
Étale equivariant sheaves on p-adic analytic spaces

Vladimir G. Berkovich

§1. G-spaces and G-sheaves

1.1. G-spaces. Recall that a non-Archimedean field is a field complete with respect to a

fixed non-Archimedean valuation (which is not assumed to be non-trivial). Furthermore, a (non-

Archimedean) analytic space is a pair (k, X), where k is a non-Archimedean field and X is a

k-analytic space, and a morphism (K,Y ) → (k, X) is a pair consisting of an isometric embedding

k ↪→ K and a morphism of K-analytic spaces Y → X⊗̂kK (see [Ber2], §1.4). The category of

analytic spaces An is a fibred category over the category of non-Archimedean fields. (The fibre

category over k is the category of k-analytic spaces k-An.) For brevity the pair (k,X) is denoted

by X and is called an analytic space. When we talk about an étale, quasi-étale, smooth, proper

(and so on) morphism between two analytic spaces, we assume that the both spaces are from k-An

for some field k.

Given analytic spaces X and Y , let Mor(Y,X) denote the set of morphisms Y → X, and let

G(X) denote the group of automorphisms of X. (If X is k-analytic, then such an automorphism

induces an isometric automorphism of the field k.) If X and Y are over an analytic space T , then

MorT (Y, X) (resp. GT (X)) denotes the subset of T -morphisms (resp. T -automorphisms). In what

follows all analytic spaces considered are assumed to be Hausdorff. Given an analytic function f

on an analytic space X, one sets ρ(f) = max
x∈X

|f(x)|.
Let X be an analytic space. One introduces a set E(X) as follows (see [Ber3], §6). An element

ε of E(X) consists of a finite family s(ε) = {Ui}i∈I of compact analytic domains in X and, for each

i ∈ I, of finite sets of analytic functions {fij}j∈Ji on Ui and of positive numbers {tij}j∈Ji . Such an

element ε defines, for each analytic space Y , a relation on the set Mor(Y,X) as follows. Given two

morphisms ϕ,ψ : Y → X, we write d(ϕ,ψ) < ε if ϕ−1(Ui) = ψ−1(Ui) and ρ(ϕ∗i fij − ψ∗i fij) ≤ tij

for all i ∈ I and j ∈ Ji, where ϕi and ψi are the induced morphisms ϕ−1(Ui) → Ui (if ϕ−1(Ui)

is empty, the above inequality is assumed to hold). The relations d(ϕ,ψ) < ε define a uniform

space structure and, in particular, a topology on Mor(Y, X). The group G(X) is endowed with
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the topology induced from Mor(X, X). It is a topological group whose topology is defined by the

system of the subgroups Gε(X) = {σ ∈ G(X)
∣∣σ(Ui) = Ui, ρ(σ∗i fij − fij) ≤ tij} for ε ∈ E(X) as

above. We say that the action of a topological group G on an analytic space is continuous if the

induced homomorphism G → G(X) is continuous.

1.1.1. Examples. (i) If X is k-analytic, then the evident action of the Galois group Galk =

Gal(ks/k) on X = X⊗̂k̂a is continuous. Moreover, if a k-analytic group G acts on X, then the

actions of G(k) on X and X are continuous ([Ber3], 6.4).

(ii) Let X be a formal scheme locally finitely presented over k◦ (resp. a special formal scheme

over k◦ if the valuation on k is discrete, see [Ber4]) Then the group of automorphisms of X over k◦,

G(X/k◦), is endowed with a topology as follows. If X is quasicompact, then the topology of G(X/k◦)

is defined by the subgroups GJ (X/k◦) consisting of the automorphisms trivial modulo an ideal of

definition J ⊂ OX. In the general case, G(X/k◦) is endowed with the weakest topology with respect

to which for any open quasicompact subscheme Y ⊂ X the stabilizer of Y in G(X/k◦) is open and

the homomorphism from it to G(Y/k◦) is continuous. It is easy to verify that the homomorphism

G(X/k◦) → Gk(Xη) is continuous. In particular, if a topological group G acts continuously on X,

then it acts continuously on Xη.

An analytic space X endowed with a continuous action of a topological group G will be called

a G-space. A G-equivariant morphism between two G-spaces will be called a G-morphism.

1.1.2. Construction. Let H be an open subgroup of a topological group G, and let X be

an H-space. Then there is a unique (up to a canonical isomorphism) an H-morphism f : X → X ′

to a G-space X ′ such that any H-morphism ϕ : X → Y to a G-space Y extends in a unique way

to a G-morphism ϕ′ : X ′ → Y . Indeed, let G =
∐

i∈G/H giH with g0 = 1 (for the coset H), X ′ the

disjoint union
∐

i∈G/H Xi, where Xi is a copy of X identified by an isomorphism fi : X
∼→Xi. An

element g ∈ G acts on X ′ as follows: if ggi = gjh, h ∈ H, then g
∣∣
Xi

= fjhf−1
i : Xi → Xj ⊂ X. The

morphism f = f0 : X → X ′ satisfies the universal property. Indeed, if ϕ : X → Y is a H-morphism

to a G-space Y , then the required morphism ϕ′ : X ′ → Y is defined by ϕ′
∣∣
Xi

= giϕf−1
i . We remark

that the morphism f ′ : X ′ → X that coincides with f−1
i on Xi is an H-morphism with f ′◦f = 1

∣∣
X

.

(If X is in fact a G-space, then f ′ is a unique G-morphism with the property f ′ ◦ f = 1
∣∣
X

.) The

analytic space X ′ will be denoted by XG/H We remark that for any subgroup H ⊂ H ′ ⊂ G there

is a canonical isomorphism (XH′/H)G/H′
∼→XG/H .

The category of analytic spaces with operators Anop is the category of pairs X(G) where G is

a topological group and X is a G-space. A morphism between such spaces ϕ : X ′(G′) → X(G) is a
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pair consisting of a continuous homomorphism of topological groups νϕ : G′ → G and a morphism

of analytic spaces ϕ : Y → X compatible with the homomorphism νϕ. For example, a G-morphism

ϕ : Y → X between G-spaces gives rise to a morphism ϕ : Y (G) → X(G) for which νϕ is the

identity map on G. If X is a G-space, then the action of G on X extends to a natural action of G

on X(G) for which νg(g′) = gg′g−1. The category Anop is a fibred category over the category of

topological groups. The fibre over G will be denoted by G-An.

1.1.3. Example. Let X be a G-space. In what follows we’ll use the following two morphisms

a : X(Gd) → X(G) and b : X → X(G), where Gd denotes the group G endowed with the discrete

topology and X = X({1}).

1.2. The quasi-étale and étale topologies on a G-space. For a G-space X, let Qét(X(G))

(resp. Ét(X(G))) denote the category of quasi-étale (resp. étale) morphisms U(G) → X(G). The

quasi-étale (resp. étale) topology on X(G) is the Grothendieck topology on the category Qét(X(G))

(resp. Ét(X(G))) generated by the pretopology for which the set of coverings of (U(G) → X(G)) ∈
Qét(X(G)) (resp. Ét(X(G))) consists of the families {Ui(G) → U(G)}i∈I such that {Ui → U}i∈I is

a covering in the quasi-étale (resp. étale) topology of X. We denote by X(G)qét (resp. X(G)ét) the

site obtained in this way, by X(G)q̃ét (resp. X(G)˜́et) the corresponding topos, and by S(X(G)qét)

(resp. S(X(G)ét)) the corresponding category of abelian sheaves. There is a morphism of sites

µG : X(G)qét → X(G)ét, and any morphism ϕ : X ′(G′) → X(G) gives rise in the evident way

to morphisms of sites X ′(G′)qét → X(G)qét and X ′(G′)ét → X(G)ét and to morphisms of the

corresponding topoi. For a quasi-étale (resp. étale) sheaf F ′ on X ′(G′), the value of ϕ∗F on U(G)

over X(G) is F ′((X ′×X U)(G′)) and, for a quasi-étale (resp. étale) sheaf F on X(G) the sheaf ϕ∗F

is described as follows. For a morphism Y (H) → X(G), let C(Y (H)/X(G) denote the category of

morphisms Y (H) → V (G) over X(G), where V is quasi-étale (resp. étale) over X. Then ϕ∗F is

the sheaf associated with the presheaf

(U ′(G′) → X ′(G′)) 7→ ϕpF (U ′(G′)) := lim
−→

F (V (G)) ,

where the limit is taken over the dual category C(U ′(G′)/X(G))◦.

1.2.1. Examples. (i) Let N be an open subgroup of a topological group G, and let

X be an N -space. Then the morphism X(N) → XG/N (G) induces an isomorphism of sites

X(N)qét
∼→XG/N (G)qét (resp. X(N)ét

∼→XG/N (G)ét) and, therefore, an isomorphism of the cor-

responding topoi.
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(ii) If X is a k-analytic space, X = X⊗̂k̂a, and G = Gal(ks/k), then the inverse image

functor for the morphism X(G) → X induces an isomorphism of topoi X q̃ét
∼→X(G)q̃ét (resp.

X ˜́et ∼→X(G)˜́et).
(iii) Let a discrete group Γ act discretely on a k-analytic space X, and assume that the

conditions of Lemma 4 from [Ber5] for the existence of the quotient space Γ\X are satisfied and

the morphism X → Γ\X is étale. (For example, this is true if the action of Γ on X is free.)

Then the inverse image functor for the morphism X(Γ) → Γ\X induces an isomorphism of topoi

(Γ\X)q̃ét
∼→X(Γ)q̃ét (resp. (Γ\X)˜́et ∼→X(Γ)˜́et).

(iv) Let X be a G-space and let ϕ be the morphism X(G′) → X(G) that corresponds to a

surjective continuous homomorphism G′ → G. Then the functor ϕ∗ : S(X(G)q̃ét) → S(X(G′)q̃ét)

(resp. S(X(G)˜́et) → S(X(G′)˜́et)) has a left adjoint functor θ which is describes as follows. Let F ∈
S(X(G′)q̃ét) (resp. S(X(G′)˜́et)). Then for each quasi-étale (resp. étale) morphism U(G) → X(G)

the group H = Ker(G′ → G) acts on F (U(G)). The sheaf θ(F ) is the sheaffification of the presheaf

that associate with U(G) the maximal quotient of F (U(G)) where the group H acts trivially.

We denote by ΓX(G) the global sections functor on X(G)q̃ét (resp. X(G)˜́et), i.e., ΓX(G)(F ) =

F (X(G)). The high direct images of ΓX(G) on the category of abelian sheaves will be denoted by

Hq(X(G), F ). We also denote by ΓX{G} the functor from X(G)q̃ét (resp. X(G)˜́et) to the category

of (discrete) G-sets by

ΓX{G}(F ) = lim
−→
N

F (XG/N (G)) ,

where N runs through open subgroups of G. The simplest way to see that ΓX{G}(F ) is really a

G-set is as follows.

Let P (G) denote the category of G-sets endowed with the Grothendieck topology generated

by the pretopology for which the sets of coverings consist of surjective families of G-maps. It is

well known that any sheaf F ∈ P (G)̃ is representable by the G-set ∪NF (G/N), where N runs

through open subgroups of G. In particular, there is an equivalence of categories P (G)∼→P (G)̃.

(We also remark that there is an equivalence of categories P (G)∼→P (Ĝ), where Ĝ is the completion

of G with respect to open subgroups.) For a G-set Σ, let XΣ denote the disjoint union
∐

σ∈Σ Xσ

(Xσ are copies of X) provided with the following action of G: an element g ∈ G takes Xσ to Xgσ

by the action of g on X. (For example, the space XG/N associated with the G-set G/N , where

N is an open subgroup of G, coincides with the space constructed in 1.1.2.) The correspondence

Σ 7→ XΣ(G) defines a morphism of sites γ : X(G)qét → P (G) (resp. X(G)ét → P (G)), and we

see that ΓX{G}(F ) is exactly the G-set that represents the sheaf γ∗F . It follows also that for any
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open subgroup N ⊂ G one has ΓX{G}(F )N = F (XG/N (G)). The high direct images of the functor

ΓX{G} on the category of abelian sheaves will be denoted by Hq(X{G}, F ). For any abelian sheaf

F there is a spectral sequence

Ep,q
2 = Hp(G,Hq(X{G}, F )) =⇒ Hp+q(X(G), F ) .

1.3. The stalk of an étale sheaf at a point. Consider first the case when X = pk, the

spectrum of a non-Archimedean field k. (In this case Qét(pk(G)) = Ét(pk(G)).) For a field K over

k with a valuation that extends the valuation on k, let Gal(K/k) denote the group of isometric

automorphisms of K that take k onto k. It is a topological group whose topology is defined by

subgroups of the form {g ∈ Gal(K/k)
∣∣|gαi − αi| ≤ ri, 1 ≤ i ≤ n}, where α1, . . . , αn ∈ K and

r1, . . . , rn > 0. We set G(k) = Gal(k/k), Galk = Gal(ks/k) and Galk = Gal(ks/k), where ks is a

separable closure of k. Then there is an exact sequence of topological groups

1 −→ Galk −→ Galk −→ G(k) −→ 1

The action of G on pk is a continuous homomorphism G → G(k). The latter gives rise to an exact

sequence of topological groups

1 −→ Galk −→ G ν−→ G −→ 1

Furthermore, let pk = p
k̂a . For an étale morphism U(G) → pk(G), let ΣU(G) denote the set of all

morphisms pk → U over pk. If σ ∈ ΣU(G) and g ∈ G, then the formula gσ = ν(g) ◦ σ ◦ g−1 defines

an action of G on ΣU(G).

1.3.1. Proposition (equivariant Galois theory). The correspondence U(G) 7→ ΣU(G) gives

rise to an equivalence of categories Ét(pk(G))∼→P (G). In particular, there is an equivalence of

categories pk(G)˜́et ∼→P (G).

Proof. First of all, we have to verify that the action of G on ΣU(G) is discrete. Given

σ : pk → U , let V be the connected component of U that contains the image of pk. Then

V = M(K), where K is a finite separable extension of k. Let α be an element K that generates it

over k, β the image of α in ks under σ, and r the minimum of the distances from β to its congugates

in ks. Then the stabilizer of σ contains the open subgroup of G that consists of the elements g with

|gβ−β| < r. Furthermore, it follows from the construction that the connected components of U(G)

correspond bijectively to the G-orbits in ΣU(G). This easily implies that the functor considered is

fully faithful. Finally, let Σ be a transitive G-set. Then the stabilizer N of a fixed element σ ∈ Σ is
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open in G and the field K = (ks)N∩Galk is finite over k. It follows that the action of N , the image

of N in G, on k extends to an action of N on K. If V = M(K) and U = VG/N , then ΣU(G)
∼→Σ,

and therefore the functor is essentially surjective.

If F is a sheaf on pk(G) and Σ is the corresponding G-set, then Γpk(G)(F ) = ΣG and

Γpk{G}(F ) = ΣGalk . In particular, if F is abelian, then

Hq(pk(G), F ) = Hq(G, F ) and Hq(pk{G}, F ) = Hq(Galk, Σ) .

Let X now be a G-space and x ∈ X. Then there is a canonical morphism px(Gx) → X(G),

where px = pH(x) and Gx = {g ∈ G
∣∣gx = x}. For an étale sheaf F on X(G), let Fx denote the

pullback of F on px(Gx). By Proposition 1.3.1, Fx can be considered as a Gx-set, where Gx is

the extension of Gx by GalH(x) constructed above, and it is called the stalk of F at the point x.

Furthermore, a geometric point of X(G) is a morphism of the form x : px → X(G), where px is

the spectrum of an algebraically closed non-Archimedean field H(x). If the image of x is a point

x ∈ X, we say that x is over x. For an étale sheaf F on X(G), let Fx denote the pullback of F on

px. It can be considered as a set and is called the stalk of F at the geometric point x. If x is over

x, then any embedding of fields H(x)s ↪→ H(x) over H(x) induces a bijection Fx
∼→Fx. One has

Fx = lim
−→

C(x/X(G))◦
F (V (G)) .

Let C ′(x/X) denote the full subcategory of C(x/X) consisting of the objects for which the mor-

phism V → X is distinguished étale. (It is a cofinal subcategory of C(x/X).) Then any open

subgroup N ⊂ GV gives rise to an object VG/N (G) of the category C(x/X(G)), and the family of

objects {VG/N (G)} is cofinal in C(x/X(G)). It follows that

Fx = lim
−→

lim
−→

F (VG/N (G) ,

where the first limit is taken over objects V of C ′(x/X), and the second limit is taken over open

subgroups N ⊂ GV .

It is easy to see that if we fix a geometric point x over each point x ∈ X, then the family

{x} is a conservative family of points of the étale topos of X(G) (see [SGA4], Exp. IV, 6.4.1). In

particular, a morphism of étale sheaves F → F ′ on X(G) is mono/epi/isomorphism if and only if

for all x ∈ X the induced maps Fx → F ′x possess the same property.

1.4. G-sheaves. Let X be a G-space. In this subsection we show that the inverse image

functor for the morphism b : X → X(G) identifies the topos X(G)q̃ét (resp. X(G)˜́et) with the
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category of G-sheaves on X. The definition of the latter given below is an analog of the usual

notion of an equivariant sheaf on a space with operators (see [Gro], Ch. IV).

Consider first the case when the group G is discrete. In this case a quasi-étale (resp. étale)

G-sheaf F is a quasi-étale (resp. étale) sheaf on X endowed with an action of G on F , compatible

with the action of G on X, i.e., endowed with a system of isomorphisms τ(g) : F
∼→g∗F, g ∈ G, such

that τ(gh) = h∗(τ(g)) ◦ τ(h). In other words, F is a G-sheaf if for each quasi-étale (resp. étale)

morphism U → X and for each g ∈ G there is a functorial bijection F (U)∼→F (gU) : f 7→ gf , where
gU = U ×X,g−1 X, such that ghf = g(hf). Given a G-sheaf F , then for any quasi-étale (resp. étale)

morphism U(H) → X(G), where H is a subgroup of G, the set F (U) is endowed with a canonical

action of the group H. Indeed, for h ∈ H the morphism h−1 : U → U induces an isomorphism

U
∼→hU = U ×X,h−1 X over X. The latter induces a bijection σ(h) : F (hU)∼→F (U), and the action

of H on F (U) is defined by hf = σ(h)(hf).

Consider now the case of an arbitrary topological group G. Recall that the Key Lemma 7.2

from [Ber3] implies that given a quasi-étale morphism U → X with compact U there exist ε ∈ E(X),

δ ∈ E(U) and a unique continuous homomorphism Gε(X) → Gδ(U) such that the morphism U → X

commutes with the action of Gε(X). It follows that for any quasi-étale morphism U → X with

compact U the action of G on X extends in a canonical way to a continuous action of some open

subgroup GU ⊂ G on U . Furthermore, an étale morphism U → X is said to be distinguished if it can

be represented as a composition U j
↪→ U

ϕ→ X, where U is compact, ϕ is quasi-étale and j identifies

U with a distinguished open subset of U , i.e., with such one whose complement in U is an analytic

domain. For such a morphism the action of G on X extends in a canonical way to a continuous

action of an open subgroup GU ⊂ G. Since U\U is a compact analytic domain in U , then U is

invariant under the action of an open subgroup GU ⊂ GU . If there is another representation of

the morphism U → X as a composition U j′
↪→ U ′ ϕ′→ X and, therefore, an extension of the action

of G on X to a continuous action of an open subgroup G′U ⊂ G on U , then one can find an open

subgroup N ⊂ GU ∩G′U such that the two actions of N on U coincide. (For this it suffices to apply

the Key Lemma to the quasi-étale morphism U ×X U ′ → X.) We remark that if F is an étale

G-sheaf then, for any quasi-étale morphism U → X with compact U (resp. any distinguished étale

morphism U → X), there is a canonical action of GU on F
∣∣
U

(resp. GU on F
∣∣
U ) compatible with

the action of G on X. In particular, the group GU (resp. GU ) acts on F (U) (resp. F (U)).

1.4.1. Definition. A quasi-étale (resp. étale) G-sheaf on X is a quasi-étale (resp. étale)

Gd-sheaf F such that for any quasi-étale morphism U → X with compact U the action of GU on
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F (U) is discrete. The category of quasi-étale (resp. étale) G-sheaves on X will be denoted by

TG(Xqét) (resp. TG(Xét)).

It is easy to see that an étale Gd-sheaf F is a G-sheaf if and only if for any étale morphism

U → X and any element f ∈ F (U) each point of U has a distinguished open neighborhood U such

that the stabilizer of f
∣∣
U is open in GU .

1.4.2. Theorem. The inverse image functor for the morphism b : X → X(G) induces an

equivalence of categories X(G)q̃ét
∼→TG(Xqét) (resp. X(G)˜́et ∼→TG(Xét)).

Proof. A. Consider first the quasi-étale topology.

1. Let U → X be a quasi-ètale morphism with compact U . By the Key Lemma from [Ber3],

the action of G on X extends in a canonical way to an action of an open subgroup GU ⊂ G on U .

For an open subgroup N ⊂ GU there is a commutative diagram

X −→ X(G)x x
U −→ UG/N (G)

i.e., an object of the category C(U/X(G)). We claim that the family of objects {UG/N (G)} is

cofinal in the category C(U/X(G)). (This will imply that bpE(U) = lim
−→

E(UG/N (G)).) Indeed,

suppose we are given a morphism U → V (G) over X(G), where V is quasi-étale over X. Since this

morphism is quasi-étale, it follows from the Key Lemma that it is an N -morphism for some open

subgroup N ⊂ GU . By Construction 1.1.2, the morphism U → V goes through a G-morphism

UG/N → V .

2. If U is compact, then bpE(U)∼→b∗E(U). Indeed, for this it suffices to verify that, given a

finite quasi-étale covering {Ui → U} by compact analytic spaces, one has

bpE(U) = Ker(
∏

i

bpE(Ui)
−→−→

∏

i,j

bpE(Ui ×U Uj)) .

The Key Lemma implies that for a sufficiently small open subgroup N of the intersection GU ∩
∩i,j(GUi ∩ GUj ) the morphisms Ui → U and Ui ×U Uj → Ui are in fact N -morphisms. Thus,

{Ui,G/N (G) → UG/N (G)} is a covering of UG/N (G). Since (Ui×U Uj)N
∼→Ui,G/N ×UG/N

Uj,G/N , one

has E(UG/N (G)) = Ker(
∏

i E(Ui,G/N (G)) −→−→ ∏
i,j E((Ui ×U Uj)G/N (G))). The inductive limit of

the latter over all such N gives the required fact.

3. b∗E is a G-sheaf. It suffices to construct for all quasi-étale morphisms U → X with compact

U and all g ∈ G a compatible system of bijections b∗E(U)∼→b∗E(gU) : f 7→ gf with gg′f = g(g′f).

For this we remark that the composition of the projection gU = U ×X,g−1 X → U with the
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embedding U → UG/N and g : UG/N → UG/N is a (gNg−1)-morphism gU → UG/N . It gives rise to

an isomorphism (gU)G/gNg−1(G)∼→UG/N (G) over X(G). The latter induces the required bijection

b∗E(U) = lim
−→

E(UG/N (G))∼→b∗E(gU) = lim
−→

E((gU)G/gNg−1(G)) .

4. Let now F be a quasi-étale G-sheaf on X. For (V (G) → X(G)) ∈ Qét(X(G)) one has

b∗F (V (G)) = F (V ). The group G acts on F (V ), and therefore we can define a sheaf (b∗F )G on

X(G)q̃ét by (b∗F )G(V (G)) = F (V )G. We claim that b∗((b∗F )G)∼→F . Indeed, if U → X is a quasi-

étale morphism with compact U , then b∗((b∗F )G)(U) = lim
−→

F (UG/N )G, where N runs through open

subgroups of GU . The required isomorphism follows from the facts that the morphism U → UG/N

induces a bijection F (UG/N )G ∼→F (U)N and the action of GU on the set F (U) is discrete.

5. For E ∈ X(G)q̃ét one has E
∼→(b∗b∗E)G. Indeed, since each object of Qét(X(G)) can be

covered by objects of the form UG/N (G), where U → X is a quasi-étale morphism with compact U

and N is an open subgroup of GU , it suffices to verify that E(UG/N (G))∼→(b∗b∗E)G(UG/N ). The

right hand side is b∗E(UG/N )G = b∗E(U)N = (lim
−→

E(UG/N ′(G)))N , where N ′ runs through open

subgroups of N . Consider the canonical morphism ϕ : U(N) → X(G). One has E(UG/N (G)) =

ϕ∗E(U(N)), and since UG/N ′ = (UN/N ′)G/N then E(UG/N ′(G)) = ϕ∗E(UN/N ′(N)), and therefore

the claim follows from the fact that ΓU(N)(F ) = ΓU{N}(F )N for all quasi-étale (and étale) sheaves

F on U(N).

B. Consider now the étale topology.

1. For any E ∈ X(G)˜́et, b∗E is a G-sheaf. Indeed, this follows from the fact that µ∗(b∗E) is

a quasi-étale G-sheaf and the functor µ∗ : X ˜́et → X q̃ét is fully faithful.

2. As in the quasi-étale case (see A.4), one defines for any F ∈ TG(Xét) a sheaf (b∗F )G ∈
X(G)˜́et. We claim that b∗(b∗F )G ∼→F . Indeed, for a geometric point x of X one has

(b∗(b∗F )G)x = (b∗F )G
b(x) = lim

−→
lim
−→

F (UG/N )G = lim
−→

lim
−→

F (U)N = Fx ,

where the first limits are taken over U ∈ C ′(x/X) and the second ones are taken over open subgroups

N ⊂ GU .

3. Finally, we claim that for any E ∈ X(G)˜́et one has E
∼→(b∗b∗E)G. Indeed, for a geometric

point x of X one has

Eb(x) = (b∗E)x = lim
−→

lim
−→

(b∗E)(U)N = lim
−→

lim
−→

(b∗E)(UG/N )G

= lim
−→

lim
−→

(b∗b∗E)G(UG/N (G)) = (b∗b∗E)G
b(x) ,
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where the limits are taken over the same systems as in 2. The theorem is proved.

1.4.3. Corollary. For any F ∈ X(G)˜́et one has F
∼→µ∗µ∗F , where µ is the morphism of sites

X(G)qét → X(G)ét. In particular, the functor µ∗ : X(G)˜́et → X(G)q̃ét is fully faithful, and for any

quasi-étale morphism f : U(G) → X(G) one has (f∗F )(U(G)) ∼→(µ∗F )(U(G)).

1.5. Cohomology with compact support and Verdier Duality. Let X be a G-space.

We recall the construction of the Godement resolution from [SGA4], Exp. XVII, §4.2, adopted

to the étale site of X(G). First of all, for a topological space I let Top(I) denote the site on the

category of local homeomorphisms J → I endowed with the evident Grothendieck topology. (The

site Top(I) gives rise to the usual category of sheaves on I.)

Suppose we are given a set I and a surjective map I → X : i 7→ xi. We endow I with the

discrete topology and fix for each i ∈ I a geometric point xi over xi. This gives rise to a morphism

of sites ν : Top(I) → X(G)ét. For an étale abelian sheaf F on X(G), let C·(F ) denote the right

resolution of F constructed as follows:

(a) C0(F ) = ν∗ν∗(F ), and d−1 : F → C0(F ) is the adjunction morphism;

(b) if m ≥ 0, then Cm+1(F ) = C0(Cokerdm−1), and dm is the canonical morphism Cm(F ) →
Cm+1(F ).

By loc. cit., 4.2.3, one has:

(i) Cm(F ) is a flabby sheaf;

(ii) the functor F 7→ Cm(F ) is exact;

(iii) the fibre of the complex C·(F ) at a point x ∈ X is a canonically split resolution of Fx.

1.5.1. Proposition. For any F ∈ X(G)˜́et and m ≥ 0, b∗(Cm(F )) is a soft sheaf on Xét.

Proof. It suffices to assume m = 0. Let F = b∗(Cm(F )). We have to verify the following two

facts (see [Ber3], §3):

(1) for any x ∈ X, Fx is a flabby GalH(x)-module;

(2) for any paracompact U étale over X, the restriction of F to the usual topology |U | of U is

a soft sheaf, i.e., for any compact subset Σ ⊂ U the map F(U) → F(Σ) is surjective.

First of all, we make the following two observations that will simplify the situation.

(a) Let N be an open subgroup of G and let G =
∐

j∈J gjN . Then there is a surjective map

I ′ = I × J → X : (i, j) 7→ g−1
j xi and a morphism of sites ν′ : Top(I ′) → X(N)ét that give rise to

an isomorphism (ν∗ν∗F )
∣∣
X(N)

∼→ν′∗ν
′∗F . It follows that to verify (1) and (2) we always can replace

G by an open subgroup.
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(b) For an étale morphism X ′(G) → X(G), let I ′ be the set of triples (i, x′, ψ), where i ∈ I,

x′ ∈ X ′ is over xi, and ψ is an embedding H(x′) ↪→ H(pxi
) over H(xi). then there is a surjective

map I ′ → X ′ : (i, x′, ψ) 7→ x′ and a morphism of sites ν′ : Top(I ′) → X ′(G)ét that give rise to an

isomorphism (ν∗ν∗F )
∣∣
X′(G)

∼→ν′∗ν
′∗(F

∣∣
X′(G)

).

It follows that instead of (1) and (2) it suffices to verify the following two facts for the case

when X is paracompact:

(1′) Hq(GalH(x),Fx) = 0 for all x ∈ X and q ≥ 1;

(2′) the restriction of F to the usual topology |X| of X is a soft sheaf.

(1′) It suffices to verify that for any finite Galois extension K of H(x) in H(x)s, one has

Hq(Gal,Fx(K)) = 0, where Gal = Gal(K/H(x)). For this we take a distinguished étale morphism

ϕ : X ′ → X with ϕ−1(x) = {x′} and H(x′) = K. Using (a), we can shrink X and G so that we

may assume that ϕ is a G-morphism and a finite Galois covering with the Galois group Gal. Then

Fx(K) is the inductive limit of F(U ′) taken over all distinguished open neighborhoods U of the point

x, where U ′ = ϕ−1(U). Using (a) again, it suffices to verify that Hq(Gal, (ν∗ν∗F )(X ′(G))) = 0.

By the construction, one has (ν∗ν∗F )(X ′(G)) =
∏

i∈I

∏
(i,x′,ψ)∈I′ Fxi , where I ′ is as in (b), i.e.,

(ν∗ν∗F )(X ′(G)) is a direct product of coinduced Gal-modules. This implies (1′).

(2′) We have to verify that for any compact subset Σ ⊂ X the map F(X) → F(Σ) is surjective.

Let f ∈ F(Σ). Then f can be extended to a section of F over a distinguished open neighborhood

U of Σ. We can shrink U and replace G by a sufficiently small open subgroup of GU so that we

may assume that U is G-invariant and f comes from a section of ν∗ν∗(F ) over U(G). But the

latter section is induced from a section over X(G) because I is a discrete space. It follows that f

is contained in the image of F(X), i.e., (2′) is also true.

Let F be an étale abelian sheaf on X(G). The support of an element f ∈ F (X(G)) is the set

Supp(f) = {x ∈ X
∣∣fx 6= 0}, where fx is the image of f in Fx. It is a closed subset of X. The values

of the high direct images of the functor F 7→ Γc,X(G)(F ) := {f ∈ F (X(G))
∣∣Supp(f) is compact}

are called the cohomology groups with compact support and denoted by Hq
c (X(G), F ). The val-

ues of the high direct images of the functor F 7→ Γc,X{G}(F ) := lim
−→

Γc,X(N)(F ), where N runs

through open subgroups of G, are denoted by Hq
c (X{G}, F ). One evidently has Hq

c (X{G}, F ) =

lim
−→

Hq
c (X(N), F ).

1.5.2. Corollary. (i) For any étale abelian sheaf F on X(G) there are canonical isomor-

phisms Hq
c (X{G}, F )∼→Hq

c (X, b∗F ), g ≥ 0. In particular, the canonical action of G on the groups
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Hq
c (X, b∗F ) is discrete and there is a spectral sequence

Ep,q
2 = Hp(G,Hq

c (X, b∗F )) =⇒ Hp+q
c (X(G), F ) .

(ii) Given a ringed space (X(G),O), the values of the high derived functors of the functor

F 7→ Γc,X(G) (resp. Γc,X{G}) on the category S(X(G),O) are the groups Hq
c (X(G), F ) (resp.

Hq
c (X{G}, F )).

Proof. The case q = 0 in (i) (resp. (ii)) follows from the fact that every element of H0
c (X, b∗F )

is fixed by an open subgroup of G (resp. is trivial), and therefore the general case follows from

Proposition 1.5.1.

Suppose now we are given a G-morphism of G-spaces ϕ : Y → X. For an étale abelian

sheaf F on Y (G) and an étale morphism U(G) → X(G), let (ϕ!F )(U(G)) denote the subgroup of

F ((Y ×X U)(G)) that consists of the elements f for which the map Supp(f) → U is proper. The

correspondence U(G) 7→ (ϕ!F )(U(G)) is an étale abelian sheaf on X(G).

1.5.3. Corollary. (i) For any étale abelian sheaf F on Y (G) there are canonical isomorphisms

b∗X(Rqϕ!F )∼→Rqϕ!(b∗Y F ), q ≥ 0.

(ii) If O is a G-sheaf of rings on Y , then the values of the high derived functors of the functor

F 7→ ϕ!F on S(Y (G),O) are the sheaves Rqϕ!F .

Proof. (i) One easily verifies that the homomorphism considered induces an isomorphism of

stalks for q = 0, and therefore in the general case it is an isomorphism, by Proposition 1.5.1. (ii)

follows from the same proposition.

Corollary 1.5.3 implies that the results on cohomological dimension and base change for the

functors Rqϕ! established in [Ber2] are applicable to the G-morphisms of G-spaces. In particular,

if ϕ : Y → X is a G-morphism of dimension d between k-analytic G-spaces, then for any abelian

torsion sheaf F on Y and any q > 2d one has Rqϕ!(F ) = 0.

1.5.4. Corollary (Verdier Duality). Let ϕ : Y → X be a G-morphism of finite dimension

between k-analytic G-spaces, and let O be a G-sheaf of torsion rings on X(G). Then

(i) there is an exact functor Rϕ! : D+(X(G),O) → D+(Y (G), ϕ∗O) and, for any E· ∈
D−(Y (G), ϕ∗O) and F · ∈ D+(X(G),O), a functorial isomorphism

Rϕ∗(Hom(E·, Rϕ!F ·))∼→Hom(Rϕ!E
·, F ·) ;

(ii) for any F · ∈ D+(X(G),O) there is a functorial isomorphism b∗Y (Rϕ!F ·)∼→Rϕ!(b∗XF ).
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1.6. Comparison of étale and quasi-étale cohomology groups.

1.6.1. Theorem. Let X be a G-space. Then

(i) if X is paracompact, then the values of the high direct images of the functor F 7→ (b∗F )(X)

on the category of quasi-étale (resp. étale) abelian sheaves on X(G) are the cohomology groups

Hq(X, b∗F );

(ii) if X is compact, then for any quasi-étale (resp. étale) abelian sheaf F on X(G) one has

Hq(X{G}, F )∼→Hq(X, b∗F ) and, in particular, there is a spectral sequence

Ep,q
2 = Hp(G,Hq(X, b∗F )) =⇒ Hp+q(X(G), F ) ;

(iii) for any étale abelian sheaf F on X(G) there are canonical isomorphisms

Hq
ét(X(G), F )∼→Hq

qét(X(G), µ∗F ) and Hq
ét(X{G}, F )∼→Hq

qét(X{G}, µ∗F ) .

Proof. First of all we remark that (ii) trivially follows (i). Furthermore, (i) for étale sheaves

follows from Proposition 1.5.1 and [Ber3], Lemma 3.2(i). We claim that if X is compact and

F is a quasi-étale injective sheaf on X(G), then Hq(X, b∗F ) = 0 for q ≥ 1. Indeed, for this it

suffices to verify that given a finite quasi-étale covering U = {Ui
fi→ X} by compact Ui the Čech

cohomology groups Ȟq(U , b∗F ) are trivial for q ≥ 1. For a sufficiently small open subgroup N ⊂ G

each fi can be considered as an N -morphism, and therefore U gives rise to a quasi-étale covering

U(N) = {Ui(N) → X(N)} of X(N). Since the pullback of F on X(N) is also injective, then

Ȟq(U(N), F ) = 0 for q ≥ 1. It remains to note that Ȟq(U , b∗F ) is an inductive limit of the latter

groups taken over sufficiently small open subgroups N of G. Thus, (i) for compact X and (ii) are

true for quasi-étale sheaves.

We now consider for an arbitrary X the commutative diagram of morphisms of sites

X(G)qét
µG−→ X(G)étxbq

xb

Xqét
µ−→ Xét

We claim that for any quasi-étale abelian sheaf F on X(G) there are a canonical isomorphisms

b∗(RqµG∗F )∼→Rqµ∗(b∗qF ), q ≥ 0. Indeed, the stalk of b∗(RqµG∗F ) at a geometric point x is

lim
−→
U

lim
−→
N

Hq(U(N), F ) = lim
−→
U

Hq(U{GU}, F ) ,

where the limit is taken over all compact U ∈ C(x/X) such that the image of x in U is contained in

the relative interior of U over X and over all open subgroups N ⊂ GU . But we already know that
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Hq(U{GU}, F ) = Hq(U, b∗qF ), and therefore the inductive limit is exactly the stalk of the sheaf

Rqµ∗(b∗qF ) at x.

To prove (i), it remains to verify that if X is paracompact then for any quasi-étale injec-

tive sheaf F on X(G) and any q ≥ 1 one has Hq
qét(X, bF

q ) = 0. Consider the spectral sequence

Ep,q
2 = Hp

ét(X, Rqµ∗(b∗qF )) =⇒ Hp+q
qét (X, b∗qF ). One has Rqµ∗(b∗qF ) = b∗(RqµG∗F ) = 0 for q ≥ 1,

and therefore Hq
qét(X, bF

q ) = Hq
ét(X, b∗(µG∗F )) = 0. Furthermore, since the étale sheaf µG∗F is

injective, then the latter group is zero.

To prove (iii), it suffices to verify that for any étale abelian sheaf F on X(G) and any q ≥ 1

one has RqµG∗(µ∗GF ) = 0. But b∗(RqµG∗µ
∗
GF ) = Rqµ∗(b∗qµ∗GF ) = Rqµ∗µ∗(b∗F ). The latter is

zero, by [Ber3], Theorem 3.3(ii).

Due to Theorem 1.6.1, in the notations of cohomology groups it is not necessary to specify

the topology, quasi-étale or étale, with respect to which those groups are considered. Furthermore,

given a morphism ϕ : X ′(G′) → X(G), we will use, for brevity, the notation Hq(X ′(G′), F ) instead

of Hq(X ′(G′), ϕ∗F ).

1.6.2. Corollary. Let ϕ : Y → X be a compact G-morphism of G-spaces that gives rise to

the commutative diagram of morphisms of sites

Y (G)ét
ϕ−→ X(G)étxµY

xµX

Y (G)qét
ϕq−→ X(G)qét

Then for any étale (resp. étale abelian) sheaf F on Y (G) there is a canonical isomorphism

µ∗X(ϕ∗F )∼→ϕq∗(µ
∗
Y F ) (resp. µ∗X(Rqϕ∗F )∼→Rqϕq∗(µ

∗
Y F ), q ≥ 0).

1.7. Étale fundamental groups of a G-space. Recall ([Ber2], 6.3.4(iii); [deJ], 2.1) that an

étale covering space of an analytic space X is a morphism f : Y → X with the property that every

point x ∈ X has an open neighborhood U such that f−1(U) is a disjoint union of analytic spaces

finite étale over X. We will call such an Y an étale covering space in the strong sense, and we say

that a morphism f : Y → X is an étale covering space if every connected component of Y is an

étale covering space of X in the strong sense.

Let X be a G-space. We denote by CovX(G) the category of morphisms of G-spaces Y (G) →
X(G) that are étale covering spaces of X(G). (It is clear that every G-connected component of

such Y (G) is an étale covering spaces in the strong sense.) For a geometric point x of X(G), let

Φx : CovX(G) → Sets be the functor defined by

Φx(Y (G)) = {y : px → Y (G)
∣∣f(y) = x} .
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1.7.1. Proposition. Suppose that X(G) is connected. Then for any pair of geometric points

x and x′ of X(G) there exists an isomorphism of functors Φx
∼→Φx′ .

Proof. Since any element g ∈ G defines an isomorphism of functors Φx
∼→Φg(x) and X(G) is

connected, we may assume that the images of x and x′ are contained in one connected component

of X. Furthermore, consider the morphism b : X → X(G). Then x and x′ define geometric points y

and y′ of X with b(y) = x and b(y′) = x′. It follows from de Jong’s Theorem ([deJ], 2.9) that there

exists an isomorphism of functors Φy
∼→Φy′ . It gives rise to the required isomorphism of functors

Φx
∼→Φx′ .

The étale fundamental group of X(G) with base point x is the endomorphism group of the

functor Φx, i.e., π1(X(G), x) = Aut(Φx). For a pair (Y (G), y) with Y (G) ∈ CovX(G) and y ∈
Φx(Y (G)), let H(Y (G), y) denote the stabilizer of y in π1(X(G), x). The system of subgroups

H(Y (G), y) define a topological group structure on π1(X(G), x). It is easy to see (see [deJ], Lemma

2.7) that there is a topological isomorphism

π1(X(G), x)∼→ lim
←−

π1(X(G), x)/H(Y (G), y) .

In particular, the group π1(X(G), x) is Hausdorff and prodiscrete.
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