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Let k be afield complete with respect to a non-Archimedean valuation, k° itsring of
integers, and k itsresiduefield. Every formal scheme X locally finitely presented over
k° has a closed fiber X, which isascheme of locally finite type over k, and ageneric
fiber X,), whichisastrictly k-analytic space (in the sense of [Ber2]) whose underlying
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topological space is a paracompact locally compact space of dimension dim(X;)), and
thereisareduction map = : X, — X;.
Given aformal scheme X for which thereisasequence of morphismsfrom acertain

classX = (X = %; fl—‘>l i1> X1 E Xo = Spf(k°)), in [Ber7] we constructed a

strong deformation retraction of the generic fiber X, to a closed subset S(X) called
the skeleton of X. (The morphisms from that class are called poly-stable, such a
sequence X is called a poly-stable fibration, and such a formal scheme X is called
pluri-stable.) We also constructed a canonical homeomorphism between the skeleton
S(X) and the geometric realization of asimplicia set associated with the closed fiber
of X. This homotopy description of the spaces X, together with the results of J. de
Jong from [deJ] were used in [Ber7] to prove that in the case, when the valuation on
k isnontrivial, any strictly analytic subdomain of asmooth k-analytic spaceislocally
contractible.

In our work in progress on integration on p-adic analytic spaces, the following
stronger property turns out to play an important role. Assume that the valuation on
k isnontrivial, and let X be a strictly analytic domain in a smooth k-analytic space.
Then each point x € X hasafundamental system of open neighborhoods V such that:
(8) thereisacontraction ® of V toapoint xg € V; (b) thereisan increasing sequence
of compact strictly analytic domains X1 C X2 C --- C V which exhaust V and are
preserved under @; (b) for any bigger non-Archimedean field K, V®K has afinite
number of connected components and @ lifts to a contraction of each of them to a
point over xp; and (d) thereis afinite separable extension L of k such that, if K from
(c) contains L, then themap V®K — V&L induces a bijection between the sets of
connected components.

One of the main purposes of this paper isto prove the above property. The proof
is based on a further study of the skeleton S(X) for those poly-stable fibrations X in
which al of the poly-stable morphisms f; : X;11 — X; are so called nondegenerate.
Thisstudy has anindependent interest. It turnsout that S(X) dependsonly on X = X;
(it is therefore denoted by S(X)), and that it is provided with a canonical piecewise
linear structure of a specia type. This piecewise linear structure on the skeleton
S(X) isclosely related to the analytic structure on the generic fiber X, and isin fact
reflected in many familiar properties and objects related to analytic functions (such as
the growth and Newton polygon of an analytic function). We now give asummary of
the material which follows.

In 81, we introduce and study a subcategory of the category of piecewise linear
spaces. The exposition is slightly non-traditional in the sense that the model vector
space for us is the multiplicative group (R* )" provided with the following action of
R: (s, (t1, ..., ty)) = (1], ..., ;). Similarly, linear functions considered are maps
to R% of the form (1, ..., 1,) — riy*...1,". The subcategory introduced consists
of the piecewise linear spaces which are built from the polytopes defined by linear
inequalities with certain restrictions on their coefficients. Namely, the coefficients at
thelinear termsarerequired to belongto asub-semiring S C R, and the constant terms
are required to belong to a submonoid R C R? suchthat forany r € Rands € S
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onehasr® € R. The polytopes defined in such away are called Rg-polytopes, and
the spaces obtained are called piecewise Rs-linear. If S = R and R = R, one gets
the whol e category of piecewise linear spaces. The skeleton S(X) of anondegenerate
pluri-stable formal scheme over k° is provided (in 85) with a piecewise Rz, -linear
structurefor R = |k*| N [0, 1].

Thereisat least aformal similarity between piecewiselinear and k-anal ytic spaces.
Namely, both are provided with a Grothendieck topology formed by piecewise linear
subspacesin theformer and by analytic subdomainsinthelatter. Coveringsare defined
inthe sameway: afamily {Y;};c; of subspacesof Y isacoveringif every pointy € Y
has aneighborhood of theformY;, U---UY; withy e Y;; N---NY;, . In 86, adirect
relation between the Grothendieck topologies on S(X) and X, is established, and it is
very important for applicationsin 87 and §8.

To describe the constructions of 82 and 83, recall that in [Ber7] we associated with
the closed fiber of a poly-stable fibration X over k° of length [ a polysimplicial set,
i.e., an object of the category A°&ns of contravariant functorsfrom acertain category
A to the category of sets &ns. (The simplicial set mentioned at the beginning of the
introduction was in fact derived from the latter.) If / = 1, we associated with the
formal scheme X = X1 itself amore refined object, an R-colored polysimplicial set,
i.e., an object of the category A% &ns, where the category A g was associated with a
submonoid R C [0, 1]. (In the case considered, R = |k| N [0, 1].) The geometric
realization of an R-colored polysimplicial set was provided with an extra structure, a
monoid of continuousfunctionsto [0, 1] (whichwereeventually related to the absolute
values of the functions from the monoid O (X) N O (X,)*).

Let R be a category provided with a geometric realization functor that takes an
object A toapair (JA|, M4), where |A| isatopological space and M4 isasemiring
of continuous functions on |A| with valuesin [0, 1]. (The semirings are considered
with the usual multiplication and the following addition: f4g = max(f, g).) In 82,
we construct a category A provided with a similar geometric realization functor.
It gives rise to a category of R-colored polysimplicial sets A% éns and a similar
geometric realization functor on it. If R is a one point category with the geometric
realization functor that takesthe only object of R to aone point space with asubmonoid
R C [0, 1], one getsthe category Ay introduced in [Ber7, 84]. The only differenceis
that the monoids, considered in loc. cit., are submonoids of the semirings considered
here, but the former can be characterized inside the | atter.

In 83, we study the category obtained by iteration of the latter construction.
Namely, given a submonoid R C [0, 1], weset Ag1 = Agr and Ag; = Apg,
for I > 2. Inthisway we get the category Ay ;€ns of R-colored polysimplicial sets
of length [. The main facts established here are asfollows. The geometric redlization
of an R-colored polysimplicial set of length [ is always Hausdorff and, if the set is
locally finiteand O ¢ R, the geometric realization is provided with a canonical piece-
wise Ry, -linear structure so that the semiring associated with it consists of certain
piecewise Rz -linear functions.
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In 84, werecall the notion of a poly-stable morphism and introduce an additional
property of nondegenerateness. (A pluri-stable formal scheme over k° is nondegener-
ateif and only if its generic fiber isanormal strictly k-analytic space.) We introduce a
partial ordering onthe genericfiber X, of aformal scheme X locally finitely presented
over k°, and prove that the skeleton S(X) of a nondegenerate poly-stable fibration X
of length [ coincides with the set of maximal points with respect to the ordering on
X1, Thisimpliesthat S(X) dependsonly on X;, and so the skeleton S(X) of anonde-
generate pluri-stable formal scheme X iswell defined. We also recall the construction
of the retraction map = : X,, — S(X), which in general depends on the choice of X
with X; = X, and introduce a class of so called strongly nondegenerate pluri-stable
formal schemes for which t does not depend on the choice of X.

In 85, we associate with every nondegenerate poly-stable fibration X over k° of
length [ alocaly finite R-colored polysimplicial set D(X) of length I, where R =

lk*| N [0, 1], and construct a canonical homeomorphism |D(X)| — S(X) such that,
forany f € O'(%X)), thefunction x — | f(x)| on S(X) is contained in the semiring
My associated with the geometric realization of D(X). (Here @'(X) isthe set of all
f € O(X%) whose restriction to every connected component of X is not zero.) This
provides the skeleton S(X) with a piecewise Ry, -linear structure and a semiring of
piecewise Rz -linear functions M y.

In 86.1, we prove that the latter depend only on X;, i.e., given a nondegenerate
pluri-stable formal scheme X over k°, a piecewise Rz -linear structure on S(X) and
a semiring of piecewise Ryz_ -linear functions My on it are well defined and, for
any f e O'(X), the function x — |f(x)| on S(X) is contained in My. We also
prove that any pluri-stable morphism ¢ : X' — X from a similar formal scheme
X' gives rise to a piecewise Rz, -linear map S(X’) — S(X) and it takes functions
from My to functions from My. In 86.2, we get afirst application of the above
results whose elementary particular case tellsthe following. Given acompact strictly
analytic domain X in the analytification of a separated scheme of finite type over k
and invertible analytic functions f1, ..., f, on X, the image of the mapping X —
R = x = (1A, ..., [ fu(x)]) isafinite union of Rz, -polytopes of dimension
at most dim(X). (Thisresult wasrecently extended by A. Ducrosto arbitrary compact
strictly k-analytic spaces.) Moreover, if such X is connected, the quotient group
O(X)*/(k*O(X)1) isfinitely generated, where O (X)1 = {f € O(X)* | |f(x)| =1
foral x € X}.

Let X be a nondegenerate pluri-stable formal scheme over k°. In 86.3, we prove
that, for any strictly analytic subdomain V' C X,,, the intersection V N S(X) isa
piecewise Rz, -linear subspace of S(X) and, for any analytic function f € O'(V),
the function x — | f(x)| on V N S(X) is piecewise |k*|z, -linear. In particular, the
canonical embedding S(X) < X, is continuous with respect to the Grothendieck
topologies of S(X) and X, formed by piecewise Ry -linear subspaces and strictly
analytic subdomains, respectively. In 86.4, we prove that the retraction map 7 :
X, — S(X) iscontinuous with respect to the same Grothendieck topologies on S(X)
and X,,. (Thisresult isused in 87 and §88.) We also prove that, given an arbitrary
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morphism ¢ : X’ — X from a similar forma scheme X’ over k°, the composition
map S(X') 5 %, > S(%) ispiecewise (v/F])q, -linear, where /T&F] = {« € R% |
o € |k*| for somen > 1}.

In 87, we prove the property mentioned at the beginning of the introduction.

In 88, we prove results which have a direct relation to p-adic integration. Assume
that the characteristic of k is zero. The sheaf of constant functions ¢x on a reduced
strictly k-analytic space X is the étale sheaf of k-vector spaces Ker(Ox 4 Q}(). If
k isagebraically closed, it is the constant sheaf kx associated with k, but in genera
it is much bigger. Assume X is smooth. It iswell known that the de Rham complex

ox > Qy <4 Q2 <4 ... isnot exact. On the other hand, the similar de Rham
complex for the sheaf of naiveanalytic functions(i.e., thefunctionsanalyticin an open
neighborhood of each point from the dense subset Xg = {x € X | [#(x) : k] < o0})
is exact, but the kernel of the first differential is too large. One of the purposes of
a p-adic integration theory is to find an intermediate class of functions between the
analytic and naive analytic ones such that the corresponding de Rham complex is an
exact resolution of the sheaf of constant functions cx. It iswhat was essentially done
by R. Colemanin[Col] and [ CoSh] for smooth k-analytic curves. Inour generalization
of hiswork, thefollowing two facts are of crucial importance. Thefirst one (Theorem
8.2.1) tells that each point of X has a fundamental system of open neighborhoods V
such that H"(V, c¢x) = Ofor al n > 1. The second one (Corollary 8.3.3) tells that,
given a nondegenerate strictly pluri-stable formal scheme X over k°, an irreducible
component ¥ C X, and a Zariski closed subset Z C X,, then for X = 7 ~1(Y)\Z
onehas H" (X, cx) =0foraln > 1.

To give someideaon how thesetwo factsare used (in our work in progress), notice
that, if the above integration theory exists and X is a smooth k-analytic space with
H(X, cx) = 0, then every closed analytic one-form on X has a primitive (of course,
in a bigger class of functions) which is defined uniquely up to an element of ¢(X).
The second of the above facts provides a class of spaces (of the form X = 771(Y))
where one constructs such aprimitive. The construction dependson X and ¥ (and not
only on X), and the first fact is used to show that the primitive constructed actually
dependsonly on X.

In another work in progress, we generalize many of the results of this paper to the
whole class of pluri-stable formal schemes. In particular, we show that the skeleton
S(X) always depends only on X = X;, but in the general case S(X) is provided with
a so called piecewise monomia structure which is more general than the piecewise
linear structure considered here (see Remark 1.3.2(ii)). It is for that reason certain
constructionsin §2, 83 and 85 are considered in a more general setting.

| am very grateful to the referee for many corrections, suggestions and remarks
that significantly improved the paper.
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1 Piecewise Rg-linear spaces

1.1 Rg-polytopes

Recall that a (compact) polytope in a vector space is the convex hull of afinite set
of points. This object is abuilding block of the classical notion of a piecewise linear
space. A basic fact isthat a compact subset of avector space isapolytopeif and only
if it can be defined by afinite number of linear inequalities (see [Zie, Theorem 1.1]).

We say that a set is a semiring if it is a commutative monoid by multiplication
and addition related by the identity a(b + ¢) = ab + ac and which contains 1. An
exampleof asemiringistheset of all continuous non-negativereal valued functionson
atopological space provided with the usual multiplication and the following addition:
f+g = max(f, g). Inthissection we consider only sub-semirings of the field of real
numbers R.

Let S beasub-semiring of R that contains0, and let R be anonempty S-submonoid
of R% , i.e., itisanonempty submonoid of R* suchthat forany » € R ands € S one
hasr® € R. Thesimplest exampleis § = R and R = R, and the main examples
considered in the paper are provided by anon-Archimedean field k and are asfollows:
S:Z+andR: |k*| N[0, 1] or |k*|, and § = Q4 and R = /[k*[ = {« € R%_ |
o € |k*| forsomen > 1}. If R = {1} (e.g., if thevaluation on k istrivial), everything
we are going to consider istrivial, but has a meaning.

We denote by S (resp. S) the subring (resp. subfield) of R generated by S and by
R (resp. R) theS -submodule (resp. S-vector subspace) of R’ generated by R, andwe
denoteby (R) theconvex hull of R inR% , whichisasoan S- submonoid of R . (Here
are all possible values of (R): {1}, [1, oo[, 10, 1] and R% .) For n > O, we denote by
A" (Rys) the S-monoid of functionson (R%)" of theform (t1, ..., 1,) +— riy* ... 5",
wherer € Rand sy, ..., s, € S, and, forasubset V. ®RY)", Wedenoteby AV(RS)
the set of the restrictlons to V of the functions from A”(RS)

An Rg-polytopein (R* )" isacompact subset of (R)" which is defined by afinite
system of inequalities of the form f(¢) < g(¢) with f, g € A"(Ry). Of course, any
Rs-polytopeisaso an?s polytope. An easy criterion for the latter is asfollows.

A point of (R*)" is said to be an R-point if al of its coordinates are contained
in R, and alinein (R%)" is said to be S-rational if there exist s1, ...,s, € S such
that, for some (and therefore every) pair of distinct points x = (xl, ..., Xxy) and
y=(y1,...,y,) Of theling, onehas% =% witht € R}, 1 < i < n. Noticethat, if

theabove x and y are R-points, then+ € R and, infact, &5 € Rforal f € A" (Ry).

111 Lemma. Thefollowing properties of a polytope V C (R )" are equivalent:
(8) V isan Rg-polytope;

(b) V is defined by a finite system of inequalities of the form f(r) < g(¢) with
/.8 € A"(Ry);



Smooth p-adic analytic spaces are locally contractible. |1 299

(c) all vertices of V are R-points and all edges of V are S-rational.

Notice that if di mg(ﬁ) = 1 then the second property in (c) follows from the first
one.

Proof. The equivalence of (a) and (b) istrivial, and the equivalence of (b) and (c) isa
simple linear algebra. O

1.1.2 Corollary. LetV bean Rg-polytopein (R )". Thenany subset of V, whichis

defined by a finite system of inequalities of theform#;* ... 1" < r withs1,...,s, € S
andr € R, isan Rs-polytope. In particular, all faces of V and the intersection of two
Rs-polytopes are Rs-polytopes. O

An (abstract) Rs-polytopeisatopological space X provided with aset of continu-
ousfunctions A y for which there existsahomeomorphism¢ : X — V,whereV isan
Rs-polytopein (R )", such that ¢* inducesabijection Ay (Rs) — Ay. For example,
asubset V C (R%)" provided with the set of functions Ay (Rs) is an (abstract) Rs-
polytope if and only if V isan Rg-polytopein (R*)". A morphism of Rg-polytopes
¥ : X' — X isacontinuous map that takes functionsfrom A x to functionsfrom A y.
In thisway we get a category of Rg-polytopes.

For example, there is an evident anti-equivalence between the category of zero
dimensional Rs-polytopes and the category of S-monoids R R’  (R) N R, which
are generated over S by R and a finite number of elements, and with inclusions as
morphisms. In particular, if the S-monoid R is not divisible, the minimal dimension
of an affine space which contains a zero dimensional Rg-polytope isomorphic to a
given one may be sufficiently large.

A subset Y of an Rg-polytope X is said to be an Rg-polytope in X if one of the
above maps ¢ takes it to an Rg-polytope in V. Such a subset is provided with the
evident Rg-polytope structure.

1.1.3 Corollary. Letg : X' — X bea morphism of Rg-polytopes. Then

(i) theimage ¢(X’) isan Rg-polytopein X;

(i) ¢ induces an isomorphism X’ = ¢(X’) if and only if themap Ay — Ay is
surjective;

(iii) for any Rs-polytopeY in X, the preimage ¢ —1(Y) isan Rs-polytopein X', and
the induced map ¢ ~1(¥) — Y isa morphism of Rs-polytopes. O

A morphism of Rg-polytopese : X' — X issaid to be animmersion if it satisfies
the equivalent properties of Corollary 1.1.3(ii).
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1.2 Rg-polyhedra

An Rg-polyhedron in (R%)" is a finite union of Rg-polytopes. Let V be an Rs-
polyhedron. A continuous function f : V — R? issaid to be piecewise Ry-linear
if V can be represented as a union of Rg-polytopes V.= V1 U --- U V; such that
flv. € Ay;(Rg) foral 1 < i < k. Let Py(Ry) denote the set of al piecewise
Rs-linear functionson V. From Corollary 1.1.2 it follows that, given f1, ..., fi, €
Py (Rgs), one can find Rg-polytopes Vq, ...,V Cc Vsuchthaa V. =Vi,U-.-UV;
and filv; € Av;(Rs) fordll<i <mandl < j <k. Inparticular, Py (Rs) isan
S-monoid, and it contains the functions max{ f1, ..., f,} andmin{f1, ..., fu}.

121 Lemma. LetV c (R})" and U C (R})™ be Rg-polyhedra. Then the
following properties of a continuousmap ¢ : V — U are equivalent:

(8 thereexist Rs-polytopes V1, ..., Vy c Vand Uy, ..., Uy C U suchthat V =
Vi U--- UV and ¢ induces morphisms of Rg-polytopes V; — U;, 1 <i <k;

(b) ¢* takesfunctionsfrom Py (Rs) to Py (Ry).

Proof. The implication ()= (b) easily follows from Corollary 1.1.3(iii). Assume
that ¢* takes functions from Py (Rs) to Py (Rs), and let f1, ..., f bethe preim-
ages of the coordinate functions on (R*)™ in Py (Rs). We can find Rg-polytopes
Vi,..., Vi, C Vsuchthat V = Vlu---UVkandf,-h/j € AV],(RS)foralI 1<i<m
and1 < j < k. Thentheimage U; of each V; under ¢ isan Rg-polytopein (R% )™,
which is contained in U, and the induced maps V; — U; are morphisms of Rg-
polytopes. O

A continuous map between Rg-polyhedra ¢ : V' — V is said to be piecewise
Rs-linear if it possesses the equivalent properties of Lemma 1.2.1.

An (abstract) Rg-polyhedron is atopological space X provided with a set of con-
tinuous functions Py for which there exists a homeomorphism ¢ : X = V, where
V isan Rg-polyhedron in (R% )", such that ¢* induces a bijection Py (Ry) = Py.
A morphism of Rg-polyhedra ¢ : X’ — X isa continuous map that takes functions
from Px to functions from Pyx.. A subset Y of an Rg-polyhedron X is said to be
an Rs-polyhedron in X if the above map ¢ takesit to an Rg-polyhedronin V. This
property of Y does not depend on the choice of ¢, and in thiscase Y is provided with
the evident Rg-polyhedron structure.

122 Lemma. Letg : X’ — X beamorphismof Rg-polyhedra. Then
(i) theimage ¢(X’) isan Rs-polyhedronin X;

(ii) for any Rs-polyhedron Y in X, ¢~1(Y) is an Rg-polyhedron in X’, and the
induced map ¢ ~1(Y) — Y isa morphism of Rs-polyhedra. O
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We say that amorphism of Rg-polyhedrag : X' — X isanimmersionif itinduces
anisomorphism X’ = ¢(X).

1.2.3 Lemma. Thefollowing propertiesof amorphismof Rg-polyhedrag : X’ — X
are equivalent:

(&) ¢ isanisomorphism (resp. an immersion);

(b) for every Rs-polyhedron Y in X, the induced morphism ¢~1(¥Y) — Y isan
isomorphism (resp. an immersion);

(c) there exists a finite covering of X by Rg-polyhedra {Y;} such that the induced
morphisms ¢~ 1(Y;) — ¥; areisomorphisms (resp. immersions). O

Notice that, if a morphism of Rg-polytopesis an isomorphism (resp. immersion)
as a morphism of Rg-polyhedra, then it is an isomorphism (resp. immersion) as a
morphism of Rg-polytopes.

1.3 Piecewise Rs-linear spaces

Let X be alocally compact space. (All locally compact spaces are assumed to be
Hausdorff.) An Rg-polyhedron chart on X isacompact subset V C X provided with
an Rg-polyhedron structure. Two charts U and V are said to be compatibleif U NV
is an Rg-polyhedron in U as well asin V, and the Rs-polyhedron structures on it
induced from U and V are the same. An piecewise Rs-linear atlason X isafamily
7 of compatible Rs-polyhedron charts with the property that every point x € X hasa
neighborhood of theform Vo U --- U V,, with Vp, ..., V, € 1.

Given a piecewise Rs-linear atlas T on X, we say that an Rg-polyhedron chart on
X iscompatiblewith  if it iscompatible with every chart from . Two piecewise Rs-
linear atlases on X are said to be compatible if every chart of one atlas is compatible
with the other atlas. From Lemma 1.2.3 it follows that, if two Rg-polyhedron charts
are compatible with a piecewise Rs-linear atlas, then they are compatible. It follows
that compatibility is an equivalence relation on the set of piecewise Rs-linear atlases
onX.

A piecewise Rs-linear spaceisalocally compact space X provided with an equiv-
alence class of piecewise Rg-linear atlases. Notice that each equivalence class has a
unique maximal atlas. It consists of all Rg-polyhedron charts which are compatible
with some (and, therefore, with any) piecewise Rg-linear atlas from the equivalence
class. Thechartsfrom the maximal atlaswill becalled Rs-polyhedrain X. A function
f X — R} issaidtobepiecewise Rs-linear if itsrestriction to every Rg-polyhedron
Y in X iscontained in Py. The set of such functions on X will be denoted by Py .

A morphism of piecewise Rs-linear spacesisacontinuousmap ¢ : X’ — X with
the following property. There exist piecewise Rs-linear atlases r on X and ’ on X’
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that define the piecewise Rg-linear structures on X and X’ and such that for every
V' € t/ thereexists V ¢ 7 for which (V') c V andtheinduced map V' — V isa
morphism of Rg-polyhedra. Notice that in this case, for every pair of Rg-polyhedra
V Cc Xand V' C X withe(V’') C V, theinduced map V' — V isamorphism of
Rs-polyhedra. It follows that one can compose piecewise Rg-linear morphisms, and
S0 we get a category of piecewise Rs-linear spaces PL§. This category admits finite
direct products.

A subset Y of apiecewise Rg-linear space X is said to be a piecewise Rs-linear
subspaceif every point y € Y hasaneighborhoodinY of theform Vo U- - -UV,,, where
Vi,...,V, are Rg-polyhedrain X. Such asubset Y islocaly closed in X, and has a
canonical structure of a piecewise Rg-linear space. Given a morphism of piecewise
Rg-linear spaces ¢ : X’ — X, the preimage of any piecewise Rg-linear subspace of
X isapiecewise Rg-linear subspace of X’. If ¢ isproper, then theimage ¢(X’) isa
piecewise Rs-linear subspace of X. The morphism ¢ is said to be an immersion if it
induces an isomorphism between X’ and a piecewise Rs-linear subspace of X.

Let X be a piecewise Rs-linear space. The family of its piecewise Rs-linear
subspaces can be considered asacategory, and it givesriseto aGrothendieck topology
X generated by the pretopology in which the set of coverings of a piecewise Rs-
linear subspace Y consists of families {Y;};<; of piecewise Rg-linear subspaces of
Y such that every point y € Y has a neighborhood of the form ¥;; U --- U Y;, with
y € Yy N---NY;,. Sinceall open subsetsof X arepiecewise Rs-linear subspaces, there
isamorphism of sites Xg — X. Moreover, every morphism of piecewise Rs-linear
spacesy : X' — X givesrisetoamorphismsof sitesX; — Xg. Thecorrespondence
Y — Py isasheaf in the Grothendieck topology X, denoted by &y . Itsrestriction
to the usual topology of X will be denoted by #x. More generaly, for any piecewise
Rs-linear space X', the correspondence Y — Hom(Y, X') isasheaf of setson Xg.

A morphism of piecewise Rg-linear spaces ¢ : ¥ — X is said to be a G-local
immersion (G stands for Grothendieck topology) if for every point y € Y there exist
Rs-polyhedra Vy, ..., V,, C Y suchthat V4 U --- UV, isaneghborhood of y in Y
and all of the induced morphisms V; — X are immersions. Notice that a G-loca
immersion ¢ : Y — X, which induces a homeomorphism of Y with itsimagein X,
isan immersion.

If S isasub-semiring of R that contains S and R’ isan §’-submonoid of R* that
contains R, then thereistheevident functor PLX — PLE'. Of course, thisfunctor does
not change the underlying topological spaces, but it can change their Grothendieck
topology. From Corollary 1.1.2 it follows that the Grothendieck topology is not
changed if S’ ¢ Sand R’ C R.

Let {X;}ic; beafamily of piecewise Rs-linear spaces, and suppose that, for each
pair i, j € I, weare given apiecewise Rg-linear subspace X;; C X; and an isomor-
phism vij : Xij — Xji sothat X;; = X;, vij(XiiNXi) =XjNXj andv;; = Vjjovij
on X;; N X;;. Inthis case one can construct atopological space X obtained by gluing
of X; along X;;. (Itisthe quotient space X /E, where X isthe disoint union [ [; X;
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and E isthe equivaencerelation on X defined by thesystem {v;;}.) Let i1; denotethe
induced map X; — X.

1.3.1 Lemma. In each of the following cases, there exists a unique piecewise
Rgs-linear structure on X such that all x; areimmersions:

(@ all X;; areopenin X; and X is Hausdorff;

(b) foranyi e I, all X;; areclosed in X; and the number of j € I with X;; # ¢
isfinite.

Furthermore, inthe case (a), all ; (X;) areopenin X and, inthe case (b), all u; (X;)
areclosedin X.

In the situation of the lemma, X is said to be obtained by gluing of X; along X;;.

Proof. In the case (@), the equivalence relation E is open (see [Bou, Ch. |, 89, n° 6])
and, therefore, al u; (X;) are openin X. In the case (b), the equivalence relation E
is closed (see loc. cit., n° 7) and, therefore, all w;(X;) are closed in X, u; induce
homeomorphisms X; = wi (X;), and X is Hausdorff.

Let 7 denote the family of all subsets V C X for which there existsi € I such
that V C u;(X;) and /Li_l(V) isan Rg-polyhedronin X; (in this case /Li_l(V) isan
Rs-polyhedronin X ; for every j with V. C u;(X;)). The family t is a piecewise
Rs-linear atlas on X and, for the piecewise Rs-linear space structure on X it defines,
al u; areimmersions. That the piecewise Rgs-linear structure on X with the latter
property isuniqueistrivial. O

1.3.2 Remarks. (i) Thedefinition of apiecewiselinear spacegiveninthissubsection
is an easy version of the definition of a non-Archimedean analytic space in [Ber2].
Both are examples of aglobal object defined by gluing local objects (affinoid spacesin
the former and polyhedrain the latter) which are closed subsets. The main difference
between our definition and that in [Hud] is in the freeing of the requirement that
every point has a neighborhood isomorphic to a polyhedron. The latter property
(appropriately adjusted) is established in the following subsection and used in 87 (see
also Remark 1.4.5).

(i) If R = {1}, then any Rg-polyhedron is a point and any piecewise Rs-linear
space is a discrete topological space with the only one piecewise Rs-linear function
which takes value 1.

(iii) The piecewise monomial spacesintroduced in our work in progress and men-
tioned in the introduction are glued from certain compact subsets of R’ which are
defined by a finite number of inequalities f(t) < g(¢) with f and g of the form
riyt .. 1,", where s; are elements of a sub-semiring S C R and r are elements of an
S-submonoid R € Ry suchthatif 0 € Rthen S C Ry.
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1.4 An embedding property

1.4.1 Proposition.  Every point of a piecewise Rs-linear space has a compact
piecewise Rs-linear neighborhood which admits a piecewise Rg-linear isomorphism
with an Rg-polyhedron.

The statement istrivia if R = {1}, and so we assumethat R # {1}.

Let X bean Rg-polyhedronin (R*)". An Rg-polytopal subdivision of X isafinite
family = of Rg-polytopesthat cover X and are such that (1) if V € t, then all faces of
V arecontainedint,and (2) if U,V € t,thenU NV isafaceinU andin V. The
subdivision T isarefinement of asimilar subdivision t" if each V € t iscontained in
some V' € 7. If z isafamily of subsets of a set and U is a subset of the same set,
then t|y denotesthefamily {V e t | V C U}.

14.2 Lemma. Let X bean Rg-polyhedronin (R% )", and let o be afinite family of
Rs-polyhedrain X. Then there exists an Rs-polytopal subdivision T of X such that
for every U € o thefollowing istrue:

(8 t|y isan Rs-polytopal subdivision of U;
(b) ifVer,thenUNVisafaceinV.

Proof. Step 1. There exists t that satisfies (a). Indeed, replacing each polyhedron
U € o by afiniteset of Rg-polytopeswhoseunionisU, wemay assumethat o consists
of Rg-polytopes. We may also assume that o contains a finite set of Rg-polytopes
whoseunionis X. ForeachU € o, wefix afiniteset F(U) of pairs( f, g) of functions
from A" (Rg) suchthat U = {x € (R})" | f(x) < g(x) fordl (f,g) € F(U)}. Let
F betheunion of F(U) for all U € o. Then the required Rg-polytopal subdivision
7 consists of the polytopes W for which there exist subsets 7 C o and F<, F~ C F
with F< N F~ = ¢ such that W isthe set of all points x € (), U satisfying the
inequalities f(x) < g(x) for (f, g) € F< and f(x) > g(x) for (f, g) € F> andthe
equalities f (x) = g(x) for (f, g) € F\(F< U F>).

Indeed, let W(T, F<, F~) denote the above polytope. Since W(T', FL, FL) N
W(T",F!,F!y = W(T'UT", F. N F’ F. N FY), it suffices to check that, if
W' = W(T', FL, F.) is contained in W = W(T, F<, F-), then W’ is a face of
W. For thiswecanreplace 7" by 7' U T, F. by F. N F< and F. by F. N F- and,
therefore, wemay assumethat 7/ © T, F. C F<and F. C F-. SinceW (T, F., F.)
is evidently aface of W, we may assumethat F. = F< and F. = F-. It remains,
therefore, to consider the casewhen 7/ = T U {U} for some U € o. Inthiscase, one
has W' = W (T, F<, F>\F(U)), and the latter is evidently aface of W.

Step 2. If T satisfies (a), there exists a refinement of ¢ that satisfies (b). If U € o
andV € t, U NV isaunion of facesof V. Let M(V,U) denote the set of the
facesof V in V N U which are maximal by inclusion. For each pair of distinct faces
W1, Wo € M(V,U) of V, wefix ahyperplane L C (R% )" defined by an equation
f(x) = g(x) with f, g € A"(Rs) andsuchthat LN W1 = L N Wo = Wy N Wa
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and, for every pair of points x;1 € W1\W> and x2 € W2\ Wy, theinterval connecting
them intersects L. Let o’ be the union of o, T and of {L N X} for all quadruples
(U, V, W1, W) as above. By Step 1, there exists an Rg-polytopal subdivision ¢’
of X with the property (a) for o’. We claim that t’ satisfies the property (b) for o.
Indeed, supposethereexist U € o and V' € 1/ for which there exist two distinct faces
Wi, Wy e M(V',U),andlet V e t contain V'. Then W; and W, cannot lie in one
faceof V in V N U because they are maximal among thefacesof V/in V' NU. Thus,
there exist two distinct faces W1, W2 € M(V, U) such that Wy C Wy, W, C Wo,
Wi ¢ Win Weand W, ¢ Wi N Wa. Let x1 and x2 be points from the interiors of
W1 and W, respectively, which do not liein W1 N W», and let L be the hyperplane
associated with (U, V, W1, W2). Then L containsapoint from theinterval connecting
x1 and x2. Such apoint liesin the interior of aface of V' that contains W1 and W5,
Since t'|nx isasubdivision of L N X, it followsthat W1, W5 C L. This contradicts
theequalities LN Wy = LN Wy = Wi N Wa. O

An Rs-polytopal subdivision t is said to be simplicial if all polytopes from t are
simplices.

143 Lemma. If dimg(ﬁ) = 1, then any Rg-polytopal subdivision of an Rg-poly-
hedron X C (R%)" hasan Rg-simplicial refinement with the same set of vertices.

Proof. The assumption impliesthat the convex hull of any subset of the set of vertices
of an Rg-polytope is an Rg-polytope and, therefore, the proof of the corresponding
classical fact (see[RoSa, Proposition 2.9]) isapplicable. (The same reasoning will be
used in the proof of Lemma 1.4.4 below.) O

Proof of Proposition 1.4.1. First of all, we may assumethat S isafield and, therefore,
R is a vector space over S. It suffices to show that every point x of a piecewise
Rgs-linear space X, which is a union of two Rg-polyhedra X’ and X”, has an Rg-
polyhedron neighborhood. Of course, we may assumethat x € X’ N X”. Let R’ bea
fixed one-dimensional S-vector subspace of R. We claim that there exists a compact
piecewise R-linear neighborhood of x, which isisomorphic to a piecewise R-linear
space.

(1) By Lemma 1.4.2, there exists an Rg-polytopal subdivision 7’ of X’ with the
properties (a) and (b) for o = {X’ N X”}. Furthermore, we can find an Rg-polytopal
subdivision " of X” with the properties (a) and (b) for o = /| x'nx.

(2) Let W be the minimal polytope from t” that contains the point x, and let T be
the family of all polytopes from ¢/ U t” that contain W. (Notice that 7 is preserved
under intersections.) Then (., V is aneighborhood of x in X. The point x lies
in the interior W of W. Let xo be afixed R-pointin W. We say that a point y from
the above union is marked if for some (and therefore any) V e t with y € V one
has f((x”) e R'foral f € Ay(Rs). A polytopein V e t issaid to be special if
it contains the point xo and all its vertices are marked points, and a polyhedron in V
is said to be special if it is afinite union of specia polytopes. Notice that alinein
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V passing through two different marked points is S-rational and, by Lemma 1.1.1,
special polytopes are Rs-polytopes, and special polyhedra are Rg-polyhedra. Notice
also that a polytope, which is special as a polyhedron, is special as a polytope.

(3) We are going to construct for every V € t a specia polyhedron V. C V,
which is a neighborhood of the point x in V and suchthat if U € tand U C V
then U = V N U. The construction is made inductively and, at the begmnmg for
polytopes from = N ”. First of all, since the set of marked pointsis densein W, we
can find aspecia polytope W C W, which isaneighborhood of the point x in W and
is contained in W. Let V be a bigger polytope from z N 7”, and assume that U are
dready constructedforall U € tNt” withU C V,whereV = V\V isthe boundary
of V. Then the polyhedron V; = UU, where the union istaken over all U € T N t”
withU C V is a neighborhood of the point x in V. We take an arbitrary marked
point y € V and define V asthejoinof y and V1 inV (i.e, theset {Ay + uz}, where
z€ Vi, A, u=>0and i+ p = 1). After the special ponhedraV are constructed for
al vV e T Nt”, wecontinue the same construction for polytopes V € = Nt’. Namely,
assumefirst that V. X' N X”. Then V isaunion of some U € t”, and we define
V asthe union UU, takenover al U € T Nt” withU C V. Assume now that V is
minimal among those polytopes from = N ¢’ that contain a point from X\ X”. Then
theintersection V/ = V N X" isaface of V of smaller dimension. It follows that the
special polyhedron v is aneighborhood of the point x in the boundary Vof V. We
take an arbitrary speC|al point y € V and define V asthejoinof y and V" in V. If a
polytope V € TNz’ isnot minimal among those, that contain apoint from X\ X", and
the special polyhedraU are constructedforall U € t Nz’ withU C vV, we denote by
V1 the union of the corresponding U’s and define V' as the join of some special point
y e Vand V. _

(4) TheunionY = |y, V isacompact piecewise Rs-linear neighborhood of the
point x in X. We claimthat ¥ isisomorphic to a piecewise R§-linear space. Indeed,
assumethat V e r isan Rs-polytopein (R* )", and let the coordl nates of the point xg
be (a1, ..., a,). Then theautomorphlsmgo of (R%)" : (y1, ..., yn) = (O{l .. n)
takes marked pointsto R’-pointsand, therefore, it takes every special polytope U in 1%
toan R-polytopep(U) ing (V). Moreover, ¢ inducesabijection between A, ) (RY)
and the subspace of Ay (Rs) consisting of functions of the form y — #/ JI((XVO)) with
r"e€ R'and f € Ay(Rs). It follows that this R-polytope structure on U does not
depend on the embedding of V in avector space, and it gives rise to R’-polyhedron
structureson special polyhedrain V. Moreover, if V', V" € t,thenthe R’-polyhedron
structures on special polyhedrain vV’ N V", induced from vV’ and V", are compatible.
In thisway we get a piecewise R'-linear structureon Y.

The proposition now followsfrom thefollowing lemma, which isastraightforward
generalization of the classical result for § = R and R = R}

144 Lemma. If Sisafieldand dimg(R) = 1, then any compact piecewise Rs-
linear space isisomorphic to an Rg-polyhedron.
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Proof. It suffices to show that a compact piecewise Rs-linear space X, which is a
union of two Rg-polyhedra X’ and X”, isisomorphic to an Rs-polyhedron.

(A) An Rg-polytope chart on X is a compact subset V' C X provided with an
Rs-polytope structure which gives rise to an Rs-polyhedronin X. Two Rg-polytope
charts U and V are said to be compatibleif U NV isan Rg-polytopein U aswell as
in V, and the Rs-polytope structures on it induced from U and V are the same. We
claimthat X can be covered by a finite family t of Rg-simplex charts such that (1) if
V e 1,thenall facesof V arecontainedinz,and (2) ifU, V € t,thenU NV isaface
inU and in V. Indeed, by Lemma 1.4.2, there exists an Rg-polytopal subdivision
7’ of X’ with the properties (a) and (b) for o = {X’' N X"}, and we can find an
Rs-polytopal subdivision 7 of X” with the properties (a) and (b) for o = /| x/nx.
Since dimg(R) = 1, we may apply Lemma 1.4.3 and assume that " is simplicial.
Let V1, ..., V, beadl of the polytopes from t’, which are not contained in X’ N X”
and such that if V; isafaceof V; theni < j. WesetY; = X" and Y, 41 =Y; UV,
and provide as follows each ¥; with afamily of Rg-simplex charts z; possessing the
properties (1) and (2) and such that 71 = 7" and tj1+1|y, = t; forall 1 <i < m. For
thiswefix an ordering of the set of the verticesin t’ outside X’ N X”, and assumethat,
forsomel < i < m, 7; isaready constructed. If x isthe first vertex of V; outside
X' N X", wedefine 7;1 as consisting of all simplices from t; and the joins of x and
U € t; withU C V;. (Thelatter are Rs-simplices since dimg(R) = 1.) The family
T = Tp41 ON Y11 = X istherequired one.

(B) Let {x1,...,x,11} bethe set of al verticesint, and let {y1, ..., y,+1} bea
set of independent R-pointsin (R} )". For asimplex V < 7, let (V) be the Rg-
simplexin (R% )", whichisthe convex hull of those pointsfrom {ys, ..., y,+1} which
corresponds to the vertices of V. Then the correspondence x; — y; givesriseto an
isomorphism between X and the Rs-polyhedron which is the union of al ¢(V) with
Ver. O

1.45 Remarks. (i) It is not true in general that every point of a piecewise Rg-
linear space has a compact piecewise Rs-linear neighborhood isomorphic to an Rg-
polyhedron. For example, assume that S = Z. and R is an arbitrary submonoid of
R* that contains anumber 0 < » < 1, and let W be the triangle in (R% )? defined
by theinequalitiest1 < landr < rp < 11. If U1 and U, are the edges of W defined
by the equalitiest, = r and 1 = », respectively, there is an isomorphism Uy — Ua
that takesapoint (71, r) to the point (71, t1), and it defines an involutive automorphism
¢ of V.= Uy U U, Let X bethe piecewise Rz -linear space obtained by gluing
of two copies of W along the isomorphism ¢ of V (see Lemma 1.3.1). Then the
point x = (r,r) has no an Rz, -polyhedron neighborhood in X. Indeed, let f be
apiecewise Rz -linear function in a neighborhood of x in X. The preimage of the
neighborhood in W contains atriangle W’ defined in W by the inequality 11 < r’ for
somer’ € Rwithr < ' < 1,andonehas f(y) = f(e(y)) fordl y e W N Ux.
But the restriction of f to avertical interval in W’ (defined by the equality 11 = «
for r < a < r’) isnondecreasing as afunction on . It follows that the restriction of
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f toeach vertical interval is constant. Since piecewise Rz, -linear functions separate
points of an Rz, -polyhedron, the point x has no an Rz, -polyhedron neighborhood.

(ii) Although Proposition 1.4.1 is enough for an application in 87, it would be
interesting to know if its statement is true for S and R (instead of S and R), and if
Lemma 1.4.4 istrue without the assumption dimg(R) = 1.

2 R-colored polysimplicial sets

2.1 Categorieswith a geometric realization functor

Given atopological space X, the set of al non-negative real valued functions on X
forms a semiring with respect to the usual multiplication and the following addition:
f+g = max(f, g). We denote by 7op¥ the category of the pairs (X, M) consisting
of atopological space X and a semiring M of continuous functions on X with values
in [0, 1] suchthat 1 € M. The set of morphisms Hom((X’, M"), (X, M)) consists of
the continuous maps X’ — X that take functions from M to M’. The category Jop¥
admits direct limits.

Let R beasmall category provided with afunctor R — Fop™ : A — (|A|, M)
(which will be called a geometric realization functor). In this section we introduce
certain categorieswhich arerelated to R and also provided withageometric realization
functor. The first example is the category R°€ns of contravariant functors from R
to the category of sets &ns. The category R can be considered asits full subcategory
under the fully faithful functor R — R°Ens : A — R4 that takes an object to the
contravariant functor represented by it. The geometric realization functor R°&ns —
Jop¥ : C — (|C|, M¢) is the one that extends R — Top¥ to the functor which
commutes with direct limits. For an object A € Ob(R) and an element ¢ € Cg,
where C 4 isthevalue of C at A, we denote by o, the corresponding map |A| — |C].

2.2 Thecategory Ag

Recall the definition of the category A from [Ber7, 83]. First of al, for a tuple
n = (ng,...,np) Witheither p =no=00r p > 0andn; > 1foral 0 <i < p, let
[n] denotethe set [ng] x - - - x [n,], where[n] = {0, 1,...,n}. Theset [n] € Ob(A)
is endowed with a metric as follows. The distance between two elementsi and j of
[r] is the number of distinct coordinates of i and j. Objects of the category A are
the sets [n] for the tuples r as above, and morphisms are isometric maps. By [Ber7,
Lemma 3.1], each isometric map y : [r'] — [n] can be described as follows. First
of adl, we set w(n) = [p], if [n] # [0], and w(n) = @, otherwise. Then thereis
apair (f, a) consisting of an injective map f : w(n’) — [p]l and o = {@;}o<i<p,
where «; isan injective map [n’f_l(l.)] — [ni]fori e Im(f),andisamap [0] — [n;]
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fori ¢ Im(f). Themap y takes an element i’ = (i, ...,i;/) € [n’] to the element
i = (ig,...,ip) € [m] Withi; = a‘,(i}._l(j)) for j € Im(f), andi; = «;(0) for
j € 1m(f). It followsthat, for every subset J C w(n), the morphismy : [n'] — [n]
givesriseto amorphism ["/ffl(h] — [n;], wheren; denotesthetuple (ny, ..., nj,)
if J = {jo,...,J:}isnon-empty and jo < --- < j;, and the zero tuple O, otherwise.

Assumewearegiven acategory R and afunctor R — Top¥ : A — (|A], M) (as
in§2.1). Weintroduce asfollowsacategory A z, whose objectsaredenoted by [n] 4 -,
and afunctor Ag — Jop¥ : [n]ar > (2% ., M} ). Firstof dl, the objects [n] 4
correspond to the following data: [r] = [no] % --- x [n,] € Ob(A), A € Ob(R)
andr = (ro, ..., rp) € MY, which satisfy the condition that ro = 1, if [r] = [0],
andr; # 1forall 0 <i < p,if [n] # [0]. Given an object [r]4 , and a morphism
YA — A, let J(y, r) denote the set of @l j € w(n) withr;(x) < 1 for some
x € Im(|y]), where || isthe map |A’| — |A|. A morphism [n'] 4/ ,» — [n]ariSa
pair consisting of amorphismy : A’ — A in R andamorphismy : [n'] — [ry]in
A, where J = J (¢, r), which satisfy the following condition: if ¢ isassociated with
apair (f, a) as above, then r;- = |y *(rpy) fordl j € o).

Furthermore, we set

4, =1{G, 0 e |Alx [0, 10" | fio.. . tin, = ri(x), 0<i < p)

and denote by M7} . the semiring of continuous functions on 7 . generated by all
functions from M4 and the coordinate functions ¢ — t;;. Given amorphism (y, ) :
[n']4, — [n]a., as above, the corresponding map E"',’r, — Zf” takes a point
(x",¢') to the point (x, ¢), where x = ||(x") and (8) if i & J(¢, r), thens;; = 1for
alo < j <nj, (b) ifi € J(l//, r)\Im(f), then lij = ri (x) fOFj = (Xl‘(O) and tij = 1
for j # «;(0),and(c)ifi e Im(f),thent;; = t}—1<i>,a.—l(j) forj e Im(e;) ands;; =1
for j € Im(e;). Inthisway we get ageometricrealizétion functor Ag — Top¥.

2.3 Connections between the categories Ag and R

First of dl, thereis a fully faithful functor 2 — Ag : A — [0]4.1 and a functor
Ag — R :[n]a, — A. Thelatter makes A s afibered category over the category
R in the sense of [SGA1L, Exp. VI] and can be seen using the following general
construction.

Let R’ be another small category provided with a functor R — Jop¥ : A’
(|A’|, M 4/), and assumewearegivenafunctor R’ — R : A’ — A and amorphism of

functors from R’ to Jop¥: (|A’|, M 4/) kg (JA|, M4). Then one can define a functor
Ag xg R — Ag : ([nlar, A) — [na .

wheren' =n;,r' =hi(ryj)andJ = {j e w(n) | rj(x) < 1forsomex e Im(h,)}.

(Thetruncation r ; hasthe same meaning asn;.) Noticethat thereisanisomorphism

of functorsfrom Az x 2 R’ to Jop¥: =",

o B XA AT
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2.3.1 Examples. (i) Given an object A € Ob(R), let {A} denote the category
consisting of one object A (with only identity morphism) provided with the following
functor to 7op¥: A — (|A|, M4). The above construction, applied to the canonical
functor {A} — R, gives an equivalence of categories Az x g {A} = Aqay.

(i) Given amorphism ¢ : A’ — A in R, the above construction, applied to the

functor {A’} - R : A’ — A and the morphism (|A’|, My/) i (A, Ma), givesthe
inverse image functor ¥* : Ag xg {A} — Ag xg {A’} that makes A z a fibered
category over R.

(iii) Given an object A € Ob(R) and apoint x € |A], let {x} denote the category
consisting of one object x (with only identity morphism) provided with the functor
to Jop¥: x — (x, My), where M, = {f(x) | f € M4}. The above construction,
applies to the functor {x} — R : x — A and the canonical morphism (x, M) —
(IAl, M), givesafunctor Ag xg {A} = Agy).

Recall that one can associate with each small category £ a partially ordered set
O (L) (see[GaZi, Ch. 11, 85.1]). Namely, it isthe partially ordered set associated with
the set Ob(.L) provided with the following partial preorder structure: C < D if there
isamorphismC — D. Asaset, O (L) istheset of equivalence classesin Ob(.L£) with
respect to the following equivalencerelation: C ~ D if there are morphisms C — D
and D — C. The partialy ordered set O (L) can be considered as a category so that
the map Ob(L) — O (L) isthe underlying map of the evident functor £ — O(L).
A functor O(£) — £, whose composition with the latter is the identity functor on
O (L), will besaid to be asection of £ — O(L).

The following simple lemma describes the partially ordered set O([r]a,,), as
sociated with the category Ar/[n]a r, in terms of the partialy ordered set O (A),
associated with the category R/A. First of all, we notice that, given [r] 4, and two

morphisms A” LA i A,onehas J(y o o, r) C J(¥, r) and, in particular, the
subset J (v, r) depends only on the equivalence class of ¢ in Ob(R/A). We also say
that a non-empty subset C C [n] = [no] x --- x [n,] is of the direct product type
if C = Co x --- x Cp, where C; isthe image of C under the canonical projection
[n] — [ni].

2.3.2 Lemma.

(i) Thereis a one-to-one correspondence between O ([r]4 ) and the set of pairs
(¢, C) consisting of an element v € O(A) and asubset C C [n,] of thedirect
product type, where J = J(y, r);

(i) W',CH < @”, Cc”yifandonlyif ' < v and C’ is contained in the image
of C” under the canonical projection [r ;] — [n/], where J' = J(¥/, r) and
J"'=JW", ),

(iii) any section O(A) — R/A of the functor R/A — O(A) can be lifted to a
section O([nla.r) = Ar/[n]a r Of thefunctor Ag/[n]a,r — O([R]A.r).
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Proof. Given amorphismy : A’ — AiIinR,letJ = J(,r) = {0 < jo <

- < jq < p}. Foranon-empty subset C = Co x --- x C4 C [ny], let n€ bethe
tuple consisting of the numbers #C; — 1 that are greater than zero, and let r€ be the
corresponding subtuple of . Then the canonical injective maps C; — [n ;] define
amorphism sy ¢ : [n€1y ,c — [nlar in Ag. Itiseasy to see that, when ¥ runs
through a system of representatives of O(A) in Ob(R/A), the morphisms 1y, ¢ run
through a system of representatives of O([n]a ) in Ob(A/[n]a ), i.€., (i) is true.
The statements (ii) and (iii) also easily follow from the construction. O

Assumethat R has a structure of a symmetric strict monoidal category, i.e., there
is a multiplication bifunctor R x & — R : (A’, A”) — A'nA” which satisfies
certain conditions (see [Mac, Ch. VI1]). Assume also that the canonical morphisms of
partially ordered sets O (A") x O(A”) — O(A’nA”) areisomorphisms, and that there
is an isomorphism of functors from R x R to Top¥: (|A|, Ma)) x (|A”|, Mar) —>
(|JA'mA”|, M grna7). Then this structure is naturally extended to the category A z and
the same properties also hold. Namely, the multiplication bifunctor Agx x Ag —
Ag : (0]a e, [0"]ar ) > [0lay = [0']a p0ln”]an 0 is defined as follows:
A=AvA"and(@n=n"andr =¢,if (k"] =[0], )n =n"andr =", if
[']=[0],and(C)n = (ng, ..., n;’,,ng, conlyadr = (g, .1y, r;’,/),
otherwise. Thefirst property follows from Lemma 2.3.2, and the second one follows
from the definition (of (X} ., MY ).

2.4 R-colored polysimplicial sets

The category of R-colored polysimplicial sets is the category A%, &ns. By 8§2.1,
there is a geometric realization functor A%, Ens — Jop¥ : D — (|D|, Mp) which
commutes with direct limits and extends the functor [n]4 , +— ():f”, M;’“).

The functor representable by an object [n]4 , € Ob(A ) isdenoted by A[nr]a ,

and, for D € Ob(A%Ens), the image of [r]a,, under D is denoted by Dﬁ,n- One

evidently hasHom(A[nl4 -, D) = DZ,n and, therefore, thereisacanonical bijection
between the set [ [ D7, , of polysimplices of D and the set of objects of the category
Az/D. In particular, there is an equivalence relation on the set of polysimplices of
D, and the set of equivalence classesis provided with a partia ordering. It isdenoted
by O(D). Noticethat O(A[n]a ) coincideswith the partially ordered set O ([r]4 )
considered in §2.3. The correspondence D +— O (D) isafunctor from A7, Ens to the
category of partially ordered sets @ r, and thisfunctor commutes with direct limits (cf.
[Ber7, 3.3]).

There is afully faithful functor Az-gns — AR Ens : [n]lc,r — Alnr]c, Which
commutes with direct limits and extends the functor Agr — ALEns : [n]a, —
Alnla . Namely, Aln]c,, is the polysimplicial set D with the property that, for
[m]as € Ob(Ag), Di"m is the set of pairs consisting of an element ¢ € C4 and a
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morphismy = (f,«) : [m] — [n;]inAwithl =I(c,r) ={i e w(n) | r;(x) <1
for some x € Im(o.)} suchthat s; = o (ry () foral j € w(m).

2.4.1 Lemma. Thereisacanonical isomorphismof functorsfrom A z-¢,s to Top¥:

(Alrlcrl. MAme,) = (S& ., ME,) .

Proof. If n = (no,...,np) andr = (ro, ..., rp), then

22, ={(x.0) € [C] x [0, 0" | ti0...tin, = ri(x), 0<i < p}
and M¢. . isthe semiring generated by M¢ and the coordinate functions z;;. On the
other hand, there are canonical isomorphismslim R4 — C andlim A[n;]4.,, — D,
where both limits are taken over the categorﬁ% /C (whose obj_e)cts are morphisms
Ra > C) and I = I(c, r). The required isomorphism is defined by the canonical

mapsZ > X7, that take apoint (x, t') to the point (o, (x), t) with#;; —t and
t,,_lforaIIO<]<nl,|fzelandz¢I respectively. O

Thecanonica functor Ag — R°Ens : [n]a , — R4 Canbeextended toafunctor
ARéns — R°€ns : D — D

which commuteswith direct limits. (Itisleft adjoint tothefunctor R°&ns — A% Ens
induced by the functor [7]ar +— A.) One can describe D as follows. leen
A € Ob(R), let D, denote the set of the polysimplices of D over A, i.e., the union
uD’, , taken over al [n]s,, € Ob(Ag). Since Ag is afibered category over R,
the correspondence A — D, is an object of R°Ens. We provide the set D4 with
the minimal equivalence relation with respect to which any two elementsd, d’ € Dy
with the following property are equivalent: d € DY, ,, d’ € D;‘/’n/ and there exists a
morphismy : [n']4 ,» — [n]a r Over theidentity morph|sm of Awithd' = D(y)(d).
Then D 4 isthe quotient of D4 with respect to the above equivalencerelation (i.e., D4
is the set of connected components of D 4). The following properties of the functor
D — D easily follow from the construction.

2.4.2 Lemma.

(i) For every C € Ob(R°&ns), thereisa canonical isomorphism A[n]c , = C:

(i) the functor D +— D makes AR Ens afibered category over R°&ns, namely,
givenamorphismy : C — D in R°&ns, theinverseimage y* D isasfollows:
W*D)y , = Dy, x5, Ca;

(iii) the structure of a fibered category A% &ns over R°Ens extends that on A g
over R. O
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Notice that the canonical surjective projections £ | — |A| giveriseto functorial
surjective projections | D| — |D].

3 R-colored polysimplicial setsof length [

3.1 Thecategory Ag,;

Let R beanontrivial submonoid of [0, 1] that contains 1. (In §3.5, it will be assumed
that 0 ¢ R.) We can consider R as a semiring of continuous functions on a one point
space. If R isaone point category and X is the functor that associates with the only
object of R the above space, then A » is the category A g introduced in [Ber7, 84].
Weiteratethisconstruction by setting Az 1 = Ag and Ag; = Ay, , fori > 2. We
also denote by X ; the corresponding functor Az ; — Top¥.

We represent objects of the category A r ; aspairs [n], of the following form, and
we denote the image of [n], under the functor X, by (27, M;). Firstof dl, nisa
tuple @@, ..., n®) with (D] = [n{’] x - - x [n))] € Ob(A). Furthermore, r isa

tuple(r®, ..., rdywithr® = ({7, ..., ri) of thefollowingtype: iV, ..., ri e

. . <i—1 . . .
R and, fori > 2, r(()l),...,rgi) € Mff,.,l,wheregfl =m?,.. ., nD)andrs =
r®, ..., r®)forl <i <I. Finally, thetuplesr® satisfy theconditionthat r§’ = 1,
if (D] = [0], andrj(.’) + 1foral 0 < j < p;, otherwise. Theobject with[rn®] = [0]
foral 1 <i <1 will bedenoted by [0]1;. One has

n® 0

@)
J

sEo =D, .. D) e 0, 1"k . .x[0, 1)t ‘
r jn

P

_ D) <i-1

where =11 = (¢ .. (=) and M; is the semiring of continuous functions

generated by R and the coordinate functions ¢ +— t](.’}(). Notice that for any morphism

[n'], — [n], the corresponding map Ef,/ — Eﬁ isinjective. By Lemma 2.3.2(iii),
the canonical functor Ag ;/[nl, — 0([&]9 hasasection O([n],) — Ar,/[nl;.
Weset [n| = YI_; [n®|, where [n®| = Zf;ong'l)- Furthermore, let 7 denote
the open subset of Zf that consistsof the pointsasabovewith theadditional conditions
tj(.lo) <1, ...,t](_;)(_,.) <1fordll<i<land0 < j < p; with[r?] # [0]. Itiscalled
J

the interior of £y The boundary 37 of T isthe complement of 3. The proof of
the following lemmaistrivial.

311 Lemma. Ifr € My andr # 1,thenr(x) < 1forallx € 3F. Furthermore, 37
isdensein Zﬁ, and it coincides with the set of points that have an open neighborhood
homeomor phic to an open ball (of dimension |r|). O
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A subset of Ef, which isthe image of theinterior Ef, with respect to theinjective
map X% — Ty that correspondsto amorphism [n'], — [n],, iscalled acell of T2,

The closure of acell will be called acell closure. (It coincides with the image of Zf,/
under the above map.) Notice that acell depends only on the equivalence class of the
morphism [r'],, — [n], in the partially ordered set O([n],). Let O(Z;) denote the
set of cells of ;- provided with the following partial ordering: A < B if A C B.

3.1.2 Lemma. (i) Acell closureisadigoint union of cells;

(i) two distinct cellsare digoint (and, therefore, O(ELE) can be also viewed asthe
set of all cell closures partially ordered by inclusion);

(iii) thereisan isomorphism of partially ordered sets O ([n],) — O(Z}).
Proof. Assumethat the statementsaretruefor / — 1. By Lemma3.1.1(ii), to prove (i),
it sufficesto verify that =7 isadigoint union of cells. First of al, if [2)] = [0], then

<

~ <i-1
Py Efg,fl , and the required fact for [n], easily followsfromthat for [n=/"1],<-1.
Assume therefore that [n)] # [0], and let ¢ € %;. To show that the point ¢ is

o p<I-1
contained in acell, we may assume, by theinduction hypothesis, that t=/-1 € %, .
=

ForO <i < p;,let C; denotethesubsetof al j € [nl(l)]withtl.(;) < 1. (Thesubset C; is

non-empty since " (¢=/~1) < 1) Furthermore, let J bethesubset of all j € w(n?)
with#C; > 1, andlet m bethetuple of the numbers#C; — 1for j € J,if J # ¢, and
m = (0), if J = ¢. Thenthe sets C; defineamorphism [m] — [n]in A. Let s be
the tuple of thefunctionSry) forj e J,if J #0,ands = (1), if J = @. Thenthereis
awell defined morphism [r'],s — [n], in Ak, where [Q/Sl_l]r/gl—l = [n="1], <,
7' =mandr') =5, and the point ¢ is contained in the cell that correspondsto this
o ,<I-1
morphism. Notice that in this way we described all cells of £y over X7, ,, and all
of them are pair-wise digjoint, i.e., (i) and (ii) are true. The statement (iii) now easily
follows from the induction hypothesis and Lemma 2.3.2. O

Notice that the symmetric strict monoidal category structure on the category A g
inthe sense of [Mac, Ch. VII], defined in [Ber7, 83], extends naturally to the category
A g . Namely, themultiplication bifunctor Az ; x Ag = Agy ([0, [0"]p) —
[n], = [0/]p0ln"], is defined as follows: (@) (@] = 2" and r@® = ",
it (0”1 = (0], (0) (V] = (V) and rd = O, if [n"”] = [0], and (c)
n® = (n/g), ...,n/g;,n”é’), ...,n/gl{),) and r) = (r/g), e, /25), ”8), ...,r/;’;)/ ,
otherwise. Notice aso that there is a canonical isomorphism of partially ordered
sets O([n'],) x O(n"l,)) = O(nl,) and of objects of TopS: (2%, M™) x

K/ b
(25, My,) — (57, MP),
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3.2 R-colored polysimplicial sets of length [

The category of R-colored polysimplicial sets of length / is the category A% ,&ns
of contravariant functors from A to the category of sets Ens. If R’ is a bigger
submonoid of [0, 1], there are fully faithful functors Az ; — Ag/; and A% Ens —
A% Ens. The standard r-colored n-polysimplex A[n], is the functor representable
by [n],. If D € Ob(A% ;Ens), theimage of [n], under D is denoted by Di (the set
of r-colored n-polysimplices of D). One evidently has Hom(A[n],, D) — Dy and,
therefore, there is a canonical bijection between the set | | Di of all polysimplices of
D and the set of objects of the category A ;/D. In particular, thereis an equivalence
relation on the set of polysimplicesof D, and the set of equivalence classesisprovided
with apartial ordering. It isdenoted by O (D). Noticethat O (A[n],) coincides with
the partially ordered set O ([n],). The correspondence D — O(D) isafunctor from
A% ;€ns to the category of partialy ordered sets Or, and this functor commutes
with direct limits. A polysimplicial set is said to be finite if it has a finite number of
polysimplices. Itissaid to belocally finite if each polysimplex is contained in afinite
number of other polysimplices (i.e., the corresponding element of O (D) is smaller
than at most a finite number of other elements of O (D)).

The dimension of a polysimplex d € Di is |n|]. Notice that it is equa to the
topological dimension of Ef Letm > 0. Them-skeleton Sk™ (D) of apolysimplicial
set D is the polysimplicial subset of D which is formed by the polysimplices of
dimension at most m. We also set Sk=1(C) = . For example, Aln], = SK™(A[n],),
where m = |n|, and we set A[n], = Sk”~1(A[n],) (the boundary of A[n],). For
de Di, let G, denote the stabilizer of 4 in the automorphism group Aut([z],).

321 Lemma. Let P™ be a set of representatives of the equivalence classes of
polysimplices of D of dimension m. Then the following diagram is cocartesian:

[y pn Ga\Alnyly, — Sk"=1(D)

[aepn Ga\Alnylr, — SK™ (D).

Proof. Let E be the cocartesian product, and let N and S denote the polysimplicial
sets at the north-west and the south-west of the diagram, respectively. Given [n],, if

In| < m, one evidently has Ny — Sy and Sk”~1(D); — Sk™(D)y and, therefore,
Ey — SK"(D)y. On the other hand, if |n| = m, then Ny = Sk"~X(D); = ¢ and
Si — SKk™(D)y; and, therefore, E — Sk™ (D). O
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The canonical functor Ag; — A%y ,_,€ns : [n], — Aln='"1],<1 can be ex-
tended to afunctor

A% Ens — A _18ns: D> D1

which commutes with direct limits. (It is the functor D — D from §2.4) By
Lemma 2.4.2, the |atter functor makes A% ;Ens afibered category over Ay ; ,&ns
which is compatible with the fibered category structure of Ag; over Ag j_1.

The symmetric strict monoidal structure on the category Ag; is naturally ex-
tended to the category Ay, ,€ns, i.e, there is abifunctor A% ,&ns x Ay Ens =
A% Ens o (D', D") > D'oD" that commutes with direct limits and extends the
functor ([n'],, [r"],») — [r'],.0[n"],~. Oneeasily seesthat the canonical morphism
D'sD” — D’ x D" isinjective and that there is an isomorphism of partially ordered
sets O(D') x O(D") = O(D'vD").

The functor Ag; — Jop¥ : [r], — (=, M;) can be extended to a geometric
realization functor Ay Ens — Jop¥ : D — (|D|, Mp) which commuteswith direct
limits. Notice that there are functorial projections (|D|, Mp) — (|D=!Y|, Mp<i-1),
which are surjective on the underlying topol ogical spaces, and that there are functorial
bijective continuous maps |D'oD”| — |D’| x |D”|.

3.3 Elementary functions

Given asemiring M of continuous non-negative real valued functions on atopological
space X, we say that a nonzero function f € M is elementary if it possesses the
following property: if f = max(g, k) (= g+h) for some nonzero g, h € M, then
either f = g or f = h. The subset of elementary functions in M will be denoted
by e(M).

3.3.1 Proposition.
(i) Given f, g € e(Mf), if fly = gly for a non-empty open subset U C ELE, then
f=g

(i) given anonzero f € My, there exists a unique finite subset { f;}ic; C e(My)
such that f = max;c;{f;}, but f #= max;c;{f;} for strictly smaller subsets
J ClI.

3.3.2 Lemma. For every [r], € Ob(Ag;) different from [O]1;, the object
(=7, M) of Jop¥ is isomorphic to an object (Eff, Mf/) with the tuple n’ of the
form ((1), ..., (1)) (of length |n|). -

Proof. We may assume that [n)]  [0] for al 1 < i < I, and we notice that
there is an evident isomorphism (S7, M;) — (E5, My;), where n’ and r’ are the
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1 1 2 1 1 1 2 !
twples((ng). ... (). (0§, ... (g and (g, .. g, 6L (rp)))
of length 3!_,(p; + 1). Thus, we may assume that all p;’s are zero, i.e, n =
(D), ...,y and r = (¢D), ..., ¢?)). We now notice that the equation
fo...1, = r isequivalent to the system of two equations ro. .. 1,—2-t, ; = r and

tae1 -ty = t'_1. Thus, if n® > 1for somel < i < [, then (I}, My) —
(=%, M™), wheren’ and r’ arethetuples (. ..., (n=D), (1D — 1), (1), (n+D), ...

and (..., (r@=D), r®), @ o_p (r@+D), . ..). Repeating this procedure, we con-
struct the required isomorphism. ]

Proof of Proposition 3.3.1. Lemmas 3.1.1 and 3.3.2 reduce the proposition to the
verification of the following fact.

Assume we are given an object (X, M) of Top¥ , which possesses the properties
(i) and (ii). Givenafunctionr € M suchthattheopenset V ={x € X | r(x) < 1}is
densein X, weset X’ = {(x, to, 11) € X x [0, 1)? | 19~ #1 = r(x)}. Let M’ denotethe
monoid of continuous functions on X’ generated by M and the coordinate functions
to and t1, and let M denote the semiri ng of continuous functions generated by M’.
(Noticethat e(M') c M')) Then

(1) every nonzero function from M’ has a unique representation in either the form
ftgt ortheform f1f with f € M\{0}, m > Oandn > 1,

(2) the elementary functions among them are precisely those with f € e(M);
(3) the semiring M possesses the properties (i) and (ii).

Notice that the statements (1)—(3) hold when X is a one point space and that the
canonical projection : X’ — X isan open map. That any nonzero function F ¢ M’
isof theform consideredistrivial. Theform of therestriction of F to thefiber 7 ~1(x)
of apoint x € V isunique and, since V isdensein X, we see that the form of F is
unique, i.e, (1) istrue. If F isof the form from (1), let us cal the function f € M
the base of F.

Assume the restrictions of two nonzero functions F, G € M’ to a non-empty
open subset U’ C X’ coincide. Then for every point x from the non-empty open set
U = 7(U")NV therestrictionsof F and G to 7 ~1(x) coincide. It followsthat F and
G have similar forms and for their bases f and g onehas f|y = g|y. It followsthat
f = g,i.e, (i) istruefor the nonzero functionsfrom M’ with an elementary base. Let
E denote the latter class of functions. It isclear that any nonzero function from M is
the maximum of afinite set of functions from E and, in particular, e(M/) C E.

Assumethat for F € E onehas F = max{F1, ..., F,}with F1,..., F, € E and
that the family F1, ..., F, isminimal. Then there exists a non-empty set U’ C X’
suchthat F1(x") > F;(x")foralx’ € U'and2 < i < n. Itfollowsthat F|y = Fi|y-,
and the validity of the property (i) for functions from E impliesthat F = Fy, i.e,
E = e(M) and (2) istrue.
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Assume now that max{Fi, ..., F,,} = max{Guy, ..., G,} for F;, G; € E and that
the families of functions on both sides are minimal. Given 1 < i < m, there exists
a non-empty open subset U’ ¢ M’ such that F;(x') > Fi(x) foral x’ € U’ and
k # i. Furthermore, we can find 1 < j < n and a non-empty open subset U” c U’
suchthat G;(x') > G;(x") forall x’ € U” and [ # j. It followsthat F;|y» = G j|y»
and therefore F; = G;. Hence, {F1, ..., F} C {G1,..., G,}. By symmetry, the
converse inclusion also holds, i.e., (3) istrue. O

3.3.3 Corollary. The set e(Mf) consists of the functions which can be uniquely
represented in the form of a product A ]—[(,J(,Q)a;'k) taken over all 1 < i < [ with
n®]£[0,0<j<piand0<k < ny), where » € R\{0} and a;ik) € 7, aresuch
that for everyi and j thereisk with aﬁ-ik) =0. O

3.3.4 Corollary. The family of cell closuresin Ef coincides with the family of all
non-empty subsets of the form {x € ELE | f(x) =1} with f € e(Mf). In particular,
any isomorphism (y, My) — (Ef,/, M) in Fop¥ gives rise to an isomorphism of
partially ordered sets O ([n],) = O(Ef) > O(Zf,/) = 0([n']y).

Proof. Assume that the statement is true for / — 1. To prove the direct implication it
<l-1
sufficesto consider the cells of Ef over theinterior of Zfs,,l . Such acell corresponds
to asubset C ¢ [n?] = [ng)] X e X [nﬁfl)] of the form Cop x --- x Cp, with
Ci C [nl@], and its closure coincides with the set {x € Ef | f(x) = 1)} for the
elementary fun(_:tion f=T1"11 igc; _tl.(]l.). To prove the.converse implication, it
suffices to consider an elementary function f represented in the form of Corollary
3.3.3 with A = 1anda5.’k) =0fordll<i<I-1 For0<i < p, weset

Ci={j en’]|a} =0} Thentheset {x € =} | f(x) = 1} coincides with the
closure of the cell that correspondsto thesubset C = Co x --- x Cp, C [nV]. O

3.4 Hausdorffness of the geometric realization

3.4.1 Proposition.  For every D € Ob(A% ,&ns), the topological space |D| is
Hausdorff.

3.4.2 Lemma. The morphism A[Q]L — A[n], induces a homeomorphism

|Alnly| > =5
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Proof. Step 1. Fori > 0, we define as follows a subset P; of the set of cells of Ef:
Py = {iﬁ} and, fori > 1, P; isthe set of maximal cells in the complement of the
union of all cells from Ui;% P;. Let P; denote the set of the closures of cells from
P;. (Recall that themap P, — P; : A — A isabijection.) We claimthat

(a) every cell from P, is contained in exactly two cell closures from Py;

(b) if a cell A iscontainedin BN C for B,C € Py with B # C, then there
exist By = B,By,...,By = C € Pyand Dy,...,Dy_1 € P> such that
A C DiN---NDp_1and D; C B;NB;x 1 wWithB; # B;1foralll <i <k—1

Indeed, assume the claim istruefor [ — 1. By Lemma 3.3.2 and Corollary 3.3.4,
we may assumethat n® = (1). Letm = n='"1, s = r='-1,r =’ and § = ="
One has Zf = {(x, 10, 1) € Sx]0,1]% | 19 - #1 = r(x)}. Let 7 denote the canonical
projection ¥y — X5+, and let Q; and Q; denote the sets of cells and cell closures
in 5" similar to P; and P;. For X € Q;, the preimage = ~1(X) isadigoint union
of three cells X’ € P;, X° € Py (defined by 10 = 1) and X* € P, ;1 (defined by
n=1),ifrly # 1, andisacell X € P41,if r|x = 1. For Y = X, wedenoteby Y’,
Y0, vl and Y theclosuresof X', X0, X! and X, respectively. For example, S' = =7
We now verify (a) and (b) case by case.

(@ LetAe P If A= Xfor X € Q1 withr|y = 1, then A iscontained only in
S%and S If A = X' fori = 0,1and X € Q1 withr|x # 1, then A is contained
onlyin X’ and S. If A = X’ for X € Q, withr|x # 1, then A iscontained only in
Y'and Z', where Y and Z are the cell closures from Q4 that contain X.

(b) Assume first that B = % and € = S*. Then A = X for acell X in S with
rlx = 1. LetY beacell closurefrom Q; that contains X. If r|y = 1,thenY € P2 and
AcCY cSonst ifrly #£1,thenY® ¥l e Py, ¥’ € Py,andonehasA c YOnv?,
YOc S9Ny and vyl c Y ' n St Assumenow that B = S and C = Y/, where
Y € 01. ThenY® € Py, andonehas A ¢ Y0 c $°NY’. Assumefinaly that B = Y’
andC = Z'withY,Z ¢ 04, and let X betheimageof AinS. If r|x = 1 (and,
therefore, A = X), then Y©, Z0 € P,, andonehas A c Y°nN z% v° c v’ n s%and
70 c $9nZ'. Ifr|x # 1, weapplyinductionandfindYy =Y, Y2, ..., Yy =Z € 0,
and Vi,..., Vi1 € Qpsuchthat X ¢ Vin---NVi_gand V; C Y; N Y41 with
Y; #Yipaforal1<i <k—1 Sincer|y, # 1,then V/ € P, and Y/ € Py, and one
hasAcVvin---NnViandV/ CcY/nY/ fordll<i<k-1

Step 2. Let usfix asection O(Z7) = O(lnly) — A/n)y : A — (nyly, —
[n],) of the canonical functor A g ;/[n], (See Lemma2.3.2(iii)). By Step 1, for every
cell B € P, there are exactly two cells By, B, € Py with B < B; and B < By. We
claimthat thereis a canonical isomorphism of polysimplicial sets

Coker( ]_[ Alnglr, = ]_[ A[’lA]LA> = Alnl,

BeP» AePy
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where the upper and lower morphisms are induced by the canonical morphisms
(nplr, — [np]lr, ad[ngly, +— [ng,lr,  respectively. Indeed, let C denote
the cokernel. From Step 1 it follows that the morphism C — A[Q]L induces an iso-
morphism of partially ordered sets O (C) — O(A[Q]L). The claim now followsfrom
the following simple observation. Given a morphism of polysimplicial setsC — D
which induces an isomorphism of partially ordered sets O (C) = 0(D), assume that
the stabilizer of every polysimplex d € DLQ inAut([n],) istrivial. Then C = D.
Thestatement of thelemmanow followsfromthefact that the geometric redlization
functor commutes with cokernels. O

3.4.3 Corodllary. Inthesituation of Lemma 3.2.1, the following diagram of topol og-
ical spacesis cocartesian:

Liepn Ga\Ery —= |SK"2(D)|

|

Lyepn Ga\Zr! — |SK™(D)].

Proof. The statement follows from Lemmas 3.2.1 and 3.4.2 and the fact that the
geometric realization functor commutes with direct limits. O

Proof of Proposition 3.4.1. By Corollary 3.4.3, the canonical map |Sk”~1(D)| —
|Sk™ (D)| identifiesthefirst space with aclosed subspace of the second one. It follows
also that asubset U C |Sk™(D)| isopenin |Sk™(D)| if and only if the intersection
U N [Sk™L(D)]| is open in [Sk™~1(D)| and the preimages of U under all maps
$rd — |Sk™(D)| that correspond to the polysimplicesd € P™ are open in ;.
Given a polysimplicial set C, let us say that two subsets U, V C |C| are strongly
digoint if the closures of their preimages in Ef‘ are digoint for every ¢ € C. We
claimthat

(a) given strongly disjoint open subsets U, V C |Sk”~1(D)], there exist strongly
disoint open subsets U/, V' ¢ |Sk”(D)| with W N |Sk"~Y(D)| = U and
V' Nsk D) =v

(b) given an open subset U C |Sk’” L(D)|, apolysmplexd € P™,andaset X in
the image of the interior 24’ under the corresponding map ):4 — |SK™(D)|

such that the preimage of X in Ej isrelatively compact, there exists an open
subset U’ C |SK™(D)| with U’ N |SK”~1(D)| = U which is strongly digjoint
from X.

(a) For apolysimplex d € P™, let U4 denote the preimage of U in Gd\igj.
Since the closures of U and V(4 are digoint and Gd\ij is a compact space,
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it contains open subsets U@ and V@ whose closures are digoint and such that
UD N (Ga\Zr) = Uy and VD N (Ga\3r?) = Vi) The required sets U’
and 'V’ are constructed as the unions of the images of U@ and V@ in |Sk™(D)|,
respectively, taken over al d € P™.

(b) For the given polysimplex d, we can find an open subset U ¢ G4\ 2, with
UD N (G4\Er?) = Uqy and such that its closure does not intersect with the closure
of the preimage of X in Gd\)ojfj. If e isapolysimplex from P™ different from d,
we take for U‘®) an arbitrary open subset of Gd\Efj with U© N (Gd\ifj) = U
The required set U’ is the union of the images of U@ and U© in |Sk™(D)| taken
over e € P™ different fromd.

Step 2. | D] is a Hausdorff space Let x and y be two distinct points of |D| They
are contained in the images of Es and Z, underthemapszs — |D] and E, — |D|
that corresponds to (unique) polysimplicesd € P™ ande € P". Assumethat m < n.
First of all, to construct disoint open neighborhoods U’ of x and V' of y in |D]|,
it suffices to construct strongly disjoint open neighborhoods U of x and V of y in
|Sk™(D)|. Indeed, if U and V are aready constructed then, by Step 1(a), there exist
increasing sequencesof subsetsU, = U C Up41 C---andV, =V C V1 C -+
suchthat U; and V; areopen and strongly disjointin [Sk’ (D)], U;+1N|SK (D)| = U,
andV; 11N Sk (D)| = V;. Since|D|isadirect limit of the spaces | Sk (D)|, it follows
that the unions U’ and V' of al U; and V;, respectively, are open and diointin | D|.

Assume first that m = n. By Corollary 3.4.3, |Sk™(D)|\|SK"~1(D)| isadisjoint
union of open subsetsof |Sk™ (D)|, which areevidently Hausdorff and locally compact,
and therefore any two open neighborhoods of x and y with digoint closures are also
openandstrongly digointin |Sk™ (D)|. Assumenow thatm < n. Let U beanarbitrary
open neighborhood of the poi nt x in |Sk"~1(D)|,and let V bean open nei ghborhood
of the point y in the image of Z, in |Sk™(D)| such that the preimage of V in E, is
relatively compact. By Step 1(b), there exists an open subset U’ c |Sk™(D)| with
W N |SK"~1(D)| = U which is strongly disjoint from V, and we are done. O

A subset of | D|, whichistheimageof theinterior 31 under themap =r — | D| that
corresponds to a polysimplex d e Di, iscalledacell of |D|. Corollary 3.4.3implies
that such a cell is homeomorphic to Gd\|ifjj| and that |Sk™ (D)|\|Sk”~1(D)| isa
digioint union of the cellsthat correspond to polysimplicesfrom P™. Proposition 3.4.1
implies that the closure of the above cell in | D| coincides with the image of Eﬁ in
| D|. Such a compact subset of | D| iscaled acell closure. Let O(|D]) denote the set
of cellsof | D| provided with the following partial ordering: A < B if A C B.

3.4.4 Corollary. (i) Acell closureisadisjoint union of cells;

(if) two distinct cellsare digoint (and, therefore, O (| D|) can be also viewed asthe
set of all cell closures partially ordered by inclusion);

(iii) thereisan isomorphism of partially ordered sets O (D) — O(|D|). O
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3.4.5 Coradllary.

(i) Givenaninjective morphismof polysimplicial sets D’ — D, the corresponding
map |D’| — | D| identifies | D’| with a closed subset of | D|;

(i) for any polysimplicial set D, there is a one-to-one correspondence between
polysimplicial subsets of D and the closed subsets of | D|, which are unions of
cells. |

A polysimplicial set D is said to be free if for every polysimplex d € Di the
corresponding morphism A[n], — D isinjective. Notice that every polysimplicial
set that admits a morphism to free polysimplicial set is also free.

34.6 Lemma. If D isafreepolysimplicial set, the following properties of a mor-
phism D’ — D are equivalent:

(8 themorphism D’ — D isinjective;
(b) themap |D’| — |D| identifies | D’| with a closed subset of | D|;
(c) the map of partially ordered sets O(D’) — O(D) isinjective.

Proof. The implications (8)==-(b) and (b)==-(c) follow from Corollaries 3.4.5(i)
and 3.4.4(iii) (and do not require the assumption on D). Assume (c) istrue, and let
two polysimplices d1,d» € D’; have the same image d in Di Then there is an
automorphism y of [r], with D'(y)(d1) = d» and, therefore, D(y)(d) = d. Since D
isfree, y istheidentity automorphism and, therefore, di1 = do. O

Recall that aKelley space isaHausdorff topological space X possessing the prop-
erty that a subset of X is closed whenever its intersection with each compact subset
of X isclosed. For example, every locally compact spaceis Kelley. Proposition 3.4.1
impliesthat thegeometricrealization | D| of any polysimplicial set D isaKelley space.
Itislocaly compact if and only if D islocally finite. Given polysimplicial sets D’
and D", there is a homeomorphism |D'oD”| = |D’| x |D"|, where the latter direct
product is taken in the category of Kelley spaces.

3.5 A piecewise Ry, -linear structure on the geometric realization

In this subsection we assume that the monoid R does not contain zero. In this case,
¥; isevidently an Rz, -polyhedronin (Ri)[”m] X e X (Ri)["”)]. The semiring M;
is generated by R and the coordinate functions and, in particular, all functions from
M; are piecewise Ry, -linear. We remark that one can easily see, by induction on /,
that the inverse of any coordinate function on Ef is piecewise Ry, . -linear.
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Given a function f € Mf, let {fi}icr be the finite set of elementary function
from Proposition 3.3.1(ii) that are associated with f. Fori € I, we set V;(f) =
{x € ELE | fitkx) = fj(x) fordl j e I}. (Notice that each V;(f) contains a point
x with fi(x) > fj(x) foral j # i) Weseto(f) = {V;(f)}ies and, for a subset
F = {f1,..., fn} C My, we denote by o (F) the family of al sets of the form
Vin-.-NV, withV; a}f,-). Noticethat theunion of all V € o (F) coincides with
7. Finally, wesat Fi* = (r"1<i<i.0<j<p; and of = o (Ff).

35.1 Lemma. Let F bealfinite subset of M; that contains F;". Then

(i) every V e o(F) isan Rz -polytope, and the restriction to V of each function
from the monoid generated by F and the coordinate functions is Rz, -linear
onvV,

(i) ifU,V eo(F),thenU NV isafaceinU andin V;
(iii) if X isacell closurein ELE andV € o(F),then NV isafaceof V.

Proof. (i) The set V is defined in [0, 1]®1 x ... x [0, 1]™“1 by the following

equalities a_nd inequaliti&cfor dll <i<I,0=<j<padjf e F: (1

t](.’o)(x) ) "tj('ln)(.") (x) = rj(.l)(x), and (2) fi(x) > fr(x) for some k and all ¥/, where
J

{ fr} isthefinite set of elementary functions associated with f. Since D e F and
is the maximum of the corresponding fi's, (2) implies that (1) is equivalent to the
equality t](.’o) x)... t]('ln)“) (x) = fx(x), and the statement follows.

(if) The pontop&e] U and V are defined by the same equalities (1) and similar
inequalities (2) with different k’'s, and their intersection U N V is defined by the
additional equalities of the corresponding elementary functions f;'s. It follows that
UnVisafaceinU andinV. _

(iii) Since X is defined in ELE by theequalitieSt](.’k) = 1for somei, j and k (see
Corollary 3.3.4), it followsthat ¥ NV isafaceof V. O

FromLemma3.5.1itfollowsthat thefamily t (F) of al of thefacesof the polytopes
from o (F) is an Rz_-polytopal subdivision of Ef. It follows also that every cell
closure T in Zf isan Rz, -polyhedron and 7 (F)|x isan Ry, -polytopal subdivision
of ¥. The subdivision = (F;") will be denoted by ;.

35.2 Corollary.  Every morphism y : [nl,, — [r], in Ag; gives rise to an
immersion of Rz, -polyhedra =2 — =7, and the restriction of 7, to the image of the
latter givesriseto an Rz -polytopal subdivision of Ef,/, which is a refinement of r;l,/.
If ¥ is an isomorphism, both subdivisions coincide. o

Thus, the correspondence [r], +— ZLE gives rise to a functor from Ag; to the
category of Rz -polyhedrain which morphisms are immersions.
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3.5.3 Proposition. One can provide the geometric realization | D| of every locally
finite R-colored polysimplicial set D of length [ with a unique piecewise Rz, -linear
structure so that

(@ if D = Aln],, itisthe canonical Rz -polyhedron structure on Zf;

(b) for any morphism D’ — D between locally finite R-colored polysimplicial sets
of length /, the induced map |D’| — |D| isa G-local immersion of piecewise
Rz -linear spaces.

354 Lemma.  Assume we are given a piecewise Rz, -linear space X and an
equivalence relation £ on X which is a piecewise Rz -linear subspace of X x X
and satisfies the following two properties:

(1) both projections p1, p2 : E — X are proper G-local immersions of piecewise
Rz, -linear spaces,

(2) for every point x € X, there exist Rz, -polyhedra X1, ..., X, in X with the
property that any two equivalent pointsof X; areequal and suchthat X1 U- - -U
X, isaneighborhood of x in X.

Thenthequotient spaceY = X/ E canbeprovided withauniquepiecewise Rz, -linear
structure such that the canonical map X — Y isa G-local immersion.

Proof. First of al, the space Y is locally compact since both projections p1, p2 :
E — X are proper. Let o be the family of Rz, -polyhedrons U in X such that any
two equivalent points of U are equal. By (2), o is a piecewise Rz_ -linear atlas on
X. Furthermore, let = be the family of the compact subsets V of Y for which there
exists U € o with U = V. Since the fibers of both projections p1, p» : E — X
are finite, it follows that for every point y € Y there exist V1,...,V, € t such
that Vo U ... UV, isaneghborhood of y in Y. Finaly, let V', V" € 1, and let
U,U" €obesuchthat U/ > V' andU” = V”. Theset W = (U x U")NE
is an Rz -polyhedron and, by the assumptions, the projections p1 : W — U’ and
p2 . W — U” areinjective G-loca immersions, i.e., they areimmersions. It follows
that the Rz, -polyhedron structureson V' and V”, provided by the homeomorphisms
with U’ and U", respectively, are compatible on the intersection V' N V”. Thus, t
is a piecewise Rz, -linear atlas on Y, and the canonical map X — Y isa G-loca
immersion. That the piecewise Rz, -linear structure on Y with the latter property is
uniqueis aready clear. O

Proposition 3.5.3 is established using the construction of Lemma 3.5.4 and the
following two simple facts which are proved without the assumption 0 ¢ R.

Givenapolysimplexd e Dy, let E, denotethe equivalencerelation on X5 induced
by the canonical map A, : ¥y — |D|. We consider E, as a subset of X7 x X
Furthermore, for amorphismy : [n],, — [n], in AR, let’y denote the induced map

AD(y)(d) = Ad © Y(y): Zf, — 2L£—> |D|.
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355 Lemma. E, coincideswith theunion U(y, 72)(2%) taken over all pairs of
morphisms y1, y2 : [1'], — [n], With D(y1)(d) = D(y2)(d).

Proof. It isclear that the union is contained in E;. On the other hand, assume that
the images of two points x1, x2 € Eﬁ coincide in |D|. We have to verify that there
exist two morphisms y1, y2 : [r'], — [r], With D(y1)(d) = D(y2)(d) and apoint
¥ e 2% such that x1 = S(y1)(x') and x2 = X(y2)(x'). First of all, let x; and
x2 lie in the célls of Zf associated with morphisms y1 : [n'],, — [n], and yz/ :
[n"],» — [n],, respectively. Since the images of if,, and Ef// in | D| coincide, from
Corollary 3.4.4(iii) it followsthat thereexistsanisomorphisma : [r],/ S [n"],» with
D(y1)(d) = D(y,oa)(d). Thus, replacing y, by y, oo, wemay assumethat [n"],» =

/

[n'],s. Furthermore, let x1 = X (y1)(x") and x2 = X (y5)(x") for somex’, x” € Zf,
Sincetheimagesof thepointsx’ andx” in|D| coincide, from Corollary 3.4.3itfollows
that thereisan automorphism« of [r'], with D(«)(d") = d’,whered” = D(y1)(d) =
D(y5)(d), such that x” is the image of x” under the corresponding automorphism of
Ef,,. Hence, we get the required fact for the morphisms y1 and y» = y; o « and the
point x’. |

Assume that for every 1 < i < I we are given an ordering on the set [n?] =
[ng)] X e X [ngi)]. Let us represent elements of [r)] as pairs (j, 1), where 0 <

jJ<piand0=<pu < n;i), and consider the following subset of Ef

X={x=0Y) ey 2 <xf)for (jow) < kov)in®), 1<i <1}

Notice that the sets of this form cover Ef, but some of them may be empty.

3.5.6 Lemma. If theimages of two pointsx, y € X in|D| coincide, then x = y.

Proof. (A) Given [n'] € Ob(A), the set X has a non-empty intersection with at most
one cell which corresponds to an equivalence class of [n']-polysimplices of A[n],.
(An [n']-polysimplex is an r’-colored [n']-polysimplex for some [r'], € Ob(Ag).)
Assume that the statement istrue for I — 1. We set [m]; = [=/"1],<1 and [m/] =

[Q’fl’l]. Theimage of X under the canonical projection ©; — X" iscontainedina
set of the same type and, therefore, it has a non-empty intersection with at most one
cell which corresponds to an equivalence class of [m']-polysimplices of A[m];. If the
latter cell exists, we may assumethat [m'] = [m]. By Lemma2.3.2, the equivalences
classes of [r']-polysimplicesof A[r], correspond bijectively to non-empty subsets of
[nO] =[] x -+ x [n)] of theform C = Co x --- x Cp, with |Cj,| = ' +1
for0 <k < pyand |Cj| = 1for j & oo dip) Given such a subset C, the

corresponding cell of X} consists of the points x over 3" with x% <1lforpec;
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and x% = 1for u ¢ C;. After apermutation of the coordinate functions {tj(.ij} w, We

may assume that the ordering on the set [r (] satisfies the property (j, u) < (j, v)
for w < v. Hence, if the above cell has a non-empty intersection with X, then
C; =10,...,¢;}, wherec; = ', if j = ji,andc; = O, if j ¢ {Jos sy
Moreover, in this case one has (j,c;) < (k,cx + 1) foral 0 < j, k < p; with
cr < n,(f). These inequalities uniquely determine the sequence co, c1, . . ., ¢, @anong
those obtained from it by a permutation, and this implies the required fact.

(B) By (A), the points x and y are contained in one cell of Ef and, therefore,
the claim follows from Corollary 3.4.3 and the following elementary fact. If, for a
non-decreasing sequence of numbersx; < --- < x, and apermutation o € S, one
hanU(]_) <. ng(n),thenxg(i) =yx;fordll<i<n. O

Proof of Proposition 3.5.3. We apply the construction of Lemma 3.5.4 to the digoint
union X =[] Efj, taken over al polysimplices d of D, and the equivalence relation
E C X x X inducedon X by thecanonical surjectivemap X — |D|. Sincethevalidity
of the properties (1) and (2) follows from Lemmas 3.5.5 and 3.5.6, respectively, we
are done. |

3.5.7 Corollary. Let D be alocally finite R-colored polysimplicial set of length /.
Then

(i) all cellsand cell closures are piecewise Ry, -linear subspaces of | D;

(ii) all functions from M, are piecewise Rz -linear. O

Thus, if D isalocaly finite R-colored polysimplicial set of length /, its geometric
realization |D| is a piecewise Rz, -linear space provided with a semiring Mp of
piecewise Rz, -linear functions and alocally finite stratification by relatively compact
piecewise Rz -linear subspaces, cells, with the property that the closure of a cell,
acell closure, is also a piecewise Ry, -linear subspace and a (finite) union of cells.
Furthermore, given a morphism D’ — D between R-colored polysimplicial sets of
length I, the corresponding map |D’| — |D| is a G-local immersion of piecewise
Rz, -linear spaces that takes functions from Mp to functions from M and induces
a surjective open map from every cell of | D’| to acell of | D|.

3.5.8 Remarks. (i) Itisvery likely that the property (2) in Lemma 3.5.4 always
follows from (1).

(ii) It follows from the remark at the beginning of this subsection that, given a
piecewise Ry, -linear subspace X of the geometric realization |D| of alocally finite
R-colored polysimplicial set D, every pieceMseﬁﬁinear (resp. Rg-linear) function
on X isin fact piecewise Ry, -linear (resp. E@+—Iinear).
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4 The skeleton of a nondegenerate pluri-stable formal
scheme

4.1 Poly-stable fibrationsand pluri-stable morphisms

Let k be a non-Archimedean field whose valuation is not assumed to be nontrivial.
For a strictly k-analytic space X, we denote by ©’(X) the multiplicative monoid of
al analytic functions f € @ (X) for which the Zariski closed set {x € X | f(x) =0}
is nowhere dense in X. If X isnormal (i.e., al strictly affinoid subdomains of X
are normal), then @’ (X) coincides with the set of all f € @(X) whose restriction to
every connected component of X isnot zero. For aformal scheme X locally finitely
presented over k°, we denote by ©'(X) the multiplicative monoid of al f € O(X)
whoseimagein @ (X,) iscontained in O’ (X,).

For an affine formal scheme X = Spf(A) finitely presented over k°, an element
a € A and aninteger n > 0, we set

X(n,a) = Spf(A{To, ..., Ty} /(To... T, — a)) ,

and for m > Owe set X(m) = X(m,1). (If n = 0, we assume that ¢ = 1 and
set X(0,1) = X.) Furthermore, given tuplesn = (ng,...,n,) € ZP*landa =
(ao, - ..,ap) € APTlsuchthatn; > 1andeachq; isnotinvertiblein A,or p = ng =0
and ag = 1, we set

X(n,a) = X(no,a0) Xy -+ xx X(np,ap) .

(If X = Spf(k°), the latter is the forma scheme which was denoted in [Ber7] by
%(n,a).) If, in addition, a non-negative integer m is given, we set X(n,a, m) =
X(n,a) xyx X(m).

Recall ([Ber7, §1]) that amorphism ¢ : ) — X of formal schemeslocally finitely
presented over k° is said to be strictly poly-stable if, for every point y € 2), there
exist an open affine neighborhood X’ = Spf(A) of ¢(y) and an open neighborhood
9 c ¢~ LX) of y such that the induced morphism 2) — X’ goes through an
étale morphism Q) — X'(n, a, m) for some triple (n, a, m) as above. If the latter
morphisms can be found in such away that ¢; € ©'(X’) c Afordl 0 <i < p,
then ¢ will be said to be nondegenerate. Furthermore, ¢ is said to be (nondegenerate)
poly-stableif there exists a surjective étale morphism Q)" — ) for which theinduced
morphism Q) — X is (nondegenerate) strictly poly-stable.

A (nondegenerate, strictly) poly-stable fibration over k° of length/ > Oisa
sequence of (nondegenerate, strictly) poly-stable morphisms

=5 By B ro= s
For the above X, we denote by =/~ the poly-stable fibration (X;_1 *5° - -- 2 %7)

of length! — 1. (Weomit fp and Xo = Spf (k°) if their presence is evident.) Recall
that in [Ber7] we denoted by k°-#st; the category of poly-stable fibrations over k°
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of length 7, and we considered the category ko-ﬂ’stlé‘t with the same family of objects
as k°-Pst; but with étale morphisms between them. We denote by k°-P sty and
k"-!Psts&’ ; thefull subcategories of thelatter consisting of the objects for which all of
the morphisms f;, 0 < i <[ — 1 are nondegenerate.

A morphism ¢ : 9 — X of formal schemes locally finitely presented over k° is
said to be (nondegenerate, strictly) pluri-stable if it is a composition of (nondegen-
erate, strictly) poly-stable morphisms. For example, a formal scheme X over k° is
(nondegenerate, strictly) pluri-stable (i.e., the morphism X — Spf (k°) isasuch one)
if there existsa(nondegenerate, strictly) poly-stablefibration X over k° of somelength
I with X; = X. The category of pluri-stable forma schemes over k° will be denoted
by k°-Pest, and k°-Pest® and k°-PestP will denote the categories with the same
family of objects but with étale and pluri-stable morphisms between them, respec-
tively. Thefull subcategories of the latter consisting of the nondegenerate pluri-stable
formal schemes will be denoted by k°-Plstng, kO-JPﬁstr‘?}, and kO-?ﬁstrﬁ’é.

Pluri-stable morphisms and formal schemes are examples of pluri-nodal mor-
phisms and formal schemes introduced in [Ber7, 81] (see Remark 4.1.5). Recall that
amorphism ¢ : 2 — X between formal schemeslocally finitely presented over k° is
caled strictly pluri-nodal if locally in the Zariski topology it isacomposition of étale
morphisms and morphismsof theform Spf (A{u, v}/(uv—a)) — Spf(A),a € A,and
itiscalled pluri-nodal if there existsasurjective étalemorphism9)’ — 2) such that the
induced morphism )’ — X isstrictly pluri-nodal. We also say that such amorphism
is nondegenerate if the above morphisms Spf (A{u, v}/(uv — a)) — Spf(A) can be
found in such away that a € @’ (Spf(A)) C A. (Notice that this is consistent with
the notion of a nondegenerate pluri-stable morphism.) Recall that for any pluri-nodal
formal scheme X over k° the reduction map = : X,, — X, is surjective (see [Ber7,
Corollary 1.7]).

4.1.1 Lemma. Every pluri-nodal morphismisflat.

Proof. Since étale morphisms are evidently flat, it suffices to consider morphisms
of the form Spf(B) — Spf(A) with B = A{u, v}/(uv —a),a € A. Let o bean
element of the maximal ideal k°° which is not equal to zero if the valuation on k is
nontrivial. Each element of B has a unique representation in the form )72 fiw;,
where f; — 0in the «-adic topology of A, and w; = u~' fori < 0 and w; = v’ for
i > 0. It follows that, if the valuation on k istrivial, B is afree A-module. If the
valuation on k isnontrivial, it followsthat, for every n > 1, B/(«" B) isafree module
over A/(a" A) and, by [BoL U1, Lemmal.6], B isflat over A. O

4.1.2 Corollary. Given a pluri-nodal morphismg : ) — X, one has ¢,(2),) =
7 s (D))

Proof. Firstof al, increasing thefield k, wemay assumethat itsvaluationisnontrivial.
It sufficesto show that, given afaithfully flat morphism) = Spf (B) — X = Spf(A),
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theinducesmap ¥ = ), — X = X, issurjective. For this we notice that the set
Xo={x € X | [#H(x) : k] < oo} coincides with the set of primeideads p C A with
dim(A/g) = 1 and for which the canonical homomorphism k° — A /g isinjective.
It follows that X is contained in the image of Y. Since Xg isdensein X and both
spaces X and Y are compact, themap Y — X issurjective. O

4.1.3 Lemma. A pluri-nodal formal scheme X over k° is nondegenerate if and only
if its generic fiber X, isanormal strictly k-analytic space.

Proof. The direct implication follows straightforwardly from [Ber7, Lemma 1.5]. To
prove the direct implication (and the corollary that follows), it suffices to verify the
following fact. Let ¢ : 3 = Spf(C) — X = Spf(A) be a morphism of pluri-nodal
formal schemes that goes through an étale morphism ¢ : 3 — 2 = Spf(B) with
B = A{u, v}/(uv), and assumethat 3, isnormal. Then

(@ ¢s(3) isan open subscheme of Xj;

(b) thestrictly k-analytic space (¢, (3;)) is normal;

(© ¥(3) C 4UY, wheretl = Spf (By) — Spf(Afu, 1}) and B = Spf (Bpy)) —
Spf (A{v, 1.

Indeed, (a) istrue since the morphism of schemes ¢, : 3; — X isflat and of finite
type. Furthermore, (b) istruesince 3, isnormal, C isflat over A and 7 s (35) =
¢y (35), by Corollary 4.1.2. Finally, sincethereductionmapr : 3, — 3, issurjective,
to prove (c) it suffices to show that for every point y € v, (3,) either [u(y)| = 1 or
[v(y)| = 1. Assume this is not true, i.e., there exists a point y € v,(3,) with
lu(y)| < land |v(y)| < 1(sinceuv = 0thenin fact either u(y) = 0 or v(y) = 0).
Then for the point y = 7 (y) € Y, onehasu(y) = v(y) = 0. Consider the closed
immersion x : X — ) defined by the surjection B — A that takes u and v to zero.
Sincethereductionmap r : X,, — X, issurjective, it follows that there exists a point
Y e m Y (y) withu(y) = v(y’) = 0. Sincex ~(y) C 7 1(W5(3,)) = ¥ (3,), the
latter contradicts [Ber7, Lemma 1.5]. O

4.1.4 Corollary. Any pluri-nodal morphism from a nondegenerate pluri-nodal to a
pluri-nodal formal scheme over k° is always nondegenerate. O

The closed fiber X of a pluri-stable formal scheme X over k° is provided with a
stratification, i.e., a partition of X; by locally closed irreducible norma subschemes
with the property that the closure of astratum isaunion of strata (see[Ber7, 82]). The
st of the generic points of the strata is denoted by str(X;). It isapartially ordered
set with respect to the following ordering: x < y if y is contained in the closure of
x. A pluri-stable (and, in particular, an étale) morphism ¢ : 9) — X induces a map
of partially ordered setsstr(9),) — str(X;) and, infact, str(9),) = Ustr(9); ), where
the union istaken over al x € str(X;). If ¥’ isabigger non-Archimedean field, then
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the morphism X’ = %@spf(kz>8pf (kK°) — X induces a surjective map of partially
ordered setsstr(X),) — str(X;). If al of thestrataof X, are geometrically irreducible,
the latter map is an isomorphism. If the valuation on & istrivia then, by [Ber7, 1.5],
the closed fiber X of a nondegenerate pluri-nodal formal scheme X is normal and,
therefore, str(X,) coincides with the set gen(X;) of generic points of the irreducible
components of X;.

Asin [Ber7], we introduce categories P stnq,; and PLstng Whose objects are pairs
(k, X) and (k, X), where k is anon-Archimedean field and X is from k°-Pstnq,; and
X isfrom k°-PLstng, and morphisms (K, Q) — (k, X) and (K, Q) — (k, X) are
pairs consisting of an isometric embedding k < K and morphisms Q) — X®-K°
in K°-Pstng; and Y — X K° in K°-Plstng, respectively. Similarly, {Pstr%’l,

Pesté, and PesiPy denote the categories with the same families of objects but with
the above morphisms for which the morphisms 9) — X®;-K° and Q) — XQi-K°
are étale and pluri-stable, respectively. B

Notice that Pstng,; and !P&tﬁ& are full subcategories of the categories #st; and
J’stlet from [Ber7], respectively, and all of these categories are fibered ones over
the category dua to the category of non-Archimedean fields. Notice also that the
correspondence X +— ifl‘l givesriseto afunctor st; — Pst;_1. For brevity, the
pairs (k, X) and (k, X) will be denoted by X and X, respectively.

4.1.5 Remarks. Assume that the valuation on k is nontrivial, and let a € k°°\{0},
A = k°{u,v}/(uv —a) and B = A{x, y}/(xy — (u + v)). Thelocalization By, is
canonically isomorphic to k°{u, x, 2, 1}. Let X1 and X, be two copies of Spf(B),
X12 and X two copies of Spf (By,;) considered as open subschemes of X and X»,
respectively, and X the separated formal scheme constructed by gluing X1 and X»

along the isomorphism X1, — X1 that takes u to 2 and x to 1. We believe that the
strictly pluri-nodal formal scheme X is not pluri-stable.

4.2 The skeleton of a poly-stable fibration

Recall that in [Ber7] we constructed for every poly-stablefibration X over k° of length
[ aclosed subset S(X) C X, the skeleton of X, and a proper strong deformation
retraction ® : X; ,, x [0, [] = X; , of X; , t0 S(X). Theretractionmap X; ,, — S(X) :
x — x; = ®(x,1) isdenoted by 7. In this subsection we briefly recall a part of the
construction and some basic facts from [Ber7]. (The construction of the retraction
map T will berecalled in §4.4.)

First of al, if X = T(n, a, m) with T = Spf(k°), then X,, = M(B), where
B =0C/b, C = ATo0,....Tpn,}, A = k{Tl,...,Tm,Til,...,%}, and b is the
ideal of C generated by the elements Tig... Tin, — a;, 0 < i < p. If we provide
A and € with the canonical horms and 8 with the quotient norm, then the set D,

=i=pP,\V=/ =
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with ming< <, {1;;} > 1forsome0 < i < p, isaBanach A-submodule of ¢, and

the canonical surjection € — B induces an isometric isomorphism D — B. The
skeleton S(X) istheimageof theset S = {t € [0, 1] | tig.. .1y, = |a;],0 <i < p}
under the following injective mapping S — X,,. Ittakesapoint ¢ € S to the bounded
multiplicative seminorm on B8 which is induced by the function D — Ry : f =
ZM a, T" — max,{|la,||t"}.

If X isaforma scheme over k° that admits an étale morphism to some ) =
T(n, a, m), then the skeleton S(X) is the preimage of S(2)) under the induced map
X, — 2, Oneshow that thissubset of X, iswell defined. If the closed fiber X hasa
unigue maximal stratum, then the map S(¥) — S(9)) isinjective, and if, in addition,
this maximal stratum goes to the unique maximal stratum of ), then S(X) S S®).
If X isan arbitrary strictly poly-stableformal scheme over k°, one definesthe skeleton
S(X) astheunion | J;.; S(X;), where {X;};c; isacovering of X by open subschemes
that admit an étale morphism to aformal scheme of the form X(n, a, m). If X isan
arbitrary poly-stable formal scheme over k°, one takes a surjective étale morphism
X" — X from a strictly poly-stable formal scheme X’ and defines the skeleton S(X)
astheimage of S(X’) under theinduced map X — X,.

Furthermore, one defines the skeleton S()/X) of a poly-stable morphism ¢ :
2 — X asfollows. Givenapointx € X, 9, =9 x5 Spf(H(x)°) isapoly-stable
formal scheme over #(x)°, and there are canonical isomorphisms ), , = D, x

and ), > Ds.x ) J/é(}/) where x is the image of x under the reduction map
m : X; — X;. The skeleton of ¢ isthe closed set

SQ/® = s@..
xeX,

One also constructs a strong deformation retraction Wy, : 9),, x [0, 1] — 9, of 9, to
S/%).

Finally, let X = (¥, 75" ... 22 %;) be a poly-stable fibration over k° of length
1 >0.I1fl =0,then S(X) = Xo,, = M(k). If ] =1, then S(X) = S(X1) and, if
[ > 2, then the skeleton S(X) isthe closed set

S(X) = SX/%-1) N fSEEh) .

The correspondence X — S(X) is asubfunctor of the following functor from ?stlét
to the category of paracompact locally compact spaces. X +— X;,. This functor
is denoted by S’. Notice that there is a canonical morphism of functors S(¥) —
S(gfl‘l). One constructs the strong deformation retraction & : X; ,, x [0, 1] — X;
of X; , to S(X) inductively asacomposition of the strong deformationretraction W 4, _,
of X;,, to S(X;/%;-1) with a strong deformation retraction of S(X;/X;-1) to S(X),
whichisacertainlifting of the strong deformationretraction ® : X;_1 ,, x [0,/ —1] —
Xi—1,5. Onehas (x;)¢ = xmax,) for al pointsx € X; , and al ¢, " € [0, I], where
x; = O(x, ).
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Recall that the image of every point from S(X) under the reduction map = :
X1, — X5 iscontained in str(X; ). The preimage of apoint from str(X; ) in S(X)
isalocally closed subset called acell of S(X). The cellsform a partially ordered set
O (S(X)) with respect to the following ordering: A < B if A ¢ B. The reduction
map induces an isomorphism of partially ordered sets O (S(X)) > Str(X; s).

For example, if the valuation on k istrivial and X is nondegenerate, then str(%; ;)
coincides with the set gen(X; ) of generic points of the irreducible components of
X, 5. By [Ber7, Corollary 1.7], for any pointx € gen(X; ), thereexistsaunique point
x € X, with(x) = x. It followsthat S(X) is adiscrete set which is the preimage
of gen(X; ) in X, ,,. In particular, if X; is connected, X; , is contractible.

Givenaformal scheme X locally finitely presented over k°, one providesitsgeneric
fiber X,, with a partial ordering as follows (see [Ber7, 89]). If X = Spf(A) isaffine,
thenx < yif |f(x)| < |f(y)| foral f € A. If X isarbitrary, the partial orderings
on the generic fibers of open affine subschemes of X are compatible, and they define
apartia ordering on X,,. Given apoly-stable fibration X over k° of length /, one has
x <x foralx e X;, andalt € [0, ] and, in particular, x < x,, wherex,; = 7(x).

One of the key ingredients of the above constructionsis the following fact, which
will be also used here. Recall (see [Ber7, 87) that a strictly poly-stable morphism
¢ Y — X issaidto be geometrically elementary if, for every point x € X;, the
partially ordered set str(); ) has a unique maximal element and all of the strata of
2, » ae geometrically irreducible. Notice that if ¢’ : 9" — X is another strictly
poly-stable morphism, which is also geometrically elementary, and we are given an
étale morphism 2’ — 2 over X, then the induced map S(Q)'/X) — S(Q)/X) is
injective. The fact is as follows (see [Ber7, Corollary 7.4]). Given a strictly poly-
stable morphism ¢ : ) — X, for every point y € ), there exists an étale morphism
X' — X and an open subscheme 9’ C 2 x y X’ such that the image of ); in Y
containsthe point y and the induced morphism %)’ — X’ isgeometrically elementary.

4.3 Thedependenceof S(X) on X;

Given aformal scheme X locally finitely presented over k°, weintroduce asfollows a
partial ordering < on the generic fiber X, which is stronger than the partial ordering
< considered in [Ber7]: x < y if, for every étale morphism X’ — X and every point
x" € X, over x, there exists apoint y’ € X over y such that | f(x)| < [ f ()| for
al f e (9(3617). Notice that, given a morphism ¢ : 9) — X, for any pair of points
x,y €, withx < y onehas ¢, (x) < ¢,(y).

431 Theorem. Let X = (% f’—*>l il> X1) be a poly-stable fibration over k°.

Then

(i) for all pointsx € X; , andall € [0, /], onehasx < x;;
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(if) if X is nondegenerate, the skeleton S(X) coincides with the set of the points of
X;,, which are maximal with respect to the partial ordering <.

Proof. (i) Given an étale morphism ¢ : X' — X; and apoint x’ € X, over x, let

X’ be the poly-stable fibration (X’ Jireg X_1 fz A X1). By [Ber7, Theorem

8.1(viii)], one has ¢, (x/) = x;. Sincex” < x/, it followsthat x < x;.

(ii) By (i), the skeleton S(X) contains the set of maximal points and, therefore, it
remainsto show that for any pair of distinct pointsx, y € S(X) noneof theinequalities
x < yory =< xistrue. Since this property is loca in the étale topology, we
may assume that all forma schemes X; are &ffine, i.e., X; = Spf(A;), and every
morphism f; : X;21 — X; goes through an éae X;.1 — X;(n;,a;, m;) and is
geometrically elementary. It sufficesto show that there exist two functions f, g € A;
with|f(x)] < |f(y)|and |g(x)| > |g(y)|. Thisistrivialy truefor/ = 0, and assume
that I > 1 and that thisistruefor ! — 1. We may assume that theimages of x and y in
S(x='"1) coincide. Let z bethisimage. If n; = (no, ...,n,) anda; = (ao, ..., a,),
then forevery 0 < i < ponehas|(Tio... Tin,) ()| = [(Tio. .. Tin,)) (V)| = lai(2)].
Noticethat |a; (z)| # 0because X isnondegenerate. SincethemorphismsX; — X;_1
and ) = X;_1(n;, a;, m;) — X;_1 are geometrically elementary, it follows that the
canonical map S(X;/X;—1) — S(/X;—1) is injective and, therefore, there exist
0<i<pand0<j<nwith|T;(x)| #|T;;(y)]. Assumethat | T;; (x)| < |T;; ().
Thenfor g = Tio...T; j-1T; j+1. .- Tin; ON€has [g(x)] > |g(V)]. O

Thus, the skeleton S(X) iswell defined for any nondegenerate pluri-stable formal
scheme X.

4.3.2 Corollary. Letg : 9) — X beapluri-stable morphismbetween nondegenerate
pluri-stable formal schemes over k°. Then

(1) ¢n(S(D)) C S(X);
(ii) if g isétale, then S() = ¢, 1(S(X)).

Proof. (i) By Corollary 4.1.4, it suffices to consider the case when the morphism ¢ is
nondegenerate poly-stable. Assume that X = X;_1 for a nondegenerate poly-stable

fibration (X1 757 ... & %) of length 1 — 1, and weset X = (9 5 %1 757

.. & %1). Then the morphism ¢ takes S(X) to S(E=""1). Since S(Q) = S(X) and
S(X) = S(x='"1), the required fact follows.

(i) By (i), one has S(9) C ¢, }(S(X)). Letx € S(X)and y € ¢, (x). By
Theorem 4.3.1(i), one has y <y, and, therefore, y, € ¢, *(x) forall ¢ € [0, /]. Since
(pn_l(x) isadiscrete topological space, it followsthat y = y; € S(Q)). O

Corollary 4.3.2 implies that the correspondence X — S(X) isasubfunctor of the
functor X — X, on the category Psiy.



334 Vladimir G. Berkovich

4.3.3 Remarks. (i) For any nondegenerate pluri-nodal formal scheme X, thereexists
a surjective éae morphism ¢ : ) — X from a nondegenerate strictly pluri-stable
formal scheme ). From Corollary 4.3.2 it follows that the image of S(Q)) in X,
does not depend on the choice of ¢ and coincides with the set of maximal pointswith
respect to the partial ordering < on X,,. It can be called the skeleton S(X) of X, and
both statements of Corollary 4.3.2 hold for any pluri-nodal morphism ¢.

(ii) In our work in progress, we give asimilar description of the skeleton S(X) of
an arbitrary poly-stablefibration X of length asthe set of maximal pointswith respect
to apartial ordering on X; ,, which is stronger than the above one (but coincides with
itif X isnondegenerate).

4.4 Theretraction map t : X7, = S(X)

Let X = (X Y X1) be a poly-stable fibration over k° of length I. In this

subsection we recall the construction of the retraction map t = ty : X;,, — S(X),
and we introduce a class of nondegenerate poly-stable fibrations X for which the
retraction map t depends only on X;.

Assume that I > 1 and that the retraction map is aready constructed for poly-
stable fibrations of length I — 1. Consider first the case when X;_1 is affine and

X; = X;—1(n,a,m) withn = (ng, ...,np,) anda = (ao, ..., ap,). The continuous
mapping
Xiy = Xi—1y x [0, 0™y > (fim1): 1 TioO). - -4 [ Tim, () Dosi<p

induces a homeomorphism between S(X;/%;_1) and the closed set
S={(;0) € Xi—1y x [0, 0™ | t0; ... ti, = la;(x)], 0<i < p},

anditgivesrisetoaretractionmapp : X; , — S. If i = 1,then S(X) = Sandr = p.
Assumethereforethat [ > 2. In this case the retraction map ¢ is acomposition of the
above map p with aretractionmap y : § — S(X) constructed as follows (see [Ber7,
p. 62]).

First of al, one defines for each n > 0 a strong deformation retraction v, :
[0, 11" x [0,1] — [0, 1] to the point (1,...,1). The map v, is required to
possess the property that ¥, (o (¢), s) = o (Y, (¢, s)) for al permutations o of degree
n + 1, and so it suffices to define v, (¢, s) only for the points ¢ € [0, 1]"! with
o <t <---<t, Frg,ifs < rn...t5, then ¥, (¢,s) = t. Furthermore, if
1 i1ty <5 <t 2ti40. . 1, forsome0 < i < n — 1, then

1 1
Ky i+1 Ky i+1
]//n(tvs)z <<—> 1"‘7(—> ,ti+1,---9tn> .
liv1...0 liv1...5
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Finaly, if s > ¢"+1, then v, (¢, 5) = (sﬁ, sfil) Theretractionmap y : S —
S(X) isasfollows

y(x,t1,..., tp) = (xr§ Yno(t0, lao(x)D), - . ., 1//np(tpv |ap(xr)|)) .

If X issuch that X;_1 isaffine, the morphism f;_1 : X; — X;_1 isgeometrically
elementary and goes through an étale morphism ¢ : X; — 9) = X;_1(n, a, m), then

themorphismX — 9 = () — X1 iz . T X1) gives rise to embeddings
S(X/%-1) — S@/%-1) and S(X) — S(2)), and the above retraction maps
oY, > SQ/Xi—1)andy : S&Q/Xi-1) —>_S(2) give rise to retractions maps
p X, — S&/X—pandy : S(X;/X—1) — S(X). The latter do not depend on
the choice of ¢, andonehast = y o p.

If X is arbitrary, one can find surjective éale morphisms X’ — X and X’ —
X' x4 X' such that the morphisms f/ ; : X; — Xj_;and f, : X/ — X, are
digoint unions of morphisms satisfying the assumptions of the previous paragraph.
Since the retraction maps t’ : 362’,7 — S(XHand " : x;{n — S(X") are compatible,
they giveriseto aretractionmap r : X; , — S(X).

We say that astrictly poly-stable morphism ¢ : ) — X isstrongly nondegenerate
if, for every point y € 9), thereexist an open affineneighborhood X" = Spf (A) of ¢ (y)
and an open neighborhood )’ < ¢~1(X’) of y such that the induced morphism9)’ —
X’ goes through an étale morphism Q) — X'(n, a, m), where all ¢; areinvertiblein
A =A@ k(i.e,ai(x) #0foralx € X)). A poly-stable morphism¢ : 9 — X'is
said to be strongly nondegenerate if there exists a surjective étale morphismQ)’ — 9
for which the induced morphism )’ — X is strongly nondegenerate strictly poly-
stable. For example, apoly-stable formal scheme X over k° is strongly nondegenerate
if and only if it is nondegenerate.

One can easily see that a poly-stable morphism ¢ : 2) — X isstrongly nondegen-
erate if and only if the induced morphism of strictly k-analytic spaces ¢, : 9, — X,
is smooth in the sense of rigid geometry (or rig-smooth). (A morphism of strictly
k-analytic spaces ¢ : Y — X is said to be rig-smooth if every point y € Y hasa
neighborhood of theform VLU - - - U V,,, whereeach V; isasdtrictly affinoid subdomain
of Y such that the induced morphism V; — X goes through a quasi-étale morphism
(see [Ber5, §3]) to an affine space A’y over X. A morphism between good strictly
k-analytic spaces is smooth in the sense of [Ber2] if and only if it is rig-smooth and
has no boundary.)

A pluri-stable formal scheme X over k° is said to be strongly nondegenerate if
the canonical morphism X — Spf (k°) is a sequence of strongly nondegenerate poly-
stable morphisms. Similarly, apoly-stablefibration X of length / issaid to be strongly
nondegenerateif all the morphisms f; : X; 11 — X; are strongly nondegenerate.

4.4.1 Theorem. Let X be a strongly nondegenerate poly-stable fibration of formal
schemes. Then, for every point x € X; ), x; isaunique point of S(X) = S(X;) which
is greater than or equal to x (with respect to the partial ordering < on X ;).
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Proof. Asin the proof of Theorem 4.3.1(ii), the property considered is local in the
étale topology and, therefore, we may assume that all formal schemes X; are affine,
and every morphism f; : X;11 — X; goesthrough an étdle X;,1 — X;(n;, a;, m;)
and is geometrically elementary. For every 0 < i < p, onehas Tjo...Tin, = a;.
Since a; are invertible on X;_1 ,, it follows that all of the coordinate functions 7;;
are invertible on X; ,. Since x < x., the latter implies that |7;;(x)| = |T;;(x)].
But, by the proof of Theorem 4.3.1(ii), we know that for any pair of distinct points
v,z € S(X) there exist functions f, g € A; which are representable in the form of
products of coordinate functions and such that | f(y)| < |g(z)| and | f (¥)| > |g(2)].
The required fact follows. O

From Theorem 4.4.1 it follows that, for any strongly nondegenerate poly-stable
formal scheme X, there is awell defined retractionmap 7 : X,, — S(X).

442 Corollary. Let X be a strongly nondegenerate pluri-stable formal scheme.
Given a poly-stable fibration X’ of length / and a morphism of formal schemes
¢ : X; — X, thefollowing diagram is commutative:

S 2 5(x)

36;,,7 — X,.
where 7’ is the retraction map associated with X’.

Proof. For every point x” € X; ,, one has x” < x, and, therefore, ¢, (x") < @, (x}).
Theorem 4.4.1 impliesthat ¢, (x"); = ¢, (x})<. O

5 A colored polysimplicial set associated with a
nondegener ate poly-stable fibration

5.1 Formulation of theresult

In this section we construct for every non-Archimedean field k and every [ > 0 a
functor ko—fPstﬁéJ — A;Lflgns,whereRk = |k*|N[0, 1]. Thisfamily of functorsfor
different k’s forms a functor between fibered categories over the category dual to that

of non-Archimedeanfields. Thefirst oneisthe category f/’str%’ ;» and thesecond oneis
the category K;”'Cens introduced asfollows. Itsobjectsare pairs (k, D) consisting of
anon-Archimedean field k and alocally finite polysimplicial set D € Ob(AjéLfJE:ns),
and morphisms (k’, D’) — (k, D) are pairs consisting of an isometric embedding
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k < k" and amorphism D" — D in A;,'f,l

by D.

&ns. For brevity, apair (k, D) is denoted

5.1.1 Theorem-Construction. One can construct for every ! > 0:

() afunctor of fibered categories DY : Pst& | — A%'Cgns (it takes X to D(X)),
nd,! 1

(b) anisomorphism of functors 6; : |ID(X)| = S(X), and

(c) amorphism of functors D(%)=/~1 — D(X='"1) compatible with 6, and 6;_1,
which possess the following properties:

(1) if X isdtrictly poly-stable, the polysimplicial set D(X) isfree;

(2) givenasurjective étalemorphismX’ — X, thereisan isomorphism of polysim-
plicial sets Coker (D(X' x x X) = D(X') = D(X);

(3) the homeomorphism; : [D(X)| — S(X) induces an isomorphism of partially
ordered sets O (ID(X)]) — O(S(X));

(4) for every g € O'(X;), one has 6;"(|g]) € Mpx): where |g| is the function
x = (g

(5) if Xisstrictly poly-stable, then each point of X; hasan open affine neighborhood

X' = Spf(A) suchthat, for ¥ = ¥ /5* %, , 52 ... &8 %), D) isa

standard polysimplex A[n], and the map A\{0} — M; : g — 6;(lg]) is
surjective.

The construction is done by induction in §885.2-5.5. If I = 0,then X = (Xp =
Spf (%)), S(X) = Xo,, = M (k) and D(X) = A[O]1. Assumethat / > 1 and that the
above objects are already constructed for / — 1. For a polysimplex d € ]D)(i),’i, we

n o4

shall denote by &, the map X7 — |D(X)| 24 s,

5.1.2 Remark. In our work in progress, we extend the above construction to the
whole class of poly-stable fibrations. Namely, we construct a functor X — D(X)
from the category of al poly-stable fibrations of length / over k° to the category of
|k°|-colored polysimplicial setsof length /, anisomorphism of functorse; : [D(X)| —
S(%), and a morphism of functors D(X)=/"1 — D(x='"1). They possess the same
properties (1)—(5) with the only difference that, in (4), 6/°(Ig]) € Mpx, foral g €

O(%*;) and, in (5), themap A — Mf : g = 0/ (|gl) issurjective. The combinatorial
part of the proof of Theorem 5.1.1 in §85.2-5.4 works also in the general case. The
assumption on nondegenerateness of X is used here only for the verification of the
property (4) in 85.5 since, in the general case, its verification is more involved.
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5.2 Construction of D(X) for strictly poly-stable X

Before starting the construction, we recall some facts from [Ber7, 83]. Let X be a
strictly poly-stable scheme over afield K. For apoint x € str(X), the set irr(3, x)
of the irreducible components of X passing through x is provided with a metric
as follows: the distance between two components X, X' € irr(X, x) is the codi-
mension of the intersection X N X’ at the point x. Given an éale morphism ¢ :
Y — X and apoint y € str(Y), for any point x € str(X) with ¢(y) < x the
canonical map irr(Y,y) — irr(X, x) is isometric. For example, if & = Jp x

- x Tp x 8, where 7; = Spec(K[Tio, ..., Tin;1/(Tio. .. Tin;)) With n; 1 and
8 = Spec(K[S1, ..., Sm, S{ % ..., S;;11), then there is an isometric bijection [1] —
irr(7, ¢) that takes j = (jo, ..., jp) € [n] to theirreducible component defined by
the equations Toj, = - -+ = T)p;, = 0, wheret isthe maximal point in str(77). Thus,
any étale morphism¢ : X’ — 7 from an open neighborhood X’ of the point x to the
above scheme 77, that takes x to the above point #, givesrise to an isometric bijection
Wy : [n] S irr(X, x). Thelatter property of ¢ is equivalent to the fact that all of the
coordinate functions 7;; vanish at the point x.

Let X = (X L X1) be a nondegenerate strictly poly-stable fibration

over k°. Wesat X = X;-1,9 = X; and ¢ = fi—1. By induction, there is a free
locally finite polysimplicial set ¢ = D(X='~1) and acontinuous map |C| — X%, that
identifies |C| with S(X=/"1). Since 0(C) = 0O(|C)) and O(S(X="1)) S str(Xy),
the latter map induces an isomorphism of partially ordered sets O (C) S ostr(Xy)

(Alnlr 5 C) — ¢ We construct as follows an R¥-colored polysimplicial set D of
length 1.
Given [n], € Ob(A gk ), let Di be the set of al triplesd = (y, ¢, ) consisting

</-1
of apoint y € str(9),), apolysimplex ¢ Cflg,,l withc = x, wherex = ¢,(y) €

v

str(X,), and an isometric bijection i : [n"] = irr(Y; ., y) such that there exists
an open affine neighborhood X’ ¢ X of x and an open neighborhood 9)' ¢ ¢~ (X")
of y for which the induced morphism )’ — X’ goes through an étale morphism
¥ Y — X' (", a, m) suchthat al of the coordinate functions 7;; of X'(n”, a, m)
vanishat y, iy = nanda*(lal) = r). From [Ber7, Proposition 4.3] it follows that
the object [r], isuniquely defined by thetripled = (y, ¢, ).

Furthermore, let y : [n'],, — [nr], be amorphism in A g ;. It givesriseto a
morphism y='=1: (/<" 1 — [05Y,a1, andweset ¢ = C(y="H(o) €

r<i-1 N a
Ci,SH and x’ = ¢ € str(Xy). One hasx’ < x and, by [Ber7, Proposition 2.9],
the set of points y' € str(2),) with ¢,(y’) = x’ and y’ < y is non-empty and has
a unique maximal point. Let y” be this point. By [Ber7, Lemma 6.1], there exists
aunique pair (J, u”) consisting of asubset J ¢ w(n”) and an isometric bijection
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T [n(Jl)] > irr(Y,.,» y") for which the following diagram is commutative

D] — =i Dsx. y) (5.1)

L

["(Jl)] % irr(fys,x“ y”)-

(Heretheleft vertical arrow isthe canonical projection, andtheright oneisfrom[Ber7,
Proposition2.9].) By the proof of loc. cit., onehas J = {j € o) | a;(x") =0
ink(x)},ie, J = {j € om®) | |aj(x)| < 1for some (and therefore all) x €
7 1(x")}. It followsthat J isprecisely the set of dl j € w(n®) withr;(x) < 1for
some x € Im(Z(y=/"1)) and, therefore, the morphism y gives rise to a morphism
y® : ' P1 - [ lin A suchthat v, = rp(j 0 S(y="Yforal j € @), where
fisthemapw(n'?) — J defined by y </~ (see§2.1). By [Ber7, Lemma3.13], there
exists a unique pair (y’, u’) consisting of a point y’ € str(9, ,/) with y’ < y” and
an isometric bijection 11/ : [’"] 5 irr(9); . y') for which the following diagram is
commutative

] — = i@y, ") (5.2)

4

' ®] % i, ¥).

Let now 2" be the open subscheme of 2)" where al of the coordinate functions of
X' (n”, a, m), which do not vanish at the point y’, are invertible. We also set da; =

ay(j for j € w@m'™®). Thenthemorphism2)” — X’ goesthrough an étale morphism
v 3 = X", a', m') (for somem’ > 0). Thus, thetripled’ = (y', ¢/, &) isan
element of Df and we get an R¥-colored polysimplicial set D of length /.

We claim that the followi ng istrue:

(i) the polysimplicial set D isfree and locally finite;

(ii) the correspondence d = (y, ¢, u) +— y defines an isomorphism of partially
ordered sets O (D) — str(2),) over the isomorphism O(C) = str(X);

(iii) themorphism D=1 — C :d = (y, ¢, n) — ¢ (see § 2.4) is surjective (resp.
injective) if and only if the map str(),) — str(X;) issurjective (resp. for every
x € $r(Xy), Y., isconnected).

(i) That D islocaly finite istrivial. To show that it is free, we have to verify
thet, given d = (y,c, u) € Dy and two morphisms yi1, y2 : [0']ly — [n], with
D(y1)(d) = D(y2)(d), then y1 = y2. Letd" = (y', ¢/, ') = D(y1)(d). Since
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¢ = Clri™H(e) = Cys™H(c) and C isfree, it followsthat v~ = y5' 1. The
equality yl(l) = 2(1) now follows from the fact that both morphisms appear as left
vertical arrowsin the corresponding diagrams (5.2) with the same sets and three other
arrows.

(ii) Given apoint y € str(9),), let ¢ € Cj, be a polysimplex withc = x =
@5 (). One can find an open affine neighborhood X’ of x and an open neighborhood
2 c ¢ 1(X') of y for which the induced morphism )’ — %’ goes through an
étale morphism v : 9’ — X'(n,a, m) such that al of the coordinate functions
T;j on X'(n, a, m) vanish a y. Then the étale morphism gives rise to an isometric
bijection w : [n] = MYy, y). Leta = (ao,...,a,). By the property (4),
ri =o%(lail) € Mg foral 0 <i < p. Thus,if n = (m,n) andr = (s, r), where
r =(ro,...,rp), thenthetripled = (y, ¢, ) givesrise to an element of Di, i.e.,the
canonical map O (D) — str(Y,) : d = (y, ¢, u) — y issurjective.

Assume now that there are two polysimplicesd = (y,c, ) € Di and d' =
(y',c,u)e Dii with y' < y. Thenfor x = ¢,(y) and x’ = ¢;(y’) onehasx’ < x.
Sincec =x,¢ =x’and O(C) > str(X,), thereisamorphism« : [I_llslil]r/gl—l —
[n=I"1],<-1 with ¢’ = C(a)(c). Let y” € str(Y);.,) be the unique maximal point
with the property y” < y. Asabove, there existsaunique pair (J, ") consisting of a
subset J C w(n®) and an isometric bijection " : [nf,l)] =Y., ") for which
the diagram (5.1) is commutative, and we know that J = {j € w(®) | |a;(x)| < 1
for somex € Im(Z(«))}. Let 8 denote the isometric map

-1
’ M//

W
1 ~ . . ~ )
D13 i@, v y) > it 0 ) > mP]

Itinducesaninjectivemap f : w(n’") — J. From[Ber7, Proposition 4.3] it follows
that r/E.l) - E(a)*(rj(fgj)) foral j € w(@m'?) and, therefore, the pair (e, B) induces
amorphism y : [n'],, — [nr], for whichd" = D(y)(d). It follows that the map
O (D) — str(9),) isan isomorphism of partially ordered sets.

(iii) The direct implications follows straightforwardly from the description of
D=/"1in terms of D. Assume first that the map str(),) — str(¥;) is surjective.
We have to show that for every ¢ € Ciﬂ there exists d = (y,c,u) € Di with

[QSl_l]Lgl—l = [m];. By (ii), there exists d’ = (y,c’, ') € Dfl/ with ¢ = ©.

y<l—

Since O(C) = sir(X;), there exists an isomorphism y : [m]; — [/='"] <1 with
c = C(y)(c). If [n], istheinverseimage of [n'], under y (in the sense of Example
2.3.1(ii)) and 1 is the composition of the isometric bijection [n®] = [n'®] with 1/,
thenthetripled = (y, ¢, 1) isan element of Di. Assume now that, for every x € X,
2. isconnected. We have to show that any two polysimplicesd = (y, c, u) € Di

andd = (y',c, 1) € Dﬁ: (over the same ¢) are equivalent. By the assumption, it
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sufficesto consider the casewhen y’ < y, but in this case the required fact is obtained
from the construction in the proof of (ii) (with the identity morphism «).

WesetD(X) = D. Itiseasy toseethat thecorrespondence X — ID(X) isfunctoria
on the full subcategory of ﬂ)stﬁé, ; that consists of strictly poly-stable fibrations.

5.3 Construction of D(X) for arbitrary X

5.3.1 Lemma. Assumewe are given a surjective étale morphisms X’ — X between
nondegenerate strictly poly-stablefibrations of length /. Thenthereisan isomorphism
of polysimplicial sets Coker(D(X' x ¢ X) = D(X')) — D(X).

Proof. Weset X" = X' x¢ X/, X = X1, C = DX, 9 = X, D = D(X) and
so on. By the induction hypothesis, there is an isomorphism of polysimplicial sets
Coker(C” 32 ¢ S C.

The morphism of polysimplicial sets D’ — D is surjective. Indeed, let d =
(y,c, ) € Di. By [Ber7, Corollary 2.8], there exists apoint y’ € str(Q);) over the
point y € 9,. Let x and x’ be theimages of y and y’ in X, and X7, respectively.
Onehasc = x. To prove the claim, it suffices to show that there exists a polysimplex

<i-1
c e C’ig,_l over c withe’ = x’ (sincethetripled’ = (y’, ¢/, 1) will then represent
an element of D’i over d, where 1/ is the composition of i with the inverse of the
canonical isometric bijection i (), ., y') = irm(Y; .. »)). Since O(C) — str(X;)
and O(C") > str(X}), the necessary fact is a consequence of the following simple
observation. Given a morphism E' — E in A% ,&ns, the canonical map E'; —
Eé x o(E) O(E") is surjective for every [r], € Ob(Ag,;). To see the latter, let us
consider a pair of polysimplices e € E; and ¢’ € E’;, such that the class of d,
the image of ¢’ in E,f coincides with that of e in O(E). It follows that there is an

isomorphismy : [r], = [n'], withe = E(y)(d). Thentheimageof the polysimplex
E'(y)(€) in Ei ise anditsclassin O(E’) coincides with that of ¢'.

The morphism Coker(D” = D’) — D isanisomorphism. Assume there are two
polysimplices d1 = (yq, 1, #1) and d2 = (y,, c2, u2) in D'}, whose imagesin Di
coincide. Then¢1 = x1 and ¢2 = x are the images of the points y; and y, in X,
respectively. By [Ber7, Corollary 2.8], we canfind apoint y” € str(2)) over the pair
of points(y4, y,). Letx” betheimageof y” in X . It sufficesto show that there exists
apolysimplex ¢ € C"};; over the pair of polysimplices (c1, c2) withe” = x”. Since
0(C) = str(X)) and O(C") = str(X”), this follows from the above observation
applied to the morphism C” — C’ x¢ C'. o

We fix for each nondegenerated poly-stable fibrations X of length [ a surjective
étale morphism X’ — X so that, if X is strictly poly-stable, then X' = X’ = X,
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and define D(X) as the cokernel Coker(D(X" x ¢ X') = D(X')). We get a functor
D !Pstr%’l — 1~\;””8ns that possesses the properties (1) and (2). We aso get
a morphism of functors D(X)=/"1 — D(Xx=/"1) and functorial isomorphisms of
partially ordered sets O (D(X)) — str(X.s).

5.4 Construction of an isomorphism of functorsé; : |D/| Sy,

54.1 Lemma. Givenanopenimmersion) — X, theinduced morphismD(2)) —
D(X) isinjective (and, therefore, it identifies ID(Z)) with the polysimplicial subset of
ID(X) which correspondsin O (ID(X)) = str(X; ) to the subset str(Q); ;).

Proof. If X isdtrictly poly-stable, the statement follows for I — 1 (resp. ) from the
induction hypothesis and Lemma 3.4.6 (resp. the explicit construction of ID(X)). In
the general case, assume that two polysimplices d1 and do of ID()) go to the same
polysimplex of D(X). Let X’ — X be a surjective étale morp_hism with strictly
poly-stable X', and let )" be the preimage of ) in X’. We can find polysimplices
d; = (y, ¢}, ny) and d, = (¥5, €5, 1) in D(@) over di and d», respectively. The
assumption impliesthat there exist polysimplicesd” = (x7, ¢, u}) of D(X' x ¢ X'),
1<i <n,withpy(d)) = dy, p2d]") = p1(d] ) forl<i <n-1land pz(d;[); dj.
It follows that p1(x7) = y} and, therefore, p2(x7) € ), i.e, x] € str(Y; X9,
2);.,)- For the same reason, the sameistrue for al points x; and, therefore, all of the
polysimplices d; come from D(Y’ xg) %), i.e,d = d>. i

Notice that it suffices to construct an isomorphism of functors |D!| — S’ on afull
subcategory of e?str%’ ; With the property that any object of the whole category isthe
image of an object of the subcategory under a surjective étale morphism. It suffices
therefore to construct functorial homeomorphisms [D(X)| — S(X) for X which are
strictly poly-stableand such that X;_1 isaffine, andthemorphism f;_1 : X; — X;_1is
geometrically elementary and goes through an étale morphism X; — X;_1(n, a, m).
(Noticethat in this case the formal scheme X; isquasi-compact.) Weset X = X;_1 =
Spf(A), D = X1, ¢ = fi_1, C = DE='"Y and D = D(X). Thefirst example of a
geometrically elementary morphism is a morphism of the form X(n, a, m) — X.

542 Lemma. IfQ = X(n,a,m),then D S Aln]c 4 (See§2.4).

Proof. Givenapolysimplexd = (y,c, u) € Dim, thesetI ={i e w(m) | la;(x)] < 1
for some x € Im(c.)} coincides with the set 1 (c, |a|) defined in 82.3. If y’ isthe
maximal pointing); ., wherex = ¢,(y) = ¢, thereisacanonical isometric bijection
[n;] — irm(Y,.) and, therefore, the isometric bijection 1 : [m®)] = i, ¥)
definesamorphismy = (f, &) : [mP] — [n;]in A suchthats; = o*(las;|) forall
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<l-1 )
Jj € o(m®). Thepair, consisting of ¢ € C, _,_, and themorphism y, representsan s-
colored m-polysimplex of A[r]c, 4|, and the correspondenced = (y, ¢, u) = (c, y)

givesrise to the required isomorphism. O
Assume that Q) = X(n,a,m), wheren = (n1,...,n,) anda = (ao, ..., ap).
Recall (see Step 1 from [Ber7, 85]) that the continuous mapping
9, = X, x [0, 1"y > (@) [T, - -, [ Tpp (D

induces a homeomorphism between S()/X) and the closed set
S={(x;t) € Xy x [0, 1™ | 1i0. .. 1i, = lai ()|, 1 < i < p}.

Since S(X) = S(Y/X) N go*l(S(if"l)), the isomorphism of Lemma 2.4.1 defines
ahomeomorphism |D| = S(X) which possesses the property (3). Indeed, it suffices
to verify that, given a function g € ¢'(2)) and a polysimplex d € Diﬂ, one has
7%(1gl) € My". Thiseasily follows from [Ber7, Lemma5.6].

Consider now ageometrically elementary morphisme : ) — X that goesthrough

an éademorphism9) — 3 = X(n,a,m). Weset3 = (3 - X1 fiz A& *1)

and E = ID(3). By the claim (iii) from 85.2, the morphisms of polysimplicial sets
D=1 . C and E'-1 — C areinjective and bijective, respectively, and, by the
above construction, thereisahomeomorphism |E| — S(3) that possessesthe property
(3). Since for every point x € str(X;) the induced map of partialy ordered sets
Str(Y.x) — Str(3;,x) isinjective, from Lemma 3.4.6 it follows that the morphism
of polysimplicial sets D — E isinjective. On the other hand, let x be a point of
IC| = S(ifl‘l) and x itsimagein X;. Noticethat x € str(X;) (see[Ber7, Theorem
8.1(v)]). Since ), , isgeometrically irreducible, the mapsstr(9), ;) — str(3,,s) and
D®,) — D(3,) areinjectiveand, by [Ber7, Theorem 5.4], themap S(Q),.) — S(3,)
isinjective, and itsimageisthe union of the cellsof S(3,) that arethe preimages of the
points coming from str(2), ;). It followsthat the map S(X) — S(3) isinjective, and
itsimage is the union of the cells of S(3) that are the preimages of the points coming

from str(9),). Since O(D) — str(2),), we get ahomeomorphism |D| — S(X). The
restriction of the latter to the fibers at the point x gives rise to a homeomorphism
D(®),) — S(Q),) which coincides with that of [Ber7, Theorem 5.4]. It follows that
the homeomorphism | D| = S(X) iswell defined and, in fact, functorial.

Thus, an isomorphism of functors ¢; : [D!| — S' that possesses the property
(3) is constructed. It follows from the construction that the morphism D(%)=/~1 —
D(x='"1) is compatible with 6; and 6;_1.
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5.5 Verification of the properties (4) and (5)

In this subsection we use the assumption that the poly-stabl e fibrations considered are
nondegenerate. If the valuation on k istrivial, both properties are evidently true, and
so we assume that the valuation on k is nontrivial.

Itisclear that it suffices to verify the property (4) only for strictly poly-stable X.
Let yg € X; 5, y the generic point of the stratum of X; ; that contains the point y,,
and x theimage of y in X;_1 ;. First of al, we can shrink X so that X;_1 = Spf(A)
is affine, the point x is aunique maximal one in the partially ordered set str(X;_1y),
D@E=""Y = Almly, and the map A\{0} — Mi" : f + 67 ,(If]) is surjective.
Furthermore, we can shrink X; so that X; = Spf (B) is &ffine, the point y isaunique
maximal one in str(%; 5), and the canonical morphism X; — X;_1 goes through an
étale morphism ¢ : X; — 3 = X;_1(n, a, m) such that theimage z of y in 3 isa
unique maximal point in str(3;). It follows that D(X) = Aln];, wheren = (m, n)

andr = (s. |a]), and that S(X) > S(3), where3 = (3 — X,_1 25* ... & xp),

Since the retraction maps ), — S(X) and 3, — S(3) commute with g, it follows
that S(X) = cp*l(S(é)). From [Ber7, Lemma 5.6] it follows that 6,*(|x]) € Mf for
al h € C\{0}, where 3 = Spf(C), and that the map C\{0} — Mf th = 67(lh))
is surjective. Thus, to prove the claim, it suffices to show that 6, (|g|) € Mf for all
g € B\{0}. For this we need, first of al, the following criterion for a real valued
continuous function on X; to be contained in M.

Let 1\7I£ denote the set of al continuousfunctions« : Ef — R with the property
that, for every relatively compact open subset U C 37, thereexistsafunction f € My
with a|y = f|y. Oneevidently has My C My

55.1 Lemma. Assumethatfor o € M; thereexists g € My witha - § € M. Then
o€ MLE.

Proof. Givenafunction f € Mf, let { fi}icr bethefinite set of elementary functions
from Proposition 3.3.1(ii) that are associated with f. Fori € I, U;(f) = {x € Eﬁ |
fikx) > fij(x) fordl j € I, j # i} isanonempty open subset of Ef, and the
union | J;c; Ui (f) isdensein Zﬁ. Furthermore, weset A(f) = {U;(f)}ier and, for a
subset F = {f1, ..., fu} C My, wedenoteby A(F) thefamily of all setsof theform
Uin---NU, withU; € A(f;). (Noticethattheunionof all U € A(F)isdensein Zﬁ.)
Finaly, for f € My weset B(f) = A({f} U Fy), where Fy' = {ri"}1<i<i.02j<p;.
Eachset U € B(f) iscontained inanR%-subpontopeof ¥, andisconvex init, and
therestriction f|y isalinear function on U (see Lemma 3.5.1(i)).

Let « and 8 be from the formulation, and set h = « - B € M;. We claim for

every U € B(h) thereexistsaunique f (V) € e(My) witha|y = £y Indeed, the
uniqueness of fU) follows from Proposition 3.3.1(i). Let U be arelatively compact
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convex open subset of U N3+, and let £ and g befunctionsfrom My withaly = £y
and Blu = glu. Thenh|y = flu - glu. Thefunction on the left hand sideis linear.
Ontheother hand, both functions 1|, and g|; are maximaof afinite number of linear
functions. It follows that they arein fact linear. Thiseasily impliesthat U is a subset
of some set from A(f), andif £ isthe corresponding elementary component of f
thena|y = fY]q,. From Proposition3.3.1(i) it followsthat V) doesnot depend on
the choice of the set U and the function f and, by the continuity of o, |y = f@|y.

Thus, @ = maxyepm){f Y} since this equality istrue for the restrictions of both

sides to every relatively compact open subset of 31 It followsthat o € My O

Let g € B\{0}. By [Ber7, Theorem 8.1(vi)], the loca ring of every point from
S(X) isafield. It followsthat ¢ = min{|g(y)| | y € S(X)} > 0.

A. Thefunction 6;"(|g|) is contained in A7I£ First of all, we recall that the interior
%7 is the preimage of S(X) N7 ~1(y) under 6;, and that the morphism X; — %, 1
goes through an étale morphism ¢ : X; — 3 = X;_1(n, a, m).

1. We may assume that m = 0. Indeed, consider first thecasel = 1. If ¢
is the maximal point of Xq(m), (it corresponds to the supremum norm of the alge-

bra k{Ti, ..., Ty, T{ L, ..., T;Y), then D(X)) = D(X1), where X] = (¥1), =
X1 X,y SPOF(H(1)°), and S(X}) — S(X1). Since |#(1)| = |k, the situation is
reduced to X} (for whichm = 0). Inthecase! > 2, one has D(X') = D) and

- 2 2 , .
SE) S S@), where X' = (X 5' Xy_q(m) 5 x5 150 B oxy), 1 isthe

composition of ¢ with the canonical projection X;_1(n, a, m) — X;_1(m), and f,’_2
is the composition of the canonical projection X;_1(m) — X;_1 with fj_o.

2. We may assume that [r] # [0]. Indeed, if [r] = [0], then the morphism f;_1
isétale. If I = 1, the whole statement of this subsection istrivial. If [ > 2, thereis
an isomorphism D(X) — AlOl g, ; (see 82.4), where X' = (X; foficn g, 53
U X1)isof length/ — 1.

3. We may assume that the étale morphism from the maximal stratum Y of X; ¢
to the maximal stratum Z of 3, induced by ¢, is an open immersion. Indeed, let
n = (no,...,np)anda = (ao, - .., ap). Thereductions of the functionsao, . . ., a,
in A vanish at the maximal stratum X of X;_1 ;. (Noticethat X isclosed in X;_1 ;.)
Themaximal stratum Z of 3, whichisdefinedinthe preimageof X by vanishing of all
coordinate functions 7;; for 0 <i < pand0 < j < n;, mapsisomorphically onto X,
andthemaximal stratumY of X; s isthepreimageof Z in X; ;. Theinduced morphism
Y — X iséale, and we can find an étale morphism X;_; = Spf(A’) — X;_1 such
that X;_, ; contains a closed subset X" provided with an open immersion X' — ¥
compatible with the étale morphisms ¥ — X and X’ — X. Shrinking X;, we
may assume that X’ — Y. Let X} be the connected component X; xy,  X;_; that
contains the image of Y under the evident morphism to the closed fiber of the latter.
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Then the required property is true for X' = (X, - X;_; - X;_, — ...X1) and
DE) = D).
4. Shrinking X;, we may assume that ¢ identifies Y with a closed subset Z’ of
+» Where 3’ isan open subset of 3 of the form Spf (C”) with C’ = C{.}, and we may
also assume that the image of X; iscontained in 3. By [Ber7, Lemma4.4], thereis
an isomorphism of analytic spaces 7 ~1(Y) = = ~1(Z’) and of completionsC’ > B
with respect to theideals JC” and J B, respectively, where J = (a, h1, ..., hy) C C,
h1, ..., h, aedementsof C, whose reductionsin C generar[etheidgal of Z,and o
is afixed non-zero element of k°°. Any relatively compact subset of Ef is contained
ing,1(Vs) for some§ > 0, where Vs = {y € S(X) | lhi(»)| <1—8, 1 <i < m).
Let n be asufficiently large integer with (1 — )/ |«|"/ < eforal 0 < j < n. Then
lh(y)| < eforadly € Vsandadl h € J"B. Findly, we can find an element & € C
and an integer v > 0 such that g — Liv € J"B. Since [c(y)| = Lforal y € X;,, it
followsthat |g(y)| = |h(y)| foral y € V.

B. The function 6,"(|g|) is contained in MLE. We can shrink X; sothat B = Bgf}
with B’ = C[T]/(P) and f € B’, where P(T) isamonic polynomial in C[T] such
that the image of its derivative in B isinvertible. Furthermore, we can find g’ € B’
and m > 0 such that |(g — f—,;)(y)| < efordly e X;,. Since|f(y)| = 1forall
y € X, itfollowsthat [g(y)| = |g’'(y)| fordl y € S(X). Thus, we may assume that
g € B’. Sincethe strictly k-affinoid algebra @ = C ®;- k is normal, the coefficients
of the minimal polynomia 7" + h1T"1 + .. + h, of g over itsfraction field arein
fact elements of €. From [BGR, Proposition 3.8.1/7(a)] it follows that #; € ¢°, and
since C° = C, by [Ber7, Proposition 1.4], it followsthat #; € C foral 1 <i < n.
Onehash, # 0and h, = —g(g" Y+ h1g" 2+ --- + h,_1), and the required fact
follows from Lemma5.5.1 O

6 p-Adic analytic and piecewise linear spaces

6.1 A piecewiselinear structureon the skeleton of a pluri-stable
formal scheme
LetX = (X f’—;l LS X1) beanondegenerate poly-stablefibration over k° of length
[. By Theorem 5.1.1, there is a canonical homeomorphism between the geometric
realization of the R¥-colored polysimplicia set D(X) of length / and the skeleton
S(X). Thishomeomorphism provides S(X) with apiecewise R% -linear structure and

asemiring My of piecewise R%Jr-linear functions on S(X). Recall that the skeleton
fira

S(X), asasubsetof X; ,,, dependsonly on X; (see§4.3). Let X' = (X, — --
be another nondegenerate poly-stable fibration of length I’ over k'°.

B
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6.1.1 Theorem. For any morphism¢ : X, — X; in f’ﬁstﬁ‘é, the induced map
S(X') — S(X) isa G-local immersion of piecewise R%-Iinear spaces, and it takes
functions from My to functions from M X

Proof. Since the statement is true for the morphism X;®-k’° — X;, we can replace
X by X®;-k’° so that we may assume that k¥’ = k and ¢ is an éae k°-morphism.

Furthermore, it 9 = (X "3 %1 57 . B xy), then S@) = S(X)) = S@)

and, by Theorem 5.1.1, applied to the canonical morphism9) — X, we can replace
X by 9 so that we may assume that ¢ is an isomorphism. Finaly, given a surjective
étale morphism v : 9) — X;, we denote by v’ the surjective étale morphism )’ =

X, xx, D — X, andweset) = (Y L PR L O and ' =
g0’ 1 /
Q' Trgv x,_, 5. A 1). Since the canonical maps S() — S(X) and

S(Q/) — S(X') are surjective G-local immersions of piecewise R%—Iinear spaces,
we may always replace X by 9 and X’ by 9)'. This reduces the situation to the case
when X is strictly poly-stable, X; = Spf (A) isaffine, D(X) isastandard polysimplex
Aln],, and the map A\{0} — M; : g — 67(g]) is surjective. It follows that the
homeomorphism S(X') — S(X) takes functions from My = Mf to functions from

M. Since S(X) isisomorphic to the R%-polyhedron >, themap S(X') — S(X)

/

ispieceNiseRZ-linear. Applying the latter to theinverse morphismg =1 : X; — X,
wededucethat themap S(X') — S(X) isinfactapieceMseR%-linearisomorphism.
O

Thus, for any nondegenerate pluri-stable formal scheme X over k°, the skeleton
S(X) is provided with a well defined piecewise R%-Iinear structure and a semiring

My of piecewise R%Jr-linear functions.

6.1.2 Corollary. Letg : X' — X be a pluri-stable morphism between nondegen-
erate pluri-stable formal schemes over k°. Then the induced map S(X') — S(X) is
piecewise RZ—Iinear and it takes functions from My to functions from M ..

Proof. The statement is deduced from Theorem 6.1.1 in the same way as Corol-
lary 4.3.2(i) is deduced from Theorem 4.3.1. O

6.1.3 Corollary. Let¢ : X’ — X be a morphism between nondegenerate pluri-
stableformal schemes, and assumethat X isstrongly nondegenerate. Then theinduced
map 7 o ¢, : S(X') — S(X) is piecewise R%Jr-linear and it takes functions from My
functions from M x-

Proof. Let X beastrongly nondegenerate poly-stable fibration of length I with X; =
X. Asin the proof of Theorem 6.1.1, the situation is reduced to the case when all
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formal schemes X; = Spf(A;) are affine and every morphism f; : X; 11 — X; goes
through an étale X;11 — X;(n;, a;, m;) and is geometrically elementary. In this
case, | f(x)| = | f(x;)| for al coordinate function f from A; and all pointsx € X,,. It
follows that for every point x’ € S(X’) onehas | f (z (¢, (x"))| = |<p;;(f)(x’)|. Since
therestriction of the function |} ()| to S(X)iscontainedin My, itfollowsthat the
map 7 o ¢, takes functions from M to functions from My and, in particular, it is

piecewise Ry, -linear. O
Given a nondegenerate pluri-stable formal scheme X over k°, let A713€ denote the

semiring of real valued functions f on S(X) with the following property: for every
quas compact open subscheme ) C X, thereexists o € |k*| such that (ozf)|5@)

. Notice that M3€ consists of piecewise |k*|Z+—I|near functions. Let M* denote

the subset of the functions f invertible in M% (i.e., such that there eX|Sth € M:{
with fg = 1). Itisagroup by multiplication that contains |k*|.

6.1.4 Corollary.
(i) If f € O'(X,), theredtriction of | f| to S(X) is contained in A713€;

(ii) if f € O(X,)*, therestriction of | | to S(X) is contained in M., and it gives

riseto an embedding @ (X,)*/O(X)* < M?e-

Proof. (i) If f € O'(X,), one can find for every quasi-compact open subscheme

) C X anelement o € k* with (ozf)@ € 0'(9). It follows that |0‘f||s@> € My,
n

ie., |f||S(:{ EM:{

(i) If f € O(Xp*, there exists g € O(X;)* with fg = 1, and the inclusion
| fllscx € M% follows from (i). Furthermore, since x < x, for al pointsx € X,
itfollowsthat | f(x)| = | f(x,)| foral f € O(X;)* and, therefore, the kernel of the
homomorphismO(X,)) — M%. : f — | fll SX) coincideswiththeset of thefunctions
f e, with|f(x)| = 1fordlx € X,. Butfrom[Ber4, Proposition 1.4] it follows
that the latter set coincides with @ (X)*. O

6.1.5 Corollary. If X is quasi-compact and connected, O (X,)*/(k*O(X)*) isa
finitely generated torsion free group.

Proof. By Corollary 6.1.4, the group considered isembedded in M Vi /|k*| f{D;}jes
isafinite etale covering of X with connected 2) ;'s, then M /|k*| |sembedded inthe
direct product of M*@, /1k*|. We may therefore assume that X = X, for adtrictly
pluri-stable fibration X over k° of length / with affine X;’s and for which D(X) isa
standard polysimplex A[r],. In this case one can easily show that M* is generated
by M%:  and thecoordlnatefunctlonSt( ) with r(l) € M*% SmceM* = |k*|, the
requi red star[ement easily follows. O
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6.1.6 Remark. To represent the above results in a functoria form, let us intro-
duce as follows a fibered category PL® over the category dual to the category of
non-Archimedean fields. Its aobjects are triples (k, X, Mx) consisting of a non-
Archimedeanfield k, apieceNiseRng-linearspaceX, andasemiring My of piecewise
R§+-Iinear functions on X. Morphisms (k’, X', Mx/) — (k, X, Mx) are pairs con-
sisting of an isometric embedding k <— k" and a piecewise RZ-Iinear map X' — X
that takes functions from My to functions from M. Let also ﬁtg be the category
with the same family of objects but with those of the above morphisms for which
themap X’ — X isa G-local immersion of piecewise RZ-Iinear spaces. Then the
correspondence X — (S(X), My) gives rise to functors between fibered categories

J’Zstr% — IST_Z, {Pﬂstﬁ(lj —~ PLY and Plstsnd — pLY.

6.2 Theimage of an analytic spacein the skeleton

Recall that a strictly k-analytic space X is said to be quasi-algebraic if every point of
X has a neighborhood of the form V, U --- U V,,, where each V; isadtrictly affinoid
subdomain of X isomorphic to an affinoid domain in the analytification of a scheme
of finite type over k. Recall also that a morphism of k-analytic spaces is said to be
compact if it induces a proper map between the underlying topological spaces.

6.2.1 Theorem. Let X be a strongly nondegenerate pluri-stable formal scheme
over k°, T theretraction map X, — S(X), and Y aquasi-algebraic strictly k-analytic
space. Then for any compact morphisme : ¥ — X, theimaget(¢(Y)) isapiecewise
R§+-Iinear closed subspace of S(X) of dimension at most dim(Y).

Proof. It suffices to consider the case when the formal scheme X is affineand Y is
adtrictly affinoid domain in Z2", where Z is an integral affine scheme of finite type
over k. Replacing k by the separable closure of k in ©(Z), we may assume that Z
is geometrically irreducible. By [Ber7, Lemma 9.4], there is an open embedding of
Z in Y,, where Y is an integral scheme proper finitely presented and flat over &,

and an open subscheme W of Y, such that ¥ = 7~ 1(W) = (Y /w)y, where 7 is
the reduction map ‘},(,7 = y,a” — Y. Since Z is geometrically irreducible, then so
isY,. By deJong's results [de]] (in the form of [Ber7, Lemma 9.2]), there exist a

finite normal extension &’ of k and a poly-stable fibration Y' = (Y, fl—;l . i% )
over k’°, where all morphisms f; are projective of dimension one and have smooth
geometrically irreducible generic fibers, and a dominant morphism Y; — Y that
induces a proper generically finite morphism y;’n — Y,. Notice that, since the
morphisms f; have smooth geometrically irreducible generic fibers, the poly-stable
fibration Y is nondegenerate.
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Let W’ be the preimage of W in Y , )’ the formal completion of Y, along
W, and Y’ = 9);. The morphism ¢ gives rise to a surjective genericaly finite
morphism of strictly k-analytic spaces Y’ — Y. We claimthat the induced morphism
Y’ — X, comes from a unique morphism of formal schemes ¢’ : 9" — X. Indeed,
let X = Spf(A), and let 9)” = Spf(B) be an open affine subscheme of ). The
morphism of strictly k-affinoid spaces fg;; — X, is defined by a homomorphism of
strictly k-affinoid algebras A = A Qi k — B = B Q- k'. By [Ber7, Proposition
1.4], onehas A > 4° and B — B°. It follows that the homomorphism A — B
defines a unique homomorphism A — B which, in its turn, defines a morphism of
affine formal schemes 9" — X that induces the morphism 9, — X, we started
from.

Thus, wehavep(Y) = ¢, (2);). By Corollary 4.4.2, theimage of (p;](@j?) under the
retraction map t : X, — S(X) coincides with the image of the skeleton S(2)’) under
themap S, : S(Y') — S(X). But, by Corollary 6.1.3, the latter map is piecewise
RE -linear. Hence, the image of S(9)') under S, is a piecewise R -linear closed
subspace of S(X) of dimension at most dim(Y’) = dim(Y). O

6.2.2 Corollary. LetY beacompact quasi-algebraic strictly k-analytic space, and
f1, ..., fn invertible analytic functions on Y. Then the image of Y under the map

Y ®RD" y = (ADI -  [fOD

isa |k*|z, -polyhedronin (IR )" of dimension at most dim(Y).

Proof. Since Y is compact, we can multiply al of the functions by an element of
k* so that the image is contained inthe set S = {t € (R})" | |a| < || < 1for
all <i <n}witha € k*. Let X be the direct product of n copies of the affine
formal scheme Spf (k°{u, v}/(uv — a)). It is a strongly nondegenerate poly-stable
formal scheme. The projection of X, to the coordinate v of each of the affine formal
schemes identifies X, with the poly-annulus {x € A" | |a] < |T;(x)| < 1 for all

1 <i < n},andthefunctions f1, ..., f, giveriseto amorphism of strictly k-analytic
spaces ¢ : ¥ — X,,. Furthermore, the continuous map (Ah\{oh" — RE)" : x
(|Te(x)], ..., |Tu(x)|) identifies the skeleton S(X) with the set S, and gives rise to

the retraction map = : X, — S(X) = S. Thus, the map from the statement of the
corollary coincides the compositiont o ¢ : Y — S(X) = S and, by Theorem 6.2.1,
itsimageisaRZ—polyhedron ins. O

Thefollowing isaconsegquence of Corollary 6.1.5 and the proof of Theorem 6.2.1.
For an analytic space Y, weset O(Y)L = {f € OY) | | f(y)| = 1fordl y € Y}.

6.2.3 Corollary. If a quasi-algebraic strictly k-analytic space Y is compact and
connected, then the group @ (Y)*/(k*O (Y)1) isfinitely generated.
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Proof. As in the proof of Theorem 6.2.1, one can apply de Jong's results to show
that there is a finite surjective family of morphisms ¥; — Y, where each Y; is the
generic fiber X! of a connected pluri-stable formal scheme X' over k;, where k; isa
finite extension of k. Then the group considered is embedded in the direct product
of the groups O (Y;)*/ (k* @ (Y)1). Sincethe groupsk?/(k*k}) arefinite, the required
statement follows from Corollary 6.1.5. O

6.3 Continuity of the embedding S(X) — X, in the Grothendieck
topology

Let X be a nondegenerate pluri-stable formal scheme over k°. The piecewise R"
linear structure on the skeleton S (%) providesit with a Grothendieck topology formed
by p|eceN|seRk -linear subspaces. Recall (see[Ber2, §1.3]) that X, isalso provided
with a Grothendieck topology formed by strictly analytic subdomains.

6.3.1 Theorem. For any strictly analytic subdomain V. C X, the intersection
VN S(X) isapiecewise RZ—Iinear subspace of S(X) and, for any f € @’(V), the
restriction of the function | f| to V N S(X) is piecewise |k*|z, -linear. In particular,
the canonical embedding S(X) < X,, is continuous with respect to the Grothendieck
topologies of S(X) and X,,.

Proof. It suffices to consider the case when X = Spf (A) is affine and connected. By
Gerritzen—Grauert Theorem ([BGR, 7.3.5/2]), abasis of the Grothendieck topology on
astrictly k-affinoid spaceisformed by rational strictly affinoid domains, and sowemay
assume that V is such adomain. This meansthat there are functions f1, ..., f,, g €
A = A®j-k without common zeroson X, suchthat V.= {x € X; , | | fi(x)| < |g(x)|
forall 1 <i < n}. Multiplying all of the above functions by an element of £*, we may
assumethat f1,..., fu, g € A. Since any function on S(X) of theform x — | f(x)]
with f € A\{0} is piecewise Rz, -linear, it follows that V N S(X) is a piecewise
R§+-Iinear subspace of S(X).

Furthermore, let f € O'(V). Thene = min{|f(x)| | x € VN S(X)} > 0, and
one can find an element 1 € 4 and an integer n > 0 such that |(f — gi,,)(x)| <€

for al x € V and, therefore, the restrictions of the functions| | and I‘ghl‘" to VN S(X)
coincide. The latter function is evidently piecewise |k*|z-linear. That it isin fact
|k* |z, -linear follows from Remark 3.5.8(ii). O
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6.4 Continuity of theretraction map 7 : X, > S&X) inthe
Grothendieck topology

Let X be anondegenerate pluri-stable formal scheme over k°. We choose anondegen-

erate poly-stable fibration X = (X; — f' Lo il> X1) over k° of length with X; = X

and denoteby 7 = % the corresponding retraction map X,, — S(X).

6.4.1 Theorem. For any piecewise RY ,-linear subspace £ C S(%), t~1(E)isa
strictly analytic subdomain of X,,. In par‘ucular the retraction map  is continuous
with respect to the Grothendieck topologles of S(X) and X,,.

Assume that the above X possesses the following properties:
(1) forevery 1 <i <1, %; = Spf(A;) isaffing,
(2) D(X) isastandard polysmplex A[n],, and D(X=') are the standard polysim-
plices A[n='],< forall 1 <i <1,

(3) themaps A;\{0} — Mrﬂ;i : f = 0X(f]), aesurjectiveforal 1 <i <1,

(4) forevery 1 < i <1, the morp_hism fi—1: X; — X;_1 goes through an étale
morphism X; — Xi_1(n®,a® m;).

In what follows we identify S(X=') = S(X;) with Zf;i. Furthermore, we intro-
duce as follows a positive integer v(n). If I = 1, then v(n) = 1. If [ > 2, then

v(m) = v@='"Y) - u@m®) where, for n = (no, ..., n,), u(n) isthe least common
multiple of theintegers 1, 2, ..., maxXo<;<p{n;} + 1.

6.4.2 Lemma. In the above situation, for every element « € M; there exist the
following data:

(@) afinite covering of S(X) = =y by R§+-polyhedra (Eilier;

(b) for every i € I, afinite covering of the preimage t~1(E;) by strictly analytic
domains {V;;} ey With 7(V;;) = V;; N S(X);

(c) foreveryi e I and j € J;, functions f;;, g;; € A; suchthat for all x € V;; one
has | fij (x0)| = | fij ()1, 1gij (xr)] = |gij (x)| and

Jij(x)

gij(x)

1
v(n)

a(xy) =

Proof. First of al, we notice that if an element o € Mf possesses the properties of
the lemma then, for any function f € A;, thesets{x € X, | [ f(x)| < a(x;)} and
{x e X)) | | f(x)| = a(x,)} are strictly analytic subdomains of X,,.
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We prove the lemma by induction on /. Since it is evidently true for I = 0,
we assume that / > 1 and that the statement is true for X=/~1. The morphism
fi—1 : X — X;_1 goes through an étale morphism X — X' = X;_1(n, a, m) with
n=n?a=a®andm = m. Snce D) > D&’) and the map B\{0} —
Mf : g — 0/ (1gl) is surjective, where X' = (X' — X1 fz A X1) and
X' = Spf(B), we may assumethat X = X’. Of course, we assume that [r] # [0].

Step 1. Wemay assumethat theelement « isa coordinatefunctionon Ef. Indeed, it
sufficestoshow that if thelemmaistruefor twoelementse, o’ € M, thenitisalsotrue
for their product « - o” and their maximum max{«, o’}. Let ustakethedataprovided by
theassumption for thefunctionsa and «’, and mark the datafor «” with the primesign.
Then the datafor the product « - o’ consist of the R% -polyhedra E; N E,, the strictly

analyticdomains V;; N V;/ -, and thefunctions f; - f;,, and gi; - g;, ,,. Thedatafor the
maximum max{c, ’} consist of the same R§+—polyhedraE,~ NE}, thestrictly analytic
fii (@) i

am| = |g,m)|

subdomains of V;; N Vi/;/, defined in it by the inequalities

fi//j/ (x)

gz{/j/(x)

Jij(x)
8ij(x)

, respectively, and the functions f;; -glf/j/, fl/,j, -gij and {g;; -glf,j,}.

Step 2. By Step 1, wemay assumethat theelement o € Mf isoneof the coordinate
functionszo; = 6 (|To; ). We denote no, ap and To; by n, a and T;, respectively. For
apoint y € X, we denote by x itsimagein X;_1,,, and we denote by y, and x, the
imagesof y andx in S(X) = S(X) and S@fl‘l), respectively. First of all, we define
the following covering of S(X) by R%Jr-polyhedrawhich correspond to permutations
o € Sn+1:

Es ={y eS| T, = 1To@W| < < To@mOI} .

It suffices to consider the restrictions of the coordinate functions to E, which cor-
respond to the trivial permutation. From the description of 7, recaled in 84.4, it
follows that t~1(E) = U/_o Vi, where V; consists of al points y € X, that satisfy
the following three inequalities:

la(xeo)| < (T Tz TN}

max {|(T] 7 i1 T < la(xo)]

O<j<i

org?i(i{lTj(y)l} < |Tipya = -+ =TI
Applying the induction hypothesis to the function 6 ; (|a|), the first two inequalities
define afinite union of rational strictly affinoid subdomains of X,,, and the functions
Ti+1, ..., T, areinvertible on each of them. It follows that the third inequality aso
defines arational strictly affinoid subdomain in each of them and, therefore, V; isa
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finite union of rational strictly affinoid domains. Furthermore, the description of t
impliesthat for y € V; one has

a(x;) |7
Tt T ()

forO0<j <i,and|T;(y.)| = |T;(y)| fori +1< j <n. Itfollowsthat

IT;(yo)| =

(V) =VinSX)={y € S [ [ ToW|=---=ITiWI =Tixa(W| =--- = [T (W}
Applying again theinduction hypothesisto the function 6/ ; (|a|), we get the required
fact. |

Proof of Theorem 6.4.1. First of al, sincetheretraction map t isproper, the statement
islocal in the Zariski topology. Furthermore, by Raynaud’s theorem (see [BoL U2,
Corollary 5.11), given a flat morphism of strictly k-affinoid spaces¢ : Y — X, for
any strictly affinoid domain V C Y theimage ¢ (V) isafinite union of strictly affinoid
subdomainsof X, i.e.,isacompact strictly analytic subdomainof X. It followsthat the
statement of thetheoremislocal intheétaletopol ogy and, in particular, wemay assume
that X is strictly poly-stable. Of course, we may assume that al X; = Spf(A;) are
affine. After that we can shrink X so that it satisfies the assumptions of Lemma 6.4.2.
It suffices to show that, given two elements «, o’ € My, the preimage t—(D) of
D ={x € S(X) | a(x) < '(x)} isastrictly analytic subdomain of X,. Let ustake
the data provided by Lemma6.4.2 for the functions« and «’, and mark the datafor o’
with the prime sign. It sufficesto show that, for every quadruplei € I, j € J;,i’ € I
and j" € J/, theintersection D)V, N Vl.’/j/ isastrictly analytic subdomains of
Vij NV} .. Wehave

Sinceall of thefunctionsintheinequality areinvertibleon V;; ﬂV/,j/. theset considered
isastrictly analytic subdomain of V;; N V;) .. i

Ji ()
8 ;1 (x)

fij(x)
8ij(x)

<

'C_l(D)m ‘/’] N ‘/l//]/ = {x € Vlj N Vi//j/ I

6.4.3 Corollary. Thefollowing properties of a subset E C S(X) are equivalent:

(a) E isapiecewise R%Jr-linear subspace of S(X);

(b) t71(E) isastrictly analytic subdomain of X,,. O

Thefollowing result isaconsequence of Lemma6.4.2. Let X and X’ be nondegen-
erate pluri-stable formal schemesover k° and k’°, respectively, andlet ¢ : X’ — X be
amorphism in Pestng. We fix a nondegenerate poly-stable fibration of length / over
k° with X; = X which givesriseto aretractionmap 7 : X,, — S(X).
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6.4.4 Theorem. Themapt o g, : S(X') — S(X) is piecewise ( |k’*|)Q+-Iinear.
If 7 = 1, thismapisin fact ||z, -linear.

Proof. Replacing X by X®-k'°, we may assume that X’ = k and that ¢ is a k-
morphism. Furthermore, since the statement is local in the étale topology of X and
X', we may assume that X satisfies the assumptions of Lemma 6.4.2 and that X’ is
strictly pluri-stableand small enough sothat S(X’) isan RZ-polyhedron. Toprovethe
statement, it sufficesto show that if / > 2 (resp. I = 1) then, forevery o« € My = My,
@r(t*()) isapiecewise (v/[k*[)q, -linear (resp. [k*|z, -linear) function on S(X").

By Lemma 6.4.2, there exists afinite covering of X, by strictly analytic domains
{Vij}ier,jes, and, foreachi € I and j € J;, functions f;;, g;j € A; such that for all
x € V;jonehas| f;j (xo)| = | fij ()], |gij (x0)] = |gij(x)] and

fij(x)
8ij(x)

1
v(n)

axe) =

By Theorem 6.3.1, each £/, = S(X') N ¢, (Vi) isapiecewise RZ—Iinear subspace
of the RZ -polyhedron S(X’) and, by the above formula, the restriction of go,’; (t*(a))
to Elfj coincides with the restriction of the piecewise (1/[k*|)q-linear function

1

, (p* fij))(x") | @
X = |

(p*gij)(x")

The latter function is piecewise (/]k*])q. -linear, by Remark 3.5.8(ii). If I = 1, then

v(n) = 1and, therefore, it is even piecewise [k*|z, -linear. Since S(X’) isaunion of

al E};, the required fact follows. O

7 Strong local contractibility of smooth analytic spaces

7.1 Formulation of theresult

Let k be anon-Archimedean field with anon-trivial valuation. Recall (see[Ber7, 89])
that ak-analytic spaceissaid to be locally embeddable to a smooth spaceif each point
x € X hasan open neighborhood isomorphic to astrictly analytic domain in asmooth
k-analytic space. Thisclassincludesthe class of spaces smooth in the sense of [Ber2],
their strictly analytic subdomains, and is contained in the class of spaces smooth in
the sense of rigid geometry (i.e., rig-smooth spaces). Notice also that any rig-smooth
affinoid space islocally embeddable in a smooth space.

Recall al so that astrong deformation retraction of atopological space X to asubset
S C X isacontinuous mapping ® : X x [0,1] — X suchthat ®(x,0) = x and
®(x,1) e Sfordl x € X,and ®(x,7) =xforal x € Sandr € [0, 1]. We say that



356 Vladimir G. Berkovich

asubspace Y C X ispreserved under @ if ®(Y x [0,1]) C Y. If Sisapoint, ® is
said to be a contraction of X to the point.

7.1.1 Theorem. Let X bea k-analytic spacelocally embeddablein a smooth space.
Each point x € X hasa fundamental system of open neighborhoods V which possess
the following properties:

(8 thereisacontraction ® of V to apoint xg € V;

(b) there is an increasing sequence of compact strictly analytic domains X1 C
X2 C --- which are preserved under ® and suchthat V = ;2 ; X,;

(c) givenanon-Archimedeanfield K over k, V® K hasafinitenumber of connected
components, and & lifts to a contraction of each of the connected components
to a point over xo;

(d) thereisa finite separable extension L of k such that, if K from (c) contains L,
thenthemap V ® K — V ® L inducesa bijection between the sets of connected
components.

Recall that [Ber7, Theorem 9.1] states that each point x € X has a fundamental
system of contractible open neighborhoods V. 1n§7.2, werecall the main construction
from the proof of loc. cit.. After that, instead of using [Ber7, Theorem 8.2], we use
resultsfrom 81 and 86. But before doing this, we establish asimple fact which will be
used in the last step of the proof and is true without the assumption that the valuation
on k isnontrivial.

Let &’ be a finite extension of k. Then every strictly k’-affinoid algebra 4 is
evidently astrictly k-affinoid algebra, and so the strictly k’-affinoid space X = M (+4)
can be considered as a strictly k-affinoid space, i.e., thereis acanonical functor from
the category of strictly k’-affinoid spaces to that of strictly k-affinoid ones. From
the following proposition it follows that the latter can be extended to a functor s¢-
k'-An — st-k-An from the category of strictly k’-analytic spaces to that of strictly
k-analytic ones, and it takes strictly k’-analytic domains to strictly k-analytic ones.
Notice that the above functor is left adjoint to the ground field extension functor
st-k-n — st-k'-An: X > X @ k.

7.1.2 Proposition. Let X beastrictly k’-affinoid space. Then any strictly k’-affinoid
subdomain V C X is a strictly k-affinoid subdomain of X, considered as a strictly
k-affinoid space.

7.1.3 Lemma. Assume that thevaluationonk istrivial,andlet¢ : ¥ = M(B) —
X = M(A) be a morphism of dtrictly k-affinoid spaces. Then the following are
equivalent:

(@) ¢ identifies Y with a strictly affinoid subdomain of X;
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(b) theinduced morphism of affine schemes Y = Spec(B) — X = Spec(4) isan
open immersion.

Proof. (a)==(b) For any point y € Y with [#(y) : k] < oo, onehas Ox , — Oy.y,
where x istheimageof y in X. But theimagesx of x in X correspondsto amaximal
ideal of 4, and Oy, coincides with the completion Oy , of O« » by the maximal
ideal (see[Berl, Theorem 3.5.1]), and the same is true for thelmagey of y iny. It

follows that the morphism of schemes induces an isomorphism (9x = (Oy y and,
therefore, it is an éae morphism. On the other hand, since for any bigger field K
(also provided with the trivial valuation) themap Y(K) = Y(K) — X(K) = X(K)
is injective, the morphism of schemes isradicial. It remains to use the fact that any
étale and radicial morphism between affine schemes of finite type over afield is an
open immersion.

(b)=(a) If Y isidentified with aprincipal open subset {x € X | f(x) # 0}, then
Y isidentified with the rational subdomain {x € X | | f(x)| = 1}. Inthe general case,
Y is afinite union of principal open subsets, and so Y = | J/_, ¥;, whereeach Y; is
identified with arational subdomain of X of the above forms. From [Ber2, Remark
1.2.1] it followsthat ¢ identifies Y with astrictly affinoid subdomain of X . O

7.1.4 Corollary. Ifthevaluationonk istrivial, then any strictly k-analytic spaceis
Hausdorff.

Proof. By [Ber2, Lemma 1.1.1(ii)], it suffices to show that any strictly analytic sub-
domain Y of astrictly k-analytic space X = M (A) iscompact. From Lemma 7.1.3
it follows that Y corresponds to an open subscheme of X = Spec(+4). Since the
ring -+ is Noetherian, any open subscheme of X is quasicompact and, therefore, Y is
compact. |

Proof of Proposition 7.1.2. If the valuation on k istrivial, the statement follows from
Lemma 7.1.3. Thus, assume that the valuation on k is nontrivial, and let X = M (A)
and V = M(Ay). The statement is trivial if V is arationa domain since it is
defined by the inequalities | f; (x)| < |g(x)|, where f1, ..., f,., g ae elements of A
that generate the unit ideal. Assume V is arbitrary. By Gerritzen—Grauert Theorem
([BGR, 6.3.5/2)), it isafinite union | J/_; V; of rational strictly affinoid subdomains
of X. By Tate’ sAcycIicity Theorem there an isomorphism of commutative Banach

k-algebras Ay — Ker([]; Av, = H : Aviny;). Since Ay isstrictly k-affinoid and
the canonical map V. — M (Ay) |sab|1ect|on V isastrictly k-affinoid subdomain
of X (see[Ber2, Remark 1.2.1]). O

7.2 Proof: Step 1

We follow the proof of [Ber7, Theorem 9.1]. It isdone by induction on the dimension
of X at x. First of al, we may assume that X is a strictly analytic domain in X2,
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where X, = Spec(A) isasmooth irreducible affine scheme over k. Let x betheimage
of the point x in X. There are the following two cases:

() x isnot the generic point of X;
(B) x isthe generic point of X.

Case (). Asinloc. cit., Steps 1 and 2 of Case (a), one reduces the situation to the
case when the field k(x) is separable over k and, after that, one shows that thereis a
sufficiently small open neighborhood of x isomorphicto Y x D(0; r) withx = (y, 0),
where Y isastrictly analytic domain in the analytification of a smooth scheme over £
and D(0; r) is the open disc with center at zero and of radiusr > 0. Thus, we may
assumethat X = Y x D(0; r), and it suffices to show that the point x = (y, 0) has
an open neighborhood with the properties (8)—(d). In loc. cit., Step 3, one constructs
acontinuous mapping X x [0,1] — X : (x’,t) — x;, whichisaretraction of X toa
closed subset homeomorphicto Y x [0, [ andsuchthat |7 (x;)| = |T (x")|forall x" € X
andt € [0, 1]. Thus, if 'V isan open neighborhood of thepoint yand Y1 C Yo C ---
is an increasing sequence of compact strictly analytic domains in 'V possessing the
properties (8)—(d), then the open neighborhood V x D(0, r) of the point x and the
sequence of compact strictly analytic domains Y1 x E(0;r1) C Yo x E(Q,rp) C ---
possessthesameproperties, wherer; < r2 < - - - isanincreasing sequenceof numbers
from /|k*[ withr; — r asi — oo, and E (0; r) isthe closed disc of radiusr.

Case (8). Asinloc. cit., Case (b), we may assume that X is compact and X is
geometrically irreducible, and it sufficesto show that, given arational strictly affinoid
neighborhood W of x in X2, there exists an open neighborhood of x in X which
possesses the properties (a)—(d) and is contained in W N X. By loc. cit., Lemma 9.4,
there is an open embedding of X in Y, where Y isan integral scheme proper finitely
presented and flat over k°, open subschemes Z and ‘W of Y, and a closed subscheme
V of Y, such that

D) X=r"Y2),W=nr"YW) adnr(x) € V;
2 vcw;
(3) vV and Y,\Z are unions of irreducible components of Y;.

By J. de Jong results [de]] (in the form of [Ber7, Lemma9.2]), there exist afinite
normal extension k’ of k, a poly-stable fibration Y’ of length [ over k’° such that

al morphisms f/ : Yi , — Y. are projective of dimension one and have smooth
geometrically irreducible generic fibers, an action of afinite group G on Y’ over k°,
and adominant G-equivariant morphisme : Y; — Y that inducesaproper generically
finite morphism %; . — ¥, and such that the field R(y;’n)G is purely inseparable
over R(Y). Notice that the poly-stable fibration %’ over k’° is nondegenerate.

Let Z', W' and V' be the preimages of Z, W and V in ¥; , respectively. Then
V' and Y \Z' are unions of irreducible components of Y - and V' C W'. For
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X' =x4Z)and W = z71(W'), onehas X' = ¢, 1(X) and W' = ¢ 1(W).
Moreover, 7 ~1(V/) N X’ is an open subset of X’ contained in W’ N X’. By the
construction, we can find a nonempty open affine subscheme U C X such that the
morphism U’ := ¢;1(U) — U isfinite and the finite morphism G\U' — U is
radicial. By the assumption (B), the point x is contained in U®". It follows that
theset U := 7~ 1(V) N X N U is an open neighborhood of x in X contained in
WNX. Theset U := 7~ 1(V)Nn X' N U isopenin X’ and dense Zariski open
inz YV)Nn X =71V N Z), and the radicial morphism G\U' — U induces
a homeomorphism G\U’ = U. Since V' and Y, ,\Z" are unions of irreducible
components of ¥, , it followsthat V' N Z’ isastrata subset of Y, .

By [Ber7 Theorems 8. 1] there is a G-equivariant strong deformation retraction

: y Ly x10,1] — y Lyt 1 (Y, 1) — y, tothe skeleton S = S(g) of the formal

completion of Y’ aong the closed fiber. (Notice that y’ir,‘? = ij;’n.) Furthermore,

@’ induces a G-equivariant strong deformation retraction of the set XV nZ)to
itsintersection S” with the skeleton S’ of 4’. Thisintersection S’ is contained in the
Zariski open subset U’ of 7#=1(V' N Z’), and U’ is preserved under ®’. Thus, &’
induces a strong deformation retraction @ : U x [0, 1] — U to the closed subset
S = G\, aswell asastrong deformation retraction of U to S = G\ S'.

7.3 Proof: Step 2

We can shrink U so that the finite morphisms U’ — G\U’ and G\U' — U are
flat. Inthis case, the induced morphisms between the analytifications are also flat (see
[Ber2, Proposition 3.2.10), and M. Raynaud's theorem (see [BoL U2, Corollary 5.11])
implies that the image of any strictly analytic subdomain of U'®" and G\ W' is
a strictly analytic domain in G\U'®" and U, respectively. In particular, we can
replace Y by the quotient G\%n' and so we may assume that there are isomorphisms

of schemes G\ W — U and of analytic spaces G\U’ — U, and we may assume that
K6 =k and, in particular, that ¥’ is a Galois extension of k.

We now claim that there exists a sequence of compact strictly analytic domains
YrCc Y C - in Y@ which are preserved under ® and such that U = 21 Yo
Indeed, y |sthe generic fiber of the formal completion yl of Y, aong its closed
fiber. Thelatter formal schemeisafinite union of G-invariant open affine subschemes
2. If we can find an exhausting sequence of G-invariant compact strictly analytic
domains ¥;' C ¥5' C --- in®! N U™ which are preserved under & and for which
the quotients Y/ = G\Y,’,i exist, then the sequence of the compact analytic domains
Y, = |, ¥} possesses the required properties. It suffices therefore to consider an
open affine formal subscheme )’ of g;

Let 9 = Spf(A’). The generic fiber 9);, is the strictly k-affinoid space M(A),
where A’ = A’ @~ k. The complement of U'®"in LDQI is defined by afinite number
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of equations f;(x’) = 0,1 < i < m, with f; € A’®. We take a decreasing sequence
of positive numbersry > rp > --- in R¥ with lim,_. o r, = 0, and consider the
G-invariant strictly affinoid domains Y = {x @; | 1fi(y)] = ri}. Since| f(y))| >
| f'(y")| for dl elements ' € A" and al ¢ € [0, 1] (see [Ber7, Theorem 8.1(iii)]),
Y! are preserved under @'. It follows that the compact strictly analytic domains

= U/, ¥} arepreserved under &’ and G-invariant, and the quotients G\ Y, exist.
OnealsohasyY; c Y5 C -~ and U2, ¥, =9, N U™

7.4 Proof: Step 3

Consider the R¥'-colored polysimplicial sets D' = D(Y') and D’ = D(3'), where 3/
is the poly-stable fibration (3’ — @;71 = > },l/l)_over k'° and 3’ isthe formal
completion of Y, aong the open subset Z' of y; ,- By 84.3, there are canonical
homeomorphlsms ID'| > § = S(y ) and |D | 5> S(3). Setting D = G\D'" and
D= G\D’ we can identify S with |D| and S with an open subset of |D| (Notice
that | D| isaclosed subset of |D]. )

L et xo betheimageof thepoint x under theretractionmap t : U — S induced by
®. By Proposition 1.4.1, one can find a compact RZ—pi ecewise linear neighborhood

E of the point xg in |5|, whichisisomorphic to an (v/|k*|)g-polyhedron in an affine
space (R*)?. For 0 < r < 1, let B(xo, r) denote the open box {y € (R*)? |

ro< |f’(y)| <r11<i<d}. OnecanfindO < rg < 1 such that, for every
ti (x0)

ro < r < 1, the open set E(r) = E N B(xg, r) iscontained in S and possesses the
property that, for each point y € E(r) the interval {x{, - ¥} 110,11, connecting the
points xo and y, is contained in E (r) Let usfix such r, and let W be the contraction
E(r) x [0, 1] — E(r) (y, 1) —> xo y1=7 of E(r) to the point xo. Furthermore, let
1>r1>ry>--->r beasequence of numbers from ./[k*| with Ilmn_mo T =T.
Then the R%—polyhedrons E, ={y € E(r) | rp < |tf(y)| < 1<i<d

1 (x0) "n ’
are preserved under ¥ and E(r) = ;21 En. Since E(r) C S theset V(r) =

l(E(r)) N U is an open neighborhood of the point x in U.

Weclaimthat, for everyro < r < 1, V (r) possessesthe properties (a) and (b), and
that one can find ro < r{ < 1 such that, for every rj < r < 1, V(r) also possesses
the properties (c) and (d). _ _

(a) The composition of the strong deformation retraction of Y E®@)) to E(r),
induced by @, and of the contraction ¥ of E(r) to xo, gives rise to a contraction of
V (r) to the point xo.

(b) Weclaimthat Z,, = t~1(E,) isa strictly analytic subdomain of U®". Indeed,
let E; bethe preimage of E, in §’. By Theorem 641 7, =1~ l(E/) isadtrictly
k- analytlc subdomain of u“”‘” where 7’ is the retraction map U'?" — S’ induced
by @’. Proposition 7.1.2 implies that Z/, is a strictly k-analytic subdomain of U'®"
considered as a gtrictly k-analytic space. Since Z, is the image of Z;, under the flat
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morphism U — U, the claim follows from M. Raynaud’s theorem. Thus, the
intersection X,, = Y, N Z,, where Y,, is constructed in 8§7.2, is a compact strictly
analytic subdomain of V (r), and it is evidently preserved under the contraction from
(a). Onedsohas V(r) = [ X, since U = [ J°, ¥, and E(r) = |22 En.
To establish the properties (c) and (d), we need the following additional fact.
Given a G-local immersion of compact piecewise R¥ -linear spacesg : T — S,
one can find ro < r{ < 1 such that, for every rj < r < 1, the contraction ¥ of the
st E (r) to xq liftsto a contraction of each of the connected component of g*l(E )
to a point above xg. Indeed, let yy, ..., y, be the preimages of the point xg in T.
We can find pairwise digoint neighborhoods Dy, ..., D, of the points yi, ..., v,
respectively, with the following property: forevery 1 < i < n, D; = U’;’;l D;j,
where each D;; is a compact piecewise R¥ -linear subspace of T that contains the
point y; and such that ¢ induces an isomorphism of D;; with an R¥ -polyhedron E; J
inE. Onecanfindrg < ry < 1suchthat, forevery1 <i <n,1 < j < m; andevery
pointy € E;; N E(r(’)), the interval, connecting the points xo and y, is contained in
E;jN E (rp)- This construction guarantees the required property of E(r) and W for all
ro<r<1 R
(c) and (d). For anon-Archimedean field K over k, V (r)®K isastrictly analytic
domainin ygf@l(. Thelatter isaquotient of g;’,@l( under the action of thegroup G.
Sincek’ isafinite Galois extension of k, the tensor product £’ ®; K isisomorphicto a
direct product of m copiesof afinite Galoisextension K’ of K withm-[K' : K] = [k’ :
k]. Thisisomorphism givesriseto an action of G on the direct product and, therefore,
to an action of G on the corresponding disjoint union @l’( of m copies of each of the
formal schemes y;@ka ', 1 < i < l. Thus, we have a nondegenerate poly-stable
fibration DX = (Y} — .-+ > VF) over K’* provided with an action of the group
G over K°, and an isomorphism of strictly K-analytic spaces G\@l’f}7 = ygﬂ@&
Let D) bethe RX'-colored polysimplicial set associated with QK, and S the
skeleton of QK. Thereis a G-equivariant homeomorphism | D’ | > Sy . Itgivesrise
to a homeomorphism |Dg | — Sk = G\S’, where Dg = G\ DY . Furthermore, the
G-equivariant strong deformation retraction @’ of Q)fﬂ to S givesrise to a strong
deformation retraction ® g of ygf@l{ to Sx compatible with the strong deformation
retraction @ of Y% to S. If gx denotes the canonical G-local immersion of compact

piecewise RX'-linear spaces Sk — S, then @ induces a strong deformation retrac-
tio/rj of V®K to g,}l(E(r)). It follows that the number of connected components of
V®K isfinite.

Furthermore, we can find finite unramified extensions L1, .. ., L, of k¥’ such that
for any K, as above, there is an embedding of some L; into K’ which induces an
isomorphism of partially ordered setsstr(Y;  ®y Kh S STV L;) and, there-

fore, it induces isomorphisms of RX'-colored polysimplicial sets D’,, — D’Ll_ and
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Dy — Dyp,,. Thecomposition of the morphisminverseto thelatter with the canonical
surjection Dx: — Dy givesriseto asurjective morphism of RX'-colored polysimpli-
cial sets Dy, — Dg. Sincethepolysimplicial sets D, arefinite, it follows that there
are only finite many possible polysimplicial sets D and all of them are R¥'-colored
(because |L}| = |k'*|). Let D1,..., D, bethese R¥ -colored polysimplicial sets.
We apply the above additional fact to the G-local immersion of compact piecewise
R¥-linear spaces [ [1*_; | D;| — . It followsthat thereisanumber ro < r§, < 1 such
that for any K and any r{, < r < 1 the contraction W of E(r) to the point xg lifts
to a contraction of each of the connected component of g;{l(g (r)) to a point above
xo. The composition of ®x with such a lifting gives rise to a contraction of each
connected component of VK to apoint above xo, i.e., (C) istrue.

Finally, let L be afinite unramified extension of " such that all of the strata of the
scheme ¥, . ®p L are geometrically irreducible over L. Then for any K as above

with L C K there are isomorphisms of RX-colored polysimplicial sets D > D}
and Dx — D;. (Notice that in this case K’ = K since k¥’ C K.) It follows
that the canonical map Sx — S is a homeomorphism and, therefore, it induces a
homeomorphism g *(E () — g7 2(E(r)). Thisimplies (d). O

8 Cohomology with coefficientsin the sheaf of constant
functions

8.1 The sheaf of constant functions

Let k be a non-Archimedean field with a non-trivial valuation. Recall that in every
strictly k-analytic space X the subset Xg = {x € X | [H(X) : k] < oo} isdense.

For areduced strictly k-analytic space X, we denote by ¢(X) the set of all analytic
functions f € @ (X) such that theimage of each connected component of X under the
morphism f : X — Al isapoint. (Since such apoint should liein (A1), afunction
f € O(X) iscontained in ¢(X) if and only if the restriction of f to each connected
component of X is algebraic over k.) The correspondence U +— ¢(U) is a sheaf of
k-algebrasin the étale topology of X (aswell asin the G-topology of X), denoted by
cx. Of courseg, if k isalgebraically closed, it is the constant sheaf kx associated with
k.

8.1.1 Lemma. Assumethat X isconnected. Then
(i) c(X) isafield finite over k;

(if) assume that the algebra of any connected strictly affinoid subdomain of X has
no zero divisors (ex., X isnormal ); if the restriction of a function f € O (X)
to a non-empty open subset U isin c¢(U), then f € ¢(X).
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Proof. (i) Let f be a nonzero element of ¢(X). Then the image of X under the
morphism f : X — Al isanonzero point from (A1) and, therefore, P(f) = Ofora
monic polynomial P(T) = T" +a1T" 1 + .- +a, € k[T] witha, # 0. It follows
that f isinvertiblein ¢(X), i.e, ¢(X) isafield. It isembedded in the field # (x) of
every pointx € X. Sincethereisapoint x with[#(x) : k] < oo, ¢(X) isfiniteover k.

(if) We may assume that X = M () isstrictly k-affinoid, and we can find a non-
zero polynomial P(T) over k with P(f|q) =0, i.e., fortheelement g = P(f) € A
one has gl = 0. It follows that the image of g in the local ring Ox , of any point
x € U iszero. Thisloca ring isfaithfully flat over the local ring O« . of the affine
scheme X = Spec(+) at the image x of x in X (see [Ber2, 2.1.4]). It follows that
theimage of g in the localization of 4 with respect to the primeideal of the point x
is zero and, therefore, g isazero divisor in A. The assumptionimpliesthat ¢ = 0. O

A dtrictly k-analytic space X is said to be geometrlcally reduced (resp. geometri-
cally normal) if the strictly k2-analytic space X = X®k? is reduced (resp. normal).
For example, the generic fiber of X, of a nondegenerate pluri-stable formal scheme
X over k° isgeometrically normal.

8.1.2 Lemma. Let X be a geometrically reduced strictly k-analytic space. Then

(i) the set of points x € Xp such that X is smooth at x and the field #(x) is
separable over k isdensein X

(i) if x isapoint from X withthe properties(i), then thereisan open neighborhood
of x isomorphic to an open polydisc in an affine space over #(x).

Proof. (i) We can replace X by an open neighborhood of any point from Xg in the
interior of X sothat it may be assumed to be closed. Sincethefield k2 isalgebraically
closed and the regular locus of X is non-empty, from [Ber5, Theorem 5.2] it follows
that the smooth locus of X isdense in X. Replacing X by the smooth locus, we
may assume that X is smooth. We then can shrink it and assume that thereis an étale
morphismg : X — A". Foreachpointx € X, #(x) isafinite separable extension of
FH(p(x)). We may therefore assumethat X = A”. In this case the statement follows
from the well known fact that the set of all elements of an algebraic closure k2 of &,
which are separable over k, isdensein k2 (see [BGR, 3.4.1/6]).

(i) Asin (i), we can shrink X and assume that there is an étale morphism X —
A" : x — y. Itinduces an étale morphism X’ = XQ@H(x) — Af;f( )- The point x
has an #(x)-rational preimage x’ in X’ and, therefore, the étale morphism X’ — X
isalocal isomorphism at the point x’. Thus, shrinking X, we get an étale morphism
X — A%, x> Y With J(y') = H(x). It follows that the latter morphismisa
local isomorphism at the point x. ]

8.1.3 Corollary. Let X beageometrically reduced strictly k-analytic space. Then
(i) if X isconnected, ¢(X) isa finite separable extension of k;
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(ii) the stalk cx x Of cx at a point x € X coincides with the algebraic separable
closureof k in #(x);

(iii) the pullback of the étale sheaf ¢y to X isthe constant sheaf k% associated with
the separable closure k5 of k in k2.

Proof. (i) trivialy follows from Lemma 8.1.2, and it implies that the image of c¢x
in J¢(x) is contained in the algebraic separable closure. Let k' be afinite separable
subextension of k in #(x), and consider the canonical é&aemorphism X’ = XQk' —
X. The canonical character #(x) ® k' — H(x) defines a point x” over x with
J(x) = H(x'). From [Ber2, Proposition 3.4.2] it follows that the above étale
morphism is alocal isomorphism at the point x’ and, therefore, k' is contained in the
image of cx , in #(x). The statement (iii) is already trivial. |

8.14 Lemma. The following properties of a geometrically reduced strictly k-
analytic space X are equivalent:

@ «X) =k
(b) X®k’ isconnected for every finite extension &’ of k;
(c) X isconnected.

Proof. (a)=—>(b) Assumethat thereisk’ suchthat X®k’ isnot connected. If k” isthe
maximal subextension of k’ separable over k, then the canonical map X @k’ — X ®k”
is a homeomorphism and, therefore, we may assume that ¥’ = k”. We may also
assumethat k¢’ isa Galois extension of k. Let X’ be aconnected component of X ®k’.
The morphism X’ — X is afinite éale Galois covering of X of degree less than
[k : k]. If G isthe Galois group of this covering, then ¢(X) = ¢(X")¢ > KC. The
latter field is bigger than &, and this contradicts the assumption (a).

(b)==(c) Assumethat X isadisjoint union of non-empty open subsets U, and Uo.
Sincefor every compact analytic subdomain Y c X thecanonical mapY — Iin Y QK

is ahomeomorphism, where the inverse limit is taken over finite separable extensions
k' of k in k3, it follows that the images of U1 and U, in every X®k’ are open and
closed and, therefore, the maps U; — X®k’ are surjective. But we can find &’ such
that X®k’ has ak’-rational point. Since the preimage of the latter in X is aone point
subset, we get a contradiction.

(c)=(a) From (c) it followsthat X isconnected and, in particular, ¢(X) isafinite
separable extension of k. One has X®k2 > X®c(x)(c(X) ® k?). The latter tensor
prod/gct is adirect product of [¢(X) : k] copies of k&, and so the connectedness of
X®ka impliesthat ¢(X) = k. O

8.1.5 Corallary. LetY be a drictly analytic domain in a geometrically reduced
strictly k-analytic space X . Thenthe sheaf cy iscanonicallyisomor phicto the pullback
of thesheaf cxy on'Y.
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Proof. It sufficesto show that, given a compact strictly analytic domain Y in X, there
exists a compact neighborhood U of Y with ¢(U) = ¢(Y). For thiswe may assume
that ¥ and X are connected. Furthermore, we may shrink X so that ¢(X) — c(U)
for any connected compact neighborhood U of Y in X. Finaly, we may assume
that ¢(X) = k (see Remark 8.1.7). We claim that in this case ¢(Y) = k. Indeed, if
thisis not true, we can find a finite separable extension &’ of k such that Y ®k' is not
connected. Let {Y;}1<; <, betheconnected components of Y®K', and let {Ui}1<i<n be
their pairwise disjoint compact neighborhoods. Then there existsaconnected compact
neighborhood U of ¥ whose preimage in X®k’ is contained in [ ['_; U;. It follows
that U®k’ isnot connected. Since ¢(U) = k, this contradicts Lemma 8.1.4. O

8.1.6 Lemma. Assume that the characteristic of k is zero, and let X be a reduced
strictly k-analytic space that satisfies the assumption of Lemma 8.1.1 (ii). Thency =

Ker(Ox % Qb).

Proof. We may assume that X is connected. Let f be afunction from @ (X) with
df = 0. Any strictly affinoid subdomain V. C X isregular at a dense open subset
VY C V and, therefore, V issmooth at each point from V N Xg (see [Ber5, 5.2]). By
Lemma 8.1.2, there exists a non-empty open subset ‘W C vV isomorphic to an open
polydiscin an affine space over k/, afiniteextension of k. It followsthat f|w € c¢(W),
and Lemma 8.1.1 (ii) impliesthat f € ¢(X). O

8.1.7 Remark. Let X = M(4) be astrictly k-affinoid space, and V a strictly
k-affinoid subdomain of X. Assume that 4 contains afinite extension £’ of k. Then
X and V can be considered as strictly k’-affinoid spaces, and it is easy to see (in
comparison to Proposition 7.1.2) that V isastrictly k’-affinoid subdomain of X.

8.2 Local cohomological triviality of the sheaf ¢y

8.2.1 Theorem. Assumethatthecharacteristic of k iszero, andlet X bea k-analytic
space locally embeddablein a smooth space. Then each point of X has a fundamental
system of open neighborhoods V with H"(V, cx) = Ofor all n > 1.

Since the characteristic of & is zero, the stalks of ¢y are uniquely divisible abelian
groups, and since the Gal ois cohomology of such agroupistrivial, [Ber2, Proposition
4.2.4] impliesthat, for any reduced strictly k-analytic space X, the étale cohomol ogy
groups H" (X, cx) of X coincide with the cohomology groups H" (| X|, cx) of the
underlying topological space | X]|.

Proof. By Theorem7.1.1, each point of X hasafundamental system of open neighbor-
hoods V with the properties (a)—(d). We claimthat, for such V, onehas H"(V, ¢x) =
0,n>1.
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Let X1 € X2 C --- bethe increasing sequence of compact strictly analytic
subdomains of V from the property (b). By Corollary 8.1.5, the pullback of the étale
sheaf cx to X,, coincides with cy, . From [Ber2, Lemma 6.3.12] it follows that to
prove the claim it sufficesto show that H" (X,,, cx, ) = Oforal n > 1.

By Corollary 8.1.3(ii), the pullback of the étale sheaf cy,, to X, is the constant
sheaf k% . Since X,,, is compact, there is a Hochschiel d-Serre spectral sequence

EYY = HP(G, H1 (X, k%) = H' (X, cx,,) ,

where G isthe Galois group of k° over k. The étale cohomology groups HY X, k9
coincide with H7 (| X |, kS). Since al of the connected components of X,, are con-

tractible, it follows that H?(X,,, k5) = 0 and, therefore, E =O0fordlqg > 1
Furthermore, since H? (G, k) = O for al p > 1, the spectral sequence implies that
H"(Xp,cx,)=0foraln > 1. O

8.3 Cohomology of certain analytic spaces

In this subsection, k isassumed to be of characteristic zero. Let X be anondegenerate
pluri-stable formal scheme over k°, and let Y be a quasi-compact locally closed strata
subset of the closed fiber X (i.e., % isalocally closed subset which isafinite union of
strata of X;). Theset S(X/y) = S(X) N7 ~1(Y) isapiecewise Rk -linear subspace
of §(X). Itisaunion of strata and contained in each dense Zarlskl open subset of

*1(‘},1) We also set ¥ = XQ®p- (ka)" It is a nondegenerate pluri-stable formal
scheme over (k%)° with the closed fiber X, = X, ®; k%, Y = ¥ ®; k® isasubscheme
of the latter, and so a piecewise R"+ -linear subspace S(%/y) of S(X) isdefined. Let
G be the Gaois group of kS over k.

8.3.1 Theorem. LetX = n—l(y)\z, where Z is_a nowhere dense Zariski closed
subset of X,,. Then the canonical maps S(X )= X —> X induce isomor phisms of
finitely dimensional vector spaces over k

H"(X, cx) > H"(X, k99 > H"(SX ), k5%, n=0.

Since the characteristic of & is zero, the first two groups can be considered in the
étale as well asin the usual topology. The third group H”(S(% ) kS) is of course
considered in the usual topology, it coincides with the smgular cohomology group
and is evidently finitely dimensiona over kS. From [Ber7, Theorem 8.1] it follows
that S(X /g) is a strong deformation retraction of X, and this implies the second

isomorphism. Furthermore, if % isopenin X; and X coincides with n*l(y), then X
is compact and, therefore, the first isomorphism follows from the Hochschield-Serre
spectral sequence. The non-triviality of the first isomorphism isin the fact that such
a spectral sequence does not hold if X is not compact.
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Proof. By [Ber7, Theorem 8.1], there is a proper strong deformation retraction @ of
X, to the skeleton S(X), and it liftsto astrong deformation retraction @ of X to S(X).
Let v and T denote the corresponding retraction maps X,, — S(X) and X,, — S(X).
Weset S = S(X,y) and S = S(Xz). Fromloc. cit. it followsthat 7 (%) = t7($),
771(Y) = 771(S), and that X and X contain S and S and are preserved under @ and
@, respectively.

8.3.2 Lemma. Thereisan increasing sequence X1 C X» C --- of compact strictly
analytic subdomains of 7 ~1(Y) with the following properties:

(a) X = UZO:1 Xn;
(b) all X,, are preserved under @;
(c) all ©(X,) are compact piecewise RZ-Iinear subspaces of S.

Proof. Firstof al, shrinking X we may assumethat it isquasi-compact and ¥ isclosed
in X,. We claimthat it suffices to consider the case when X is affine. Indeed, assume
thelemmaistrueinthis case, and let {X;};<; be afinite covering of X by open affine
subschemes. By the assumption, we can find, for every i € I, anincreasing sequence
X! c X, c - of compact strictly analytic domains of = ~1(Y;) with the properties
(@—c) for X N7 ~1(Y,), where Y; = Y N X, ;. Then the properties (a)—(b) hold for
the compact strictly analytic domains X, = J;.; Xi. Thus, let X = Spf(A).

Let f1,..., fm benonzero elementsof A with Z = {x € X, | f;(x) = Ofor all
1 <i < m}. Let e beapositive integer which is smaller than al of the minima of the
functionsx — | f; (x)| ontheskeleton S(X),andlete > r1 > rp» > - - - beadecreasing
sequence of numbersfrom |k*| tending to zero. By [Ber7, Theorem 8.1(iii)], for every
1<i<mandn > 1,thestrictly affinoid domain Y} = {x € X, | |fi(x)| > ry}
is preserved under ®. Then the same is true for the compact strictly analytic domain
Y, = /L, Yi. Thus, we have an increasing sequence Y1 C Y2 C --- of compact
strictly analytic domainsin X,, which contain S(X), are preserved under  and such
that 7 =1(YI\Z = U2 1 Vo

Let E;1 C E2 C --- beanincreasing sequence of compact piecewise R§+-Iinear
subspaces of S with § = (72 ; E,. By Theorem 6.4.1, each t~Y(E,) is a compact
gtrictly analytic domain in 7 =1(4). Then X,, = t~X(E,) N Y, is a compact strictly
analytic domainin X = 7 ~1(Y)\Z, it is preserved under ® and itsimage under 7 is
E,,i.e,thesequence X1 C X C --- possesses the properties (a)—c). O

Lemma 8.3.2 implies that the compact strictly analytic domains X, of X arepre-
served under ® and T(X,,) are piecewise RZ—Iinear subspaces of S. In particular,
HY (X, k%) areof finite dimension over k. Since X = (J52; X, thereis an isomor-
phism of finitely dimensional vector spaces over k5

HY(X, k% > limHY(X,, k%), ¢ > 0.

n
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Let 2 denote the dimension over kS of theimage of H?(X,,, k%) in H(X,,, k) for
sufficiently large m. Onehash? < b3 < ... and k! = h? for sufficiently large n,
whereh? isthedimensionof H9 (X, k%) over kS. Recall that, by the Hochschield-Serre
spectral sequence, one has H7(X,,, cx,) — H9(X,,, k$)C.

Let K be afinite unramified Galois extension of k such that all of the strata of the
closed fiber of X®;-K° are geometrically irreducible. Then the action of G on the
skeleton S(X) goes through an action of its finite quotient Gal (K / k). 1t follows that
HI(X,, k$CA&/K) — ga(X,, K), and we get

HY(X,, cx,) = HQ(YW kS)G — H(J(Yn, K)GaI(K/k) ]
Thelatter space hasfinite dimension over k and, in particular, thereisan isomorphism

HY(X,cx) = limH?(X,, cx,), ¢ = 0.
Itfollowsalsothat theimageof H?(X,,, cx,,) in H(X,, cx, ) for sufficiently largem is
of dimensionat most[K :k]-ﬁz over k. Hence, thedimensionof H4(X, cx) overkisat
most [K : k]-#?, and thereisacanonical isomorphism HY (X, c¢x) S HY(X, k5.0

8.3.3 Corollary. Let X beanondegenerate strictly pluri-stable formal scheme over
k°, Y an irreducible component of X, and X = 7~ 1(Y)\Z, where Z is a Zariski
closed subset of X,. Then H" (X, cx) = Oforall n > 1.

Proof. By Theorem 8.3.1, we may assumethat k isalgebraicaly closed, and it suffices
to show that S(X,y) is contractible. (Of course, at this point the assumption on the
characteristic of k is aready not important.) To prove the contractibility, it is more
convenient to use [Ber7, Theorem 8.2] instead of Theorem 5.1.1 of this paper.

Let X be a strictly poly-stable fibration over k° with X; = X. Recall that [Ber7,
Theorem 8.2] identifies the skeleton S(X) = S(X) with the geometric realization |C|
of apolysmplicial set C = C(X) associated with X. The polysimplicial set C here
is an object of the category A°E&ns, where A is a category with the same family of
objects as A but with larger sets of morphisms, and the geometric realization functor
extends the functor that takes [r] € Ob(A) withn = (ng, ..., np) to

2" = {(uij)o<i<p.o<j<n; € [0, 1™ |ujo+ -+ uim, =1, 0<i < p}.

Since X is strictly poly-stable, the polysimplicial set C is interiorly free, i.e., the
stabilizer of any nondegenerate n-polysimplex of C in Aut([n]) istrivial. It follows
that the corresponding map 2" — |C| isinjective on theinterior 3" of X". Let y be
the vertex of |C| that corresponds to the generic point of Y. Then S(Xy) isidentified
with the union S of al cells of |C| whose closure contains the vertex y. We define a
map @ : S x [0,1] — S asfollows ®(x,t) =ty + (1 — t)x. (Notice that the latter
makes sensein S.) Themap @ is evidently continuous and defines a contraction of S
to the point y. O
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8.3.4 Corollary. Let X beareduced strictly k-analytic spaceisomorphicto W\ va,
where W isacompact strictly analytic domainin theanalytification X2 of a separated
scheme X of finite type over k and 'V isa Zariski closed subset of X6. Then there are
canonical isomorphisms of finitely dimensional vector spaces over k

H"(X,cx) > H'" X, k5%, n>0.

Proof. By [Ber7, Theorem 10.1], the abelian group H" (X, Z) is of finite rank and G
acts on it through afinite quotient. Since H" (X, k%) = H"(X, Z) ®z kS, it follows
that the action of G on H" (X, k%) is discrete. It follows that, if there exists a proper
hypercovering X, — X such that the statement istruefor al X,,’s, then it isalso true
for X. Using this remark and de Jong's results [de]] (asin the proof of loc. cit.), the
situation is reduced to the case when X is of the form considered in Theorem 8.3.1. O

8.3.5 Remark. Assume that k is afinite extension of Q,, and let X be a sepa-
rated reduced scheme of finite type over k. By [Ber8, Theorem 1.1(a")], there are
canonical isomorphism H" (|X° |, Qp) = H"(X, Qp)sm,whereH”(RanL Q,) are
the cohomology groups of the underlying topological space of X" = (X ® ?a)a”,
H"(X, Q,) arethe p-adic étale cohomology groupsof X = X ® k2 and, for a p-adic
representation V, VS™ denotes the subspace of V' consisting of the elementswith open
stabilizer in G. Together with Corollary 8.3.4, this implies that there are canonical
isomorphisms

H" (X, cxn) = (H"(X, Q)™ ®q, k¢ = (H"(X, Qp) ®q, k)¢ .

It followsthat dimy H" (X", cxan) = dimg, H" (X, Q).
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