open analytic subdomains (U; N Uj)(¢) and 7 is the
morphism X (¥ — X induced by the morphisms 7;, then the pair (X (¢, p) represents the functor
Dx.

The statement (ii) follows from the construction, (iii) follows from Lemma 11.1.7(iii), (iv)
follows from Lemma 11.1.5 and (ii).

(v) It suffices to consider the case when X' = Spec(A) is an affine scheme. Then A is a quotient
of the K-algebra KI[T1,...,T,], and (iv) reduces the situation when A = K[T3,...,T,]. In this

case both (X)) and (AX2")(#) coincide with the affine space A™ of dimension n over k. .

11.2. k-analytic spaces with a topologized prelogarithmic K-structure. The following
definition is given in a slightly more general setting than that considered in this subsection in order

to be used in §11.5.

11.2.1. Definition. Given an isometric homomorphism of real valuation fields ¢ : K — L,
a K-analytic space X is said to be ¢-nontrivial if, for every acyclic affinoid domain U C X, the

stabilizer of each non-nilpotent element of Ay in K* is contained in Ker(K* LA L*).
Notice that the property of X to be ¢-nontrivial is equivalent to the following one: for every
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point € X, one has Ker(K* — H(z)*) C Ker(K* 4 L*).

Let us turn to our situation when L = &k’ for a non-Archimedean field k.

11.2.2. Lemma. The following properties of a K-analytic space X are equivalent:

(a) X is ¢-nontrivial;

(b) the map 7 : X(?) — X is surjective.

Proof. We may assume that X = M(A) is K-affinoid.

(b)=(a). Suppose that there exist elements f € A\zn(A) and o € K*\Ker(K* 4 kE*) with
af = f. By Theorem 6.4.4, we can find a sufficiently large » > 0 such that for the rational
domain V = {z € X||f(z) > r} the canonical homomorphism A; — Ay is a bijection. Since
a € Ker(K* — A3), it follows that a € Ker(K* — Aj,) and, therefore, ky{Ay} = 0, which
contradicts surjectivity of the map M(kgs{A}) = M(A).

(a)=(b). It suffices to show that, for any point z € X = M(A), the k-affinoid algebra
ks{H(z)} is nontrivial. Replacing K by its quotient by Ker(K* — #H(z)*), we may assume that
Ker(K* — H(x)*) = 1. The group H(x)*/K* is isomorphic to a direct sum Z™ & (&}, ,Z/d;Z).
Take representatives f1, ..., f of the canonical generators of the direct summands, and set r; = | f;]
for 1 <i<mnando; = f% € K* for m+1 < i <n. Then the k-affinoid algebra ky{H(z)} is
isomorphic to the quotient of k{rl_lTl, oy YT, rlTl_l, ..., T} by the ideal generated by the

polynomials Tidi — ¢(a;) for m 4+ 1 < i < n and, therefore, it is nontrivial. .
The category of ¢-nontrivial K-analytic spaces is denoted by K-Anl®!.

11.2.3. Definition. (i) A k-analytic space with a topologized prelogarithmic K -structure
is a quadruple (Y, 0, A, «) consisting of a k-analytic space Y, a Grothendieck topology o on Y
with a base formed by affinoid domains, a o-sheaf of Banach K-algebras A, and a bounded ¢-
homomorphism of o-sheaves A — Oy ‘U.

(ii) A morphism (Y, 0, A4,a) — (Y',0', A’,d’) is a pair consisting of a morphism of k-analytic
spaces ¢ : Y — Y’ which induces a morphism of sites Y, — Y/,, and a bounded homomorphism
of o’-sheaves of Banach K-algebras A’ — ¢..A, which is compatible with the homomorphism
Oyy, = 0+ Oys-

(iii) The category of k-analytic spaces with a topologized prelogarithmic K-structure is denoted

by k-Anl?l.
11.2.4. Theorem. The correspondence X — X (%) gives rise to a fully faithful functor
K-Anl®! — k-Anll .
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Proof. Let X be a ¢-nontrivial K-analytic space. Then the k-analytic space X (%) is pro-
vided with the Grothendieck topology o generated by the following pretopology: it consists of
the preimages 7~ !(U) of analytic domains U C X, and the set of coverings of 7~(U) con-
sists of the families {7~!(U;)}ier, where {U,;}ier is a covering of U in Xqg. If m, denotes the
morphism of sites Xg(b) — Xg, the homomorphism Ox, — 7.0 X induces a homomorphism
a:mi0x, — OX((;;&,) }U. The tuple (X(®) o, 7*Ox,,) is an object of the category k-Anl?l. That
the correspondence X +— (X(®) o, 1*Ox,,a) is a faithful functor is easy. To show that it is fully
faithful, we notice that there is a canonical isomorphism Oy = ToxTaOx, which follows from the

definition of the Grothendieck topology ¢ and the fact that the map 7 : X(®) — X is surjective.

Let ¢ : (X 0,15 0xg,a) — (X'(@) o', Ty Oxy,,@’) be a morphism in E-Anl?l. A construc-

tion of a morphism of K-analytic spaces 9 : X — X’ which induces ¢ is done in several steps.

Step 1. There exists a unique continuous map ¥ : X — X' which is compatible with the map
0 X(@ — X'(®) Indeed, since both maps 7 : X(® — X and ' : X'(®) — X’ are compact,
they are factor maps (see [En, §2.4]), and so it suffices to verify that the map ¢ takes fibers of
7 to fibers of . Let 2 be a point of X, and let 3 be a point of X(?) with 2 = m(y). Let also
y' = p(y) and 2’ = 7/(y’). We have to show that p(7~1(z)) C 7#/~1(2’). For this it suffices to verify
that p(7~1(x)) C 7#/~1(U’) for every affinoid domain U’ C X’ that contains the point z’. By the
definition of the morphism ¢, the preimage of the affinoid domain U’(#) = 7/~1(U’) coincides with
U¥) = 7=1(U) for an analytic domain U C X. Since € U, it follows that 7~ (x) C =1 (U'(#),

and the required fact follows.

Step 2. The map ¢ : X — X' possesses the property (1) from Corollary 8.2.4(i). Indeed,
in notation of Step 1, one has ¢¥~1(U’) = U and, therefore, there exist acyclic affinoid domains
Ui,...,U, CUsuch that z e Uy N...NU, and U; U...UU, is a neighborhood of x in U. This

implies the required fact.

Step 3. Let U C X and U’ C X’ be acyclic affinoid domains with ¢(U) C U’. The morphism
¢ defines a homomorphism of o’-sheaves of K-algebras 3 : 7r;*,(9xé — s Ox, which, in its
turn, defines a bounded homomorphism ~ : Ay, = (TFZOXé)(U/(qb)) — Ay = (m:O0x,)(U@).
Since the homomorphism v is compatible with the bounded homomorphism ky{Ay:} — ke{A},
which induces the restriction of the map ¢ to U(?), it follows that the map U = M(Ay) = U =
M(Ay), induced by ~, coincides with the restriction of ¥ to U. It follows also that the system
of homomorphisms ~ is compatible and, by Corollary 8.2.4(i), we get a morphism of K-analytic

spaces 1 : X — X’ which induces the morphism ¢ we started from. "
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11.3. ¢-special K-analytic spaces.

11.3.1. Definition. Given an isometric homomorphism of real valuation fields ¢ : K — L, a
K-analytic space X is said to be ¢-special if, for every acyclic affinoid domain U C X, the following
is true:

(1) Ay is ¢-nontrivial;

(2) for every Zariski prime ideal p C Ay, the group Coker(K* — x(p)*) has no torsion;

(3) Ay is special in the sense of Definition 1.1.2.9.

Again we turn to our situation when L = k' for a non-Archimedean field k.

11.3.2. Theorem. Let X be a ¢-special K-analytic space. Then

(i) for every point x € X the k-affinoid algebra ky,{H(z)} is integral, and its spectral norm is
multiplicative;

(ii) the map o : X — X () that takes a point x € X to the point from 7' (x) = M(kgs{H(z)}),
which corresponds to the norm on kg{H(z)}, is continuous;

(iii) the map o is continuous with respect to the G-topologies on both spaces and, in particular,
it induces a morphism of sites Xqg — Xéd));

(iv) there is a strong deformation retraction ® : X(®) x [0,1] — X(®) of X(9) to ¢(X).

Proof. (i) It suffices to show that, for any ¢-nontrivial valuation K-field L with finitely gener-
ated and torsion free quotient group L*/K™*, the canonical Banach norm on the k-affinoid algebra
ke{L} is multiplicative. If fi,..., f,, are elements of L* whose images generate the quotient group
L*/K* and r; = | fi|, then kg{L} = k{r'Ty,....r; T, Ty Y, .. 7T '}, and the required fact
follows.

(ii) It suffices to consider the case when X = M(A) is K-affinoid, and we have to verify that,
for every function F' € ky{A}, the map X — Ry : = — |F(o(z))| is continuous. For this we
can replace A by A/n(A) and assume that X is reduced. Since X is ¢-special, the real valuation
F;-field H(z) of a point x € X does not change if we replace X by an irreducible component that
contains x (see Corollary I. 1.2.11). It suffices therefore to verify continuity of the restriction of the
above function to every irreducible component of X, i.e., we may assume that X is integral. In this
case, for every point x € X, the kernel of the character A — H(x) : f — f(z) coincides with its
Zariski kernel p, and, therefore, if f(z) = Ag(z) # 0 for some A € K* and f,g € A, then f = A\g. It
follows that, if {f;};cr is a system of representatives of nonzero elements of A/K*, then for every
element F' = Y. _; A\ifi € kg{A} and every point € X, one has [F(o(x))| = I?QIXMZ’ | fi(x)].
We have to verify that, for every r > 0, the sets Us, = {x € X“F(O’(ZE))| >r}and U, = {z €
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X||F(co(x))| < r} are open. By the above remark, we have Us, = ;o {z € X||\| - |fi(z)| > r}
and, therefore, this set is open. If now J is the finite subset of i € I with |\;| - ||f;|| > r, the above
remark implies that U<, = ;o {z € X||\i| - |fi(z)| < r} and, therefore, this set is also open.

(iii) It suffices to consider the case when X = M(A) is reduced K-affinoid and, by Corollary
9.3.5, we may even assume that X is integral. Let V be a rational subdomain of X(®) with
VNo(X)#0,ie, V={yec X9|G(y)| > qand |[Fy(y)| < p;|G(y)| for all 1 <k < n}, where
Fi,...,Fy,G € ky{A} and p1,...,pn,q > 0. In notations from the proof of (ii), let Fr, = >, ; Arifi
and G = >, ., pi fi. Furthermore, let J be the (nonempty) finite set consisting of all i € I with

ltei] - 1lgi|| > q and, for i € J, define a rational subdomain of X

q
|Mz’|

Notice that the restriction of f; to U; is invertible. Finally, for 1 < k < n, let Ji be the finite set of

Uiz{xEXHfi(:cﬂZ and |f;(z)] < | fi(x)] for all j € J} .

Hi
Hj
all © € I with |Ag;| - || fi]| = prq and, for i € J, consider the following Weierstrass subdomain of U;

Uki = {a; € Uz|

for all j € Ji} .

kj

Do) < |

= Pk \

Then o' (V) = Uy <pen.ics Uni-

(iv) The proof is done in several steps.

Step 1. For a finitely generated abelian group I', we set Dr = Fspec(K[I']). The homomor-
phism K[I'] — K[I'] ®x K[I'| defines the structure of a group object on Dr in the category of
schemes over K and, therefore, D" is a group object in K-An. The latter has a K-affinoid sub-
group Gr defined by Gr = {z € D%n‘h/(xﬂ =1 for all v € I'} and whose underlying topological
space consists of one point. One has Gr = M(K{T'}), where K{I'} is the K-affinoid algebra
provided with the norm ||| = 1 for all v € T". It follows that G(F¢) = M(E{T'}) is a k-affinoid
group.

Step 2. In the situation of Step 1, assume that the group I'" has no torsion. Then Gﬁj’) is
isomorphic (as a k-analytic space) to a closed poly-annulus with center at zero of radius one. For
0<t<1, weset Gl(jbz ={ye Gl(fb)ﬂ(y— 1)(y)| <t forally € I'}. One has G(qu()) = {1}, Gﬁfbi = ngﬁ)
and, for 0 < t < 1, G%‘ﬁz is a K-affinoid subgroup isomorphic (as a k-analytic space) to a closed
polydisc with center at zero of radius one. In all cases, the k-affinoid space ngt) has a maximal
point denoted by g;. The points ¢; are peaked and, therefore, if there is an action of G(F¢) on a
k-analytic space Z, each point ¢g; defines a continuous map Z — Z : z — g, * z (see [Berl, §5.2]).

For example, g * g1 = Gmax(t,+) and g1 xy = g1 for all £,#" € [0,1] and y € G#). Recall also that the
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map [0,1] — G(F¢) : t — g is continuous and, by [Berl, 6.1.1], the map G%(p) XZ = Z:(z,t) — grxz
is continuous. Notice that any injective homomorphism I'" < I" to a similar group I gives rise to
a surjective homomorphism of k-affinoid groups Gl(f?) — fob) that takes the point gr/ ; to the point
gr forall0 <t <1.

We now turn to the theorem.

Step 3. Suppose first that X = M(A) is an integral K-affinoid space. Let F' be the fraction
F,-field of A. We set G = G = G;?*)/K* and, for 0 <t < 1, denote by G; = Gp (resp. g = grt)
the corresponding subgroup (resp. point) of G introduced in Step 2. Then the homomorphism
A - A®g K{F*/K*} that takes a nonzero element f € A to f ® f, where f is the image f in
F*/K*, is isometric, and it defines an action of G+ k-~ on X, and the latter defines an action of
G on X(®). We can therefore construct a continuous homotopy ® = ®x : X(®) x [0,1] — X (%) that
takes a pair (y,t) to the point y; = g; * y (see [Berl, §6.1]). Since g; * gi = gmax(t,t), P is a strong
deformation retraction of X(®) to the subset g; * X(?). We are going to show (among other things)
that the latter set coincides with (X (9)).

Step 4. Let p be a Zariski prime ideal of A. Then the canonical injective homomorphism
AP = A/p — A gives rise to an injective homomorphism x(p) — F, and the homomorphisms
A = Ak K{F/K*} and AP) — AP @ K{k(p)/K*} are compatible. It follows that the

following diagram is commutative

Gr x X N X ()
|7
Gr(p) X (XPH@ — (xP)He)
The remark at the end of Step 2 implies that, for every point y € X (), one has (ye) = (Tp(Y))s-
Thus, to show that y; = o(y), it suffices to consider the case when p, = 0, where z = 7(y). In
this case the canonical homomorphism A — H(z) induces an isomorphism of K-fields F' = H(x)
and a morphism of K-affinoid spaces ¢ : Z = M(H(z)) = X which give rise to the commutative
diagram
Grx X@® _— X
Gr(a) ¥ z@®) 5 79
It follows that, for every point z € Z(#) one has ¢(z;) = (¢(2));. This reduces the situation to the
case A = H(z). In this case X(®) is isomorphic to a closed poly-annulus and, by [Berl, 6.1.3(ii),
one gets the equality y; = o(y) for all points y € X @),
Step 5. In the general case, it suffices to verify that the homotopy maps ® constructed on

the irreducible components of X are compatible on intersections. But this follows from Step 5 and
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the fact that the real valuation field H(z) of a point € X is not changed if we replace X by an

irreducible component that contains x. .

The full subcategory of K-An consisting of ¢-special K-analytic spaces is denoted by K-An(%).

11.4. k-analytic spaces with a prelogarithmic K-structure.

11.4.1. Definition. (i) A k-analytic space with a prelogarithmic K-structure is a triple
(Y, A, a) consisting of a k-analytic space Y, a sheaf of Banach K-algebras A on Y, and a bounded
¢-homomorphism of sheaves of Banach K-algebras A — Oyy.

(ii) A morphism (Y, A, ) — (Y, A, ) is a pair consisting of a morphism of k-analytic spaces
¢ :Y = Y’ and a bounded homomorphism of sheaves of Banach K-algebras A" — ¢,.A, which is
compatible with the homomorphism Oyé — 0 Oyy.

(iii) The category of k-analytic spaces with a prelogarithmic K-structure is denoted by k-An(®).

11.4.2. Theorem. The correspondence X — X (®) gives rise to a fully faithful functor
K-An'®) — k-An(®)

Proof. The functor considered takes a ¢-special K-analytic space to (X (‘75),7%(9 Xq, ), where

T is the morphism of sites Xé¢) — Xq and «a is the induced homomorphism 7&,Ox, — O OE
G

11.4.3. Lemma. There is a canonical isomorphism Ox, — ma«T&Ox -
Proof. We may assume that X = M(A) is acyclic K-affinoid, and consider the commutative

diagram of morphisms of sites
x@ T x
TT(¢) TT
x$ IS Xg
Let F be the restriction of the sheaf Ox, to the usual topology of X, i.e., ' = 7.0x,. By Theorem
7.2.1, there is a canonical isomorphism 7*F = Ox. Since the map 7 : X (¢) — X is compact and,
by Proposition 11.3.2, its fibers are connected, there is a canonical isomorphism F = 7,7*F. Since

™F 5 T,£¢)T(¢)*7T*F (see [Ber2, §1.3]), we have F' = 7T*T>,E¢)T(¢)*7T*F 5 TeTGTGT F. It follows
that Ox, = 7°F 5 T TGT F = 1§ Ox - n

Let ¢ : (X 1% Ox,,a) — (X’(¢),W3’§,OX/G,Q’) be a morphism in K-An(®). As in the proof
of Theorem 11.2.4, we construct a morphism of K-analytic spaces 1 : X — X', which induces ¢,
in several steps.

Step 1. There exists a unique continuous map v : X — X' which is compatible with the map

¢ : X@ - X9 Indeed, since both maps 7 : X(®) — X and 7’ : X'(?) — X’ are compact, they
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are factor maps (see [En, §2.4]), and so it suffices to verify that the map ¢ takes fibers of 7 to
fibers of 7/. Let = be a point of X, and let y be a point of X () with z = n(y). Let also ¥’ = o(y)
and 2’ = 7'(y’). We have to show that ¢(r~1(x)) C 7n'~!(2’). For this it suffices to verify that
o(r~Y(z)) c #'~1(U’) for every affinoid domain U’ C X’ that contains the point z’.

Let U’ = M(A’). Since the fiber 7=1(x) is connected, it suffices to verify that, for every
point z € 771 (x) from a neighborhood of the point y and every f’ € A’, one has |F(y)| = |F(2)],
where F is the image of f’ under the composition homomorphism A’ — O(U'?)) — OU®).
Since there exist affinoid domains Vi,...,V, C ¢~ 1(U’(#)) that contain the point y and such that
ViU...UV, is a neighborhood of y in ¢ =1 (U’(#)), it suffices to verify that, give an affinoid domain
y €V C o HU'®), on has |F(y)| = |F(2)| for all points z € V N7~ !(z). For this we recall that
Ox o = h_H}lO(W) and set Oy, = h_I)nO(V N7~Y(W)), where both inductive limits are taken over
all affinoid domains W of X that contain the point z. The morphism in K-An(?) we started from

defines a homomorphism Ox/ ,» — Ox , for which the following diagram is commutative

OX’,:E’ — OX T

)

N\
T OV,:E
/l

& I2E owe)

This immediately implies the required equality.

Step 2. The map ¢ : X — X' possesses the property (1) from Corollary 8.2.4(i). First of all,
if U’ is an analytic domain in X', then ¢»~!(U’) is an analytic domain in X. Indeed, by Step 1, the
latter set coincides with o' (=1 (U’(#))), and Proposition 11.3.2(iii) implies that it is an analytic
domain in X. Let now x € X. We can find acyclic affinoid domains Uy, ...,U] in X’ that contain
the point 2’ = v (z) and such that U] U...,UU], is a neighborhood of 2’ in X’. By the above claim,
each preimage U; = ¢~ !(U/) is an analytic domain in X, and Uy U...U U, is a neighborhood of
x in X. For every 1 <7 < n, we can find acyclic affinoid domains U;y, ..., U;,, C X that contain
the point x and such that their union is a neighborhood of x in U;. Then UlSiSn,lﬁjSmi Uij is a
neighborhood of z in X, and the required fact follows.

Step 3. Let U € X and U’ C X’ be acyclic affinoid domains with (U) C U’. Then
©(U®) c U'®) and, therefore, ¢ defines a bounded homomorphism 7 : Ay = (W},OXE)(U/(QS)) —
Ay = (1% Ox,)(U®). The same reasoning as in Step 3 from the proof of Theorem 11.2.4 shows
that the system of homomorphisms 7 gives rise to a morphism of K-analytic spaces ¢ : X — X'

which induces the morphism ¢ we started from. .
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